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Abstract

One of the main lines of research in algorithmic randomness is that of lowness
notions. Given a randomness notion R, we ask for which sequences A does rela-
tivization to A leave R unchanged (i.e., RA = R)? Such sequences are call low for
R. This question extends to a pair of randomness notions R and S , where S is
weaker: for which A is S A still weaker than R? In the last few years, many results
have characterized the sequences that are low for randomness by their low compu-
tational strength. A few results have also given measure-theoretic characterizations
of low sequences. For example, Kjos-Hanssen (following Kučera) proved that A is
low for Martin-Löf randomness if and only if every A-c.e. open set of measure less
than 1 can be covered by a c.e. open set of measure less than 1.

In this paper, we give a series of results showing that a wide variety of lowness
notions can be expressed in a similar way, i.e., via the ability to cover open sets of
a certain type by open sets of some other type. This provides a unified framework
that clarifies the study of lowness for randomness notions, and allows us to give
simple proofs of a number of known results. We also use this framework to prove
new results, including showing that the classes Low(MLR, SR) and Low(W2R,SR)
coincide, answering a question of Nies. Other applications include characterizations
of highness notions, a broadly applicable explanation for why low for randomness is
the same as low for tests, and a simple proof that Low(W2R,S ) = Low(MLR,S ),
where S is the class of Martin-Löf, computable, or Schnorr random sequences.

The final section gives characterizations of lowness notions using summable func-
tions and convergent measure machines instead of open covers. We finish with a
simple proof of a result of Nies, that Low(MLR) = Low(MLR,CR).



1 Introduction

This paper is organized as follows. In the remainder of this section we re-
view notation, introduce the basic notions, including the relevant randomness
classes, and survey what is known about lowness for randomness notions. In
Section 2 we consider Kučera’s result that X is not Martin-Löf random iff
there is a c.e. open set U of measure less than 1 such that U covers all tails
of X. We prove analogous theorems for computable and Schnorr randomness
by placing further restrictions on the c.e. open covers.

In Section 3 we prove our main technical lemma and show that it applies
to Martin-Löf randomness, computable randomness and Schnorr randomness.
Together with the previous section, the main lemma provides a unified frame-
work to study lowness classes in terms of c.e. open covers. Section 4 gives
a number of applications. Kjos-Hanssen [9] (based on the ideas of Kučera)
showed that A is low for Martin-Löf randomness if and only if every A-c.e.
open set of measure less than 1 can be covered by a c.e. open set of measure
less than 1. In Section 4.1, we show that a wide variety of lowness notions can
be expressed in a similar way, i.e., via the ability to cover open sets of a certain
type by open sets of another type. Kjos-Hanssen’s result actually gives a char-
acterization of LR-reducibility, and in Section 4.2, we note that similar char-
acterizations could be given for the weak reducibilities associated with com-
putable and Schnorr randomness. In Section 4.3 we give a broadly applicable
explanation for why lowness for randomness has, in the cases that have been
studied, turned out to be the same as lowness for tests. In Section 4.4 we show
that Low(W2R,S ) = Low(MLR,S ) for S ∈ {MLR,CR, SR}. Two of these
facts were known, but the Schnorr randomness case answers an open question
of Nies [16, Problem 8.3.16]. Finally, Section 4.5 applies our framework to
highness notions, focusing on the poorly understood class High(CR,MLR).

Section 5 departs from the rest of the paper; in it, we reformulate lowness
notions using summable functions and convergent measure machines instead
of open covers. A final application is given in Section 5.2, where we give a
straightforward proof that Low(MLR) = Low(MLR,CR) (Nies [15,16]).
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jmiller@math.wisc.edu (Joseph S. Miller).
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Germany.
2 The second author was supported by the National Science Foundation under
grants DMS-0945187 and DMS-0946325, the latter being part of a Focused Research
Group in Algorithmic Randomness.
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1.1 Basic notation

We work in Cantor space, in other words, the set 2ω of infinite binary se-
quences. We write 2<ω for the set of finite binary strings and ε ∈ 2<ω for the
empty string. If S is a subset of 2<ω, we define

Sn = {σ ∈ 2<ω : σ = σ0σ1σ2 . . . σn−1 s.t. (∀i < n) σi ∈ S}, and

Sω = {A ∈ 2ω : A = σ0σ1σ2 . . . s.t. (∀i) σi ∈ S}.

For a string σ, [σ] denotes the cylinder generated by σ, in other words, the
set of infinite sequences with prefix σ. For U ⊆ 2<ω, the open set generated
by U is [U ] =

⋃
σ∈U [σ]. We denote the Lebesgue measure on 2ω by µ (a.k.a.

the uniform measure on 2ω, which can be defined as the unique probability
measure on 2ω that satisfies µ([σ]) = 2−|σ|). If U is a prefix-free subset of
2<ω, the measure of U is the quantity µ(U) = µ([U ]) =

∑
σ∈U 2−|σ|. Note that

µ(Un) = µ(U)n, again assuming that U ⊂ 2<ω is prefix-free. We say that an
open set (resp. prefix-free set of strings) is bounded if its measure is smaller
than 1. A c.e. open set (or Σ0

1 class) is an open set generated by a c.e. prefix-
free set of strings. We say that a c.e. open set (resp. c.e. prefix-free set of
strings) is a Schnorr set if its measure is computable.

If A ∈ 2ω, we denote by A � n the prefix A of size n, i.e., A � n =
A(0)A(1) . . . A(n − 1). Also, we call a tail of A any infinite sequence of type
A(k)A(k+ 1)A(k+ 2) . . . for k ∈ N (in other words, any sequence obtained by
removing a finite prefix from A). If X is a subset of 2ω and σ a finite string,
we set

(X | σ) = {Z ∈ 2ω : σZ ∈ X}.
Similarly, if W is a subset of 2<ω we set

(W | σ) = {τ ∈ 2<ω : στ ∈ W}.

Note that this is consistent with the conditional probability notation: µ(X | σ)
is just the measure of X conditioned by [σ], i.e., µ(X ∩ [σ])/µ(σ). Note also
that if U is a c.e. open set, then so is (U | σ) for all σ. If moreover the measure
of U is computable, then so is the measure of (U | σ) (uniformly in µ(U) and
σ).

1.2 Randomness notions

In general, a test is a non-increasing sequence (Un)n∈N of open sets such that⋂
n Un has measure 0. We say that a sequence X ∈ 2ω fails the test (Un)n∈N if

X ∈ ⋂n Un, and that X passes the test otherwise. If X is a subset of 2ω, we
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say that a test (Un)n∈N covers X if X ⊆ ⋂
n Un. We say that a test (Un)n∈N

covers another test (U ′n)n∈N if
⋂
n U ′n ⊆

⋂
n Un.

Definition 1 A test (Un)n∈N is a Martin-Löf test if µ(Un) ≤ 2−n for all n. It
is a Schnorr test if one further has µ(Un) = 2−n. We say that X is Martin-Löf
random if it passes all Martin-Löf tests, and that X is Schnorr random if it
passes all Schnorr tests. We denote by MLR the set of Martin-Löf random
sequences and by SR the set of Schnorr random sequences.

Remark 2 It should be noticed that the quantity 2−n in the above definition is
arbitrary: we would get the same classes MLR and SR if we replaced it by any
f(n), with f a computable function that tends to 0. Another important fact is
that there exists a universal Martin-Löf test, i.e., a Martin-Löf test such that
for any sequence X, X passes that test if and only X is Martin-Löf random.
There is no such universal test for Schnorr randomness.

A third important notion of randomness is computable randomness, whose
definition involves the concept of martingale.

A martingale is a function d : 2<ω → R≥0 such that for all σ ∈ 2<ω

d(σ) =
d(σ0) + d(σ1)

2
.

It is said to be normed if d(ε) = 1. We say that a martingale succeeds on a
sequence X ∈ 2ω if lim sup d(X � n) = +∞.

For any martingale, the set of sequences on which it succeeds has measure 0.
This is a direct consequence of the so-called Ville-Kolmogorov inequality.

