RANDOMNESS FOR NON-COMPUTABLE MEASURES

ADAM R. DAY AND JOSEPH S. MILLER

ABSTRACT. Different approaches have been taken to defining random-
ness for non-computable probability measures. We will explain the ap-
proach of Reimann and Slaman, along with the uniform test approach
first introduced by Levin and also used by Gécs, Hoyrup and Rojas. We
will show that these approaches are fundamentally equivalent.

Having clarified what it means to be random for a non-computable
probability measure, we turn our attention to Levin’s neutral measures,
for which all sequences are random. We show that every PA degree com-
putes a neutral measure. We also show that a neutral measure has no
least Turing degree representation and explain why the framework of the
continuous degrees (a substructure of the enumeration degrees studied
by Miller) can be used to determine the computational complexity of
neutral measures. This allows us to show that the Turing ideals below
neutral measures are exactly the Scott ideals. Since X € 2“ is an atom
of a neutral measure 4 if and only if it is computable from (every repre-
sentation of) u, we have a complete understanding of the possible sets
of atoms of a neutral measure. One simple consequence is that every
neutral measure has a Martin-Lo6f random atom.

1. DEFINING RANDOMNESS

Let X be an element of Cantor space and p a Borel probability measure
on Cantor space. What should it mean for X to be random with respect
to u? In the case that u is the Lebesgue measure, then the theory of u-
randomness is well developed (for recent treatises on the subject the reader
is referred to Downey and Hirschfeldt, and Nies [2, 13]).

In fact if p is a computable measure, then early work of Levin showed
that pu-randomness can be seen as essentially a variant on randomness for
Lebesgue measure [10]. This leaves the question of how to define randomness
if 4 is non-computable. We will show that the two approaches that have
previously been used to define p-randomness, for non-computable u, are
equivalent. Later, in Theorem 4.12, we will provide another characterization
of p-randomness using the enumeration degrees.
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For Lebesgue measure, the preeminent definition of randomness was orig-
inally provided by Martin-Lof and is now known as Martin-Lo6f randomness
[11]. We would like to find a natural generalization of Martin-L6f random-
ness to non-computable probability measures. One approach is to generalize
Martin-Lof tests. This approach immediately runs into the difficult ques-
tion of what sort of oracle access a test should have. It is reasonable to
expect that a test for a measure p should be able to compute the 1 measure
of any basic clopen set. However, there are continuum many probability
measures on Cantor space, so in order to to make these measures accessible
to the techniques of computability theory, we will make use of some basic
concepts of computable analysis. We will define all the concepts we need.
For further background on computable analysis, the reader is referred to
Weihrauch [19], who gives a modern development of the subject. Classical
computability theory studies Cantor space (2*) and Baire space (w*). The
main idea behind computable analysis is to transfer the notions of com-
putability theory to other structures via representations of those structures.
If S is a set, a representation of S is just a surjective function (possibly
partial) p: 2¢ — S. The representation induces a computability-theoretic
structure on §. We will also use the word “representation” in another, less
standard, sense. If R € 2¥ and p(R) = x, we call R a representation of x.

We will take P(2¢) to be the set of all probability measures on Cantor
space. We will let p : 2¥ — P(2¥) be a representation of P(2¢). In Section 2
we will give a detailed definition of such a p but for now it is enough to specify
that if p(R) = pu, then we can uniformly in R compute the ; measure of any
basic clopen set in Cantor space.

As we access measures via representations, one approach is to define ran-
domness in terms of representations. The following definitions, while not
identical, are equivalent to that of Reimann [14] and Reimann and Sla-
man [15].

Definition 1.1. Let p € P(2¥) and let R € 2 be a representation of .
(i) An R-test is a uniform (in R) sequence {V;}ic. of 29(R) sets such
that p(V;) < 27°
(i) X € 2% passes an R-test if X & (), V;.
(iii) X € 2“ is R-random if it passes all R-tests.

A universal R-test exists for the same reason that a universal Martin-Lof
test exists. Given R, we would like to enumerate all R-tests by enumerating
all (uniform in R) sequences of R-c.e. sets, halting any enumeration if it
would exceed the measure bound. There is a small technical obstruction,
namely that we cannot exactly compute the y-measure of a basic clopen set
from R. However, we can compute a sequence approximating it from above.
Hence, we can pause an enumeration until a stage when our approximation
from above guarantees that we can add the next element without exceeding
the measure bound. Note that this could cause a problem if some test
{VEY e, had Vi = 277 for some i. The enumeration of this test could
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be paused forever. However, in this case, the test {Vn}il}new defines the
same null set and avoids this problem. This shows that we can (essentially)
enumerate all R-tests, uniformly in R, so we can build a universal R-test.
Even better, because the construction is uniform, there is a uniform sequence
of c.e. sets U, such that if U = {[7]: (r,0) € U, and o < R}, then
{URY e is a universal R-test. Call {U, }new a universal oracle Martin-Lof
test. Our notation is standard: o and 7 are used for finite binary strings
(elements of 2<¥); 0 X is o concatenated with X; [o] is the basic clopen set
{oX: X €2¥}; and 0 < X holds if ¢ is an initial segment of X.

As noted by Reimann, the problem with Definition 1.1 is that it is depen-
dent on the representation. Given any measure, it is possible to encode any
sequence into some representation of that measure. Hence for all p € P(2¢)
and all X € 2% there is a representation R of u such that X is not R-random.
A natural way to overcome this problem is with the following definition.

Definition 1.2. A sequence X € 2% is u-random if there exists a represen-
tation R of u such that X is R-random.

Our goal is to show that, at least in Cantor space, this definition gives
the same class of randoms for a measure as does the concept of a uniform
test. Uniform tests are an alternative approach to randomness for non-
computable measures. They were introduced by Levin and developed by
Gécs, and Hoyrup and Rojas [3, 4, 9]. While uniform tests can be applied
to general probability spaces, in this paper, we will only be concerned with
Cantor space.

