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Abstract. We construct a ∆0
2 infinite binary sequence with effective Haus-

dorff dimension 1/2 that does not compute a sequence of higher dimension.

Introduced by Lutz, effective Hausdorff dimension can be viewed as a mea-

sure of the information density of a sequence. In particular, the dimension of
A ∈ 2ω is the lim inf of the ratio between the information content and length of

initial segments of A. Thus the main result demonstrates that it is not always

possible to extract information from a partially random source to produce a
sequence that has higher information density.

1. Introduction

Question. Given a sequence that is known to contain, on average, at least one
bit of information for every two bits, can we produce a sequence with a higher
information density?

This is an informal statement of a question asked as early as 2000 by Sebastiaan
Terwijn and soon after by Jan Reimann; it will be the main focus of this paper.
We will eventually give a negative answer to their question. To state it rigorously,
we need a way to measure the information density of an infinite binary sequence.
It is important to understand that what we mean by information in this context is
substantially different from the colloquial use the word. It might better be called
unpredictability or randomness.

One measure of the information content of a finite binary string σ ∈ 2<ω is
its prefix-free Kolmogorov complexity1 K(σ). Therefore, a natural measure of the
information density of an infinite sequence A ∈ 2ω is its effective (or constructive)
dimension

dim(A) = lim inf
n→∞

K(A � n)
n

.

In other words, a sequence of effective dimension 1/2 is guaranteed to have nearly
n/2 bits of information in the first n bits, although it can have more for some n.
This is not the original definition of effective dimension. That was given by Lutz
[12], who effectivized a martingale characterization of Hausdorff dimension and de-
fined dim(A) to be the effective Hausdorff dimension of {A}. Note that although
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the classical Hausdorff dimension of a singleton set is zero, the effective Haus-
dorff dimension may not be. The equivalence of these two definitions, proved by
Mayordomo [15] (but essentially implicit in Ryabko [21]), is evidence that effective
dimension is a robust notion. Another indication is that the use of prefix-free com-
plexity in the definition above is unnecessary; replacing it with plain Kolmogorov
complexity or monotone complexity would not change the value of the limit inferior.

The question can now be asked more formally.

Question 1.1 (Reimann, Terwijn). If dim(A) = 1/2, does A compute a sequence
with higher effective dimension?

It is not hard to show that the effective dimension of the Turing degree of A
(the class of all sequences that both compute and are computable from A) is the
supremum of the dimensions of all sequences computable from A. Thus a negative
answer to Question 1.1 provides the example promised by the title.

Let us start by considering some simple examples. We can produce a random
sequence by flipping a coin and assigning 1 and 0 to heads and tails, respectively.
With probability 1, the resulting sequence has effective dimension 1 (and is Martin-
Löf random). To produce a sequence with effective dimension 1/2, we could use
a coin to determine the odd bits and make every even bit 0. Of course, such a
sequence is just a dilution of a random sequence and clearly computes a random
sequence. Another way to produce a semi-random sequence is to use a biased coin.
Classical information theory allows us to calculate, based on the bias, what the ef-
fective dimension of the resulting sequence will (almost surely) be. The right choice
of bias—in particular, if heads comes up about 89% of the time—will produce a
sequence with effective dimension 1/2. As it turns out, using a simple technique
described by von Neumann [26], randomness can also be extracted from these se-
quences. Consider pairs of coin flips; output a 1 if you see HT and a 0 if you see
TH. Produce no output for pairs of the form HH or TT. The resulting sequence
looks exactly as if it were produced by an unbiased coin.

