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Abstract. We extend the Shoenfield jump inversion theorem to the
members of any Π0

1 class P ⊆ 2ω with nonzero measure; i.e., for every
Σ0

2 set S ≥T ∅′, there is a ∆0
2 real A ∈ P such that A′ ≡T S. In

particular, we get jump inversion for ∆0
2 1-random reals.1

This paper is part of an ongoing program to study the relationship be-
tween two fundamental notions of complexity for real numbers. The first is
the computational complexity of a real as captured, for example, by its Tur-
ing degree. The second is the intrinsic randomness of a real. In particular,
we are interested in the 1-random reals, which were introduced by Martin-
Löf [13] and represent the most widely studied randomness class. For the
purposes of this introduction, we will assume that the reader is somewhat
familiar with basic algorithmic randomness, as per Li-Vitányi [12], and with
computability theory [18]. A review of notation and terminology will be
given in Section 1.

Intuitively, a 1-random real is very complex. This complexity can be
captured formally in terms of unpredictability or incompressibility, but is it
reflected in the computational complexity of the real? To put this question
more precisely: which Turing degrees contain 1-random reals? We call such
degrees 1-random. A beautiful result here is the theorem of Kučera [9] and
Gács [6] that every set is Turing reducible to a 1-random. Therefore, 1-
random reals can have arbitrarily high Turing degree. Moreover, Kučera
proved that every degree a ≥ 0′ is 1-random. On the other hand, the
distribution of 1-random degrees below 0′ is only partially understood.

It is well known that there is a nonempty Π0
1 class which contains only

1-random reals. In particular, consider the complement of one of the Σ0
1

classes in a universal Martin-Löf test. Hence, by the low basis theorem of
Jockusch and Soare [7], there are low 1-random reals. Several other results
on the distribution of 1-random degrees are known. For instance, minimal
degrees and 1-generic degrees cannot be 1-random [11], so there are lots of
∆0

2 degrees which do not contain 1-random reals. Furthermore, Kučera [9]
proved that the 1-random degrees are not closed upwards. In particular, he
constructed a ∆0

2 PA degree a which is not 1-random. Recall that a degree
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1Kučera claims this result without proof in a remark at the end of [10].
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is PA if it computes a member of every nonempty Π0
1 class.2 Applying

this to a nonempty Π0
1 class containing only 1-randoms, a must bound a 1-

random degree. Thus, even below 0′, the degrees of 1-randoms are not closed
upwards. Frank Stephan [19] recently clarified the situation by proving the
following remarkable theorem: if a is PA and 1-random, then 0′ ≤T a.

These results demonstrate that the distribution of the 1-random degrees
is quite complicated, even below 0′. In the present paper, we approach the
problem by considering the jumps of ∆0

2 1-random reals. First, let us briefly
consider the jumps of arbitrary 1-randoms. Jockusch and Soare [7] observed
that if P is a nonempty Π0

1 class with no computable members and S ≥T ∅′,
then there is an A ∈ P such that A′ ≡T A⊕ ∅′ ≡T S. This is an extension
of the Friedberg completeness criterion [5] to the members of Π0

1 classes
and its proof is a straightforward generalization of the low basis theorem.
Because, as above, there is a nonempty Π0

1 class containing only 1-randoms,
we conclude that 1-random reals can have all possible jumps.

Our initial hope was to determine the jumps of ∆0
2 1-random reals in the

same way: simply prove that every Π0
1 class P with no computable members

had ∆0
2 members of all possible jumps. Unfortunately this plan fails badly.

Cenzer [2] proved that there exists such a class which contains only GL1

(generalized low) elements, i.e. A ∈ P implies that A′ ≡T A⊕∅′. Therefore,
all ∆0

2 elements of P are low.
We will instead prove a basis theorem for Π0

1 classes of positive measure.
Our result can be viewed as a generalization of the Shoenfield jump inversion
theorem [17]. It is easy to see that the jump of a ∆0

2 set is Σ0
2. Shoenfield’s

theorem gives a converse: if S is Σ0
2 and S ≥T ∅′, then there is an A ∈ ∆0

2

such that A′ ≡T S. We extend this result by requiring A to be a member
of a given Π0

1 class with nonzero measure.

Theorem 1. Let P be a Π0
1 class such that µ(P) > 0. For every Σ0

2 set
S ≥T ∅′, there is a ∆0

2 real A ∈ P such that A′ ≡T S.

The theorem implies jump inversion for ∆0
2 1-randoms because there is a

Π0
1 class with nonzero measure containing only 1-random reals. In fact, any

nonempty Π0
1 class of 1-randoms will suffice, because Kurtz [11] proved that

every Π0
1 class which contains a 1-random has positive measure.