Definition 1.3. Consider a function t: P(2%) x 2¥ — R=% U {o0}.

(i) The under-graph of t is {(u, X,7): t(u, X) > r}. We say that the
under-graph of ¢ is c.e. open, if it is equal to U(i,mq)EW B;x[o]x]0,q)
for some c.e. set W C w x 2<% x Q.

(ii) We call t a uniform test if its under-graph is c.e. open and for every
w € P(2¢) we have [t(pu, X) dp < 1.

(iii) X € 2“ passes a test t for a measure p if ¢(u, X) is bounded.

(iv) X € 2¥ is p-random for uniform tests if it passes all tests for mea-
sure fi.

By a straightforward theorem of Géacs, later refined by Hoyrup and Rojas,
it is sufficient to consider a single universal uniform test.

Definition 1.4. A uniform test t is universal if for all uniform tests ¢’ there
is a constant ¢ > 0 such that for all 4 € P(2¥) and X € 2¥, we have
t(, X) = ct'(p, X).

Theorem 1.5 (Géacs; Hoyrup and Rojas [3, 4]). There exists a universal
uniform test.

The following theorem will establish the equivalence of these two ap-
proaches.
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Theorem 1.6. For any measure p and X € 2% we have that X is p-random
if and only if X is p-random for uniform tests.

Before proving this theorem, we need to take a more detailed look at
P(2¢¥) and at representations of probability measures.

2. NON-COMPUTABLE PROBABILITY MEASURES

In this paper, we will restrict our investigation to Borel probability mea-
sures on Cantor space. Let p be such a measure. We can identify p with the
values it takes on the basic clopen sets [o], where o € 2<“. Hence we will
often think of u as function p: 2<¢ — RZ% and write (o) instead of pu([o]).
Take (_): 2<% — w to be the standard bijection between 2<“ and w (i.e., the
mapping that takes A, 0, 1, 00, and 01 to 0, 1, 2, 3, and 4 respectively). Any
measure p such that [du <1 can be thought of as an element o € [0, 1]¥
where a((0)) = p(o). We define the following two subspaces of [0, 1]“:

(i) M(2¥) = {a € [0,1]%: (Vo € 27) a({0)) = a((c0)) + a((s1))},

(ii) P(2¥) = {a € M(2¥): a((N\)) = 1}.
Our primary space of concern is P(2¥), the space of all probability measures
on Cantor space. The space M(2¥), all measures p such that [dp <1, will
be of interest when we investigate neutral measures. We can regard P(2%)
and M(2¥) as compact subspaces of the topological vector space R¥ with
the topology provided by the metric

dla,8) = Y 27a((0)) — B((0))]. (2.1)

oe2<w

Additionally, M(2¥) and P(2) are both convex subspaces of R¥ (where C
is conver if for all p,v € C and z € [0,1], we have zpu+ (1 —x)v € C).
There is an alternative approach to topologizing the space P(2¥). We can
topologize this space so that a sequence of measures {j,}neo has limit u
if and only if u,(B) — w(B) for all Borel sets B whose boundary has pu
measure 0. This topology is known as the weak topology.
We can view 2“ as a metric space by using the metric

0 ifA=B,

~ o , (2.2)
27" where i = min{A A B} otherwise.

dZW(AvB) = {

Cantor space is a compact and separable metric space under dow. This fact
implies that the weak topology on P(2%) is compact and further that it is
metrizable using the Prohorov metric [1]. Given p,v € P(2¥), the Prohorov
metric p(p,v) is defined to be the infimum of those positive e for which the
follow two inequalities hold for all Borel subsets A of 2:

p(A) <v(A%) e, v(A) < p(A9) +¢
where A ={X €2¥: (Y € A)d(X,Y) < €}.
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Note that under the metric dow, if A C 2¥ and e = 27", then A¢ = | J{[o] :
l|o| =n A o] N A # (}. Using this observation, the following lemma is easy
to show.

Lemma 2.1. The Prohorov metric and the metric defined in (2.1) induce
the same topologies on P(2¥).

Proof. Let p be the Prohorov metric and d the metric as defined in (2.1).
Pick any p € P(2¥) and positive real number §. Now consider the open
ball using the Prohorov metric B, (1, d). Choose n € w such that 27" < .
Choose € so that for all v € By(u,€) (the open ball using the metric d) we
have that for all o of length n , |u(c) — v(o)| < 272", Then if A C 2% is
Borel we have that:

pA< A" = N plo) < ) (o) +27P) =vAT 27
lo|l=n lo|=n

[0]NAZ£D [0]NA#£D

Similarly vA < pA%™" +27" and so p(v, ) < 27", Thus Ba(u,€) C By(u, 6).

For the other direction, consider By(u,d). Let € = 27" for some n such
that 27"+ < 4. Now if (¢) < n we have that |o| < n so that [0]¢ = [0]. If
v € Bp(p, €) we have that |u(0) — v(o)| < € and so

dip.v) < Y 27 u(o) — v(o)| + 27" < 27
(o)<n

Thus By (i, €) € Bg(p, 9). O

We will treat the space P(2“) of probability measures as a computable
metric space. These were introduce by Lacombe [7], though our presentation
is influenced by [19]. A computable metric space is a triple (X, Q,d) where
X is a complete separable metric space, Q is an enumeration of a countable
dense subset of X', and d is a metric computable on the elements of Q. Given
a computable metric space (X, Q,d), with @ = {q1,qo, ...}, the standard
fast Cauchy representation of (X, Q,d) is pc: 2¥ — X and is defined by
pc(0M010nM10"@1 ) = z if (Vi € w) d(z,qn@)) < 27°. Note that this
representation pco is a partial function.