Proposition 3 Let d be a martingale, σ ∈ 2<ω and q > 1 a real number. Let

Ud,σ,q =
{
X ∈ 2ω : (∃n > |σ|) d(X � n) ≥ q · d(σ)

}
.

Then µ(Ud,σ,q | σ) ≤ 1/q.

We can now define the notion of computable randomness.

Definition 4 We say that X is computably random if no computable martin-
gale succeeds on X. We denote by CR the set of computably random sequences.

In the above definition, by “computable” we mean computable as a real-valued
function. However, it will be more convenient in this paper to work with
exactly computable martingales, i.e., martingales that are rational-valued and
computable as functions from N to Q≥0. This is made possible by a note of
Lutz [13], where it is proven that for every computable martingale d, there
exists an exactly computable martingale d′ and positive real constants α, β
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such that αd < d′ < βd (in particular, d and d′ succeed on the same set of
sequences). Furthermore, an index of d′ can be uniformly computed from an
index of d. Therefore, we can equivalently define the set CR as being the set of
sequences X such that no (normed) exactly computable martingale succeeds
on X. We can also rephrase the definition in terms of test.

Definition 5 Let d be a rational-valued normed martingale and q a rational
such that q > 1. We say that U ⊆ 2<ω is a (d, q)-winning set if for some
rational q > 1 we have U = {σ : σ minimal s.t. d(σ) ≥ q}. We say that U ⊆
2<ω is a winning set if it is a (d, q)-winning set for some exactly computable
normed martingale d and rational q > 1. We also say that a c.e. open set U
is a winning set if U = [U ] where U is a winning set of strings.

Given a normed exactly computable martingale d, the test induced by d is the
sequence (Un)n∈N where Un is the (d, 2n)-winning set.

(in the above definition, and in the rest of the paper, we say that a string σ
is minimal for a given property P if σ satisfies P and no prefix of σ does).

Now, we immediately see that X is computably random if and only if X passes
all tests induced by normed exactly computable martingales.

Remark 6 If d is a normed, exactly computable martingale, any (d, q)-winning
set is c.e. open, and (by the Ville-Kolmogorov inequality) has measure at
most 1/q. Thus the test induced by a normed, exactly computable martingale
is a Martin-Löf test.

The last randomness notion we will discuss in this paper is a very natural gen-
eralization of Martin-Löf randomness. Weak 2-randomness (sometimes called
Kurtz 2-randomness) allows tests (Un)n∈N with the looser condition that µ(Un)
tends to 0, possibly at a non-computable rate.

Definition 7 A generalized Martin-Löf test is a sequence (Un)n∈N of uni-
formly c.e. open sets such that limn µ(Un) = 0. We say that X is weak 2-
random if X passes all generalized Martin-Löf tests and denote by W2R the
set of weak 2-random sequences.

Note that a generalized Martin-Löf test is nothing more than a measure zero
Π0

2 class and X is weak 2-random iff it avoids every such class.

1.3 Lowness notions: the state of the art

In computability theory, an oracle A is said to be low in a certain context if a
relativization to A “does not help”. For example, A is low for the Turing jump
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(usually referred to simply as “low”) if A′ ≡T 0′. Lowness notions have been
very important in the recent development of algorithmic randomness. Take a
randomness notion R that, like all the above, can be defined via tests. One can
relativize the notion of test to an oracle A, getting the class RA of sequences
that pass all A-tests. Since taking A as an oracle gives additional computa-
tional power, we have RA ⊆ R. We say that A is low for the randomness
notion R if, as an oracle, A has so little computational power that RA = R.
We denote by Low(R) the set of sequences that are low for R.

Zambella [18] introduced lowness for Martin-Löf randomness. A beautiful se-
ries of results by Nies and others (see [16] for a complete exposition) showed
that these oracles have remarkable properties. They proved thatA ∈ Low(MLR)
if and only if A is low for prefix-free Kolmogorov complexity (i.e., KA =
K + O(1)), and if and only if A is K-trivial. This latter property states that
the initial segments of A have minimal prefix-free Kolmogorov complexity
(i.e., K(A � n) ≤ K(n) + O(1)). Lowness has been studied for other random-
ness notions. The work of Terwijn and Zambella [17] and of Kjos-Hanssen
et al. [11] characterized low for Schnorr randomness as computably traceable
(a strengthening of hyperimmune-free; see below). Nies [15] showed that only
computable oracles can be low for computable randomness.

One can also study lowness for a pair of randomness notions. If R and S
are two randomness notions with R ⊆ S , Low(R,S ) is the set of oracles A
such that R ⊆ S A. The task of characterizing the sequences that are low
for randomness has attracted a lot of effort in the last few years, and is now
nearly completed, as shown in the following diagram.

S

W2R MLR CR SR

W2R K-trivial [5,10,16] K-trivial [5] K-trivial [16] c.e.
traceable

MLR K-trivial [15] K-trivial [15] c.e.
traceable

[11]

R CR computable [15] computably
traceable

[11]

SR computably
traceable

[17,11]

Low(R,S ) for various randomness classes.

Note that each class in the diagram is contained in the classes above it and
to its right. The gray entry is settled in this paper. It should be also noted
that this diagram omits the results obtained by Greenberg and Miller [8] that
characterize almost all lowness notions related to weak 1-randomness, as we
do not discuss weak 1-randomness in the present paper.

Although we will not directly use these notions in this paper, we recall the
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definitions of the classes that are referred to in this diagram. We defined K-
triviality above. A sequence A is computably traceable if there exists a single
computable function h such that for any total function f : N→ N computable
in A, there exists a uniformly computable sequence of finite sets (Tn)n∈N, given
by their strong index, such that for all n, f(n) ∈ Tn and |Tn| < h(n). The
definition of c.e. traceability is the same, except that the sets Tn are given by
their index as c.e. sets. Kjos-Hanssen et al. [11] introduced c.e. traceability
specifically to characterize Low(MLR, SR), making it one of several examples
of interesting computability theoretic properties that have arisen from the
study of randomness and lowness notions.

2 Testing randomness via open covers

In this section, we present an alternative way to look at the above randomness
notions. Instead of using tests, i.e., sequences of open sets, it is possible to pro-
vide equivalent definitions involving a single open set (or c.e. set of strings).
The first theorem below is due to Kučera [12] and characterizes Martin-Löf
randomness. We prove analogous theorems for computable and Schnorr ran-
domness.

Theorem 8 Let X ∈ 2ω. The following are equivalent:
(i) X is not Martin-Löf random
(ii) There is a bounded c.e. open set U such that all tails of X belong to U .
(iii) X ∈ Uω for some bounded c.e. prefix-free subset U .

PROOF. (i) ⇒ (ii) This follows easily from the existence of a universal
Martin-Löf test (Un)n∈N. Let U = U1. So U is a bounded c.e. open set covering
all non-Martin-Löf random sequences. If X is not Martin-Löf random, then
none of its tails are Martin-Löf random. Hence they all belong to U .

(ii)⇒ (iii) Suppose that U is a bounded c.e. open set and that all of the tails
of X belong to U . Let U ⊂ 2<ω be a c.e. prefix-free set such that U = [U ]. We
show by induction on n that X ∈ [Un]. This is true for n = 1 by assumption.
Now assume that X ∈ [Un]. So for some σ ∈ Un, there is a Z such that
X = σZ. Since Z is a tail of X, we know that Z ∈ U = [U ]. But this implies
that X ∈ [Un+1]. Thus X ∈ [Un] for all n. Therefore, X ∈ Uω =

⋂
n[Un].

(iii) ⇒ (i) Assume that X ∈ Uω for some bounded c.e. prefix-free subset U .
For each n, we have X ∈ Un = [Un]. Also, µ(Un) = µ(Un) = µ(U)n, so (Un)n∈N
is a Martin-Löf test (in the more general sense of Remark 2). Since (Un)n∈N
covers X, it is not Martin-Löf random.
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Theorem 9 Let X ∈ 2ω. The following are equivalent:
(i) X is not Schnorr random.
(ii) There is a bounded Schnorr open set U such that all tails of X belong to U .
(iii) X ∈ Uω for some bounded Schnorr prefix-free subset U of 2<ω.

