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Abstract. In dynamic epistemic logic and other fields, it is natural to consider relativiza-

tion as an operator taking sentences to sentences. When using the ideas and methods of

dynamic logic, one would like to iterate operators. This leads to iterated relativization. We

are also concerned with the transitive closure operation, due to its connection to common

knowledge. We show that for three fragments of the logic of iterated relativization and

transitive closure, the satisfiability problems are Σ1
1-complete. Two of these fragments do

not include transitive closure. We also show that the question of whether a sentence in

these fragments has a finite (tree) model is Σ0
1-complete. These results go via reduction

to problems concerning domino systems.
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1. Introduction

This paper is concerned with the operation of iterated relativization as it
appears in dynamic epistemic logic. This operation is motivated by the
notion of an epistemic program: an algorithm whose steps use and change the
epistemic states of agents. In many settings, we wish to consider programs
defined by some sort of iteration operation. So analogous to the use of
dynamic logic in other settings, we might wish to study the logical properties
of the iteration operation in the setting of epistemic programs. This paper
is concerned with just this issue.

In order to motivate the topic with an example, we begin with a discus-
sion of iterated announcement in the well-known muddy children scenario.
This discussion should be accessible to readers who have seen the Kripke
semantics of modal logic. The actual work of the paper begins in Section 2.
In that section we re-introduce the topic in more generality; readers who
already know the motivation for the logical study of iterated relativization
might wish to skip or skim the rest of this section.

We begin with a finite set C of children playing in the mud. As a result,
some of them get mud on their foreheads. We assume that each child can
see the others and hence knows the clean/dirty status of the others. We
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also assume that none of the children can see their own foreheads and that
all children are perfect logical reasoners. Finally, all of these assumptions
are taken to be common knowledge. An adult comes by and announces
that at least one child is muddy. The adult then asks the children if they
know whether they are muddy or not. The children simultaneously publicly
announce whether or not they know. They repeat this, each time taking
into account the previous announcement. (So in the terminology above, we
have a simple example of an epistemic program.) It can be shown that if we
begin with n ≥ 1 dirty children, then there will be n− 1 announcements of
everyone’s ignorance. Following this, there will be an announcement where
all of the dirty children say that they know and the clean ones do not. We
then have an announcement where the clean ones know too.

There are many discussions of this scenario in the literature. The topics
of these discussions include the nature of knowledge and common knowledge,
the assumptions needed to draw the conclusion we mentioned just above,
and the appropriate mathematical models for this kind of work. This paper
is not primarily about these topics. We are concerned with one particular
aspect of the whole scenario: the repetition of the public announcement by
the children of their own knowledge states. In order to bring out this issue,
we must discuss the models and logical languages of interest.

For each set C of children, we have a language LC . This language is the
multi-agent modal logic with agent knowledge modalities for each child and
with atomic sentences for the clean/dirty status of each. LC is interpreted
on LC-models

W = (W, (→A )A∈C , (DA)A∈C).

W is a set (of worlds), each →A is a binary relation on W , and each DA is
a subset of W .

Here are the details on the syntax and semantics of LC . We begin with
atomic sentences dA for each child, and the intended interpretation is that in
a world w of a model W , w |= dA iff A is dirty in w. Formally, (W,w) |= dA
iff w ∈ DA. (Note that the semantics employs model-world pairs (W,w).)
We have the usual boolean operations. So to say that child B is clean we
would write ¬dB. Further, we have knowledge operations 2A for A ∈ C.
Informally, (W,w) |= 2Aϕ means that in w, A knows ϕ. Formally, the
semantics is that (W,w) |= 2Aϕ iff for all v such that w→A v, (W, v) |= ϕ.
There is also a common knowledge operator 2∗. Informally, (W,w) |= 2∗ϕ
means that in w, ϕ is common knowledge. This is best modeled by the
circular assertion:

ϕ is true, and every child knows (i). (i)
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Formally,

(W,w) |= 2∗ϕ iff for all v such that w→∗ v, (W, v) |= ϕ,

where →∗ is the reflexive-transitive closure of
⋃
A(→A ).

To represent an announcement, we add an operation 〈ϕ〉 taking a sen-
tence ψ to another sentence 〈ϕ〉ψ. The informal semantics is that ϕ is true,
and after announcing it publicly to all agents, ψ is true. We model this by
relativization; i.e., passing to a submodel. Formally, (W,w) |= 〈ϕ〉ψ iff both
(W,w) |= ϕ and (Wϕ, w) |= ψ, where Wϕ is the submodel of W determined
by {v ∈W : (W, v) |= ϕ}.

This reification of announcements or other epistemic operations inside of
modal languages is now an active field of modal logic. The papers [1, 2, 10,
11, 12, 19, 20] are the closest to our study, and these mention other works
as well.

Finally, we have an iterated announcement operator 〈ϕ∗〉 defined by

(A, a) |= 〈ϕ∗〉ψ iff (A, a) |= 〈ϕ〉nψ for some n.

This iteration operation is needed to formulate and study epistemic pro-
grams, just as some sort of iteration or recursion operation is needed in
other computational settings. The central topic of this paper is the com-
plexity of the satisfiability problem in languages which contain the iterated
relativization operator.

At this point we have described the syntax and semantics of the languages
LC . In the rest of this section, we shall be concerned with the particular
sentences in LC which are listed in Figure 1. These are based on sentences
in Gerbrandy and Groeneveld [12]. Informally, the sentence vision says of
a world w that every child A can see and therefore knows the status of all
other children. Note that vision is finite since C is, and that it depends on the
set C of children. The sentence at least one is straightforward and holds in a
world w iff at least one child is dirty. The background statement background
says of w that it is common knowledge that vision and at least one hold.
Semantically, these two statements hold at all worlds reachable in zero or
more steps from w. The intuition is that this is the background that the
children have after the adult’s announcement that at least one of them is
dirty.

We must note that background is much weaker than what one would
usually take to be the formalization of the overall background assumptions
in the muddy children scenario. For example, one usually assumes the vision
statement with the implications replaced by bi-implications. Also, at the
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vision
∧
A∈C

∧
B 6=A((dB → 2AdB) ∧ (¬dB → 2A¬dB))

at least one
∨
A∈C dA

background 2∗(vision ∧ at least one)
nobody knows

∧
A∈C(¬2AdA ∧ ¬2A¬dA)

somebody knows ¬nobody knows

Figure 1. Abbreviations in the discussion of the muddy children scenario, following [12].

outset one usually assumes the sentence nobody knows from Figure 1. We
work with background as formulated in Figure 1 because it is already strong
enough to make the following conditional valid. Let

ϕC ≡ background→ 〈nobody knows∗〉somebody knows. (ii)

This ϕC says that some finite number of public announcements of everyone’s
ignorance will eventually result in the opposite: someone knowing their sta-
tus. For this to hold, there must be some sort of background assumption.
Again, ours is fairly weak. And the conclusion, too, is weaker than the
usual assertion that everyone learns their state. The action involved is also
weaker: instead of dealing with truthful announcements by everyone of their
state, we only announce universal ignorance.

Proposition 1.1. For each finite set C of children, |= ϕC. That is, ϕC holds
in all worlds of all LC-models.

Proof. Observe first that if (W,w) |= background and V is a submodel of
W containing w, then (V,w) |= background. This may be verified directly,
and it also follows from the fact all of the 2’s and 2∗’s in the sentence
background are within the scope of an even number of negations.

For all model-world pairs (W,w), let n(W,w) be the largest number of
clean children in any world reachable from w. Since the number of children
is finite, n(W,w) is a well-defined natural number.

Here is our second observation: assume that (W,w) is acceptable, and
let v be a world reachable from w with exactly n(W,w) clean children. Then

(W, v) |=
∧
A∈C

(dA → 2AdA).

To see this, let A be dirty in v. If v→A u, then by 2∗vision, for all B 6= A, B
is clean in v iff B is clean in u. So by the maximality of n(W, v), A must be
dirty in u. This shows that (W, v) |= 2AdA.

Further, let V = Wnobody knows. Our third observation is that for
w ∈ V , n(V,w) < n(W,w). To see this, recall that we construct V by



The Undecidability of Iterated Modal Relativization 5

passing to the submodel of W determined by the worlds in which nobody
knows their status. As we have just seen, in worlds v with n(W,w) clean
children, the dirty children known their status. Moreover, in all such v, there
is at least one dirty child, since (W,w) |= 2∗at least one. So all such v are
not worlds of V . Turning things around and using the definition of n(W,w),
the worlds of V which are reachable from w in W have fewer than n(W,w)
clean children. A fortiori, the worlds of V which are reachable from w in
the submodel V have fewer than n(W,w) clean children.

Finally, we prove our proposition by induction on n(W,w). So assume
that (W,w) |= background. If (W,w) |= somebody knows, then we are done.
Otherwise, let V = Wnobody knows. Then w ∈ V , and we consider (V,w).
Since (V,w) is a submodel of (W,w), (V,w) |= background. From the third
observation, n(V,w) < n(W,w). So by our induction hypothesis, there is
some j such that

(V,w) |= 〈nobody knows〉jsomebody knows.

And then

(W,w) |= 〈nobody knows〉〈nobody knows〉jsomebody knows.

That is, (W,w) |= 〈nobody knows〉j+1somebody knows.

Remark. Statements like ϕC in (ii) have been considered in the literature
before. Our treatment is based on the discussion in Gerbrandy and Groen-
eveld [12], but rather than formulate Proposition 1.1, they show something
different. Here is how we would write it, making some changes from the
original: Let B be a set of n ≥ 1 children. Then

|=
( ∧
A∈B

dA ∧
∧
A/∈B

¬dA ∧ background

)
→ ¬〈nobody knows〉n−1¬

∧
A∈B

2AdA.

Note that our statement uses the iteration construct 〈ψ∗〉 explicitly. In
addition to this difference, the validity proofs are also different.

A final comment: if C were infinite, then many of the points concerning
ϕC in this section would be false. We would need infinitary conjunction
to formulate the sentence ϕC in the first place. Even then, the analog of
Proposition 1.1 would be false for infinite C.