In order to work with P(2*) as a computable metric space, we need an
enumeration of a countable dense subset of P(2¥) on which the metric is
computable. For any X € 2¥, we define the Dirac measure dx by

5x(o) 1 ifo<X,
g) =
X 0 otherwise.

We will take our dense subset O to be those measures that concentrate on
sequences with finitely many 1s, and take rational values at those points. In
other words, € Q if and only if = )" | a;jdy,0~, where o1,...,0, € 2<¥
and ai,...,a, are positive rationals such that Z?:l a; = 1.
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Fix an enumeration of these measures mi, mo,.... At times, in order to
avoid subscripts we will write m(i) for m;. Note that d(m;, m;) is com-
putable in ¢ and j and that the open balls B(m;,2~"™) form an enumerable
basis for the topology on P(2¢). We will call these the ideal open balls and
take B; to be the ith such ball in some fixed enumeration. Let B; be the
closure of the ideal ball B;.

Instead of using the standard fast Cauchy representation of P(2¥), we
want to use the fact that P(2%) is compact to define a representation that
has some additional useful properties. Reimann showed that there is a
computable surjection p: P — P(2¢), where P is a I1J subset of 2 [14]. Our
approach is similar to that of Reimann. It can also be seen as a generalization
of Turing’s approach to coding the reals via overlapping intervals [18], for
which he acknowledges Brouwer.

To define our representation, we will first define a Turing functional ¢
such that ¢X is total for all oracles X, and for all n € w,

d(m(e™ (n),m(e™ (n+1))) < 27"

Thus for any oracle X, the sequence m(pX(0)),m(¢X(1)),... is Cauchy
and so converges (because P(2¢) is complete). Thus we can define a total
function p: 2% — P(2¢) by p(X) = lims m(p™X(s)).

We define ¢~ inductively as follows. At stage s we will define o~ (s) for
all oracles X. At stage 0, we will define ¢~ (0) = 1 for all oracles X. Note
that B(my,20) = P(2v).

At stage s + 1, for all strings 7 such that ¢7(s) is defined but ¢ (s)
is not defined if 7/ is a strict initial segment of 7 do the following. Let
m = m(¢7(s)). We claim that we can uniformly compute a finite open cov-
ering {B(m(n1),27571),..., B(m(ng),275"1)} of B(m,2-%) with m(n;) €
B(m,27°). Given this claim, we can determine a disjoint collection of cylin-
ders {[m],...,[mx]} that covers 2 and define "7 (s 4+ 1) = n;. This com-
pletes the definition of ¢. Our representation will be the continuous function
p: 2¢ — P(2¥) defined by p(X) = lim, m(pX (s)).

To establish the claim, we build a finite set of probability measures (all in
Q) by adding together measures of the form 27574 . 6,0 where |o| = s + 4.
Define:

Ss={m; € Q:m; = Z ay2 548,00 for some a, € w}.
lo|=s+4

Then we take {B(m;,27°"1) : m; € Ss Ad(m,m;) < 275} as our covering.
To show that this is in fact a covering, take any u € B(m,27%). Let v =
(m+3u)/4 so d(m,v) = 3d(m, p)/4 and d(u,v) = d(m,v)/4. We can easily
find m; € S such that d(v,m;) < 27572, Hence the ball B(m;,27°"!) is in
our covering and this ball contains pu.

Lemma 2.2. The function p is total, surjective, and for all X € 2%,
pL(p(X)) is a T(X) class.
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Proof. We have already seen that p is total. To see that it is surjec-
tive, take any pu € P(2¥). As p is continuous, for all n, the set F, =
{X € 2¥: d(p(X), ) < 27"} is closed. The construction ensures that it is
nonempty, so by compactness there is an X € (), F;. Clearly, p(X) = p.
If X € 2%, then p~1(X) is a II{(X) class because Y € p~1(X) if and only
if, for all n,
d(m(¢™ (n)),m(p" (n))) < 272, O

Because p is surjective, it is a representation of P(2). Furthermore, in the
sense of representation theory, it is equivalent to the standard fast Cauchy
representation pc. Intuitively two representations are equivalent if we can
computably convert between them. If p(R) = p, then p(R) is just a fast
Cauchy representation of  (i.e., the sequence m(¢(0)), m(¢®(1)),...). On
the other hand if pc(S) = p, then we can determine a sequence R such that
p(R) = p by running through the construction of ¢. We start with 75 = A.
At each stage s + 1 we compute a sufficiently close approximation to p so
that we can choose 7s11 = 75 with g € B(m(¢™+1 (s + 1)),27571).

We will need one additional nice property of p: that the inverse image of
the closure of an ideal open ball is also a I} class.

Lemma 2.3. If B(s,q) be an ideal ball in P(2%), then p~(B(s,q)) is a 1Y
subset of 2.

Proof. First we show that X € p~*(B(s, q)) if and only if, for all 7, 5,
p(X) € B(si,q;) implies d(ss, s) < q + g;-

If for some 4, j, p(X) € B(s;,q;) and d(s;,s) > q+q; then g+¢q; < d(s, s;) <
d(s,p(X)) + d(p(X),s;) < d(s,p(X)) + q; and hence X ¢ p~'(B(s,q)).
Conversely, assume that p(X) € B(s;,q;) implies d(s;,s) < g + g, for all
i,7. Then d(p(X),s) < d(p(X),s;)+d(s,si) < qg+2q;. As p(X) is contained
in arbitrarily small ideal balls, we have d(p(X),s) < gq. Now the predicate
p(X) € B(si,q;) implies d(s;,s) < g+ g; is II{. This is true as p(X) €
B(si,q;) and d(s;, s) > g+ g; are both 9. O

We are know ready to prove Theorem 1.6. We start with the easier
direction.