Corollary 2. For every Σ0
2 set S ≥T ∅′, there is a 1-random real A ∈ ∆0

2

such that A′ ≡T S.

We have already seen the two extreme cases of this corollary: there is a low
1-random real and a 1-random of degree 0′. We remark that any 1-random
of c.e. degree—the existence of which is guaranteed by the Kreisel basis
theorem—must have degree 0′. This was noted by Kučera [9], who proved

2The PA degrees were originally defined to be the degrees of complete consistent ex-
tension of Peano Arithmetic. The equivalence of these two definitions follows from the
work of Scott [16] and Solovay (unpublished).
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that 1-random reals have fixed point free degree. Therefore, Arslanov’s
completeness criterion [1] implies that 0′ is the only 1-random c.e. degree.

Before we turn to the proof of our basis theorem, we would like to mention
some other results which clarify the connection between computability and
randomness, in particular, strong notions of randomness. If we replace the
Σ0

1 classes by Σ0
n classes in the definition (given below) of a Martin-Löf

test, then the resulting randomness concept is called n-randomness. Kurtz
[11] proved that it is equivalent to passing every Martin-Löf test relative
to ∅(n−1). Kautz [8] proved that for these higher levels of randomness the
Turing degrees of jumps are very constrained. In particular, if A is an
n-random real, then A(n−1) ≡T A ⊕ ∅(n−1). For instance, all 2-random
reals are GL1. Finally, Miller and Yu [14] recently found the following very
interesting connection between n-randomness and Turing reducibility: every
1-random real Turing below an n-random is also n-random. These results
and similar ones are reported in the forthcoming survey paper [4], and the
forthcoming book [3]. We believe that there are a number of extremely
interesting connections between computability and randomness still waiting
to be found.

1. Definitions, notation and terminology

We consider real numbers to be elements of the Cantor space 2ω and
denote the standard measure on 2ω by µ. For convenience, we do not dis-
tinguish between a set of natural numbers and the infinite binary sequence
representing that set. For x, y ∈ 2<ω, we write x � y if x is a prefix of
y. Similarly, x ≺ A means that x is a prefix of A ∈ 2ω. For x ∈ 2<ω,
let [x] = {A ∈ 2ω | x ≺ A}; such sets form a clopen basis for the stan-
dard topology on Cantor space. To V ⊆ 2<ω we associate the open set
[V ] =

⋃
x∈V [x]. If V is computably enumerable, then we call [V ] a Σ0

1 class.
A Π0

1 class is the complement of a Σ0
1 class. Alternately, a Π0

1 class is the set
of infinite paths through a Π0

1 tree T ⊆ 2<ω, where a tree is a subset of 2<ω

closed downward under the prefix relation. Note that there is an effective
enumeration {Pe}e∈ω of all Π0

1 classes.
Martin-Löf [13] defined the random reals to be those which avoid certain

effective sets of measure zero, sets representing properties satisfied by almost
no real numbers. A Martin-Löf test is a computable sequence {Vi}i∈ω of Σ0

1

classes such that µ(Vi) ≤ 2−i. A real A ∈ 2ω passes a Martin-Löf test
{Vi}i∈ω if A /∈

⋂
i∈ω Vi. A real which passes all Martin-Löf tests is called 1-

random. Martin-Löf proved that it is sufficient to consider a single universal
test; i.e., there is a Martin-Löf test {Ui}i∈ω such that

⋂
i∈ω Ui is exactly the

class of non-random reals. In particular, 2ω r U1 is a nonempty Π0
1 class

containing only 1-random reals.
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2. The proof

The proof of Theorem 1 can be viewed as a finite injury construction
relative to the halting problem. In that sense, it is similar to Sacks’ con-
struction of a minimal degree below 0′ [15]. We require two additional ideas
from the literature. The first is the method of forcing with Π0

1 classes, which
was introduced by Jockusch and Soare [7] to prove the low basis theorem.
This method is used to ensure that A′ ≤T S. The second is a version of
a lemma of Kučera [9] which allows us to recursively bound the positions
of branchings in a Π0

1 class with nonzero measure. The lemma allows us to
code S into A′ using a variation of a process known as Kučera coding.

Lemma 3 (Kučera, 1985). Let P be a Π0
1 class such that µ(P) > 0. Then

there a Π0
1 subclass Q ⊆ P and a computable function g : ω → ω such that

µ(Q) > 0 and

(∀e)
[
Q∩ Pe 6= ∅ =⇒ µ(Q∩ Pe) ≥ 2−g(e)

]
.