The point of Proposition 1.1 is that the statements ϕC in (ii) are natural
logical validities. It makes sense to study the validities in LC . The basic
logic of announcements and common knowledge is known to be decidable,
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and indeed we have axiomatizations of it [2]. The main result of this pa-
per is that adding the iterated announcement construct that gives us the
〈nobody knows∗〉 operation results in logical systems whose set of satisfiable
sentences are Σ1

1-complete. In particular, such logical systems cannot be
recursively axiomatized.

2. Preliminaries

At this point, we have seen some of the motivation for considering iterated
announcement in languages formalizing epistemic logic. We now begin the
actual work of the paper. In the sequel, we shall not be concerned at all with
the muddy children scenario or the particular sentence in Proposition 1.1.
Indeed, we are going to study more general matters. So we change some
of the terminology, speaking of relativization rather than announcement,
dropping the mention of “children” and indeed of any agents whatsoever,
etc. We also wish to present our subject from a slightly different angle. In
order to avoid confusion of notation and ideas, we therefore begin anew.

If ϕ is a sentence of some language L and A is an L-structure, then we
write Aϕ for the submodel of A determined by {a ∈ A : (A, a) |= ϕ}, the
set of points of A satisfying ϕ. This definition applies for a wide variety of
languages L; we shall be interested in classical modal logic and some related
languages. Specifically, we consider L(rel), the extension of modal logic by
relativization: this language has sentences [ϕ]ψ with the semantics

(A, a) |= [ϕ]ψ iff (a ∈ Aϕ implies (Aϕ, a) |= ψ).

We define 〈ϕ〉 to be dual of [ϕ]. So 〈ϕ〉ψ is ¬[ϕ]¬ψ. That is,

(A, a) |= 〈ϕ〉ψ iff (a ∈ Aϕ and (Aϕ, a) |= ψ),

and we also see that

(A, a) |= 〈ϕ〉ψ iff ((A, a) |= ϕ) and (A, a) |= [ϕ]ψ).

The language L(rel) was proposed (with different names) by Plaza [19]
and independently later by Gerbrandy [10, 11]. As one can see from the
discussion in Section 1, L(rel) is important in connection with the modeling
of public announcements in the multi-agent setting. But this paper settles
technical questions and is therefore less interested in conceptual matters, so
we shall not give further motivation for this or other logical systems. Getting
back to L(rel), its originators noted that L(rel) is equivalent in expressive
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power to ordinary modal logic. One way to see this is to define a translation
t : L(rel) → L. In stating this translation, we introduce some notation.
Let ψ and ϕ be modal sentences, and suppose that ϕ is in negation normal
form (i.e., all negations apply only to atomic sentences). Then we define
ϕψ by the following recursion: pψ = p, (¬p)ψ = ¬p, (ϕ1 ∧ ϕ2)ψ = ϕψ1 ∧ ϕ

ψ
2 ,

(ϕ1 ∨ ϕ2)ψ = ϕψ1 ∨ ϕ
ψ
2 , (2ϕ)ψ = 2(ψ → ϕψ), and (3ϕ)ψ = 3(ψ ∧ ϕψ). (For

ϕ not in negation normal form, we set ϕψ = (nnf ϕ)ψ, where nnf ϕ is the
negation normal form of ϕ.)

Proposition 2.1. Let ψ and ϕ be modal sentences. Let A be a model, and
let a ∈ Aψ. Then (Aψ, a) |= ϕ iff (A, a) |= ϕψ.

Proof. By induction on ϕ in negation normal form. Here, for example, is
the induction step for 2ϕ, assuming the result for ϕ. Let a ∈ Aψ. Assume
first that (Aψ, a) |= 2ϕ. Then for all b ∈ Aψ such that a → b, we have by
our induction hypothesis that (A, a) |= ϕψ. In other words, (A, a) |= 2(ψ →
ϕψ). That is (A, a) |= (2ϕ)ψ. The converse is similar.

Now we define the translation t of L(rel) to L. The main clause is
([ϕ]ψ)t = ϕt → (ψt)ϕt . An induction using Proposition 2.1 shows that
this map t preserves the semantics. And another induction shows that each
ϕt is a purely modal sentence. Our conclusion at this point is that adding
relativization to modal logic alone does not increase expressive power.

Things get more interesting when one adds further constructs. The first
is the common knowledge (or reflexive-transitive closure) operator 2∗, with
the semantics

(A, a) |= 2∗ϕ iff for all b such that a→∗ b, (A, b) |= ϕ.

Here →∗ is the reflexive-transitive closure of the accessibility relation of A.
Call the resulting language L(rel,2∗). In this case, the relevant results in
this direction may be found in Baltag, Moss, and Solecki [2]. L(rel,2∗) is
more expressive than modal logic, and indeed more expressive than L(2∗);
i.e., modal logic with the transitive closure operator 2∗ added. In partic-
ular, one cannot express [q]2∗p in L(2∗). But every sentence of L(rel,2∗)
is effectively equivalent to a sentence of propositional dynamic logic (PDL).
This immediately implies the finite model property and indeed the decid-
ability of L(rel,2∗). (For these results on PDL, see, e.g., Harel, Kozen and
Tiuryn [15].) Furthermore, there are sound and complete logical systems
for this notion. Even more, it is possible to extend this positive result by
generalizing the notion of relativization to many other types of “epistemic
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actions” on models. It would take us too far afield to get into this matter
here, but one should see [3].

In this paper, we go one step further. We consider the iterated relativiza-
tion operator [ϕ∗]. The semantics is given by

(A, a) |= [ϕ∗]ψ iff (A, a) |= [ϕ]nψ for all n.

So we also have a dual operation 〈ϕ∗〉, and then

(A, a) |= 〈ϕ∗〉ψ iff (A, a) |= 〈ϕ〉nψ for some n.

This is the operation that we used in Section 1. It is also convenient to note
that

(A, a) |= [ϕ∗](ϕ ∧ ψ) iff (A, a) |= 〈ϕ〉nψ for all n.

We define the logics L(rel, rel∗) and L(rel, rel∗,2∗) in the obvious ways.

Examples. Throughout this paper, we write D for 3True, so [D∗] means
[(3True)∗]. Semantically, the operation of relativizing by 3True removes
those points of a model which have no children. We use the letter D because
this operation reminds us of the Cantor-Bendixson derivative of a set of real
numbers, wherein one removes the isolated points. Indeed, we write A′ for
AD and define A(n) by A(0) = A and A(n+1) =

(
A(n)

)′
.

We are interested in the iteration of the derivative operation, as in
〈D∗〉2False. By induction on n, we see that (A, a) |= 〈D〉n2False iff the
longest path in A beginning at a has length exactly n. It follows that
(A, a) |= 〈D∗〉2False iff there is some n such that all paths in A starting
from a are of length at most n.

[D∗]3True is then the dual of 〈D∗〉2False. It holds at a point a if there
is no bound on the lengths of paths from a.

It was observed in [2] that L(rel, rel∗) does not have the finite model
property because [D∗]3True is satisfiable but only by an infinite model.
Nevertheless, the second author conjectured that the satisfiability problem
for this logic was still decidable. This conjecture was refuted by the first
author. The results of this paper show this in several ways. Specifically, we
show that the satisfiability problem for the following fragments of L(rel, rel∗)
and L(rel, rel∗,2∗) are Σ1

1-complete:

1. The fragment generated by [D∗], 2∗, 2, ∧, and ¬.

2. The fragment generated by two iterated relativization operators [D∗
x]

and [D∗
y], in addition to 2, ∧, ¬, and atomic sentences. Here Dx and

Dy are two fixed modal sentences.
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3. The fragment generated by [D∗], arbitrary modal relativizations, 2,
∧, ¬, and atomic sentences.

One difference between these results is that in the first and third, we iterate
only one very simple relativization D but we also add either the transitive
closure operator 2∗ or else complex modal relativizations. The second in-
stead calls on the iteration of two particular (purely modal) sentences. Also,
the first fragment does not use atomic sentences.

We also prove that the problems of deciding whether a sentence in
L(rel, rel∗,2∗) has a finite model, or a finite tree model, are Σ0

1-complete.

2.1. Domino systems

All of our Σ1
1-hardness results go via reduction to the tiling problem for

recurring domino systems. So we recall the basic definitions. The origi-
nal paper on this is Harel [14], and the book by Blackburn, de Rijke, and
Venema [5] has applications to modal logic.

Definition. A domino system is a tuple D = (Dominoes,H, V ), where
Dominoes is a finite set, and H,V ⊆ Dominoes×Dominoes.

The first quadrant is the set Q = N×N . A tiling of Q by D is a function
t : Q→ Dominoes. The tiling t is proper if for all n,m ∈ N ,

1. H(t(n,m), t(n+ 1,m)).

2. V (t(n,m), t(n,m+ 1)).

A recurring domino system is a pair (D, d0) with d0 ∈ Dominoes; a proper
tiling of Q by (D, d0) is a proper tiling of Q by D in which t(n, 0) = d0 for
infinitely many n.

We shall use the result of Harel [14] on the problem of deciding whether
a recurring domino system (D, d0) has a proper tiling: this problem is Σ1

1-
complete.

In Section 8, we prove a result by reduction to the periodicity problem
for domino systems. We recall the relevant definitions later.