PROOF. (i)⇒ (ii) Suppose that X is not Schnorr random. Then X ∈ ⋂n Vn
where (Vn)n∈N is a Schnorr test (say with µ(Vn) = 2−n). We build the desired
set U from this Schnorr test. For every k, the tail Yk = X(k)X(k+ 1) . . . of X
belongs to

⋂
n(Vn | τ), where τ = X(0)...X(k − 1). Thus, for all n, Yk belongs

to ⋃
σ
|σ|=k

(Vn | σ),

which, for n large enough, has small measure. For example, for n = 3k + 2,
the above set has measure at most 2−k−2 (indeed each of the 2k sets of type
(Vn | σ) has measure at most µ(Vn)/µ([σ]) ≤ 2−n2k, hence the total measure
is at most 2−n+2k). Thus, define:

U =
⋃
k∈N

⋃
σ
|σ|=k

(V3k+2 | σ).

We claim that U is as wanted. Indeed, U is clearly Σ0
1. By the above discussion,

U contains all tails of X, the measure of U is at most∑
k∈N

2−k−2 ≤ 1/2.

To see that the measure of U is computable, note that the measure µ(V3k+2 | σ)
is computable uniformly in k and σ. So the measure of⋃

k≤N

⋃
σ
|σ|=k

(V3k+2 | σ),

is computable, uniformly in N , and approximates µ(U) up to
∑
k>N 2−k−2 <

2−N .

The proofs of (ii)⇒ (iii) and (iii)⇒ (i) go exactly as in Theorem 8.

Theorem 10 Let X ∈ 2ω. The following are equivalent:
(i) X is not computably random.
(ii) There exists a winning open set U such that all tails of X belong to U .
(iii) X ∈ Uω for some winning subset U of 2<ω.
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PROOF. (i)⇒ (ii). SupposeX is not computably random. Then there exists
a computable martingale d that succeeds against X. Up to adding a positive
constant to d (preserving the fairness condition) we can assume that d is
positive. Now, for all strings σ, one can consider the “translated” version dσ
of d defined by

dσ(τ) = d(στ).

It is easy to see that if Y is a tail of X, with X = σY , then dσ succeeds
against Y . Therefore, the martingale D defined by:

D(τ) =
∑

σ∈2<ω

2−2|σ|−1 · dσ(τ)

dσ(ε)

succeeds against all tails of X. Moreover, D is normed and computable as a
sum of exponentially decreasing uniformly computable terms. By the result of
Lutz [13] mentioned earlier, we can also assume that D is exactly computable.
Since D succeeds against all tails of X, this in particular implies that all tails
of X belong to the winning open set [U ] with U = {σ : σ minimal s.t. D(σ) ≥
2}.

The proof of (ii)⇒ (iii) is as in Theorem 8.

(iii)⇒ (i). If X ∈ Uω where U is a winning set of strings, let d be the normed
exactly computable martingale and q > 1 a rational such that U is a (d, q)-
winning set. We can assume that d is positive, otherwise we set d′ = 1

2
d + 1

2
,

which makes U a (d′, 1+q
2

)-winning set, and d′ is positive. Now, we design a
computable martingale D that succeeds on all sequences in Uω. Basically, D
simulates the martingale d and “resets” after reading a block σ ∈ U . Formally,
D is defined by induction. We set D(ε) = 1 and if D(σ) is already defined, we
write σ = ρτ where ρ is a concatenation of strings in U and τ has not prefix
in U (this decomposition is unique as U is prefix-free) and then set

D(σι) = D(σ) · d(τι)

d(τ)
,

for ι ∈ {0, 1}. It is easy to see that D is an exactly computable martingale,
and if σ is a concatenation of k strings in U , D(σ) ≥ qk. Hence D succeeds
against all sequences in Uω.

Remark 11 In fact, the proofs of Theorems 8, 9 and 10 show a little more.
What we actually proved is the following equivalence for any subset X of 2ω

(i) X is covered by a Martin-Löf test (resp. a test induced by a martingale, a
Schnorr test).
(ii) There exists a single bounded c.e. open set (resp. winning open set, bounded
Schnorr open set) U such that for any X ∈ X , all tails of X are in U .
(iii) There exists a single bounded c.e. set of strings (resp. winning set of
strings, bounded Schnorr set of strings) U such that X ⊆ Uω.

9



3 The main lemma

The following technical lemma is the cornerstone of this paper. It lets us
use the characterizations of Martin-Löf randomness, computable randomness
and Schnorr randomness proven in the previous section to study the associ-
ated lowness notions. Roughly speaking, it states that if a prefix-free set of
strings U is not covered by any of the members of a (reasonably well-behaved)
collection C of open sets, then there exists an X ∈ Uω that passes all tests
that can be built from the elements of C.

Lemma 12 Let C be a class of bounded open subsets of 2ω. Let also (T (e)
n )e,n∈N

be a countable family of tests (i.e., for all e, (T (e)
n )n∈N is a test) such that T (e)

n

belongs to C for all e, n. Suppose we have the following closure properties.
(P1) For all U ∈ C and σ ∈ 2<ω, if µ(U | σ) < 1, then there exists a V ∈ C
such that (U | σ) ⊆ V.
(P2) For all U ∈ C, there exists a V ∈ C such that U ⊆ V, and for all σ ∈ 2<ω,
if µ(U | σ) = 1, then [σ] ⊆ V.
(P3) For all U ∈ C, and σ ∈ 2<ω, if µ(U | σ) < 1, then for all e ∈ N, there
exists ne ∈ N and V ∈ C such that (U ∪ T (e)

ne
) ⊆ V and µ(V | σ) < 1.

Finally, let W be a prefix-free subset of 2<ω such that [W ] cannot be covered
by any open set U ∈ C.

Then, there exists X ∈ W ω that passes all tests T (e).

PROOF. We build X by a finite extension technique: having built a prefix σe
of X, during stage e, we build an extension σe+1 of σe. This is done as follows.
We begin with σ0 equal to the empty string, and U0 equal to the empty subset
of 2ω. At the beginning of stage e, suppose we have already built σe and Ue,
satisfying µ(Ue | σe) < 1. We then use property (P3) to find ne and V ∈ C
such that (Ue∪T (e)

ne
) ⊆ V and µ(V | σe) < 1. Next, we pick a non-empty string

τ ∈ W such that µ(V | σeτ) < 1. We then set Ue+1 = V and σe+1 = σeτ ,
finishing the e-th stage.

It remains to verify that this construction works. First, we have to make sure
that at stage e of our construction, there is indeed a string τ ∈ W such
that µ(V | σeτ) < 1. Suppose that this is not the case. This means that

µ(V | σeτ) = 1 for all τ ∈ W , or equivalently that µ
(
(V | σe) | τ

)
= 1

for all τ ∈ W . By definition of V , we have µ(V | σe) < 1, so we can apply
property (P1) to get some V ′ ∈ C such that (V | σe) ⊆ V ′. In particular, V ′
is such that µ(V ′ | τ) = 1 for all τ ∈ W . Now by property (P2) there exists
V ′′ ∈ C covering V ′ and such that [τ ] ⊆ V ′′ for all τ ∈ W , which means that
[W ] is covered by V ′′. This contradicts the assumption that [W ] is not covered
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by a set that belongs to C.

Now, let X be the unique element of 2ω such that all σe’s are prefixes of X.
It is easy to see from the construction that X ∈ W ω. Moreover, suppose X
fails a test T (e). This would imply that X ∈ T (e)

ne
(the ne being defined in the

above construction). Thus, there would exist e′ > e large enough, such that
[σe′ ] ⊆ T (e)

ne
. This would be a contradiction since, by construction, on the one

hand [σe′ ] * Ue′+1 and on the other hand T (e)
ne
⊆ Ue+1 ⊆ Ue′+1. 2

Proposition 13 The hypotheses (P1,P2,P3) of Lemma 12 are satisfied in the
following three cases.
(MLR) C is the class of bounded c.e. open sets and (Te) is the family of
Martin-Löf tests.
(CR) C is the class of open sets that are winning sets of exactly computable
martingales and (Te) is the family of tests induced by those martingales.
(SR) C is the class of bounded Schnorr open sets and (Te) is the family of
Schnorr tests.