Lemma 2.4. If X € 2¥ is y-random, then it is p-random for uniform tests.

Proof. Let W be a c.e. set defining the under-graph of a universal uniform
test t. Assume that X is not py-random for uniform tests. Let R be any
representation of u. Build an R-test as follows. Let

Vo ={X €2¥: t(u,X) > 2"}.
Immediately we have that if ¢(u, X) = oo, then X € [, .. Vi. To show

new "N
that {V,,}new is an R-test, first observe that 2"u(V;,) < [t(u, X) du < 1,
so u(Vy,) < 27" Secondly, we have X € V,, if and only if ¢(u, X) > 2" if

and only if, for some (i,0,q) € W, we have u € B; (which is c.e. in R),
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X € [o] and ¢ > 2". Hence the V;, are uniformly X¢(R) sets, and X is not
R-random. As this holds for any representation of u, we have proved that
X is not p-random. O

For the other direction, we have to show that the failure of y-randomness
can be detected in a uniform way. Not surprisingly, we do this using the
universal oracle Martin-Lof test {Up, }nen from above.

Lemma 2.5. If X is not u-random, then for all n, there exists an m, such
that for all R € p~*(B(p,2°™)), X € UE.

Proof. Take any p € P(2¥). Assume that for some n, for all m, there is
an Ry, such that p(R,,) € B(p,2™™) and X ¢ Ufm. Consider the tree
{0 €2<¥: (Im) 0 X R,, | m}. This tree is infinite so it has an infinite path
A. For all i, p([A | i]) includes the p image of infinitely many R,,. The set
p([A | 7]) is closed because it is the continuous image of a compact set. Thus
1 € p([A | 4]) and hence p(A) = p. But note that X ¢ U2, or otherwise
X € UEm for some m. Thus X must be y-random. ]

Proof of Theorem 1.6. Lemma 2.4 shows that if X is not y-random for uni-
form tests, then X is not p-random. To establish the other direction, we will
construct a test f as follows. For all 4, let K; = p~!(B;). By Lemma 2.3,
K; is a TI{ class. So if X enters UR for all R in K;, compactness ensures
that we can determine this at some finite stage. If this occurs then we can
increase the value on some open set containing X for all measures in B;.

Given any c.e. set W, and any s € w, we will let W [s] be the set obtained
by enumerating W for s steps. If 7 is a finite string, we will let U, be the c.e.
set obtained from U;X (for any X > 7) such that the elements enumerated
into this set only make use of the oracle up to |7].

Let S1,S52,... be an enumeration of all finite sets of finite strings. The
under-graph of our test f will be enumerated by the following c.e. set:

W = {(i,0,2"): (3j)(3s) Kils] C | [7] and [0] C (] U, [s]}-
TESJ' TESJ'
Given any p € P(2¥) we will show that [ f(u, X) du <1, so f is a uniform
test. Take R € p~'(u). Take any n and any X ¢ Ufl. Given any i, if
w € B; then R € K;. So if S; covers K;, then for some 7 € S;, 7 < R. Thus
X ¢ ﬂTesj Uj,. This implies that (i,0,2") ¢ W for any 0 < X, and so
f(p, X) <2771 Hence f(u, X) < max{2": X € UL} and so,

/f(qu) dp < 2p(Ugh) < 227 =1
=1 =1

Now assume that X is not p-random. Fix n. By Lemma 2.5, there is
an m such that if R € p~1(B(1,2™™)), then X € Uf. Let B; be a closed
ideal ball with p € B; C B(u,2™™). Now because for all R € K; we have
X € Ut the set C = {r € 2<¥: X € Uj,} is an open covering of K;.
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Hence there is a finite sub-covering S of C' and a stage s such that S covers
K;[s]. So there is a o with X € [o] C (), cqUs,[s]. Thus (i,0,2") € W and
consequently f(u, X) > 2™. This holds for all n, so f(u, X) = co. Therefore,
X is not p-random for uniform tests. O

The anonymous referee has observed that Theorem 1.6 can be adapted
to locally compact metric spaces, provided the compactness is suitably ef-
fective.

3. NEUTRAL MEASURES

Our main goal in the remainder of the paper will be to come to a better
understanding of (weakly) neutral measures. The concept of a neutral mea-
sures was introduced by Levin [9], who proved their existence. The term
neutral measure was introduced by Gécs [3]. As we will see in Section 4,
where we derive several facts about neutral measures, it is often enough to
assume a weaker property.

Definition 3.1. Let p be a measure.

(i) p is neutral for a uniform test ¢ if (VX) t(u, X) < 1.
(ii) p is a neutral measure if it is neutral for some universal test.
(iii) p is weakly neutral if every sequence is p-random.

Since a constant multiple of a universal test is also a universal test,
and any two universal tests majorize each other up to a multiplicative
constant, we can restate the second definition: p is a neutral measure iff
(Fe)(VX) t(u, X) < ¢, where t is any universal test.

It is immediate that a neutral measure p is weakly neutral. Indeed, this
is the property that makes neutral measures seem so unlikely. One might
think that it is impossible for every sequence to be p-random, since if we
have access to u, we should be able to build a Martin-Lof p-test covering
something. Indeed, this is the case; in Lemma 4.1 we will see that for every
representation R of p, there is a non- R-random sequence. But if y is weakly
neutral, no sequence will be de-randomized by every representation of .

We start by giving a proof that neutral measures exist.

Theorem 3.2 (Levin [9]). For any uniform test, there is a measure neutral
for it.

Our proof is fundamentally equivalent to that given by Levin [9] and Gécs
[3]. However, we will make use of the Kakutani fixed point theorem instead
of Sperner’s Lemma. Our exposition of the proof will also make clear some
computability properties of neutral measures.