2.2. Translating L(rel, rel∗,2∗) into the Modal Iteration Calculus

In [7], Dawar, Grädel, and Kreutzer introduced a Modal Iteration Calculus
MIC. Among other things, they showed that the satisfiability problem for
MIC is undecidable. It was suggested by van Benthem [20] that adding
iterated relativization to modal logic gives a fragment of MIC (see also
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Grädel, and Kreutzer [13]). We want to discuss this result, since MIC is
the smallest previously-studied logical system containing L(rel, rel∗,2∗) that
we are aware of.1

MIC is defined by adding two things to the syntax of modal logic: set
variables X1, X2, . . ., and a formula constructing operator

ifp(Xj : X1 ← ϕ1, . . . , Xk ← ϕk). (iii)

Here the ϕ’s are again formulas and 1 ≤ j ≤ k. We understand ifp to be
a variable binding operator, and X1, . . . , Xk are bound in (iii). We define
the semantics of all formulas of MIC. Assume that the free set variables
of ϕ are among Y1, . . . , Yn and that B1, . . . , Bn ⊆ A and a ∈ A. We define
(A,B1, . . . , Bn, a) |= ϕ by recursion on ϕ. For example, (A,B1, . . . , Bn, a) |=
Yj iff a ∈ Bj . The main clause is for ifp-formulas as in (iii). Let the free
set variables of each ϕi be included in the list Y1, . . . , Yn, X1, . . . , Xk, and let
B1, . . . , Bn ⊆ A. Define iterates Sαi ⊆ A for α an ordinal and 1 ≤ i ≤ k by
recursion on α: let S0

i = ∅,

Sα+1
i = Sαi ∪ {a ∈ A : (A,B1, . . . , Bn, S

α
1 , . . . , S

α
k , a) |= ϕi},

and for λ a limit ordinal, Sλi =
⋃
β<λ S

β
i . For each i, the sequence Sαi is an

increasing sequence of subsets of A, and we set S∗i to be its eventual value.
Then

(A,B1, . . . , Bn, a) |= ifp(Xj : Xi ← ϕi) iff a ∈ S∗j .

We now discuss the relation of the language L(rel, rel∗,2∗) to MIC. As
it happens, van Benthem in [20] modified the semantics of sentences of the
form [ϕ∗]ψ to use iteration over all ordinals rather than only over the natural
numbers. To get an exact match, we need to do a bit more.

Suppose that ϕ(X) is a formula with just X free. Let U , V , and W be
new variables. Define ifpω(X : X ← ϕ) to be

ifp(V : U ← V, V ← (¬W ∧ϕ(∅))∨ (W ∧ϕ(V )∧¬ϕ(U)),W ← True). (iv)

Fix a model A, and consider the interpretation of (iv) in A. We write Sα

for the iterates of the original system and Uα, V α and Wα for the iterates
of the new system. Clearly U1 = ∅, V 1 = ϕ(∅) = S1, W 0 = ∅ and for
n ≥ 1, Wn = A. An induction on the natural number n shows that Un+1 =
V n = Sn and V n+1 = Sn+1. We have already checked this for n = 0.

1The results of this section are not needed in later sections of the paper.
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Assume for n that Un+1 = V n = Sn and V n+1 = Sn+1. Then we see that
Un+2 = V n+1 = Sn+1 (easily), and also that

V n+2 = V n+1 ∪ (ϕ(Sn+1) \ ϕ(Sn))
= Sn+1 ∪ (ϕ(Sn+1) \ ϕ(Sn))
= Sn+2.

It follows that Uω = V ω = Sω. And then for α ≥ ω we see that Uα = V α =
Sω. The inductive step is that V α+1 = V α∪ (ϕ(Sω)\ϕ(Sω)) = Sω∪∅ = Sω.

Our conclusion here is that for all formulas ϕ(X) in the language, there
is another formula ifpω(X : X ← ϕ) (as in (iv)) whose interpretation in any
model A is the ω-th inflationary iterate Sω in A.

Furthermore, we note that MIC is closed under relativization in the
following sense. If ϕ is a formula of MIC and ψ is a sentence of it, we define
ϕψ by the same recursion as earlier, except that we also add Xψ = X ∧ ψ,
and also

ifp(Xj : Xi ← ϕi)ψ = ifp(Xj : Xi ← ϕψi ).

From this, we define a translation t of L(rel, rel∗,2∗) into the sentences
of MIC. The main clauses are

(3∗ϕ)t = ifp(X : X ← ϕt ∨3X)
([ϕ]ψ)t = ifp(Y : X ← ϕt, Y ← Z ∧ ψXt , Z ← True)
(〈ψ∗〉ϕ)t = ifpω(X : X ← ϕ¬Yt , Y ← ¬(ψ¬Yt ))

We check that this works for the sentences 〈ψ∗〉ϕ, assuming that it works
for ψ and ϕ. We write Xn for the n-th iteration of X, and similarly for
Y . Fix a model A, and define subsets and submodels An by A0 = A and
An+1 = (An)ψ. We first check by induction that Y n = −An. This is clear
for n = 0. Assuming that Y n = −An, we have

Y n+1 = −(ψAn) ∪ Y n

= −An+1 ∪ (−An)
= −An+1.

And then we also see that Xn = ϕA ∪ ϕA1 ∪ · · · ∪ ϕAn . So we are after
Xω =

⋃
n<ωX

n. Since we use ifpω, this is given by our formula above.

Implications. As a result of this translation and the Σ1
1-hardness results

to come, we have an improvement of Theorem 3.5 of [7]. That result exhibits
an encoding of first-order arithmetic into the satisfiability problem for MIC.
We also get the Σ0

1-completeness of the finite satisfiability problem, and this
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appears to be new. Of perhaps more importance is that we have shown that
some small fragments of MIC are undecidable. So the search for decidable
expressive fragments of MIC that go beyond the modal µ-calculus will have
to involve logics formed from different principles than the ones we study
here.

3. The satisfiability problem for L(rel, rel∗, 2∗) is in Σ1
1

We sketch a proof that the set {χ ∈ L(rel, rel∗,2∗) : χ is satisfiable} is Σ1
1.

This is in contrast for MIC, where the estimate of [7] gives Σ1
2. What

accounts for the difference is precisely that our semantics of the [ϕ∗]ψ con-
struct involves iteration over numbers rather than arbitrary ordinals. Were
one to modify the semantics (as van Benthem does in [20]), then the Σ1

1

upper bound is presumably false.
It will be useful to take True to be a primitive symbol of L(rel, rel∗,2∗).

It is also worth remarking that the syntax of L(rel, rel∗,2∗) allows sentences
of the form [ϕ∗]ψ. We often use abbreviations [ϕ]mψ, but these are exactly
that: abbreviations. For example, [p]3q is an abbreviation for [p][p][p]q.

We define a map pre from L(rel, rel∗,2∗)∗, the set of sequences from
L(rel, rel∗,2∗), to L(rel, rel∗,2∗) as follows. Let pre(λ) = True, where λ
is the empty sequence, pre(ϕ) = ϕ, and for n ≥ 2, pre(ϕ1, . . . , ϕn) =
ϕ1 ∧ [ϕ1]pre(ϕ2, . . . , ϕn). (pre stands for “precondition”. The name comes
from [3], where a generalization of this function plays an important role.)

Lemma 3.1. Let A be any model, and define relations R ⊆ A×A, P ⊆ ω×A,
and X ⊆ L(rel, rel∗,2∗) × A as follows: R is the accessibility relation of A,
P (k, x) iff (A, x) |= pk, and X(ϕ, x) iff (A, x) |= ϕ. Then X(True, x) holds
for all x. And each instance of the following biconditionals also holds:

X([ϕ1] · · · [ϕn]pk, x) ↔ X(pre(ϕ1, . . . , ϕn), x)→ P (k, x)
X([ϕ1] · · · [ϕn]¬ψ, x) ↔

X(pre(ϕ1, . . . , ϕn), x)→ ¬X([ϕ1] · · · [ϕn]ψ, x)
X([ϕ1] · · · [ϕn](ψ1 ∧ ψ2), x) ↔

X([ϕ1] · · · [ϕn]ψ1, x) ∧X([ϕ1] · · · [ϕn]ψ2, x)
X([ϕ1] · · · [ϕn]2ψ, x) ↔ X(pre(ϕ1, . . . , ϕn), x)→

(∀y)(R(x, y)→ X([ϕ1] · · · [ϕn]ψ, y))
X([ϕ1] · · · [ϕn]2∗ψ, x) ↔ (∀m)X([ϕ1] · · · [ϕn]2mψ, x)
X([ϕ1] · · · [ϕn][ψ∗]χ, x) ↔ (∀m)X([ϕ1] · · · [ϕn][ψ]mχ, x)

(v)

Moreover, each sentence of L(rel, rel∗,2∗) other than True is an instance
of some (unique) sentence occurring on the left-hand side of one of these
biconditionals.
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Proof. All of the equivalences are special cases of results from [3].
The “moreover” assertion is checked by induction on ϕ. If ϕ is of the

form pk, ¬ψ, ψ1 ∧ ψ2, 2ψ, 2∗ψ, or [ψ∗]χ, then we may take n = 0. If ϕ is
of the form [ψ]χ, then by induction hypothesis, χ is an instance of the left
side of one of the biconditionals in (v). And then so is [ψ]χ.

Lemma 3.2. There is a wellfounded relation < on L(rel, rel∗,2∗) such that
if ϕL occurs on the left-hand side of one of the biconditionals in (v), and ϕR
occurs on the right-hand side of the same biconditional, then ϕR < ϕL.

Remark. Here is an example of what we mean in this lemma, based on the
fourth biconditional above. For all ϕ1, . . . , ϕn, ψ, we have pre(ϕ1, . . . , ϕn) <
[ϕ1] · · · [ϕn]2ψ, and we also have [ϕ1] · · · [ϕn]ψ < [ϕ1] · · · [ϕn]2ψ.

Concerning the last biconditional, we mean that for all m,

[ϕ1] · · · [ϕn][ψ]mχ < [ϕ1] · · · [ϕn][ψ∗]χ.

Proof. We obtain the relation < as a lexicographic partial order (LPO) of
L(rel, rel∗,2∗). For background on LPO, see the surveys by Dershowitz [8]
and Plaisted [18]. We regard L(rel, rel∗,2∗) as an algebra of terms, using the
constructors True, p1, . . ., pk, . . ., ¬, ∧, 2, 2∗, rel, and rel∗. The latter are
two-place function symbols: rel(ϕ,ψ) is an alternative for [ϕ]ψ, and rel∗(ϕ,ψ)
is an alternative for [ϕ∗]ψ. In this proof, we shall let f and g range over these
symbols. We define the ordering < on the function symbols of L(rel, rel∗,2∗)
to be the smallest transitive relation containing

True < pk,∧,¬,2 < 2∗ < rel < rel∗.