The sequences in both examples have the property that the information they
contain is spread out fairly regularly. To formalize this observation, define the
effective strong dimension of A ∈ 2ω to be Dim(A) = lim supn→∞K(A � n)/n.
Clearly Dim(A) ≥ dim(A). Athreya, Hitchcock, Lutz and Mayordomo [1] proved
that effective strong dimension is the effective analogue of packing dimension, an-
other classical fractal dimension, in the same way that effective dimension is the
analogue of Hausdorff dimension. If A ∈ 2ω is a sequence of effective dimension 1/2
obtained either through dilution or from a biased coin, as described above, then
Dim(A) is also 1/2. Bienvenu, Doty and Stephan [2] showed that this is enough
to guarantee that A computes sequences of higher effective dimension. Specifically,
they proved that if ε > 0 and Dim(A) > 0, then A computes a set B such that
dim(B) ≥ dim(A)/Dim(A) − ε. So if dim(A) = Dim(A) = 1/2, then A computes
sequences with effective dimension arbitrarily close to 1. (Note that it is open
whether such an A must always compute a sequence with effective dimension 1,
but it follows from Greenberg and Miller [8] that A need not compute a Martin-Löf
random sequence.) The result of Bienvenu et al. demonstrates that any sequence
refuting Question 1.1 must be irregular, having periods of nearly random behavior
unpredictably followed by periods of relative order.

We mention two other positive results on the problem of extracting information
from infinite sequences. Fortnow et al. [7] proved that if Dim(A) > 0, then A
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computes sequences with effective strong dimension arbitrarily close to 1 (see also
Bienvenu et al. [2]). Secondly, Zimand [27] showed that if A,B ∈ 2ω are sufficiently
independent and both have positive effective dimension, then together they compute
(in fact, truth-table compute, uniformly in a lower bound on the dimensions) a
sequence with effective dimension 1. Of course, the independence assumption plays
a significant role. Both papers use ideas from the study of randomness extractors,
a subject that is discussed in more detail below.

Attempts to answer Question 1.1 in the negative have also led to interesting
results. Kjos-Hanssen, Merkle and Stephan [9] call A complex if there is an un-
bounded, nondecreasing computable function f such that (∀n) K(A � n) ≥ f(n).
Although a complex sequence can have very low information density, we can effec-
tively find initial segments with as much information as we want. Reimann and
Slaman [19], and independently Kjos-Hanssen, et al. [9, Corollary 7], proved that
complex sets need not compute Martin-Löf random sequences. Along similar lines,
Downey and Greenberg [5] proved that there is an A ∈ 2ω such that Dim(A) = 1
and A has minimal (Turing) degree, meaning that any noncomputable set com-
puted from A must compute A. This property implies that A does not compute
a Martin-Löf random sequence. Greenberg and Miller [8] recently constructed a
sequence with effective dimension 1 that does not compute a Martin-Löf random
sequence. This gives a negative answer to a variant of Question 1.1 that appeared,
for example, in the open questions paper of Nies and the author [16].

Another line of attack that yielded partial negative solutions was to place a
limit on the type of algorithms used to extract information from A. The first
such result was given by Reimann and Terwijn (see [19]) who constructed a ∆0

2

sequence A with effective dimension 1/2 such that if B is many-one reducible to
A, then dim(B) ≤ 1/2. Nies and Reimann later generalized this to weak truth-
table reducibility [18]. Many-one and weak truth-table reduction are strong forms
of computation; without going into the definitions, the point is that each of these
results showed that a certain restricted family of algorithms is not sufficient to
distill randomness from a semi-random source.

The result of Nies and Reimann on weak truth-table reducibility was shown
to have an interesting consequence by Bienvenu, Doty and Stephan [2]. They
proved that there is no single algorithm such that, given any sequence A such that
dim(A) ≥ 1/2, the algorithm always computes a sequence of effective dimension
strictly greater than 1/2.