Theorem 3.3 (Kakutani [6]). If S is a nonempty compact convezr subset
of R* and ¢: § — S a multi-valued map with closed graph and convex
nonempty images, then there is an x € S such that x € ¢(x).



10 ADAM R. DAY AND JOSEPH S. MILLER

A fixed point theorem is useful because a uniform test defines a map from
measures to measures. Given ¢, we define £: P(2¥) — M(2%) by letting #(u)
(which we will write as £u) be the measure that takes the following values
on the basic clopen sets:

1 Lo-1ol
tu(o) =5 [t X) dp+ 2710
2 Jio] 2

We can partially order M(2“) by u < v if u(o) < v(o) for all o. In this case
we will say that v majorizes pu.

Lemma 3.4. If y > tu, then p is neutral for % - 1.

Proof. Assume p is not neutral for % -t, then for some X € 2¥ t(u, X) > 2.
This implies that there is a o € 2<¢ with X € [o] such that ¢(u,Y) > 2 for
all Y € [o]. But this would mean that

fu(o) > ;/ 2 dj+ 271711 > (o),
2

This is a contraction because y majorizes ty. U

Consider the sets F}, = {u € P(2*): (Vo) |o| =n = tu(o) < u(o)}. Note
that P(2¥) = Fy and F, 41 C F,. Now if we can show that F}, is nonempty
and closed, for all n, then by the finite intersection property, there exists a
t € (\iew Fi- Thus p has the property that p > tu, hence it is neutral for ¢.

Lemma 3.5. For all n, the following is a 11} class:
My = {(R1, Rp) € 2 x 21 (Vo) |o] = n = [ip(R1)](0) < [p(R2))(0)}.

Proof. Take Ry, Ry € 2% and let u = p(R1) and v = p(R2). Now (Ry, R2) &
M, if and only if, for some o of length n,

tu(o) > v(o). (3.1)

Note that v(o) is computable in Ry and #u(o) is left c.e. in R;. We can
assume that v(o) is computed using an approximation from above (i.e., for
all s, v(o)[s] > v(o)[s+1]) and that v(o)[s] depends only on Ry | s. We can
also assume that p(o)[s] depends only on Ry | s. Then equation (3.1) holds
if and only if for some o of length n and stage s, we have tu(o)[s] > v(o)[s],
and this allows us to expel [R; @ Rz [ 2s| from M,,. O

Proposition 3.6. There is a measure ju € P(2¥) such that p magorizes ti.

Proof. As M, is closed, F,, = p({R: (R, R) € M,}) is closed. The only re-
maining task is to show that F}, is nonempty. Let S, = {Z € [0,1]*": 21221 x; =

1}. Define a continuous map : S,, — P(2¥) by

2n
¢(f) = Z xiaoiowa
=1
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where o; is the ith string of length n. Define the multi-valued map ¢: S,, —
Sn by

¢(z) = {y € Sn: (Vi < 2") yi 2 [((2)](03)}-
Note that y; = [¢(9)](0i). So if Z is a fixed point of ¢, then (z) € F,.

Define the function py: 29x2% — P(2¥)xP(2¥) by pa(R1, R2) = (p(R1), p(R2)),
and the function ¢y: S, x S, = P(2¥) x P(2¥) by ¥a2(Z,y) = (¥(Z),¥(7)).
Both ps and 1 are continuous mappings. The graph of ¢ is precisely
Yy Y(p2(M,)) and hence closed. Since S, is a nonempty compact convex
subset of R?" and ¢ has nonempty convex images in S,, Kakutani’s theo-
rem tells us that ¢ has a fixed point. Therefore, F;, is nonempty. O

This proposition establishes that the IIY class of Lemma 3.5 is not empty.
Further if ¢ is a universal uniform test then any representation in this I1{
class is a representation of a neutral measure. In order to prove Theorem
3.2, we need one more application of compactness.

Proof of Theorem 3.2. Given any n € w, we could redefine i by

n 1
tu(o) = /[]t(,u,,X) d,u—i—mQ Il

n+1

The argument of Lemma 3.5 and Proposition 3.6 shows there exists a mea-
sure i, which is neutral for 75¢. This implies that if n 7 0, then for all

X € 2% we have that (X, u,) < %t Because the space P(2¥) is com-
pact, the sequence {fn, }new has a convergent subsequence which converges
to some measure . If 4 is not neutral for ¢ then there is some X such that
t(p, X) > 1. This implies that for some open ball B including p, and some
¢ > 1 we have that ¢(v, X) > c for all v € B. This is a contradiction because
B must include p, for some n with ”TH <ec. O

It is interesting that every known proof of the existence of a neutral
measure uses a fixed point theorem or equivalent. Their existence seems to
be a fundamentally topological fact. However, once we know such measures
exist, they are relatively easy to find. There is a I1{ class of (representations
of) neutral measures, as we can take the intersection of the diagonals of
the H(l) classes M,, when ¢ is a universal test. Recall that a Turing degree
is a PA degree if it can compute a member of every nonempty I1J subclass
of 2. So every PA degree computes a neutral measure. This lets us give a
simple proof of the following theorem of Reimann and Slaman.

Theorem 3.7 (Reimann and Slaman [15]). For any X € 2¥, X is not
computable if and only if there exists a representation R of a measure such
that X is R-random and p(R) does not concentrate on X.