This wellfounded relation generates an LPO on L(rel, rel∗,2∗); as usual we
denote this ordering by < as well. Concretely, this is the smallest relation
such that

(LPO1) If (t1, . . . , tn) < (s1, . . . , sn) in the lexicographic ordering on n-
tuples, and if tj < f(s1, . . . , sn) for 1 ≤ j ≤ n, then f(t1, . . . , tn) <
f(s1, . . . , sn).

(LPO2) If t ≤ si for some i, then t < f(s1, . . . , sn).

(LPO3) If g < f and ti < f(s1, . . . , sn) for all i ≤ m, then g(t1, . . . , tm) <
f(s1, . . . , sn).

It is a general result on LPO that < is wellfounded. It also has the
subterm property: if ϕ is a strict subsentence of ψ, then ϕ < ψ.
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We check by induction on n ≥ 1 that

pre(ϕ1, . . . , ϕn) < [ϕ1] · · · [ϕn]ψ.

This is where we use the assumption that ∧ < rel. Further inductions show
that [ψ]mχ < [ψ∗]χ for all m, and that 2mψ < 2∗ψ for all m. (LPO3) is
used in these, as are the assumptions that 2 < 2∗ and rel < rel∗. These
preliminary remarks establish the base case (n = 0) of an induction on n
that if ϕL is the left-hand side of one of the biconditionals in (v), and ϕL is
on the right side of the same biconditional, then ϕR < ϕL. The induction
step follows easily from (LPO1), (LPO2) and the subterm property.

In the statement and proof of our result below, we assume a “nice” coding
of L(rel, rel∗,2∗) by a subset of ω. We need to know that several functions
are recursive in the codes. These include ϕ1, . . . , ϕn 7→ pre(ϕ1, . . . , ϕn);
n, ϕ, ψ 7→ [ϕ]nψ; and n, ϕ 7→ 2nϕ.

Theorem 3.3. {χ ∈ L(rel, rel∗,2∗) : χ is satisfiable} is Σ1
1.

Proof. We claim that a sentence χ is satisfiable if there are sets R ⊆ ω×ω,
P ⊆ ω×ω, and X ⊆ L(rel, rel∗,2∗)×ω such that X(True, y) holds for all y,
and all instances of the biconditionals of (v) hold, and that there is some x
such that X(χ, x).

In one direction, we appeal to a result stated in [7] that says that if
χ is satisfiable, then it has a countable model A. (In [7] this was stated
for MIC, based on an extension of a result originally shown by Flum [9]:
the logic LFP has the Löwenheim-Skolem property. Since we know that
L(rel, rel∗,2∗) is a sublogic of MIC, we now have this property for it.) So
we may assume that the universe of A is ω, and now the rest follows from
Lemma 3.1.

In the other direction, fix a sentence χ. Assume that we have R, P , and
X. Let A be the model with universe ω whose structure is given by R and
P in the obvious way. Let < be a wellfounded relation as in Lemma 3.2.
We argue by induction on < that for all ϕ in the field of <, X(ϕ, x) iff
(A, x) |= ϕ. The induction is an easy consequence of Lemma 3.1. We also
use the last assertion in Lemma 3.1 to know that all sentences belong to the
field of <. In particular, the sentence χ with which we began belongs. And
from this, the claim easily follows.

At this point, we have shown our claim. We conclude by noting that our
condition on R, P and X in the first paragraph of this proof is arithmetic: it
involves universal quantification over sequences from L(rel, rel∗,2∗) as well
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λ // x // xx // x3 // · · · // xn //

zzvvvvvvvvv

�� %%JJJJJJJJJJ

**TTTTTTTTTTTTTTTTTTTT xn+1 // · · ·

xny0 xny1

��

xny2

��

xnym

��

· · ·

xny1z xny2z

��

...

xny2z
2

Figure 2. The frame F used in work on the fragment for [D∗], 2∗, 2, and atomic sentences.

as application of some functions which we assume to be recursive. It follows
that our equivalent formulation of satisfiability is Σ1

1.

4. [D∗], 2∗, 2, and atomic sentences

In this section, we prove that satisfiability is Σ1
1-complete for the language

with [D∗], 2∗, 2 and atomic sentences. We strengthen this in Section 5 to
eliminate the atomic sentences. That is, we shall prove the following result:

Theorem 4.1. To every recurring domino system (D, d0), we can effectively
associate a sentence ϕD,d0 of the language of [D∗],2∗, 2, True, and the
boolean connectives such that the following are equivalent:

1. There is a proper tiling of Q by (D, d0).

2. ϕD,d0 is satisfiable.

Corollary 4.2. The satisfiability problem for the fragment of Theorem 4.1
is Σ1

1-complete.

Fix a recurring domino system (D, d0). We take a language with atomic
sentences corresponding to the (finitely many) dominoes. Concretely, let d
correspond to d.

The intended frame for the first quadrant. Let x, y0, y1, . . . , ym, . . .,
and z be different symbols. We construct a frame F from a subset of
{x, z, y0, . . . , ym, . . .}∗, the set of words on our symbols. The set of worlds of
F is

{xn : 0 ≤ n} ∪ {xnymzp : 0 ≤ n and p ≤ m}.
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stalk [D∗]3True
χd d ∧2False
ϕD stalk

∧2∗(stalk→ 3stalk)
∧2∗[D∗](stalk→ 3

∨
d χd))

∧2∗[D∗](stalk→ ¬
∨
¬H(d,d′)(3χd ∧33χd′))

∧2∗[D∗](stalk→ ¬
∨
¬V (d,d′)(3χd ∧3〈D〉χd′))

recurring(d0) 2∗(stalk→ 3∗(stalk ∧3χd0))
ϕD,d0 ϕD ∧ recurring(d0)

Figure 3. Abbreviations in the fragment for [D∗], 2∗, 2, and atomic sentences.

We use standard notation here; for example, x5y3z
0 here really is the word

xxxxxy3. Note that F contains the empty word λ. The accessibility relation
is given by xn → xn+1, xn → xnym, and xnymzp → xnymz

p+1. A picture of
F may be found in Figure 2.

The points of the form xn are called the stalk of F , since if one rotated
our picture 90o it would be a single stalk with one branch of each finite length
coming off of the each point of the stalk. Note that (F, xnymzp) |= 2False
iff p = m. And the derivative F ′ of F is isomorphic as a frame to F , via the
map xn 7→ xn and xnym+1z

p+1 7→ xnymz
p.

Tilings give models. Our intention is that xnym is a surrogate for the
point (n,m) of the first quadrant. To get a model from a frame we need only
specify the semantics of our atomic sentences. Let t : Q → D be a tiling
of the first quadrant. We construct a model Ft from t (and the underlying
frame F described above) by declaring the atomic sentence d to be true at
xnym iff t(n,m) = d. No other atomic sentences are true anywhere else.

The sentence ϕD. In Figure 3 we list several sentences used in our this
section. We begin with stalk, shorthand for [D∗]3True. Note that |= stalk→
[D∗]stalk.

The sentence χd will be our sentence saying of a node that it codes the
domino d. But we must use derivatives to associate squares in the quadrant
to the points of F .

We now consider the sentence ϕD. In the third clause, we mean to take
disjunctions over all pairs (d, d′) such that ¬H(d, d′). Similarly for the last
clause. That last clause may also be written without 〈D〉 as

2∗[D∗]
(

stalk→ ¬
∨

¬V (d,d′)

(3χd ∧3(d′ ∧3True ∧22False))
)
.
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The intended models work. We next check that (Ft, λ) |= ϕD, where λ
again is the empty word. Recall that the stalk in Ft and in all its derivatives
F

(m)
t is the set of points of the form xn for some n. This implies the first

condition at the empty word λ. For the second, an induction on m shows
that xnykzp ∈ F

(m)
t iff k − p ≥ m, and also that for k ≥ m,

(F (m)
t , xn) |= 3k−mTrue ∧ ¬3k−m+1True.

(when k = m, we intend that 30True = True). As a result,

(F (m)
t , xn) |= 3χd iff d = t(n,m). (vi)

This implies the second clause of ϕD. And more crucially, the properness of
the tiling t implies the last two clauses in ϕD. (Indeed, the last two clauses
could even be strengthened by dropping the mention of stalk. The point is
that the only points with children satisfying any χd sentence are the points
on the stalk. But the formulation as in Figure 3 will be needed in Section 5.)

Any model of ϕD gives a proper tiling. The significant direction is
to show that models of ϕD gives proper tilings. There is a slightly stronger
result that we use in the next section.

Lemma 4.3. Let stalk be any sentence so that |= stalk → [D∗]stalk. Let χd
be any sentences for d ∈ D. Let ϕD be as in Figure 3, using stalk and χd.
Let (A, a0) be an arbitrary model of ϕD. There is a sequence in A

a0 → a1 → · · · → an → · · ·

with an |= stalk for all n. Moreover,

1. There is a function t : Q → D with the property that for (n,m) ∈ Q,
(A(m), an) |= 3χt(n,m).

2. Each such function t is a proper tiling of Q by D.

Remark. This lemma says that every model of ϕD gives a proper tiling in
all possible ways. It does not say that all models of ϕD are related in any
way to the intended models, or that all models of ϕD give tilings in a unique
or canonical way. For satisfiability, we need only know that proper tilings
exist. This is the content of the present lemma.
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Proof. The sequence a0 → a1 → · · · exists by the first two clauses stalk
and 2∗(stalk → 3stalk) of ϕD. The condition on the sentence stalk shows
that an |= [D∗][D∗]3True as well; i.e., an |= [D∗]stalk. Then the second
clause of ϕD insures that for each n and m that there will be some d ∈ D
so that (A(m), an) |= 3χd. That is, some tiling t exists which satisfies the
condition (A(m), an) |= 3χt(n,m).

We turn to the second part. First, consider t(n,m) and t(n+ 1,m). By
definition of t, (A(m), an) |= 3χt(n,m) and (A(m), an+1) |= 3χt(n+1,m). Since
an → an+1, we have

(A(m), an) |= 3χt(n,m) ∧33χt(n+1,m).