PROOF. (MLR) As we previously observed, for every c.e. open set U and
σ ∈ 2<ω, (U | σ) is a c.e. open set and its index can be computed from an index
of U and σ. The property (P1) thus follows immediately. For the property (P3),
given a c.e. open set U and σ ∈ 2<ω, such that µ(U | σ) < 1 − 2−k for some
k > 0, together with a Martin-Löf test T (e), take ne = |σ|+k. By the definition
of a Martin-Löf test, µ(T (e)

ne
) < 2−ne = 2−|σ|−k. So µ(T (e)

ne
| σ) < 2−k, and the

set V = U ∪ T (e)
ne

is c.e. open and satisfies µ(V | σ) < (1− 2−k) + 2−k < 1. We
now check that (P2) holds. Given a bounded c.e. open set U , let q < 1 be a
rational such that µ(U) < q and set

V =
⋃{

[σ] : µ(U | σ) > q
}

It is clear that V is c.e. open and if µ(U | σ) = 1 then [σ] ⊆ V . It remains
to check that V is bounded. Let F be the set of strings σ that are minimal
among those satisfying µ(U | σ) > q. We have

µ(V) =
∑
σ∈F

µ([σ]) ≤
∑
σ∈F

µ(U ∩ [σ])

q
≤ µ(U ∩ [F ])

q
≤ µ(U)

q
< 1.

(CR) Let U be a c.e. set of strings such that U = {σ : σ minimal s.t. d(σ) ≥
q} for some exactly computable normed martingale d and rational q > 1.

For property (P1), suppose that µ(U | σ) < 1. We thus have d(σ) < q (other-
wise [σ] ⊆ [U ]), and we can also assume that d(σ) > 0 (otherwise (U | σ) = ∅
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and there is nothing to prove). We have

(U | σ) = {τ : τ minimal s.t. d(στ) ≥ q}

=
{
τ : τ minimal s.t.

d(στ)

d(σ)
≥ q

d(σ)

}
.

It is easy to check that τ 7→ d(στ)
d(σ)

is an exactly computable normed martingale,

and since q
d(σ)

> 1 we see that (U | σ) is a winning set of strings.

For property (P2), we will see that the property
(
µ(U | σ) = 1 ⇒ [σ] ⊆ [U ]

)
holds. Indeed, if µ(U | σ) = 1, this means that for almost all X ∈ [σ], there
exists an n such that d(X � n) ≥ q. By the Ville-Kolmogorov inequality, this
implies that d(σ) ≥ q.

For property (P3), let σ be such that µ(U | σ) < 1. As we have seen, this
implies d(σ) < q. Take the e-th test T (e) associated to an exactly computable
normed martingale de (i.e., T (e)

n is the open set generated by the strings σ
such that d(σ) ≥ 2n). We need to find ne such that ([U ] ∪ T (e)

ne
) is covered by

[V ], where V is a winning set such that µ(V | σ) < 1. Let ne be large, to be
specified later. Let D be the exactly computable normed martingale defined
by

D = (1− 2−ne+1)d+ 2−ne+1de.

We haveD(σ) = (1−2−ne+1)d(σ)+2−ne+1de(σ). Now, supposeX ∈ ([U ]∪T (e)
ne

).
If X ∈ [U ], then d(X � n) ≥ q for some n, and then D(X � n) ≥ (1−2−ne+1)q.
If X ∈ T (e)

ne
, then d(X � n) ≥ 2−ne+12ne = 2 for some n. We thus consider the

set
V = {τ : τ minimal s.t. D(τ) ≥ min((1− 2−ne+1)q, 2)}

Now, for ne large enough, we can ensure from the previous calculations that
D(σ) is as close as we want to d(σ) < q, and thus that min((1−2−ne+1)q, 2) >
D(σ). The above set V is then as desired: it is clearly a winning set, it covers
([U ] ∪ T (e)

ne
), and µ(V | σ) < 1 as D(σ) < min((1− 2−ne+1)q, 2).

(SR) Property (P1) is clearly satisfied. Given U a c.e. open set of computable
measure, and σ ∈ 2<ω, (U | σ) is a c.e. open set whose measure is computable
(uniformly in σ and an index for U). Indeed, if Û is a clopen approximation

of U such that µ(U \Û) < ε, then µ
(

(U | σ)\ (Û | σ)
)
< ε ·2|σ|. Property (P3)

is also clearly satisfied, as it is easy to see that given two c.e. open sets U and
V of computable measure, U ∪V is also a c.e. open set of computable measure.

For property (P2), let U be a bounded Schnorr open set and let k be large
enough that µ(U) < 1 − 2−k. We define a computable set of strings V such
[V ] ⊇ U is a bounded Schnorr open set. For every σ ∈ 2<ω, look for a stage
s such that µ(U \ Us) < 2−2|σ|−k−1. If µ(Us | σ) > 1 − 2−|σ|−k−1, then put σ
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into V . It is clear that V is computable. If µ(U | σ) = 1, then it must be the
case that µ(Us | σ) > 1− 2−|σ|−k−1; otherwise

µ(U \ Us) ≥ µ([σ] \ Us) ≥ 2−|σ| − 2−|σ|(1− 2−|σ|−k−1) = 2−2|σ|−k−1,

which contradicts the choice of s. Therefore, µ(U | σ) = 1 implies that σ ∈ V ,
so [σ] ⊆ [V ] as required. This also implies that U ⊆ [V ]. It remains to show
that [V ] is bounded and has computable measure. By adding σ to V , we are
increasing the measure of [V ] \ U by less than 2−|σ|2−|σ|−k−1 = 2−2|σ|−k−1.
Therefore,

µ([V ] \ U) <
∑

σ∈2<ω

2−2|σ|−k−1 =
∑
n∈ω

2n2−2n−k−1 = 2−k.

This implies that µ([V ]) < µ(U) + 2−k < 1, so [V ] is a bounded c.e. open set.
Similarly, for every m,

µ
(
[V ] \ ([V ∩ 2<m] ∪ U)

)
<

∑
σ∈2≥m

2−2|σ|−k−1 =
∑
n≥m

2n2−2n−k−1 = 2−m−k.

But µ([V ∩ 2<m] ∪ U) is computable uniformly in m, so µ([V ]) is also com-
putable. 2

4 Applications

4.1 Lowness notions

Together with the results of Section 2, Lemma 12 has interesting consequences.
First, it follows from it that all lowness notions involving Martin-Löf random-
ness, computable randomness, or Schnorr randomness can essentially be re-
duced to a property of open sets. For example A ∈ Low(MLR) if and only
if every bounded A-c.e. open set can be covered by a bounded c.e. open set
(under this form, this was first stated by Kjos-Hanssen in [9], but most of the
ideas are already present in Kučera [12]); A ∈ Low(CR) if and only if every
A-winning open set can be covered by a winning open set; A ∈ Low(SR) if and
only if every bounded A-computable open set can be covered by a bounded
computable open set. This also works for pairs of randomness notions: for
example, A ∈ Low(MLR,CR) if and only if every A-winning open set can be
covered by a bounded c.e. open set. Let us briefly present the proof of one
such result (the proofs of all the other claims are almost identical).

Corollary 14 Let A ∈ 2ω. The following are equivalent:
(i) A ∈ Low(CR, SR)
(ii) Every bounded A-Schnorr open set can be covered by a winning open set.
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PROOF. (i) ⇒ (ii). Suppose that (ii) does not hold, i.e., there exists a
bounded A-Schnorr open set U that cannot be covered by any winning open
set. Let U be an A-c.e. prefix-free set of strings generating U . We can apply
Lemma 12 with C the class of winning open sets and T the family tests induced
by exactly computable martingales (this is allowed by Proposition 13), from
which we get the existence of X ∈ Uω that passes all tests induced by exactly
computable martingales (hence X is computably random). By Theorem 9
(relativized to A), X is not A-Schnorr random. Thus A /∈ Low(CR, SR).