No summary of the work on extracting information from infinite sequences would
be complete without discussing the analogous problem for finite strings. One result
of interest is that of Vereshchagin and Vyugin [25, Theorem 4] on the impossibility
of condensing the information in a string with high Kolmogorov complexity. They
construct a long string x ∈ 2<ω with high Kolmogorov complexity such that any
short string that is simple relative to x is unconditionally simple. Moving beyond
algorithmic information theory, there is a large body of work on randomness extrac-
tors, much of which is surveyed by Shaltiel [23]. The usual assumption is that you
are given a distribution on 2n with a certain guaranteed min-entropy, which simply
means that no element of 2n is too likely. Intuitively, the min-entropy is a lower
bound on the information content of any output generated by the distribution. The
goal is to map 2n to a smaller space, independently of the distribution, in such a
way that the induced distribution is nearly uniform. In other words, composing
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the distribution with the map essentially produces a random source. Sántha and
Vazirani [22] observed that this ideal goal cannot be met with a single source, but
proved that extraction can be done with several independent sources. The fact that
two independent sources were sufficient was proved soon after by Vazirani [24]. The
analogy with infinite sequences is clear and, as we have pointed out, the study of
randomness extractors has been applied to variants of Question 1.1 [7, 27].

Outline. In the next section we give a brief overview of the notation and concepts
that will be used throughout the paper, focusing on notions from algorithmic ran-
domness. Section 3 introduces weight and optimal covers and describes the forcing
conditions that are used in Section 4 to give a negative answer to Question 1.1.
The proof of our main result is an oracle construction, relative to the halting set ∅′,
but it can be viewed as forcing construction where the conditions are Π0

1 classes of
a specific form. Several lemmas in Section 3 establish the basic properties of these
classes, including the fact that they all have positive measure and their measures
have effective Hausdorff dimension at most 1/2.

2. Preliminaries

The reader is presumed to have some knowledge of basic computability theory
(recursion theory). In particular, the terms computable, computably enumerable
(c.e.), Turing reduction (≤T ), and Turing functional will be used without explana-
tion. By ∆0

2 we mean computable from ∅′, the halting problem. Elements of 2<ω

will be referred to as (finite binary) strings and elements of 2ω will be referred to
as (infinite binary) sequences. If σ ∈ 2<ω, we let [σ]<ω = {τ ∈ 2<ω : σ 4 τ}, in
other words, the strings extending σ. Similarly, we let [σ] = {A ∈ 2ω : σ ≺ A}. For
S ⊆ 2<ω, we define [S]<ω =

⋃
σ∈S [σ]<ω and [S] =

⋃
σ∈S [σ]. We treat 2ω as Cantor

space; the sets of the form [σ] are a clopen basis for the topology and every open
set is of the form [S], for some S ⊆ 2<ω. If S ⊆ 2<ω is a c.e. set, then [S] is called a
Σ0

1 class. These are the effectively open subsets of Cantor space. The complement
of a Σ0

1 class is called a Π0
1 class. Finally, we use µ to denote the Lebesgue measure

on Cantor space determined by setting µ([σ]) = 2−|σ|, for each σ ∈ 2<ω.

Algorithmic randomness. An introduction to algorithmic randomness can be
found in the upcoming monographs of Downey and Hirschfeldt [4] and Nies [17]
or the excellent survey paper of Downey, Hirschfeldt, Nies and Terwijn [6]. Li and
Vitányi [11] is another useful source, although it does not cover effective dimension.

One common approach to measuring the information content of binary strings
is prefix-free complexity, as introduced by Levin [10] and Chaitin [3]. Call S ⊆ 2<ω

prefix-free if no element of S is a proper prefix of anther element. A prefix-free
machine M : 2<ω → 2<ω is a partial computable function whose domain is prefix-
free. We say that U is a universal prefix-free machine iff for any other prefix-
free machine M , there is a τ ∈ 2<ω such that (∀σ) U(τσ) = M(σ). It is not
difficult to prove that a universal machine U exists; fix such a machine. This U will
automatically be effectively universal in the sense that if we know an index for a
prefix-free machine M , then we can compute the τ by which U simulates M .