And since (A, a0) |= ϕD, we must have H(t(n,m), t(n+ 1,m)).
Second, consider t(n,m) and t(n,m+1). We have (A(m), an) |= 3χt(n,m)

and (A(m+1), an) |= 3χt(n,m+1). Let an → b be such that (A(m+1), b) |=
χt(n,m+1). Then (A(m), b) |= 〈D〉χt(n,m+1), so

(A(m), an) |= 3χt(n,m) ∧3〈D〉χt(n,m+1).

As above, we have V (t(n,m), t(n,m+ 1)).

Recurring domino systems. If the original tiling t has d0 infinitely often
on the x-axis, then the intended model (Ft, λ) satisfies recurring(d0) from
Figure 3. Conversely, let ϕD,d0 = ϕD ∧ recurring(d0). If (A, a0) |= ϕD,d0 ,
we may choose the path a0 → a1 → · · · so that for infinitely many i,
ai |= 3χd0 . Then we may arrange that the tiling that we get from this path
has d0 infinitely often on the x-axis.

Summary. Beginning with a tiling t, we constructed a sentence ϕD,d0 with
the property that models of ϕD,d0 give proper tilings of (D, d0). Conversely,
every proper tiling of (D, d0) gives a model of ϕD,d0 . This would complete
the proof of Theorem 4.1 stated at the beginning of this section, except
that we would like to strengthen the result to avoid the atomic sentences d
corresponding to the dominoes.

5. Eliminating atomic sentences

We eliminate the atomic sentences by making the models more complicated
and doing extra work in the coding. The overall strategy is to redefine
χd to be a certain sentence built only from [D∗], 2∗, 2, and the boolean
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λ // x // · · · // x5 // x5y2

��

// x5y2y2
//

��

x5y2y2y2

��

// x5y4
2

��
x5y2z

��

x5y2y2z

��

x5y2y2y2z

��

x5y4
2z

��
x5y2z

2

��

x5y2y2z
2

��

x5y2y2y2z
2

��

x5y4
2z

2

��
x5y2z

3 x5y2y2z
3 x5y2y2y2z

3 x5y4
2z

3

Figure 4. Part of Gt with n = 5, m = 2, and t(5, 2) = 4.

connectives. We only need to show that proper tilings from a domino system
D give models of ϕD, or rather the version of ϕD obtained by the redefinition.
We only need to find some model of ϕD; this was the easy part in the previous
section. Then Lemma 4.3 tells us that any model of ϕD gives a proper tiling
in each of its paths through the stalk and in each sequence of choices along
the path.

Again, we fix a domino system D for the remainder of this section. It
will be convenient to take the dominoes to be a set of the form {2, 3, . . . ,K}.
That is, d ≥ 2 for d ∈ Dominoes. The reason for this will become clear as
we develop our coding.

Models from proper tilings. Let t : Q→ D be a proper tiling of Q by
D. We construct a frame Gt as follows. We again begin with infinitely many
different symbols x, y0, y1, . . . , ym, . . . and z. The set of worlds of Gt is the
following set of words:

{xn : 0 ≤ n} ∪ {xnyqmzp : 0 ≤ n, 0 ≤ m, 1 ≤ q ≤ t(n,m), 0 ≤ p ≤ m+ 1}.

The accessibility relation is given by u→ v iff both belong to Gt and if v is
a one-letter extension of u.

Some examples of the coding. We take n = 5, m = 2. Suppose that
t(5, 2) = 4. Then the model would contain the points in Figure 4 as an
induced substructure.

There are other arrows from λ, x, . . . , x5, but for all of the other points
shown, there are no other arrows besides what is in the figure. The deriva-
tive operation removes x5y2z

3, . . . , x5y4
2z

3. The second derivative removes
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x5y2z
2, . . . , x5y4

2z
2. Recalling that n = 5, m = 2, and t(5, 2) = 4. we have

(G(m)
t , xnym) |= 32False ∧ 3t(n,m)2False ∧ ¬3t(n,m)+12False.

This is the key point for our coding. Taking a third derivative leaves only
the top row. Then the next four derivatives remove in turn x5y4

2, . . . , x
5y2.

One can check that again for n = 5, m = 2, and t(5, 2) = 4, if r 6= m,

(G(r)
t , xnym) |= ¬(32False ∧3t(n,m)2False).

As we shall see, this holds for all n and m, using the assumption that
t(n,m) ≥ 2.

The sentences χd and ϕD. Recall that D = {2, . . . ,K}. For d ∈ D, let

χd = 32False ∧ 3d2False ∧ ¬3d+12False.

We again take stalk = [D∗]3True. Observe that these sentences are defined
independently of the intended models. Then we construct ϕD from these
sentences exactly as in Figure 3. It remains to show that (Gt, λ) |= ϕD.

Derivatives. Recall that Gt is

{xn : n ≥ 0} ∪ {xnyqmzp : 0 ≤ n, 0 ≤ m, 1 ≤ q ≤ t(n,m), 0 ≤ p ≤ m+ 1}.

By induction on r ≥ 0 we see that G(r)
t is

{xn : n ≥ 0} ∪ {xnyqmzp−r : 0 ≤ n, 0 ≤ m, 1 ≤ q ≤ t(n,m), r ≤ p ≤ m+1}
∪ {xnyqm : 0 ≤ n, 0 ≤ m, 1 ≤ q ≤ t(n,m) +m+ 1− r,m+ 1 < r}.

It follows that u |= stalk iff u is of the form xn for some n. This immediately
gives the first clause of ϕD. For all n and m, G(m)

t contains a submodel

xn // xnym //

��

· · · // xny
t(n,m)
m

��
xnymz xny

t(n,m)
m y

Except for xn, none of the points above have any other neighbors besides
the ones shown. As a result, (G(m)

t , xnym) |= χt(n,m). This for all n and m
shows that (Gt, λ) satisfies the condition 2∗[D∗](stalk→ 3

∨
d χd).
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For the same n and m, the only d such that (G(m)
t , xnym) |= χd is t(n,m).

This follows easily from the definition of χd.
We claim in addition that if k 6= m, then for (G(m)

t , xnyk) satisfies no
sentence χd. (Actually, xnyk only belongs to G(m)

t when m ≤ t(n, k) + k.)
When k > m, (G(m)

t , xnyk) |= ¬32False. And when k < m ≤ t(n, k) + k,
the relevant submodel of G(m)

t is

xn // xnyk // · · · // xny
t(n,k)+k+1−m
k

The only way to have (G(m)
t , xnyk) |= 32False is if t(n, k) + k + 1−m = 1.

Then (G(m)
t , xnyk) |= ¬32True. Hence for all d ≥ 2, (G(m)

t , xnyk) |= ¬χd.
Now we see that the same equation as (vi) holds:

(G(m)
t , xn) |= 3χd iff d = t(n,m). (vii)

We check the last clause of ϕD holds; the third clause is similar. The only
points satisfying stalk in any derivative are the xn points. Suppose toward
a contradiction that d and d′ are such that ¬V (d, d′) and yet (G(m)

t , xn) |=
3χd ∧ 〈D〉3χd′ . Then (G(m+1)

t , xn) |= 3χd′ . So by (vii), d = t(n,m) and
d′ = t(n,m+ 1). But this contradicts the properness of the tiling t.

6. Two iterated modal derivatives, modal logic, but no 2∗

In this section, we prove the following result:

Theorem 6.1. There are two modal sentences Dx and Dy such that to ev-
ery recurring domino system (D, d0), we can effectively associate a sentence
ϕD,d0 built from [D∗

x], [D∗
y], 2, True, atomic sentences and the boolean con-

nectives, such that the following are equivalent:

1. There is a proper tiling of Q by (D, d0).

2. ϕD,d0 is satisfiable.

We again take atomic sentences d corresponding to the (finitely many)
dominoes. We also take new atomic sentences north and east. From all these
we form the sentences listed in Figure 5.

We define sentences Dx and Dy to be x→ 3True and y→ 3True, respec-
tively. For any model A, let Dx(A) = ADx and Dy(A) = ADy . Intuitively,
Dx(A) is A after deleting the set of x-points of A which are endpoints.
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x east ∧ ¬north
y north ∧ ¬east
Dx x→ 3True
Dy y→ 3True
square1 east ∧ north ∧2(x ∨ y)
square2 2(x→ 〈D∗

x〉2False) ∧2(y→ 〈D∗
y〉2False)

χd d ∧3(x ∧2False) ∧3(y ∧2False)

tiling1 ¬east ∧ ¬north ∧2(square1 ∧ square2)
tiling2 [D∗

x][D
∗
y]

∨
d 3χd

proper1 [D∗
x][D

∗
y]¬

∨
¬H(d,d′)(3χd ∧ 〈Dx〉3χd′)

proper2 [D∗
x][D

∗
y]¬

∨
¬V (d,d′)(3χd ∧ 〈Dy〉3χd′)

recurring(d0) [D∗
x]〈D∗

x〉3χd0
ϕD,d0 tiling1 ∧ tiling2 ∧ proper1 ∧ proper2 ∧ recurring(d0)

Figure 5. Sentences used in the fragment with [D∗
x], [D∗

y ] and modal logic.

Intended models for the squares in Q. Our intended model for the
square (i, j) is Wi,j as shown below:

−(i+ 1) · · ·oo −1oo 0oo // 1 // · · · // j + 1

with 0 |= north ∧ east; 1, . . . , j + 1 |= y; and −1, . . . ,−i,−(i+ 1) |= x.

Observation. 〈Wi,j , 0〉 |= square1 ∧ square2. This is trivial for square1.
Note that Dx(Wi+1,j) = Wi,j and Dy(Wi,j+1) = Wi,j . These imply that

〈Wi,j , 0〉 |= 2(x→ 〈Dx〉i2False) ∧2(y→ 〈Dy〉j2False).

This implies square2.

Intended models for the tilings. Let t : Q → D. We encode t as the
model T = T (t) whose set of worlds is

{∗}+
∑
N×N

Wi,j .