Proof. If X is computable then consider any measure p that does not con-
centrate on X. If R is a representation of u, then it is simple to build an
R-test that contains X by finding initial segments of X such that u(X [ n)
is sufficiently small.
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For the other direction, assume that X is not computable. Then there
is a P of PA degree such that P 27 X. For example, Jockusch and Soare
showed that there is a set of PA degree which is also of hyperimmune-free
degree and another set of PA degree which is low and hence these cannot
both compute X [5]. As there is a II{ class of representations of neutral
measures, P computes a representation of some neutral measure p. Since
w is neutral, X is p-random. Hence there exists a representation R of u
(not necessarily computable from P) such that X is R-random. Finally as
P cannot compute X, and P can compute any atom of u, we know that X
is not an atom of u. O

4. LOCATING NEUTRAL MEASURES

In this section we study the computability-theoretic complexity of (weakly)
neutral measures. In the previous section we noted that every PA degree
computes a neutral measure. The reverse is true in a strong sense: if u is
a weakly neutral measure, then some PA degree is computable from every
representation of u. As we will see, the story is complicated by the fact
that weakly neutral measure themselves cannot have Turing degree. We
will show that their complexity can be measured using the continuous de-
grees, which were introduced by the second author. That will give us a
better understanding of what is computable from (every representation of)
a weakly neutral measure. We will prove that the ideal of Turing degrees
below such a measure is a Scott ideal, and that every Scott ideal arises in
this way. This, in turn, tells us about the atoms of weakly neutral measures
(see Proposition 4.8).

One reason the existence of a weakly neutral measure may seem counter-
intuitive is that such a measure does not exist for representation tests.

Lemma 4.1. For all R € 2%, there exists an X € 2% such that X is not
R-random.

Proof. Let u = p(R). Construct an R-test as follows. Compute p(o) for all
o of length 2 with precision 272. Take o1 to be the lexicographically least
string of length 2 such that p(c) is within [0,272] for this level of precision.
Let Vi = [01]. Note that pu(o1) <272+ 272 =271, Once V; = [0;] has been
defined with p(o;) < 27¢, compute p(o;7) for all T of length 2 with precision
27472, Take the lexicographically least 7 such that u(o;7) < 27972 with this
precision. Take 0541 = 0y7, s0 p(oir1) < 2771 Let Viy1 = [0y41]. Thus
Nico Vi is an R-test with nonempty intersection. ]

So for any representation R of a weakly neutral measure p, there is an X
that is not R-random. However, there must be another representation R’ of
w such that X is R'-random. The test constructed in the previous lemma
cannot be made representation independent. The obstruction is that there is
no canonical representation of a weakly neutral measure, and in fact, every
representation contains extraneous information.
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Theorem 4.2. A weakly neutral measure has no least Turing degree repre-
sentation.

Proof. Let p be a measure with least Turing degree representation R. By
Lemma 4.1 there is an R-test that witnesses that some X is not R-random.
Let R’ be any other representation of p. Since R’ computes R, the R-test
is also a R'-test (as R and R’ represent the same measure). Hence X is
not R’-random for any representation R’ of u, and thus X is not u-random.
Therefore, p is not weakly neutral. ([

If weakly neutral measures have no least Turing degree representation,
then how should their computational power be examined? For this we turn
to the continuous degrees introduced by Miller [12].

Definition 4.3. Let My and M; be computable metric spaces and let
a € Mp and b € M. We define a <, b (a is representation reducible to b)
if there is an index e such that for every fast Cauchy representation R of
b, ¢ is a fast Cauchy representation of a. The continuous degrees are the
equivalence classes under =,.

Miller showed that the uniformity in the above definition is not required.
In other words, it is equivalent to say that every fast Cauchy representation
of b computes a fast Cauchy representation of a, without fixing the index.
This follows from the natural embedding of the continuous degrees into the
enumeration degrees, see (4.1), and the fact that uniform and nonuniform
enumeration reducibility are equivalent.

The finite sets are a countable dense subset of 2¢ under the metric dow of
Section 2. Thus for any A C w, we can talk about the deg,(A). This gives
us an embedding of the Turing degrees into the continuous degrees. The
continuous degrees that contain subsets of w are the total degrees.

Using the fact that a continuous degree a has total degree if and only
if it has a least Turing degree representation [12], we obtain the following
corollary to Theorem 4.2.

Corollary 4.4. Weakly neutral measures have non-total continuous degree.

This indicates that our study of (weakly) neutral measures can be en-
hanced by understanding the non-total continuous degrees. We start with
the following definitions.

Definition 4.5. If a and b are Turing degrees, then a is a PA degree relative
to b (a > b) if every nonempty I19(b) class contains a path computable from
a. For A, B C w, we write A > B to mean that degp(A) > degy(B).

Definition 4.6. A nonempty countable class S C 2 is called a Scott set if
(i) A, B € S implies that A® B € S,
(ii) A€ S and B <p A implies B € S, and
(iii) for every A € S, there is a B € S such that B > A.
If S is a Scott set then {deg;(A): A € S} is a Scott ideal.



14 ADAM R. DAY AND JOSEPH S. MILLER

We summarize some results of Miller. The Hilbert cube [0,1]“ can be

regarded as a computable metric space by using the metric defined at (2.1)
along with the finitely non-zero sequences of rationals as a countable dense
subset.

Theorem 4.7 (Miller [12]).

(i) Every continuous degree contains an element of [0, 1].
(ii) Let a and b be total degrees. Then a < b if and only if there is a
non-total degree v with a <, v <, b.
(iii) The Turing ideal below a non-total continuous degree is a Scott ideal.
(iv) Any Scott ideal is the Turing ideal below some non-total continuous
degree.

From Corollary 4.4 and Theorem 4.7(iii), we know that the ideal below
any weakly neutral measure is a Scott ideal. One reason this is interesting is
that understanding what can be computed from a weakly neutral measure
is the same as understanding its atoms.

Proposition 4.8. A € 2% is an atom of a weakly neutral measure u if and
only if A<, u (i.e., iff every representation of u computes A).

Proof. Assume that every representation of u computes A. If u does not
concentrate on A, then any representation R of p can compute an initial
segment of A with arbitrarily small y measure, and hence capture A in an
R-test. Therefore, A is not py-random and p is not weakly neutral.