The Kolmogorov complexity of σ ∈ 2<ω with respect to a (prefix-free) machine
M is defined to be KM (σ) = min{|τ | : M(τ) = σ}, the length of the shortest M -
program for σ. The prefix-free complexity of σ is K(σ) = KU (σ). The effective
universality of U implies that, given any prefix-free machine M , we can find a
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d ∈ ω such that (∀σ) K(σ) ≤ KM (σ) + d. Having a notion of complexity for finite
strings, we can study infinite sequences by looking at the complexity of their initial
segments. The most well-known property defined along these lines is Martin-Löf
randomness. A sequence A ∈ 2ω is Martin-Löf random (often called 1-random) if
the initial segments of A are not compressible by more than some fixed constant.
In other words, there is a c ∈ ω such that (∀n) K(A � n) ≥ n − c. Note that
this was not the definition given by Martin-Löf; it was proposed independently by
Levin [10] and Chaitin [3] and proved by Schnorr to be equivalent to Martin-Löf’s
definition of randomness [14].

Another notion characterized in terms of initial segment complexity is effec-
tive dimension. A thorough survey of effective dimension is given by Lutz [13].
As stated in the introduction, the effective (Hausdorff) dimension of A ∈ 2ω is
dim(A) = lim infn→∞K(A � n)/n and the effective strong dimension is Dim(A) =
lim supn→∞K(A � n)/n. Note that 0 ≤ dim(A) ≤ Dim(A) ≤ 1 and that these
are the only restrictions on effective dimension [1]. Also note that if A is Martin-
Löf random, then dim(A) = 1. It is not hard to show that the converse fails.
For X ∈ [0, 1], we define dim(X) to be the effective dimension of the binary ex-
pansion of X. An alternate characterization can be given in terms of Solovay
s-tests. Let T be a computably enumerable collection of rational subintervals
of [0, 1]. Then T is a Solovay s-test if

∑
I∈T |I|s is finite. We say that X is

covered by T if infinitely many I ∈ T contain X. Reimann [19] showed that
dim(X) = inf{s ≥ 0: X is covered by a Solovay s-test}.

3. Weight, optimal covers, and the forcing conditions

Definition 3.1. Let S ⊆ 2<ω. Define the direct weight of S to be DW(S) =∑
σ∈S 2−|σ|/2. The weight of S is

W(S) = inf {DW(V ) : [S] ⊆ [V ]} .
Note that W (S) ≤ 1 because [S] ⊆ [{λ}] and DW({λ}) = 1, where λ is the string

of length zero. The weight of S is essentially2 the minimum cost of compressing
some initial segment of every sequence in [S] by a factor of 2. Of course, there
is no reason to think that this compression could be realized effectively. In other
words, even if S is c.e., there may not be a prefix-free machine M compressing each
sequence in [S] by a factor of 2 and such that the measure of the domain of M is
close to W (S).

Assume that S is finite. Consider V ⊆ 2<ω such that [S] ⊆ [V ]. It is suboptimal
for V to contain any string incomparable with every σ ∈ S or to contain a proper
extension of some σ ∈ S. In other words, it is always possible to find a V̂ ⊆ 2<ω

such that [S] ⊆ [V̂ ], DW(V̂ ) ≤ DW(V ), and τ ∈ V̂ implies that (∃σ ∈ S) τ 4 σ.
Therefore, there are only finitely many V that need to be considered in the infimum.
Hence the infimum is achieved, justifying the following definition when S ⊆ 2<ω is
finite.

Definition 3.2. The optimal cover of S ⊆ 2<ω is a set Soc ⊆ 2<ω such that
[S] ⊆ [Soc] and DW(Soc) = W(S). For the sake of uniqueness, we also require [Soc]
to have the minimum measure among all possible contenders.

2The difference is that descriptions cannot have fractional length, so to compress a string of
length 9 by a factor of 2 requires giving it a description of length at most 4. The cost of such a

description is at least 2−4, not 2−4.5.
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Clearly, optimal covers are unique and prefix-free. The analysis above shows
that when S is finite, we can compute both the optimal cover of S and W(S).