(ii)⇒ (i). Suppose (ii) holds and take X ∈ 2ω such that X is not A-Schnorr
random. By Theorem 9, there exists a bounded A-Schnorr open set U such
that all tails of X belong to U . By assumption (ii), U can be covered by a
winning open set V . Thus, all tails of X belong to V , which by Theorem 10
implies that X is not computably random. 2

4.2 Weak reducibilities

Nies [15] introduced a weak reducibility generalizing low for Martin-Löf ran-
domness. He defined A ≤LR B to mean that MLRB ⊆ MLRA. So, A ≤LR ∅ iff
A ∈ Low(MLR). What Kjos-Hanssen [9] actually proved was that A ≤LR B if
and only if every bounded A-c.e. open set can be covered by a bounded B-c.e.
open set. This result follows easily from our framework, as do the analogous
results for the weak reducibilites associated with computable and Schnorr ran-
domness, although these relations have not received attention. For example,
if we write A ≤CR B to mean that CRB ⊆ CRA, then the following character-
ization follows by a proof identical to that of Corollary 14.

Corollary 15 The following are equivalent for A,B ∈ 2ω:
(i) A ≤CR B
(ii) Every A-winning open set can be covered by a B-winning open set.

4.3 Lowness for randomness vs lowness for tests

When defining lowness for randomness notions, two approaches are possible.
The obvious one is the one we have studied so far in this paper: A ∈ 2ω is
low for a randomness notion R if relativizing the notion R to A leaves the set
of random sequences unchanged. Now suppose that the notion R is described
via a family of tests (i.e., a sequence is random for the notion R if it passes
all tests), like all of the notions we have presented above. A second possible
lowness condition on A is to require that A-tests are not stronger than unrela-
tivized tests, i.e., that for every A-test T , there exists a test T ′ such that every
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sequence failing T also fails T ′. While it is clear that (given a randomness no-
tion defined by tests) lowness for tests implies lowness for randomness, the
converse may not hold; a priori, it could be the case that many unrelativized
tests are needed to cover a particular A-test. Nonetheless, there is currently
no known example of a randomness notion (or a pair of randomness notions)
for which lowness for tests is different from lowness for randomness. The re-
sults proven above provide a uniform explanation to why this is the case for
lowness notions relating to Martin-Löf randomness, computable randomness
and Schnorr randomness. Let us prove for example that lowness for Schnorr
randomness implies lowness for Schnorr tests (a result originally proven by
Kjos-Hanssen et al. [11]). Let A be low for Schnorr randomness, and consider
an A-Schnorr test (Vn)n∈N. Let us set X =

⋂
n Vn. By Remark 11 (relativized

to A), there exists a bounded A-Schnorr open set U such that for any X ∈ X ,
all tails of X are in U . But since A is low for Schnorr randomness, we now
know that U must be covered by a bounded Schnorr open set U ′. This im-
plies in particular that for any X ∈ X , all tails of X are in U ′. Applying
Remark 11 again, there must exist a Schnorr test (V ′n)n∈N that covers X . In
other words, (V ′n)n∈N covers (Vn)n∈N. Therefore, A is low for Schnorr tests. The
same proof works for computable randomness and Martin-Löf randomness, in-
cluding lowness for pairs. For example, A ∈ Low(CR, SR) if and only if for
every A-Schnorr test (Vn)n∈N, there exists a single computable martingale d
that succeeds against all X ∈ ⋂n Vn.

4.4 Partial relativization and lowness for weak 2-randomness

The results we presented above can be extended to the case of weak 2-
randomness by a partial relativization. A “partial relativization” of a com-
putability concept C to an oracle A consists in relativizing only some parts
of the definition of C to A. This device has already appeared in Section 4.2:
A ≤LR B can be seen as a partial relativization of “A is low for Martin-Löf
randomness” to B. A full relativization would demand that every bounded
A ⊕ B-c.e. open set can be covered by a bounded B-c.e. open set. Another
interesting example was given by Cole and Simpson [2], who define a notion
of boundedly limit recursive in X by partially relativizing the notion of ω-c.e.;
they relativize the approximation function but not the computable bound on
the number of mind changes. More examples are given in Barmpalias et al. [1].

The following partial relativization will be central to this section.

Definition 16 Let Z be a given oracle and let (Ue)e∈N be an effective enu-
meration of all c.e. open subsets of 2ω. A 〈Z〉-Martin-Löf test is a sequence
(Uf(n))n∈N such that f is computable in Z and µ(Uf(n)) ≤ 2−n for all n. A
sequence X ∈ 2ω is 〈Z〉-Martin-Löf random if it passes all 〈Z〉-Martin-Löf
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tests. We denote by MLR〈Z〉 the set of 〈Z〉-Martin-Löf random sequences.

The concept of 〈Z〉-Martin-Löf randomness is only a partial relativization of
Martin-Löf randomness: a full relativization to Z would also allow, in the
above definitions, the sets Ue to be Z-c.e. open, as opposed to just c.e. open.

It turns out that Proposition 13 extends to partially relativized Martin-Löf
tests.

Proposition 17 For any Z ∈ 2ω, the hypotheses (P1,P2,P3) of Lemma 12
are satisfied when C is the class of bounded c.e. open sets and (T e)e∈N the
family of 〈Z〉-Martin-Löf tests.

PROOF. The proof is identical to the proof of Proposition 13, as the latter
does not use the uniform enumerability of Martin-Löf tests, but solely the fact
that µ(T (e)

n ) ≤ 2−n for all e, n. 2

It follows from this proposition that, when it comes to lowness properties,
partially relativized Martin-Löf randomness behaves exactly like Martin-Löf
randomness (at least for the lowness properties discussed in this paper; it is
not the case for some other notions. For example, the class Low(MLR,KR)
is different from Low(W2R,KR), where KR is the class of Kurtz random
sequences).

Proposition 18 For any Z in 2ω, the following equalities hold.
(i) Low(MLR〈Z〉,MLR) = Low(MLR)
(ii) Low(MLR〈Z〉,CR) = Low(MLR,CR)
(iii) Low(MLR〈Z〉, SR) = Low(MLR, SR)

PROOF. The proofs of the three items are almost identical. Let us prove
for example item (ii). Since MLR〈Z〉 ⊆ MLR, it is clear by definition that
Low(MLR,CR) ⊆ Low(MLR〈Z〉,CR). Now take A /∈ Low(MLR,CR). By
the discussion of Section 4.1, this means that there exists an A-winning set
U such that [U ] is covered by no bounded c.e. open set. Therefore, one can
apply Lemma 12 with C the class of bounded c.e. open sets and (T e)e∈N the
family of 〈Z〉-Martin-Löf tests (which is possible, by Proposition 17), to get an
X ∈ Uω that passes all 〈Z〉-Martin-Löf tests. So X is 〈Z〉-Martin-Löf random,
and, by Theorem 10 (relativized to A), X is not A-computably random. Thus
A /∈ Low(MLR〈Z〉,CR). 2

Partial relativization of Martin-Löf randomness is useful to study higher no-
tions of randomness. For example, given an effective enumeration (Ue)e∈N,
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the set (e, k) of pairs such that µ(Ue) < 2−k is 0′-enumerable (because µ(Ue)
is 0′-computable, uniformly in e). Thus, given a generalized Martin-Löf test
(Vn)n∈N, one can 0′-compute a sequence k1 < k2 < k3 < . . . such that
µ(Vki) < 2−i for all i. Therefore the generalized Martin-Löf test (Vn)n∈N is
covered by the 〈0′〉-Martin-Löf test µ(Vki)i∈N. This shows that 〈0′〉-Martin-Löf
randomness implies weak 2-randomness, and yields the following corollary.

Corollary 19 The following equalities hold.
(i) Low(W2R,MLR) = Low(MLR)
(ii) Low(W2R,CR) = Low(MLR,CR)
(iii) Low(W2R, SR) = Low(MLR, SR)

PROOF. Immediate from Proposition 18 (with Z = 0′) and the fact that
MLR〈0′〉 ⊆W2R. 2

Item (iii) answers a question of Nies [16] (see also Franklin [6], Greenberg and
Miller [8]). Although items (i) and (ii) were already known (proven respectively
by Downey et al. [5] and Nies [16]), the proofs presented in this paper are
simpler than the original ones. Note that Nies proved (ii) by showing that
Low(W2R,CR) = Low(MLR), which is more than we show above. However,
in Theorem 29 we give a short proof that Low(MLR,CR) = Low(MLR), so
together with Corollary 19(ii), we have reproved the stronger result.