For the other direction, assume that A is an atom of p and let R be any
representation of p. Choose o < A such that p(o) < 2u({A}). Given o, we
can compute A from R by following the path consisting of all 7 > o such
that p(o) < 2u(7). Therefore, A <, p. O

Every Scott ideal contains a PA degree, and hence contains a member of
every nonempty I1J class. There is a II{ class containing only Martin-Lof
random sequences, hence:

Corollary 4.9. Every weakly neutral measure has a Martin-Lof random
atom.

This result allows us to answer a question of Gécs [3, Question 1] in
the negative. The question was speculative and, unfortunately, a negative
answer does little more than shut down this speculation. The full context
of the question would take too much space, but briefly, Gacs was interested
in capturing the mutual information of two sequences X,Y € 2“. Let u
be a neutral measure. Gécs asked if it is would be reasonable to define the
mutual information of X and Y as logt(u x u, X @Y'). More specifically, he
asked if this could, for the right choice of p, coincide with another definition
he was considering. To see that this is not the case, let A be a Martin-Lof
random atom of u. Then A® A is an atom of p x u, hence logt(pux u, A® A)
must be finite. But a definition of mutual information that allows a Martin-
Lof random sequence to have finite mutual information with itself is fairly
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absurd and, more concretely, behaves quite differently than other proposed
definitions.

We have seen that the Turing ideal below a (weakly) neutral measure is
always a Scott ideal. It turns out that the converse holds; the ideals below
neutral measures are exactly the Scott ideals.

Theorem 4.10. Every Scott ideal is the ideal below some neutral measure.

To prove this theorem, we make further use of some prior work of Miller.
To prove the existence of non-total continuous degrees, Miller developed
the construction of a sequence a € [0,1]* that could not be diagonalized
computably.

Definition 4.11. A sequence « € [0, 1] is diagonally non-computably diag-
onalizable, or d.m.c.d., if for all e, there exists a representation R of « such
that a(e) is an element of the convex closure of II.(R) or Il (R) is empty
(where TI.(R) is the eth II{(R) class).

The convex closure of II.(R) is {z € [0,1]: infII.(R) < z < supIl.(R)}.
This definition of a d.n.c.d. sequence differs from that given in [12], but is
equivalent up to continuous degree. The reason such sequences are referred
to as diagonally non-computably diagonalizable is that if there is a Turing
functional ¢ and an x such that ¢ = x for any representation R of a, then
(uniformly in the index of ¢) we can find an e such that {z} = II.(R) for all
representations of a. But then a(e) = x. Thus e witnesses the failure of ¢
to diagonalize «, uniformly in (the index for) ¢. The last part of Theorem
4.7 can be strengthened to “any Scott ideal is the Turing ideal below some
d.n.c.d. sequence.”

To prove Theorem 4.10 we will show that any d.n.c.d. sequence is above,
in the sense of >,., a neutral measure that bounds the same total degrees. We
will use semi-measures in our construction of this neutral measure. A semi-
measure is a function 7: 2 — [0, 1] such that 7(c) > 7(c0)+7(c1). We will
identify a semi-measure 7 with the set S(7) = {(0,¢) € 2<¥ x Q: 7(0) > ¢}.

Semi-measures have been studied as computably enumerable objects; we
call a semi-measure 7 c.e. if S(7) is c.e. Levin proved the existence of
a universal c.e. semimeasure 7, meaning that for every c.e. semi-measure
7' there is a constant ¢ such that 7 > ¢7’ [10]. This proof relativizes to
show that for any set A C w, there is a universal c.e. in A semi-measure.
However, what does it mean to enumerate a semi-measure in some sequence
a € [0,1]“, if a does not have total degree? A reasonable suggestion would
be to define a set to be c.e. in « if it is c.e. in every representation of «.
This can be easily expressed in terms of the enumeration degrees.

There is an embedding of the continuous degrees into the enumeration
degrees. Given « € [0,1]“ we define E(a) € {0,1} x w x Q by

=(a) = {(0,4,0): ¢ < o)} U{(Li,q): ¢ > a(i)}. (4.1)
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If R is a representation of « then Z(«) is c.e. in R. Further if Z(«) is c.e. in
some set B, then B Turing computes a representation of c.

Now assume that a set A is c.e. in « (i.e., c.e. in any representation of
«). Further, assume that =(«) is c.e. in a set B. Since B computes a
representation of «, it must be that A is also c.e. in B. Hence A <, Z(a).
On the other hand, if A <. =(«), then as E(«) is c.e. in any representation
R of a, we have that A is c.e. in any representation of . Thus the approach
suggested above is equivalent to defining a semi-measure 7 to be c.e. in « if
S(7) <¢ E(w).

We can now provide a characterization of p-randomness in terms of the
enumeration degrees. This is an extension of a result of Levin who proved
the following theorem for the case that u is a computable measure [8].
Theorem 4.12. Take any p € P(2¥). Then X € 2% is u-random if and
only if for every semi-measure T c.e. in p (i.e., S(7) <. Z(u)), there exists
¢ € w such that 7(0) < cu(o) for allo < X.

Proof. If X is not p-random, then for some uniform test ¢(u, X) = co. Define
a (semi-)measure 7 = fu. Thus 7 is c.e. in any representation of . Fix c.
Since t(u, X) = oo, there is a ¢ < X such that if Y € [o], then ¢(u,Y) > c.
Thus 7(0) = f[g] t(p,Y) du > cu(o).