Examples. First let S = {00, 01}. Note that the direct weight of S is 1, but that
this is not optimal. Instead, Soc = {0} and W(S) =

√
2.

Now consider S = {00, 10}. It is not hard to see that W(S) = DW(S) = 1. Two
different covers of S achieve this weight: {λ} and S itself. Therefore, Soc = S,
since this is the choice that minimizes µ([Soc]).

We turn to the case when S ⊆ 2<ω is infinite. Let {St}t∈ω be an enumeration
of S, i.e., an increasing sequence of finite sets such that S =

⋃
t∈ω St. Note that

if σ ∈ Soc
t , then the only way for σ to not be in Soc

t+1 is for some τ ≺ σ to be
in Soc

t+1. This has some nice consequences. First, it implies a nesting property :
[Soc
t ] ⊆ [Soc

t+1], for all t. Second, it proves that the Soc
t have a pointwise limit V . It

is not hard to see that V = Soc, demonstrating that the definition above is valid
for any S ⊆ 2<ω.

In the case that S is c.e., its optimal cover Soc is clearly ∆0
2. More importantly,

the nesting property implies that [Soc] is a Σ0
1 class. There will not generally be

a c.e. set V ⊆ 2<ω such that [Soc] = [V ] and DW (V ) = W (S), or even such that
the direct weight of V is finite. However, we can find such a V for which the direct
weight of any prefix-free subset is bounded by W (S).

Lemma 3.3. For any c.e. set S ⊆ 2<ω, we can (effectively) find a c.e. V ⊆ 2<ω

such that [V ] = [Soc] and if P ⊆ V is prefix-free, then DW(P ) ≤W(S).

Proof. Let {St}t∈ω be an enumeration of S. Define V =
⋃
t∈ω S

oc
t . Note that

V is c.e. and [V ] = [Soc]. If there were an infinite prefix-free P ⊆ V such that
DW(P ) > W(S), then there would be a finite P ′ ⊂ P with the same property. So
assume that P ⊆ V is finite and prefix-free. We will prove the following claim: if
τ ∈ V , then DW(P ∩ [τ ]<ω) ≤ DW({τ}). This will be proved by induction on the
distance k from τ to its longest extension in P (the claim is trivial if P ∩ [τ ]<ω is
empty). The case k = 0 is immediate. Now take τ ∈ V rP . There is a unique t such
that τ ∈ Soc

t+1rSoc
t ; so DW(Soc

t ∩[τ ]<ω) ≤ DW({τ}), or else we would have τ ∈ Soc
t .

The nesting property implies that [Soc
t ]∩ [τ ] covers [P ]∩ [τ ], since every element of

P ∩ [τ ]<ω must have entered V by stage t. Hence, applying the inductive hypothesis
to the elements of Soc

t ∩ [τ ]<ω, we have DW(P ∩ [τ ]<ω) ≤ DW(Soc
t ∩ [τ ]<ω). This

proves the claim. Of course, [Soc] covers [P ], so DW(P ) ≤ DW(Soc) = W(S). �

It is worth noting that the previous lemma can be used to give a direct proof that
strong s-randomness implies vehement s-randomness, for s ∈ [0, 1], which follows
from results of Kjos-Hanssen and Reimann. (Although we have specialized to the
case s = 1/2, the proof works generally.) Kjos-Hanssen showed that s-capacitability
implies vehement s-randomness, which together with Reimann’s result that strong
s-randomness implies s-capacitability, proves that all three notions are the same.
See [20] for the relevant definitions and proofs.