To see why this lemma is true, let g be any computable function such that
Σe∈ω2−g(e) < µ(P). Let Q be the Π0

1 subclass of P obtained by removing
the reals in Pe[s] (the stage s approximation to Pe) whenever Pe[s] ∩ Q[s]
has measure less than 2−g(e). The choice of g guarantees that µ(Q) > 0.3

Proof of Theorem 1. We are given a Π0
1 class P ⊆ 2ω with nonzero measure

and a Σ0
2 set S ≥T ∅′. Take the Π0

1 class Q ⊆ P and computable function
g : ω → ω guaranteed by Lemma 3. We will construct a ∆0

2 real A ∈ Q such
that A′ ≡T S.

Before describing the construction we must give a few preliminary defini-
tions. For every σ ∈ 2<ω, define a Π0

1 class

Fσ = {B ∈ Q | (∀e < |σ|) σ(e) = 0 =⇒ ϕBe (e) ↑}.
At each stage s ∈ ω of the construction, we will define a string σs ∈ 2s which
is intended to approximate A′ � s. We will tentatively restrict A to the class
Fσs in order to force its jump. It is important to note that this restriction
may be injured at a later stage by the enumeration of an e < s into S.

Next we define a computable function f : ω → ω which grows fast enough
to ensure that it (eventually) bounds the branchings between elements of
Fσ, for every σ ∈ 2<ω. We will use f to code elements of S into A (or
more precisely, into A′). Let h : 2<ω × 2<ω → ω be a computable function
such that Ph(x,σ) = [x] ∩ Fσ, for all x, σ ∈ 2<ω. Set f(0) = 0. For s ∈ ω,
inductively define

f(s+ 1) > max{g(h(x, σ)) | x ∈ 2f(s) and σ ∈ 2s}.
Now take x ∈ 2f(t) and σ ∈ 2s, for t ≥ s, such that [x] ∩ Fσ 6= ∅. We
claim that x has distinct finite extensions y0, y1 ∈ 2f(t+1) which extend to
reals in Fσ. Assume not. Let σ̂ = σ1t−s and note that Fbσ = Fσ. Then

3We thank the referee for suggesting this simple proof of Lemma 3.
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µ(Q∩ Ph(x,bσ)) = µ([x] ∩ Fσ) ≤ 2−f(t+1) < 2−g(h(x,bσ)), which contradicts the
lemma.

Kučera used the fact that we can bound branchings in a Π0
1 class with

nonzero measure to code information into members of such a class. The
most basic form of Kučera coding constructs a real by extensions, choosing
the leftmost or rightmost permissible extension to encode the next bit. For
our construction, we only distinguish between the rightmost extension and
any other permissible extension. Let R be a Π0

1 class and let x ∈ 2f(s+1),
for some s ∈ ω. Define Hf (R;x) to be true iff

(∃n)
[

if y ∈ 2f(s+1) extends x � f(s) and is
to the right of x, then R[n] ∩ [y] = ∅

]
,

where R[n] is the approximation to R at stage n. Note that Hf (R;x) is a
Σ0

1 condition. By compactness, if R ∩ [y] = ∅, then there is a n ∈ ω such
that R[n] ∩ [y] = ∅. This implies that if R ∩ [x] 6= ∅, then Hf (R;x) is true
iff x is the rightmost length f(s+ 1) extension of x � f(s) which extends to
an element of R.

It will be useful to understand the interaction between f and Hf . Assume
that we have x ∈ 2f(t), for some t ≥ s, and σ ∈ 2s such that [x] ∩ Fσ 6= ∅.
Let x̂ ∈ 2f(t+1) be the leftmost extension of x such that [x̂]∩Fσ 6= ∅. By the
definition of f , there are multiple extensions to choose from, so Hf (Fσ, x̂)
is false. In fact, if τ � σ, then Fσ ⊆ Fτ . Therefore, Hf (Fτ , x̂) is also false.

We are now ready to describe the construction. Let {Ss}s∈ω be a ∅′-
computable enumeration of the Σ0

2 set S. We may assume that S0 = ∅ and
|Ss+1 r Ss| = 1 for all s ∈ ω. We construct A by initial segments using a
∅′ oracle. At each stage s ∈ ω, we find a string xs ∈ 2f(t), for some t ≥ s.
Define A =

⋃
s xs. Each stage also produces a string σs ∈ 2s, which is an

approximation to A′, although not necessarily an initial segment of it. For
each s ∈ ω, we require that

(1) [xs] ∩ Fσs 6= ∅.
(2) If e < s and B ∈ [xs] ∩ Fσs�e+1, then B′(e) = σs(e).