That is, disjoint copies of all of the models Wi,j from above together with
a new point ∗. We write 0i,j for the 0 of Wi,j The accessibility relation has
∗ → 0i,j for all i, j. The copies Wi,j are just as before. The atomic sentences
are the same as before except now we must take care of the sentences corre-
sponding to the dominoes. We specify that 0i,j |= d iff t(i, j) = d. The top
point ∗ satisfies nothing.
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The intended models satisfy ϕD,d0. We check that for all d0-recurring
tilings t, (T (t), ∗) |= ϕD,d0 . The main point is that

Dn
x(Dm

y (T (t), ∗)) = (T (λrs.t(r + n, s+m)), ∗).

This implies all of our properties.

Any model of ϕD,d0 gives a proper recurrent tiling.

Lemma 6.2. Suppose that (W,w) |= 〈D∗
x〉2False. Then every point u of W

reachable from w via a path of length ≥ 1 satisfies x.

Proof. Suppose not. Let u be of minimal distance from w such that for
some v, u |= x, u → v, and v |= ¬x. We have a sequence w = w0 →
w1 → · · · → wn+1 = u. By minimality, w1, . . . , wn−1 all satisfy x. But Dx

maintains w1, . . . , wn+1 = u, and v. Indeed, for all n, Dn
x maintains all of

these. A fortiori, (W,w) |= [D∗
x]3True. This is a contradiction.

Lemma 6.3. Let ϕD,d0 be as in Figure 5. Let (A, a0) |= ϕD,d0. Then

1. There is a function t : Q → D with the property that for (n,m) ∈ Q,
(A, a0) |= 〈Dx〉n〈Dy〉m3χt(n,m).

2. Each such function t is a proper tiling of Q by D.

3. There is some t such that d0 occurs infinitely often on the x-axis.

Proof. We may assume that each point of A is reachable from a0. By
tiling1, a0 does not satisfy x or y. Therefore a0 ∈ Dn

x(Dm
y (A)), for all n

and m. Now the existence of t is immediate from tiling2. To check that t is
proper, consider t(n,m) and t(n+ 1,m). As we know,

(A, a0) |= 〈Dx〉n〈Dy〉m3χt(n,m), and
(A, a0) |= 〈Dx〉n+1〈Dy〉m3χt(n+1,m).

(viii)

The heart of the matter is that the two derivatives commute on A. To
prove this, we explicitly determine Dp

xD
q
y(A, a0) and Dq

yD
p
x(A, a0). Note

that A consists of a0, (satisfying ¬east ∧ ¬north), its children (all satisfying
east ∧ north), and the descendants of its children. All of them satisfy x ∨ y.
By Lemma 6.2 (or the version of it with y replacing x throughout), if some
point b ∈ A satisfies x (or y) then so do all the children of b. It follows from
this that A is partitioned into three sets:

{a0} ∪ {b ∈ A : a0 → b} ∪ {b ∈ A : b |= x} ∪ {b ∈ A : b |= y}.
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Again, the points in the last two groups have all their children in the same
group. It follows that

Dp
xD

q
y(A, a0) = {a0} ∪ {b ∈ A : a0 → b}

∪ {b ∈ A : b |= x ∧3pTrue}
∪ {b ∈ A : b |= y ∧3qTrue}.

And this set is also exactly Dq
yD

p
x(A, a0). We apply this to the second

equation of (viii). First, we take p = n+ 1 and q = m. Then we take p = n
and q = m, and read the equation backwards. The upshot is that

(A, a0) |= 〈Dx〉n〈Dy〉m〈Dx〉3χt(n+1,m).

Recall that (A, a0) |= proper1. This implies H(t(n,m), t(n+ 1,m)).
Similar work shows V (t(n,m), t(n,m + 1)) for all n and m. Indeed,

this work is simpler because one does not have to know that the derivative
operations commute.

Finally, the sentence recurring(d0) implies that there is some tiling t such
that for infinitely many n, t(n, 0) = d0.

7. [D∗], modal relativization, and 2; but no 2∗

We next get undecidability for the fragment with [D∗], modal announce-
ments, and the usual modal apparatus. Crucially, the fragment does not
include 2∗.

Theorem 7.1. There are fixed model sentences ϕ1, . . . , ϕ3 such that we can
effectively associate to every recurring domino system (D, d0) a sentence
ϕD,d0 of the language of [D∗], [ϕ1], . . . , [ϕ3], 2, True, atomic sentences and
the boolean connectives such that the following are equivalent:

1. There is a proper tiling of Q by (D, d0).

2. ϕD,d0 is satisfiable.

7.1. Frames and models

Fix a recurring domino system (D, d0). We take a language with atomic
sentences corresponding to the (finitely many) dominoes. Concretely, let d
correspond to d. We also take new symbols root, column, a, b, red, blue, and
yellow. The role of red, blue, and yellow will be to fix the order of the columns,
which would otherwise be lost when trying to interpret the encoding tiling.
We will require that red columns are followed by blue, blue by yellow, and
yellow by red.
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Figure 6. The intended model for the fragment with [D∗] and modal relativizations.

The intended frame for the first quadrant. This time, we construct a
frame F by taking the set of symbols {x0, . . . , xi, . . . , y, z0, . . . , zm, . . .} and
from these the set of worlds

{λ} ∪ {xi : 0 ≤ i} ∪ {xiyp : 0 ≤ i, 1 ≤ p ≤ i+ 1}
∪ {xizpm : 0 ≤ i, 0 ≤ m, 1 ≤ p ≤ i+m+ 1}.

The accessibility relation is given by λ → xi, xiyp → xiy
p+1, and xnz

p
m →

xnz
p+1
m . The picture is shown in Figure 6.
Now fix a proper recurring tiling t of Q by D. We get a model Ft as

follows:

1. λ |= root.

2. xn |= column.

3. xn |= red iff n ≡ 0 (mod 3),
xn |= blue iff n ≡ 1 (mod 3), and
xn |= yellow iff n ≡ 2 (mod 3).

4. xnyp |= a for 1 ≤ p ≤ n+ 1.

5. xnz
p
m |= b, for 1 ≤ p ≤ n+m+ 1.

6. xnzm |= t(n,m).
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structure “exactly one of {root, column, a, b} holds”
∧(root→ 2column) ∧ (column→ 2(a ∨ b)) ∧ (a→ 2a) ∧ (b→ 2b)
∧(column→ “exactly one of {red, blue, yellow}”)

activecol column→ (3a ∧ ¬33a)
nextcol column→ (33a ∧ ¬333a)
twocols activecol ∨ nextcol
χd b ∧ d ∧2False
α 〈structure〉[D∗](D ∧ 〈activecol〉[D∗]

∨
d 33χd)

β [structure][D∗][activecol][D∗]¬
∨
¬V (d,d′)(33χd ∧ 〈D〉33χd′)

γ1 [structure]2(activecol→ red)
γ2 [structure][D∗]

(3(activecol ∧ red)→ 2(nextcol→ blue))
∧(3(activecol ∧ blue)→ 2(nextcol→ yellow))
∧(3(activecol ∧ yellow)→ 2(nextcol→ red)))

δ [structure][D∗][twocols][D∗]¬
∨
¬H(d,d′)

(3(red ∧3χd) ∧ 〈D〉3(blue ∧3χd′))
∨(3(blue ∧3χd) ∧ 〈D〉3(yellow ∧3χd′))
∨(3(yellow ∧3χd) ∧ 〈D〉3(red ∧3χd′))

recurring(d0) [structure]〈activecol〉[D∗]〈D∗〉33χd0
ϕD,d0 root ∧ α ∧ β ∧ γ1 ∧ γ2 ∧ δ ∧ recurring(d0)

Figure 7. Sentences used in the fragment with [D∗] and modal relativizations.

The sentence ϕD, d0. We consider the sentences in Figure 7.

The intended models work. First, note that structure is true at all
worlds of F . Thus relativizing by it does no work. By induction on n ≥ 0,
F

(n)
t is

{λ} ∪ {xi : 0 ≤ i} ∪ {xiyp : 0 ≤ i, 1 ≤ p ≤ i+ 1− n}
∪ {xizpj : 0 ≤ i, 1 ≤ p ≤ i+ j + 1− n}.

In F (n)
t , the only point satisfying column∧3a∧¬33a is xn. It follows that

the part of F (n)(activecol)
t reachable from λ is

{λ, xn, xny} ∪ {xnzpj : 0 ≤ j, 1 ≤ p ≤ j + 1}. (ix)

For all n ≥ 0 and m ≥ 1, the part of F (n)(activecol)(m)
t accessible from λ is

{λ, xn} ∪ {xnzpj : m ≤ j, 1 ≤ p ≤ j + 1−m}.

The only point of F (n)(activecol)(m)
t which satisfies any χd sentence is xnzm.

This easily implies that (F (n)
t , λ) |= α. Appealing to the properness of the

tiling t, we see also that (F (n)
t , λ) |= β.
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Moreover, the part of F (n)(nextcol)
t reachable from λ is

{λ, xn+1, xn+1y, xn+1y
2} ∪ {xn+1z

p
j : 0 ≤ j, 1 ≤ p ≤ j + 2}. (x)

From (ix) and (x) and the definition of Ft, we easily see that (F (n)
t , λ) |=

γ1 ∧ γ2. Continuing our discussion, we see that for all m, the part of
F

(n)(twocols)(m)
t reachable from λ is

{λ, xn, xn+1} ∪ {xnzpj : m ≤ j, 1 ≤ p ≤ j + 1−m}
∪ {xn+1z

p
j : m+ 1 ≤ j, 1 ≤ p ≤ j + 2−m}. (xi)

(For 0 ≤ m ≤ 2 we also have xny, xn+1y and xn+1y
2. But these are not

relevant to our discussion, and we shall ignore them.)
We now come to the most critical part of the verification, the part about

δ. We may assume, without loss of generality, that xn |= red. Therefore
xn+1 |= blue. Also note that (F (n)(twocols)(m+1)

t , xn+1) |= 3χt(n+1,m), so that

(F (n)(twocols)(m)
t , λ) |= 〈D〉33χt(n+1,m). Moreover, the only sentence of one of

the forms listed in the statement of δ which is satisfied by (F (n)(twocols)(m)
t , λ)

is
3(red ∧3χt(n,m)) ∧ 〈D〉3(blue ∧3χt(n+1,m)).