4.5 Highness notions

For a given pair R,S of randomness notions with R ⊆ S , the class Low(R,S )
denotes the set of oracles A ∈ 2ω that are weak enough to have R ⊆ S A. It is
natural to look at the dual concept of highness, i.e. the set of oracles A ∈ 2ω

that are powerful enough to have S A ⊆ R, which we denote by High(S ,R).
These classes have primarily been studied by Franklin et al. [7] and Barmpalias
et al. [1]. Most highness notions involving the classes W2R, MLR, CR, and SR
have been characterized: Franklin et al. showed that the classes High(SR,R)
for R = W2R,MLR,CR are all equal to the set of A such that A ≥T 0′; Barm-
palias et al. proved that the class High(MLR,W2R) is equal to the set of se-
quences A such that no 0′-computable function is diagonally non-computable
relative to A. Miller et al. [14] have recently given another characterization of
High(MLR,W2R); they proved that A /∈ High(MLR,W2R) iff every partial
A-computable function is dominated by a 0′-computable function.

The classes High(CR,MLR) and High(CR,W2R) on the other hand are not
fully understood yet. Franklin et al. proved that every A ∈ High(CR,MLR)
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computes a Martin-Löf random sequence. Kastermans, Lempp and Miller (un-
published) gave an alternative proof of this fact by showing that if A ∈
High(CR,MLR), then there is an A-computable martingale that succeeds
against all non-Martin-Löf random sequences. This result is an easy conse-
quence of Lemma 12; we present the proof here.

Proposition 20 Let A ∈ 2ω. The following are equivalent.
(i) A ∈ High(CR,MLR)
(ii) Every bounded c.e. open set is covered by an A-winning set.
(iii) The first level U1 of a universal Martin-Löf test is covered by an A-
winning set.
(iv) There exists an A-computable martingale that succeeds against all X that
are not Martin-Löf random.

PROOF. (i) ⇒ (ii). If (ii) does not hold, there is a bounded c.e. open
set U that cannot be covered by any A-winning open set. Let U be a c.e.
prefix-free set of strings generating U . We can apply Lemma 12 with C the
class of A-winning open sets and T the family tests induced by exactly A-
computable martingales. To see that this is allowed, relativize Proposition 13
to A. Lemma 12 gives us a sequence X ∈ Uω that passes all tests induced
by exactly A-computable martingales (hence is A-computably random). By
Theorem 8, X is not Martin-Löf random, so A /∈ High(CR,MLR).

(ii) ⇒ (iii) is immediate, as is (iv) ⇒ (i). This leaves (iii) ⇒ (iv). Let U
be an A-winning set such that [U ] covers U1. Note that U is prefix-free, by
definition. The proof of (iii)⇒ (i) in Theorem 10 (relativized to A) produces
an A-computable martingale d that succeeds against all X ∈ Uω. Now assume
that X is not Martin-Löf random. Then all tails of X are contained in U1,
hence in [U ]. This implies that X ∈ Uω, so d succeeds on X. 2

To see that Proposition 20 implies the Franklin, Stephan and Yu result, note
that every martingale computes a sequence on which it does not succeed.
Hence, if A ∈ High(CR,MLR), then A computes a Martin-Löf random se-
quence. In fact:

Corollary 21 If A ∈ High(CR,MLR), then there is an A-Turing functional
Φ : 2ω → 2ω that is total, one-to-one, and such that for all X ∈ 2ω, Φ(X) ∈
MLR.

PROOF. If A ∈ High(CR,MLR), let (by Proposition 20) d be a normed
A-computable martingale that succeeds on all X that are not Martin-Löf
random. We shall build an A-computable tree, i.e., an A-computable total
function T : 2<ω → 2<ω such that if σ′ is a strict extension of σ, then T (σ′)
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is a strict extension of T (σ) and if σ and σ′ are incomparable then so are
T (σ) and T (σ′). We ensure that d succeeds on no infinite path in this tree
by imposing the condition that for any σ ∈ 2<ω, setting τ = T (σ), we have
d(τ ′) ≤ 2− 2−|σ| for all prefixes τ ′ of τ . Then, it follows immediately that for
any infinite path Y ∈ 2ω in T , we have d(Y � n) ≤ 2 for all n.

The construction of T is done by induction on the length k of σ. We first
set T (ε) = ε. As d(ε) = 1 (d is normed) this satisfies the requirement. Now,
suppose we have defined T (σ) for all σ of length k respecting the above re-
quirement. Let σ be of length k and set τ = T (σ). We have by assumption
d(τ) ≤ 2−2−k. Hence, by the Ville-Kolmogorov inequality, the set of sequences
X ∈ 2ω that extend τ and, for all n, satisfy d(X � n) < 2−2−(k+1) has positive
measure. Since d is A-computable, using oracle A we can find two incompara-
ble extensions τ0 and τ1 of τ such that d(τ ′) ≤ 2− 2−(k+1) for any prefix τ ′ of
τ0 or τ1. We then set T (σι) = τι for ι ∈ {0, 1}. This concludes the induction.

Finally, the A-functional Φ is defined in a straightforward manner by set-
ting Φσ = T (σ) for all σ ∈ 2<ω. 2

5 Reformulation in other contexts: converging series and machines

5.1 Randomness via machines and Kolmogorov complexity

Although we had no need for it so far in this paper, it is well-known that Kol-
mogorov complexity provides an alternative and elegant way to characterize
randomness. In particular, Levin and Schnorr independently showed that a
sequence X ∈ 2ω is Martin-Löf random if and only if K(X � n) ≥ n − O(1),
where K denotes prefix-free Kolmogorov complexity.

In this last section, we discuss how our results relate to Kolmogorov com-
plexity, and more precisely to prefix-free complexity. A prefix-free machine is
a partial computable function M : 2<ω → 2<ω whose domain is prefix-free
and KM is the Kolmogorov complexity associated to M . As usual, we fix an
optimal prefix-free machine Mopt; we abbreviate KMopt by K and call it prefix-
free Kolmogorov complexity.

It is also well known that prefix-free Kolmogorov complexity is tightly re-
lated to convergent series. By the Kraft-Chaitin theorem, if f : N → R≥0
is summable (i.e.,

∑
n f(n) < +∞) and left-c.e., then K ≤ − log f + O(1).

Levin’s coding theorem proves that there exists a maximal left-c.e. summable
function F : N → R≥0 (i.e., for any other such function f , f = O(F )), and
that we precisely have K = − logF +O(1).
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Nies [15] proved that a sequence A is low for K (i.e., KA, the prefix-free Kol-
mogorov complexity relativized to the oracle A, is equal to the unrelativized
version K, up to an additive constant) if and only if A is low for Martin-Löf
randomness. By Levin’s coding theorem, this can be rephrased as follows.

Theorem 22 The following are equivalent:
(i) A ∈ Low(MLR)
(ii) For every A-left-c.e. summable function f : N → R≥0, there exists a
left-c.e. summable function g such that f ≤ g.

Remark 23 Condition (ii) can be replaced by the seemingly weaker condition
on A: “For every A-computable summable function f : N→ R≥0, there exists
a left-c.e. summable function g such that f ≤ g”. Indeed, if f is an A-left-
c.e. summable function, then defining f̃(〈i, t〉) to be the increase of f(i) at
stage t, the function f̃ is computable and summable (its sum is the same as
that of f), and if h is a left-c.e. summable function that dominates f̃ , then for
all i, f(i) is dominated by g(i) =

∑
t h(〈i, t〉) and it is clear that g is left-.c.e.

and summable (its sum is the same as that of h).

Using techniques similar to Nies’, we can prove the analogous results for
Low(SR) and Low(MLR, SR).