The Construction.
Stage 0. Let x0 and σ0 both be the empty string. Then [x0]∩Fσ0 = Q 6= ∅,

so (1) is satisfied. Note that (2) is vacuous.
Stage s+1. Assume that we have already constructed xs ∈ 2f(t), for some

t ≥ s, and σs ∈ 2s satisfying (1) and (2). Let e ∈ Ss+1 r Ss (this element is
unique).

Case 1. If e > s, then let xs+1 ∈ 2f(t+1) be the leftmost extension of xs
such that [xs+1] ∩ Fσs 6= ∅. Note that ∅′ can determine if [y] ∩ Fσs = ∅, for
each y ∈ 2<ω, so ∅′ can find xs+1. If [xs+1] ∩ Fσs0 6= ∅, then let σs+1 = σs0.
Otherwise, let σs+1 = σs1. Again, this can be determined using the ∅′ oracle.
Note that (1) and (2) are satisfied by our choices of xs+1 and σs+1.

Case 2. If e ≤ s, then let τ = σs � e. Consider the least number m ∈ ω
such that f(〈e,m〉) ≥ |xs|. First define x̂s ∈ 2f(〈e,m〉) to be the leftmost
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extension of xs such that [x̂s] ∩ Fτ 6= ∅. Next let xs+1 ∈ 2f(〈e,m〉+1) be
the rightmost extension of x̂s such that [xs+1] ∩ Fτ 6= ∅. Let σs+1 be the
lexicographically least string of length s + 1 which extends τ and satisfies
[xs+1]∩Fσs+1 6= ∅. Again, the construction is computable relative to ∅′ and
we have ensured that (1) and (2) continue to hold.
End Construction.

We turn to the verification. The construction is computable from a ∅′
oracle, so A is ∆0

2. Furthermore, (1) tells us that [xs] ∩ Fσs 6= ∅, for each
s ∈ ω. Because Fσs ⊆ Q ⊆ P, this implies that every xs can be extended to
an element of P. But P is closed, so A =

⋃
s xs ∈ P. All that remains to

verify is that A′ ≡T S.
First we prove that A′ ≤T S. To determine whether e ∈ A′, use S and ∅′

to find a stage s > e such that Ss � e + 1 = S � e + 1. Let τ = σs � e + 1.
We claim that σt � e + 1 = τ , for all t ≥ s. This is because the only way
that σs � e + 1 can be injured during the construction is in Case 2, when
an element i ≤ e is enumerated into S. But this will never happen after
stage s. Therefore, for all t ≥ s, we have τ � σt and hence Fσt ⊆ Fτ . So
[xt] ∩ Fτ 6= ∅, for all t ≥ s, which implies that A ∈ Fτ . By (2), we have
A′(e) = τ(e). This proves that we can uniformly decide if e ∈ A′ using only
S ⊕ ∅′ ≡T S. Therefore, A′ ≤T S.

Now we show that S ≤T A′. Assume by induction that we have deter-
mined S � e, for some e ∈ ω. Find the least s ≥ e such that Ss � e = S � e.
Let τ = σs � e and note, as above, that τ � σt, for all t ≥ s. Find the
least m ∈ ω such that f(〈e,m〉) ≥ |xs|. Of course, both s and m can be
found by ∅′. We claim that e ∈ S iff either e ∈ Ss or (∃n ≥ m) Hf (Fτ ;A �
f(〈e, n〉+1)). If e ∈ SrSs, then Case 2 ensures that Hf (Fτ ;A � f(〈e, n〉+1))
holds for some n ≥ m. So, assume that e /∈ S. Then for every n ≥ m, the
construction chooses the leftmost extension of A � f(〈e, n〉) which is ex-
tendible in the appropriate Π0

1 class. This class is of the form Fbτ , where
τ̂ � σt for some t ≥ s and |τ̂ | ≥ e. This implies that τ � τ̂ , so Fbτ ⊆ Fτ .
The definition of f ensures that there are distinct length f(〈e, n〉+1) exten-
sions of A � f(〈e, n〉) which can be extended to elements of Fbτ . Therefore,
the leftmost choice consistent with Fbτ must be left of the rightmost choice
consistent with Fτ . Hence Hf (Fτ ;A � f(〈e, n〉 + 1)) is false. Finally, note
that A′ can decide if (∃n ≥ m) Hf (Fτ ;A � f(〈e, n〉+ 1)), because Hf is Σ0

1.
Therefore A′ can determine if e ∈ S, proving that S ≤T A′. �
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