And for this sentence, we do have H(t(n,m), t(n + 1,m)). This concludes
the verification of δ.

At this point, we can explain the need for red, blue and yellow. Suppose
we drop the colors from the statement of δ. Then (F (n)(twocols)(m)

t , λ) might
satisfy a sentence of the form

33χt(n,m) ∧ 〈D〉33χt(n+1,m).

where H(t(n,m), t(n+ 1,m)) is false. The problem is that in (xi), we have
no way to know which nodes code squares in the n-th column of the desired
model, and which code squares in the (n + 1)-st column. That is, once the
derivatives have eliminated the a-points, we have no way to tell right from
left in F (n)(twocols)(m)

t .
Returning to the final point concerning the intended models, the fact

that t(n, 0) = d0 for infinitely many n implies that (F (n)
t , λ) |= recurring(d0).

Any model of ϕD,d0 gives a proper tiling. Let (A,w) |= ϕD,d0 . We
may assume that every element of A is reachable from w in finitely many
transitions along→. Indeed, throughout this proof, in all models, we assume
that every point is reachable from w.
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The sentence structure is universal; that is, it may be written in terms of
atomic sentences and their negations using ∧, ∨, and 2 (but not 3). Any
such universal sentence ρ has the property that [ρ]2∗ρ is valid; that is, for
all (X,x), if (X,x) |= ρ, then after relativizing with ρ, we see that ρ holds
at all points reachable from x. Therefore, (A,w)structure |= 2∗structure. Of
course, this point could be verified directly without using the more general
fact concerning positivity.

At this point, we know something about the structure of (A,w)structure.
First, w |= root, and w is the only point with this property. The children
of w satisfy column and they are the only points to do so. They also satisfy
some color sentence. The rest of the model consists of a-points and b-points;
the children of each of these types is again of the same type.

For the rest of this argument, we save on notation by replacing (A,w) by
(A,w)structure; thus we assume that our remarks in the previous paragraph
apply to the original (A,w).

As a consequence of α, for each n, (A(n), w) |= 〈activecol〉3True. So
(A(n), w) |= 3activecol also. Let

Cn = {x : w → x, (A(n), x) |= activecol},
Nn = {x : w → x, (A(n), x) |= nextcol}.

Each Cn is nonempty. Note that the following are equivalent:

1. (A(n), x) |= nextcol = (column→ (33a ∧ ¬333a)).

2. (A(n+1), x) |= activecol = (column→ (3a ∧ ¬33a)).

In other words, Nn = Cn+1. By γ1, for each x ∈ C0 we have x |= red. By
an induction using γ2, we see that each x ∈ Cn satisfies the same color and
that the colors cycle through red, blue, yellow, red, . . . , as desired.

Now we define a tiling t from (A,w). We know from α that

(A(n)(activecol)(m), w) |= 33χd,

for some domino d. We choose one such d and define t(n,m) = d. The main
point of the construction is to make sure that t is a proper tiling. The fact
that V (t(n,m), t(n,m+ 1)), for all n and m, comes from β. The hard work
comes in checking that for all n and m, H(t(n,m), t(n+ 1,m)).

A(n+1)(activecol) consists of w, Cn+1, the a-children in A(n+1) of the ele-
ments of Cn+1 (these last are end nodes of A(n+1), since 3a ∧ ¬33a holds
on Cn+1), and all of the b-descendants in A(n+1) of the elements of Cn+1
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(these are exactly the b-nodes in the original A which are descendants of
some element of Cn+1 and which satisfy 3n+1True).

A(n)(nextcol) consists of w, the set Nn, the a-descendants in A(n) of the
elements of Nn (but recall that elements of Nn all satisfy 32a ∧ ¬33a in
A(n)), and all of the b-descendants in A(n) of the elements of Nn (these are
exactly the b-nodes in the original A which are descendants of some element
of Nn and which satisfy 3nTrue).

It follows from these observations and from the fact that Nn = Cn+1

that
A(n)(nextcol)(1) = A(n+1)(activecol).

So by induction on m,

A(n+1)(activecol)(m) = A(n)(nextcol)(m+1) ⊆ A(n)(twocols)(m+1). (xii)

To conclude, we fix n and m and check that H(t(n,m), t(n + 1,m)). Let
x ∈ Cn, y ∈ A(n)(activecol)(m), u ∈ Cn+1, and v ∈ A(n+1)(activecol)(m) be such
that

1. w → x→ y.

2. (A(n)(activecol)(m), y) |= χt(n,m).

3. w → u→ v.

4. (A(n+1)(activecol)(m), v) |= χt(n+1,m).

The last point here tells us that (A(n)(nextcol)(m), v) |= 〈D〉χt(n+1,m). Without
loss of generality, take x |= red. So u |= blue. By (xii) and the points above,

(A(n)(twocols)(m), w) |= 3(red ∧3χt(n,m)) ∧ 〈D〉3(blue ∧3χt(n+1,m)).

We see from δ that H(t(n,m), t(n+ 1,m)), as desired.
The recurrence condition is easy to check.
This concludes the proof of Theorem 7.1.

8. Undecidability of satisfiability on finite (tree) models

In this section, we show that the problem of determining whether a sentence
ψ of our language L(rel, rel∗,2∗) has a finite model is Σ0

1-complete. The
same work shows that the problem of determining whether ψ has a finite
tree model is also Σ0

1-complete. Note that the relation A |= ϕ is decidable
for sentences ϕ ∈ L(rel, rel∗,2∗) and finite models A. Therefore, the set of
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ϕ which have a finite model is Σ0
1. The proof that this problem is Σ0

1-hard
goes by reduction from the problem of deciding whether a domino system
has a periodic tiling of the first quadrant.

Definition. A rectangle is a subset of the first quadrant of the form

R = {0, . . . , r} × {0, . . . s}. (xiii)

Let D = (Dominoes,H, V ), be a domino system. A repeatable rectangle (for
D) is a pair (R, t), where R is a rectangle, and t : R → Dominoes satisfies
the following conditions:

1. H(t(n,m), t(n+ 1,m)) for 0 ≤ n < r and 0 ≤ m ≤ s.

2. V (t(n,m), t(n,m+ 1)) for 0 ≤ n ≤ r and 0 ≤ m < s.

3. H(t(r,m), t(0,m)) for 0 ≤ m ≤ s.

4. V (t(n, s), t(n, 0)) for 0 ≤ n ≤ r.

A repeatable rectangle is just a witness to the existence of a periodic tiling
of the plane or first quadrant.

Proposition 8.1. The question of whether a domino system has a repeatable
rectangle is Σ0

1-complete.

This result is originally due to Berger [4]. It appears as Theorem 3.1.7
of [6] with a proof in Cyril Allauzen and Bruno Durand’s appendix of [6].
Another reference on this matter is Lin [16]. (Incidentally, Lin’s paper is in
English but seems not to be known to later workers on tiling.)

Theorem 8.2. For every domino system D we can effectively find a sentence
ϕD of L(rel, rel∗,2∗) such that the following are equivalent:

1. D has a repeatable rectangle.

2. ϕD is satisfied on a finite tree.

3. ϕD is satisfied on some (finite or infinite) model.

Moreover, such a ϕD can be found in the fragment of L(rel, rel∗,2∗) consid-
ered in each of Sections 4, 6 and 7.
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We shall prove this result in this section for just one of our fragments, the
one of Section 4. We shall not attempt to work without atomic sentences,
and indeed this time around we need more atomic sentences than before.
The intended models are basically the obvious finite versions of the stalk
models which we have seen. But the sentences that encode the models are
substantially more complicated.

Incidentally, when one changes to a different fragment, many details in
the proof of Theorem 8.2 change. We believe that it would be possible
to encode an undecidable problem into all of our fragments in such a way
as to make it easier to go in a “fragment-independent” way from the Σ1

1-
completeness results on general satisfiability to the Σ0

1-completeness results
for finite satisfiability. However, to do this, one would need to encode a new
tiling problem created just for this purpose. We opt for quoting a known
tiling problem (in Proposition 8.1), and so we only give the details of the
finite satisfiability result in one fragment.

The intended finite frames corresponding to rectangles. We use
the notation from Section 4. Recall that associated to the first quadrant
Q we have a frame F . For the rectangle R as in (xiii), we let FR be the
subframe of F determined by

{xn : 0 ≤ n ≤ r} ∪ {xnymzp : 0 ≤ n ≤ r; 0 ≤ m ≤ s; and 0 ≤ p ≤ m}.

These are just the points of the original frame that figure into the coding of
the points in R. We keep the accessibility relation → exactly as before.

Repeatable rectangles give models. Let (R, t) be a repeatable rectan-
gle, so t : R→ Dominoes. As in our earlier work, we take atomic sentences
d for d ∈ Dominoes. This time we take stalk to be an atomic sentence, not
an abbreviation. We also need atomic sentences hmax and vmax that are
true of points coding squares that are “rightmost” and “uppermost”. The
purposes of these are perhaps best gleaned from the intended models.

We construct a model F(R,t) from t (and the underlying frame FR de-
scribed above) by declaring

xn |= stalk,
if t(n,m) = d, then xnym |= d,

xrym |= hmax,
and xnys |= vmax,

for all 0 ≤ n ≤ r and 0 ≤ m ≤ s. No other atomic sentences are true at any
other points.
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stalk this is now an atomic sentence
structure

∧
d6=d′(d→ ¬d′) ∧ (3∗hmax→ stalk xor hmax)

χd d ∧2False
active

∨
d χd

ϕD stalk ∧2∗(stalk→ 3active) ∧2∗structure
∧3∗hmax
∧〈D∗〉3(active ∧ vmax)
∧[D∗](3∗(stalk ∧3(active ∧ vmax))→ 2∗(stalk→ 2(active→ vmax)))
∧[D∗](3∗(stalk ∧3(active ∧ ¬vmax))→ 2∗(stalk→ 〈D〉3active))
∧2∗(3hmax→ 2hmax)
∧2∗[D∗]¬

∨
¬H(d,d′)(3χd ∧33χd′)

∧2∗[D∗]¬
∨
¬V (d,d′)(3χd ∧3〈D〉χd′)

∧[D∗]
∧
d(3χd → 2∗(active ∧ hmax→

∨
d′:H(d′,d) d′))

∧2∗ ∧
d(3χd → [D∗](3vmax→ 2(active→

∨
d′:V (d′,d) d′)))

Figure 8. Sentences in the finite model result for the fragment [D∗], 2∗, 2, and atomic
sentences.