Proposition 24 The following are equivalent:
(i) A ∈ Low(SR)
(ii) For every A-computable function f : N → R≥0 whose sum is finite and
computable (or A-computable), there exists a computable function g whose sum
is finite and computable and such that f ≤ g.

Proposition 25 The following are equivalent:
(i) A ∈ Low(MLR, SR)
(ii) For every A-computable function f : N → R≥0 whose sum is finite and
computable (or A-computable), there exists a left-c.e. summable function g
such that f ≤ g.

Remark 26 The two theorems can be equivalently stated with a computable
sum or A-computable sum because of the following simple observation. Suppose
S =

∑
n f(n) is finite and A-computable. Let N be an integer larger than S.

Then the function f̂ defined by f̂(0) = f(0) + N − S and f̂(n) = f(n) for
n > 0 is A-computable (as S is) and

∑
n f̂(n) = N . Of course, if we have a

summable function g which dominates f̂ , it dominates f as well.

PROOF. We first prove Proposition 25 which is slightly easier and we will
later see how to adjust the proof to get Proposition 24.
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(ii)⇒ (i). Let A ∈ 2ω satisfying the hypotheses of (ii). Let (Un)n∈N be an A-
Schnorr test. We can assume that every Un is generated by an A-computable
subset Un of 2ω (here we use the well-known fact that every c.e. open set U
is generated by a computable subset U of 2<ω, and an index for U can be
computed from an index of U). Then, define the function f : 2<ω → R≥0 by
f(σ) = 2−|σ|n where n is the largest integer such that σ ∈ Un and f(σ) = 0
if σ belongs to no set Un. Note that f is A-computable since σ ∈ Un implies
n ≤ σ. Moreover,∑

σ

f(σ) ≤
∑
n

∑
σ∈Un

2−|σ|n ≤
∑
n

nµ(Un) ≤
∑
n

n2−n < +∞.

Let us check that the sum
∑
σ f(σ) is A-computable. In the following we

implicitly use the oracle A. Let k be an integer. To compute
∑
σ f(σ) with

precision 2−k, we can find for each n a finite set of strings Wn ⊆ Un such that
µ([Un] \ [Wn]) < 2−k/kn. For each n:∑

σ∈Un\Wn

f(σ) = n · µ([Un] \ [Wn]) ≤ 2−k/k

Thus, ∑
n≤k

∑
σ∈Un\Wn

f(σ) ≤ 2−k

and also ∑
n>k

f(σ) =
∑
n>k

n · µ(Un) = O(2−k)

Taking the two together, this shows that
∑
n≤k

∑
σ∈Wn

f(σ) is an approxima-
tion of

∑
σ f(σ) with precision O(2−k). Therefore

∑
σ f(σ) is A-computable.

We can thus apply the hypothesis of (ii) (where N and 2<ω are identified) to
get a summable left-c.e. function g : 2<ω → R≥0 such that f ≤ g. Then define,
for all n,

Vn = {σ : g(σ) > 2−|σ|(n/2)}
and set Vn = [Vn]. It is clear that Vn is a c.e. open set, uniformly in n, that
covers Un. Let S be the sum of g. We have:

µ(Vn) ≤
∑
σ∈Vn

2−|σ| <
∑
σ∈Vn

2g(σ)

n
≤ 2S

n
.

Thus (Vn)n∈N is a Martin-Löf test (in the general sense of Remark 2) that
covers (Vn)n∈N. We have shown that every A-Schnorr test is covered by a
Martin-Löf test, so A ∈ Low(MLR, SR).

(i)⇒ (ii). For this proof it is convenient to identify 2ω with the space [0, 1]N

(using the usual identification of 2ω to (2ω)N and then of 2ω to [0, 1]; the
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non-uniqueness of binary expansion for dyadic rationals does not cause any
problems here).

For all n ∈ N and α ∈ [0, 1], set

Bn,α = {X ∈ [0, 1]N : Xn ∈ [0, α)}.

Now, let f : N → R≥0 be an A-computable function whose sum is finite and
A-computable. Without loss of generality, we can assume that f(n) ≤ 1 for
all n (otherwise we divide f by a constant C to make this true, then find the
desired function g that dominates f/C, and observe that C · g dominates f
and is as wanted). Consider the set

U =
⋃
n

Bn,f(n).

U is a c.e. open set. Also, observe that if n 6= m, the sets Bn,α and Bm,β
correspond to independent events. Thus,

µ(U) = 1−
∏
n

(1− µ(Bn,f(n))) = 1−
∏
n

(1− f(n)).

This can be reformulated as

log(1− µ(U)) =
∑
n

log(1− f(n)).

Since f(n) tends to 0, we have log(1 − f(n)) ∼ −f(n). This implies that∑
n log(1 − f(n)) is finite and A-computable (as

∑
n f(n) is). Thus, U is a

bounded A-Schnorr open set. Since A ∈ Low(MLR, SR), we know that U
must be covered by some bounded c.e. open set V . Having such a set, we
define

g(n) = sup{α ∈ [0, 1] : Bn,α ⊆ V}.

It is clear that f ≤ g, and that g is left-c.e. as V is a c.e. open set. The
sum

∑
n g(n) is bounded because

∏
n(1− g(n)) > 0, the latter being equal to

1− µ(
⋃
n Bn,g(n)) ≥ 1− µ(V) > 0. 2

PROOF. (of Proposition 24) (ii) ⇒ (i). Like for Proposition 25, take an
A-Schnorr test Un and define the function f as before. By (ii), there exists
a computable function g : 2<ω → R≥0 whose sum

∑
n g(n) is finite and com-

putable and such that f ≤ g. Up to replacing g(n) by its approximation
g(n)[n]+2−n (whose sum is still finite and computable), we can assume that g
is exactly computable, i.e. computable as a function from N to Q≥0. Again
define, for all n,

Vn = {σ : g(σ) > 2−|σ|(n/2)}
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and set Vn = [Vn]. As before, Vn covers Un and µ(Vn) = O(1/n). Here, since
we assumed g to be exactly computable, the set Vn is a computable set of
strings. It remains to check that µ(Vn) is computable uniformly in n. Since∑
σ g(σ) is computable, for any given k one can effectively find N = N(k) such

that
∑
|σ|≥N g(σ) < 2−k. Then

∑
|σ|≥N
σ∈Vn

2−|σ| ≤ (2/n)
∑
|σ|≥N
σ∈Vn

g(σ) < (2/n) · 2−k

This shows that
∑
σ∈Vn 2−|σ| is computable uniformly in n, and therefore so is

µ(Vn) (note that
∑
σ∈Vn 2−|σ| and µ(Vn) might be different but all that matters

is that we can bound the tail sum).

(i)⇒ (ii). Again we look at the open set

U =
⋃
n

Bn,f(n).

and by the hypothesis there exists a bounded Schnorr open V which covers U .
Let δ > 0 be such that µ(V) < 1−δ. For all n, let V [n] be the approximation of
V with precision 2−n. That is, V [n] is a clopen set for which an exact index can
be uniformly computed in n, and µ(V \V [n]) < 2−n. Now define the function g
by

g(n) = max{α ∈ [0, 1] : µ(Bn,α \ V [n]) ≤ 2−n−c}.
where c is a positive constant to be specified shortly. Note that g is computable
and g ≥ f because for all n, Bn,f(n) ⊆ U ⊆ V . The sum

∑
n g(n) is bounded

because V covers
⋃
n Bn,g(n) up to measure

∑
n 2−n−c = 2−c+1. Thus, for c large

enough

µ

(⋃
n

Bn,g(n)
)
≤ 1− δ + 2−c+1 < 1

and thus 1 − ∏n(1 − g(n)) < 1, which implies
∑
n g(n) < ∞. It remains to

show that
∑
n g(n) is a computable real, or equivalently, that given ε, one can

effectively find an N such that
∑
n>N g(n) ≤ ε. Let k be a fixed integer. The

set V [k] is a clopen set, therefore for all but finitely many n such that the
Bn,g(n), and moreover one can effectively find given k an integer N = N(k),
which we can assume to be greater than k, such that V [k] is independent from
the family of sets {Bn,g(n) : n ≥ N}. By this independence, we have:

µ

( ⋃
n>N

Bn,g(n) \ V [k]

)
= (1− µ(V [k])) · µ

( ⋃
n>N

Bn,g(n)
)

(1)

>δ · µ
( ⋃
n>N

Bn,g(n)
)

(2)
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On the other hand:

µ

( ⋃
n>N

Bn,g(n) \ V
)
≤
∑
n>N

2−n−c = 2−N−c (3)

Let W = V \ V [k]. By (2) and (3), we have

µ

( ⋃
n>N

Bn,g(n) \W
)
≤ 2−N−c + (1− δ) · µ

( ⋃
n>N

Bn,g(n)
)

(4)

and thus

µ(W) + 2−N−c ≥ δ · µ
( ⋃
n>N

Bn,g(n)
)

(5)

But µ(W) < 2−k and 2−N−c < 2−k. Thus

1−
∏
n>N

(1− g(n)) = µ

( ⋃
n>N

Bn,g(n)
)
< 2−k+1/δ (6)

or equivalently ∏
n>N

(1− g(n)) > 1− 2−k+1/δ (7)

Composing with − log on both sides, we get∑
n>N(k)

g(n) < − log(1− 2−k+1/δ) = 2−k+o(k) (8)

This last equation allows us to effectively compute for all k an approximation
of
∑
n g(n) (namely:

∑
n≤N(k) g(n)), hence

∑
n g(n) is computable. 2

Downey and Griffiths [4] gave a Levin-Schnorr-like characterization of Schnorr
randomness by restricting Kolmogorov complexity to a specific class of prefix-
free machines. They proved that a sequence X ∈ 2ω is Schnorr random if
and only if for every computable measure machine M , one has KM(X � n) ≥
n−O(1), where a computable measure machine is a prefix-free machine whose
domain has computable measure (i.e., is a Schnorr set). Furthermore, Downey
et al. [3] showed that an analogue of Nies’ result “low for random equals low
for K” holds for Schnorr randomness, as explained in the next proposition.

Proposition 27 The following are equivalent:
(i) A ∈ Low(SR)
(ii) For any A-computable measure machine M , there exists a computable
measure machine M ′ such that KM ′ ≤ KM +O(1).

It turns out that the results we proved earlier in this section allow us to give
a short proof of the above.
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PROOF. The part (ii) ⇒ (i) is clear from the Downey-Griffith character-
ization of Schnorr randomness. For the reverse direction, let M be an A-
computable measure machine. Let f : 2<ω → R≥0 be the function defined
by

f(σ) = 2−KM (σ)

It is easy to see that f is an A-left-c.e. function. Moreover, if we enumer-
ate the domain of M , whenever a new p is found (i.e., at that stage the
measure of dom(M) is increased by 2−|p|, this increases the sum

∑
σ f(σ) by

either 0 or 2−|p| (depending on whether we had already enumerated some
p′ with |p′| ≤ |p| and M(p) = M(p′) or not before that stage). This shows
that the sum

∑
σ f(σ) can be computed from the measure of dom(M), which

is A-computable. Hence,
∑
σ f(σ) is A-computable. We can therefore apply

Proposition 24 to get a left-c.e. summable function g : 2<ω → R≥0 whose
sum is computable and such that f ≤ g. Let c ∈ N be a constant such that∑
σ f(σ) ≤ 2c. We enumerate the Kraft-Chaitin set

L =
{

(k, σ) : g(σ) ≥ 2−k+c+1
}
.

We have ∑
(k,σ)∈L

2−k =
∑
σ

2−dlog g(σ)−c−1e+1 ≤ 2−c
∑
σ

g(σ) ≤ 1,

so L is indeed a Kraft-Chaitin set. Now, apply the Kraft-Chatin theorem to
construct a machine M ′ whose domain is a prefix-free set {pk,σ : (k, σ) ∈ L}
with |pk,σ| = k and M ′(pk,σ) = σ. It follows by construction that M ′ is a com-
putable measure machine (the measure of its domain is

∑
σ 2−dlog g(σ)−c−1e+1,

which is computable because
∑
σ g(σ) is computable) and

KM ′ ≤ − log g + c+ 1 ≤ − log f + c+ 1 ≤ KM + c+ 1.

This completes the proof. 2

In the same way, we can get the analogous result for the pair (MLR, SR).

Proposition 28 The following are equivalent:
(i) A ∈ Low(MLR, SR)
(ii) For any A-computable measure machine M , we have K ≤ KM +O(1).

The proof is almost identical to the proof of the previous result (using Propo-
sition 25 instead of Proposition 24) and is left to the reader.
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5.2 A final application: Low(MLR) = Low(MLR,CR)

We finish with an alternative proof that Low(MLR) = Low(MLR,CR). This
was shown by Nies [15,16], but the only known proof is long and technical. We
believe that our proof is more comprehensible. It uses the covering characteri-
zation of Low(MLR,CR) and the characterization of Low(MLR) via summable
series (which as we pointed out, is an easy consequence of the coding theo-
rem). Together with Corollary 19(ii), we in fact have an alternate proof that
Low(MLR) = Low(W2R,CR) (Nies [16]).

Theorem 29 The classes Low(MLR) and Low(MLR,CR) coincide.

PROOF. It is clear that Low(MLR) is contained in Low(MLR,CR). We
need to show the reverse implication. Let A ∈ Low(MLR,CR). To show that
A ∈ Low(MLR), we use Theorem 22 and Remark 23: we consider an A-
computable summable function f : N→ R≥0 and we will show that there exists
a left-c.e. summable function g such that f ≤ g. Without loss of generality,
we assume that

∑
i f(i) ≤ 1 and that the f(i) are dyadic rational numbers in

virtue of which we set f(i) = 2−ai , the sequence of ai being A-computable.
The proof’s strategy is the following: we shall “encode” the function f in an A-
winning open set V . Then, since A ∈ Low(MLR,CR), there exists a bounded
c.e. open set W that covers V , and from V we will build a left-c.e. summable
function g that dominates f .

To construct the set U , we first consider a computable partition of N into
intervals Ii,l where for all i, l, the length of Ii,l is l (the order in which the
intervals are placed does not matter). For all i, l, we consider the set Zi,l of
sequences X such that X(n) = 0 for all n ∈ Ii,l. Note that µ(Zi,l) = 2−l and
the Zi,l are pairwise independent. Then, we set

U =
⋃
i

Zi,ai

Since the Zi,ai are all independent, the measure of U is 1 − ∏
i(1 − 2−ai),

which is smaller than 1 as the sum
∑
i 2
−ai is finite. We now show that some

A-computable martingale wins money against every member of U . Let q > 1
be a rational number such that

∑
i 2
−ai < 1/q. We define an A-computable

martingale d as follows. For each i, we reserve an amount q2−ai . When betting
on a sequence X, at the start of an interval Ii,l, the martingale d check whether
l = ai. If not, d does not bet on any position of the interval. If so, then d uses
the reserved capital q2−ai to bet that X contains only zeroes on the interval
Ii,ai . This is done by first betting an amount x = q2−ai on 0, then if correct
an amount 2x, then 4x, etc., stopping if some guess was incorrect. If all of its
guesses are correct, the capital of d has increased by x2ai = q at the end of the
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interval Ii,ai . Thus, the martingale d is A-computable and reaches a capital of
at least q on every element X of U . Hence U is contained in the winning set
V = [V ] with

V = {σ minimal s.t. d(σ) ≥ q}
Now, since A ∈ Low(MLR,CR), there exists an unrelativized bounded c.e.
open set W that covers V . Then, set for all i, g(i) = 2−bi with

bi = min{l | Zi,l ⊆ W}

The sequence bi is right-c.e. and by construction bi ≤ ai as Zi,ai ⊆ U ⊆ W ,
so g(i) ≥ f(i). Finally, notice that the sum

∑
i 2
−bi is finite as

1 > µ(W) ≥ 1−
∏
i

(1− 2−bi)

hence
∏
i(1 − 2−bi) > 0 so

∑
i 2
−bi converges. Therefore the function g is as

wanted. 2
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