For the other direction, assume that there is a semi-measure 7 such that
for all ¢, there exists a ¢ < X with 7(0) > cu(o). Given any represen-
tation R of p we can enumerate 7 and define a test {V;}ic., such that
V; = {[o]: 7(c) > 2°u(o)}. This test captures X so X is not R random. As
this is true for any representation of u, X is not u-random. O

This proof makes use of the equivalence between u-randomness and u-
randomness for universal tests established in Theorem 1.6. Techniques devel-
oped by Hoyrup and Rojas can be used to construct a uniform test directly
from a semi-measure providing an alternative proof of one direction [4].

We claim that, relative to a set B, we can enumerate all c.e. in B semi-
measures. Let W.(B) be the eth set c.e. in B and let W, ;(B) be an
enumeration of W.(B). Any set X defines a weighting function fx (o) =
sup{q: (q,0) € X}, where we are viewing X as a subset of Q x 2<%. Define
Te,O(B) = ®7 and

T.i1(B) = Wei(B) if fw, (p) is a semi-measure,
e T.;(B) otherwise.

By passing from T.(B) to Se(B) = {{(¢’,0): {q,0) € Te(B) and ¢’ < ¢}, we
get an effective list of exactly the c.e. in B semi-measures.

To prove the following lemma, we use a representation p: 2 — [0, 1]* with
the same properties as the representation of P(2%) constructed in Section 2.
The same proof, mutatis mutandis, shows that such a representation exists.

Lemma 4.13. If a € [0,1], then there is a universal semi-measure T c.e.
m a.
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Proof. Define S, = nREpfl(Aa) S¢(R). For any R € p~'(a), as p~(a) is
9(R) class, it follows that S, is c.e. in R. Let 7. be fg, - Note that this is
a semi-measure. Define 7 = 7, 27¢7.. Let S = S(7), so S is c.e. in R for
all R € p~(a).

Now if 7/ is a semi-measure c.e. in «, then there is an index e such that
7 = S.(R) for all R € p~!(a) (this holds because any reduction in the
enumeration degrees is uniform, which is implicit in Selman [17] and proved
independently by Rozinas [16]). Thus 7 = 7., and so 7 majorizes 7’. O

Lemma 4.14. Let a € [0,1]“ be a d.n.c.d. sequence. If T is a semi-measure
c.e. in «, then there exists u € P(2¥) such that u <, a and (Vo) u(o) > (o).

Proof. We will define p in such a way that any representation of « will
(uniformly) be able to determine a representation of u. First define u(\) = 1.
Hence pu(A) > 7(A).

Now assume that we have defined u(o) with (o) > 7(o). Consider
the interval I, = [7(00), u(o0) — 7(c1)]. Note that I, is nonempty because
(o) — 7(ol) — 7(00) > p(o) — 7(o) > 0. Since 7(00) and 7(ol) are left
c.e. in R, and p(o) is computable in R, we see that I, is a TIY(R) class.
Further, everything is uniform, so we can actually compute an index e such
that I, = II.(R), for any representation R of a. Because « is of d.n.c.d.
degree, and I, is its own convex closure, a(e) € I,. We define p(00) = a(e)
and ju(o1) = (o) — u(00).

As I, is nonempty, we have (o0

) < p(o), and p(c0) > 7(00). Addition-
ally, pu(01) = p(o) — a(e) = u(o) — p(o)

+7(0l) = 7(0l). O
We are finally ready to establish Theorem 4.10.

Proof of Theorem 4.10. Let Z be a Scott ideal. Let o be a d.n.c.d. sequence
such that Z is the Turing ideal below a. Let 7 be a universal semi-measure
for a. By Lemma 4.14, we can take p <, « such that p majorizes 7 and
p € P(2¥). Let t be a universal test. Since {u is a (semi-)measure c.e. in p,
hence c.e. in «, there is a b such that tu < br < bu. So by Lemma 3.4, p is
neutral for the universal test %t.

If A€ Z, then A <, a. Any representation of o can compute A, so some
semi-measure 7 c.e. in a must concentrate on A. This means A is an atom
of pand so A <, p. If A <, p, then A <, aso A € Z. Hence 7 is the
Turing ideal below pu. O

The previous theorem appears to give a proof of the existence of neutral
measures without using a fixed point theorem. However, this is not the case.
Miller’s construction of a d.n.c.d. sequence makes use of a generalization of
the Kakutani fixed point theorem and Lemma 4.14 makes essential use of
this underlying fixed point theorem to construct the measure .
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5. OPEN QUESTIONS

Several questions remain open about the relationship between neutral
measures and the continuous degrees. The most basic is:

Question 5.1. Does every non-total continuous degree contain a neutral
measure?

In the proof of Theorem 4.10, we started with a d.n.c.d. sequence o and
built a neutral measure pu <, « that bounds the same Turing degrees as
«. There is no reason to assume that y =, a. While u can list all of the
elements of the sequence «, it cannot necessarily determine the order of
those elements. Even if we could improve the proof to show that u =, «,
we would run into another open question (from [12]):

Question 5.2. Does every non-total continuous degree contain a diagonally
non-computably diagonalizable sequence?

If both questions are answered in the negative, it is natural to ask:

Question 5.3. Is there any relationship between the degrees of neutral
measures and the degrees of d.n.c.d. sequences?

It is not too difficult to construct a weakly neutral measure that is not a
neutral measure. For example, let 1 be a neutral measure. Define v such
that:

(i) For all o € 2<%, v(0"10) = 27" u(0"10).

(ii) v has an atom at 0.
The measure p is weakly neutral because there is an atom at 0“ and every
other sequence is in an open neighborhood where the measure looks neutral.
However, there is a uniform test ¢ such that t(v, X) = 2" if X € [0"1] (and
of course, t(v,04) = 0). So v is not a neutral measure.

The fact that these properties are different leads to natural questions:

Question 5.4. Is every weakly neutral measure representation equivalent
to a neutral measure? Does every non-total continuous degree contain a
weakly neutral measure?
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