The sentence ϕD. See Figure 8. We might note that there are natural
sentences which are true in the intended models but which we do not take as
conjuncts of ϕD. Among these are stalk↔ ¬

∨
d d and hmax∨vmax→ ¬stalk.

The reasons for not incorporating these into ϕD are: (a) the proof goes
through without them; and (b), the argument would not be substantially
shorter if we did add the extra clauses.

The intended models work. We verify some of the clauses of ϕD. As
in our earlier work, we first check that

(F (m)
R,t , x

n) |= 3χd iff d = t(n,m). (xiv)

These are the only points that satisfy 3χd. Moreover, the only points of
F

(m)
R,t satisfying active are those of the form xnym.

We remind the reader that we write λ for x0. So with m = 0, we have
(FR,t, λ) |= 2∗(stalk→ 3active) via the points xny0.

Next, we check all of the clauses of ϕD mentioning hmax. The points
where hmax holds are those of the form xrym. And the only path from λ
to a point of this form is λ → x → · · · → xr → xrym. This implies that
(A, λ) |= 2∗(3∗hmax→ stalk xor hmax).

Taking n = 0 in (xiv), we see that for each m, (F (m)
R,t , λ) |= 3χt(0,m). And

the only point of F (m)
R,t satisfying active ∧ hmax is xrym. Let d′ = t(r,m).

Then xrym |= d′. And by the assumption that R is a repeatable rectangle,
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we have H(t(r,m), t(0,m)). This discussion shows that (FR,t, λ) satisfies the
last sentence involving hmax.

Finally, we check the clauses mentioning vmax. We have (FR,t, λ) |=
〈D〉∗3(active ∧ vmax) because λ → x0ys and (F (s)

R,t, x
0ys) |= active ∧ vmax.

The two long conditions on vmax are actually easy to check in the intended
models. The first says informally that as we take derivatives, if any stalk
point has a child which is active and satisfies vmax, then all stalk points
have such a child. The second says that if any stage a stalk point has a child
which is active but does not satisfy vmax (so the stage is below s), then at
this stage all stalk points have an active child in the next derivative. We
omit the argument for the last vmax condition.

Any model of ϕD gives a repeatable rectangle. We are checking
(3)=⇒(1) in Theorem 8.2. Let ϕD be as in Figure 8. Let (A, a0) be an
arbitrary model of ϕD. We note that for all k, (A(k), a) |= structure.

Lemma 8.3. Then there are numbers r and s and points an and bn,m for
0 ≤ n ≤ r and 0 ≤ m ≤ s such that

1. a0 is the given point that satisfies ϕD in A.

2. a0 → · · · → an → · · · → ar.

3. ar |= 3hmax.

4. an |= stalk.

5. an → bn,m.

6. (A(m), bn,m) |= active.

7. bn,s |= vmax.

8. br,m |= hmax.

Proof. Let r be least such that (A, a0) |= 3r+1hmax. From a0 and r, we
get the a-points so that parts (1)–(3) hold. We need to check in (4) that each
an |= stalk. Certainly an |= 3∗hmax. So by structure, an |= stalk xor hmax.
By minimality of r, no an can satisfy hmax. Let s be least so that (A, a0) |=
〈D〉s3(active ∧ vmax). It is possible that r = 0 or s = 0.

Claim. For 0 ≤ n ≤ r and 0 ≤ m ≤ s, (A, an) |= 〈D〉m3active. For m < s,
(A, an) |= 〈D〉m2(active→ ¬vmax).
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Proof. By induction on m. For m = 0, one of the clauses of ϕD is
2∗(stalk → 3active). We already know that an |= stalk, and so (A, an) |=
3active. Suppose in addition that 0 < s. We claim that for all n, (A, an) |=
2(active → ¬vmax). For suppose not. Then (A, an) |= 3(active ∧ vmax).
One of the clauses in ϕD is

[D∗](3∗(stalk ∧3(active ∧ vmax))→ 2∗(stalk→ 2(active→ vmax))).

Also, (A, an) |= stalk ∧3(active ∧ vmax). So (A, a0) |= (stalk → 2(active →
vmax). This in turn implies that (A, a0) |= 3(active ∧ vmax). Looking back
to the definition of s, we see that s = 0. This is a contradiction.

Now assume our claim for m. By this induction hypothesis, (A(m), an) |=
3(active∧¬vmax). As we know, (A(m), an) |= stalk. Another clause in ϕD is

[D∗](3∗(stalk ∧3(active ∧ ¬vmax))→ 2∗(stalk→ 〈D〉3active)).

So we see that (A(m), an) |= 〈D〉3active. That is, (A, an) |= 〈D〉m+1
3active.

And exactly as above, if m + 1 < s, then (A, an) |= 〈D〉m+1
2(active →

¬vmax).

For 0 ≤ n ≤ r and 0 ≤ m ≤ s, let bn,m be such that an → bn,m,
(A(m), bn,m) |= active, and in addition with (A(s), bn,s) |= vmax. Most of
the parts of our lemma are immediate. We verify in the last part that
br,m |= hmax. For this, recall that ar |= 3hmax. One of the clauses in ϕD
is that 2∗(3hmax → 2hmax). So ar |= 2hmax. Since ar → br,m, we are
done.

We continue with the proof of Theorem 8.2. Fix n, m and any points
an and bn,m as in Lemma 8.3. Let R be the rectangle {(n,m) : 0 ≤ n ≤
r and 0 ≤ m ≤ s}. Define t on R by:

t(n,m) = the unique d such that (A(m), bn,m) |= d. (xv)

So (A(m), bn,m) |= χt(n,m).

Lemma 8.4. (R, t) is a repeatable rectangle for D.

Proof. There are four conditions. The first two have to do with t working
correctly “inside” R. The arguments here are the same as in Lemma 4.3, so
we omit them. Instead we check the periodicity conditions, which we repeat
below:

3. H(t(r,m), t(0,m)) for 0 ≤ m ≤ s.
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4. V (t(n, s), t(n, 0)) for 0 ≤ n ≤ r.

Here is an argument for (3). Consider b0,m and br,m. As we know,
(A(m), b0,m) |= χt(0,m), and (A(m), br,m) |= χt(r,m). Using b0,m, we see that

(A(m), a0) |= 2∗(active ∧ hmax→
∨

d′:H(d′,t(0,m))

d′).

As we know from parts (6) and (8) of Lemma 8.3, (A(m), br,m) |= active ∧
hmax. So there is some d′ such that H(d′, t(0,m)) and br,m |= d′. By (xv),
d′ = t(r,m). This means that H(t(r,m), t(0,m)), as desired.

Finally, we check the periodicity condition (4). Consider bn,0 and bn,s.
This time we have (A, an) |= 3(active ∧ χt(n,0)). By our last periodicity
clause in χD, we have

(A(s), an) |= 3vmax→ 2(active→
∨

d′:V (d′,t(n,0))

d′).

Now (A(s), an) |= 3(vmax ∧ active) via bn,s. So there is some d′ such
that V (d′, d) and bn,s |= d′. Again by (xv), d′ = t(n, s). This proves
V (t(n, s), t(n, 0)).

This completes the proof of Theorem 8.2. And from the theorem and
Proposition 8.1, we infer the Σ0

1-completeness of the question of whether a
sentence of L(rel, rel∗,2∗) has a finite (tree) model. A fortiori, the same
holds for MIC.

Open problems. We only removed the atomic sentences from the frag-
ment of Section 3. So it is open to re-work the remaining results without
atomic sentences.

We conclude with another problem raised by our work, a problem which
we find more interesting. We do not know whether the satisfiability problem
for the fragment determined by [D∗], 2, ∧, ¬, and True is decidable. If it
were Σ1

1-complete, then the result would subsume the parallel results for the
fragments in this paper. And if it were decidable (with atomic sentences),
then it would be “maximal” in the sense that adding any of the follow-
ing features would destroy decidability: the transitive closure operation 2∗,
another iterated derivative, or relativization by modal sentences.
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[13] Erich Grädel, and Stephan Kreutzer, Will deflation lead to depletion? On non-

monotone fixed-point inductions, IEEE Conference on Logic in Computer Science

(LICS’03), 158–167.

[14] David Harel, Recurring dominoes: making the highly undecidable highly understand-

able. Topics in the Theory of Computation (Borgholm, 1983), 51–71, North-

Holland Math. Stud., 102, North-Holland, Amsterdam, 1985.

[15] David Harel, Dexter C. Kozen, and J. Tiuryn, Dynamic Logic, MIT Press, Cam-

bridge Mass., 2000.

[16] Yu Cai Lin, The decision problems about the periodic solutions of the domino prob-

lems. Chinese Annals of Mathematics, Series B, vol. 5 (1984), no. 4, 721–726.



The Undecidability of Iterated Modal Relativization 37

[17] Yiannis N. Moschovakis, On nonmonotone inductive definability. Fundamenta Math-

ematicae 82 (1974–75), 39–83.

[18] David A. Plaisted, Termination orderings, in D. Gabbay (et al) eds., Handbook of

Logic in Artificial Intelligence and Logic Programming, vol. I, 273–364.

[19] Jan Plaza, Logics of public communications, Proceedings, 4th International Sympo-

sium on Methodologies for Intelligent Systems, 1989.

[20] Johan van Benthem, ‘One is a lonely number’: on the logic of communication, ILLC

Research Report PP-2003-07, Amsterdam, 2003.

Joseph S. Miller
Department of Mathematics
Indiana University
Bloomington, IN 47405-7106, USA
millerj7@indiana.edu

Lawrence S. Moss
Department of Mathematics
Indiana University
Bloomington, IN 47405-7106, USA
lsm@cs.indiana.edu