The forcing conditions. In the proof of Theorem 4.1 we will build a set A by
approximations. As usual, the type of approximation—or in terminology borrowed
from set theory, the type of forcing condition—determines the nature of the re-
quirements that we can satisfy during the construction. Our conditions will be pairs
〈σ, S〉 such that σ ∈ 2<ω, S ⊆ [σ]<ω is a c.e. set, and σ /∈ Soc. A condition describes
a restriction on the sequence A that is being constructed. Specifically, the set of all
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sequences consistent with a condition 〈σ, S〉 is the Π0
1 class P〈σ,S〉 = [σ]r [Soc]. Our

definition of condition guarantees that P〈σ,S〉 is nonempty. We say that a condition
〈τ, T 〉 extends 〈σ, S〉 and write 〈τ, T 〉 4 〈σ, S〉 iff P〈τ,T 〉 ⊆ P〈σ,S〉. This corresponds,
of course, to further restricting the possibilities for A.

We prove several basic lemmas about our forcing conditions. The first shows that
there is a forcing condition 〈λ, S〉 such that every element of P〈λ,S〉 has effective
dimension at least 1/2. Recall that λ denotes the string of length zero.

Lemma 3.4. Let S = {σ ∈ 2<ω : K(σ) ≤ |σ|/2}. Then 〈λ, S〉 is a valid condition.

Proof. All that needs to be shown is that λ /∈ Soc. But if this were the case,
then DW(S) ≥ W(S) = 1. On the other hand, DW(S) =

∑
σ∈S 2−|σ|/2 ≤∑

σ∈S 2−K(σ) <
∑
σ∈2<ω 2−K(σ) ≤ 1, where the strict inequality follows from the

fact that S 6= 2<ω. �

The next two lemmas show that the Π0
1 class corresponding to a condition has

positive measure and that the effective Hausdorff dimension of its measure is at
most 1/2.

Lemma 3.5. Let σ ∈ 2<ω and S ⊆ [σ]<ω. If [σ] r [Soc] is nonempty, then it has
positive measure.

Proof. Let n = |σ|. The fact that [S] ⊆ [σ] implies that W(S) ≤ 2−n/2. Since
[σ] r [Soc] is nonempty, we know that σ /∈ Soc. Hence τ ∈ Soc implies that |τ | > n.
Using these observations,

µ([Soc]) =
∑
τ∈Soc

2−|τ | <
∑
τ∈Soc

2−|τ |/2−n/2 = 2−n/2
∑
τ∈Soc

2−|τ |/2

= 2−n/2 DW(Soc) = 2−n/2 W(S) ≤ 2−n.

Therefore, µ([σ] r [Soc]) > 0. �

Lemma 3.6. Let 〈σ, S〉 be a condition. Then dim(µ(P〈σ,S〉)) ≤ 1/2.

Proof. We prove that dim(µ([Soc])) ≤ 1/2, which is sufficient because µ(P〈σ,S〉) =
2−|σ| − µ([Soc]). We may assume, without loss of generality, that Soc is infinite,
since otherwise µ([Soc]) is rational. Let w = W(S). Let V ⊆ 2<ω be the c.e. set
guaranteed by Lemma 3.3; so [V ] = [Soc] and DW(P ) ≤ w whenever P ⊆ V is
prefix-free. Note that V must be infinite. Let {Vt}t∈ω be an effective enumeration
of V such that V0 = ∅.

Fix s > 1/2. We produce a Solovay s-test T covering µ([V ]). It consists of two
parts. The first part, T0, attempts to cover µ([V ]) whenever a string τ enters V ;
it succeeds as long as no string as short as τ enters V at a later stage and longer
strings do not eventually contribute too much to µ([V ]). While the first assumption
is met for the right choice of τ , the second assumption may not be met. The role
of T1, the second part of the Solovay test, is to keep trying to cover µ([V ]) when
the second assumption fails.

• If τ ∈ Vt+1 r Vt, then put
[
µ([Vt+1]), µ([Vt+1]) + 2−|τ |

]
into T0.

• If µ([Vt∩2>n]) ≤ k2−n and µ([Vt+1∩2>n]) > k2−n for some n, k ∈ ω, then
put [µ([Vt+1]), µ([Vt+1]) + 2−n] into T1.
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This ensures that T = T0 ∪ T1 is a c.e. set of rational intervals. Note that T does
not actually depend on s. Using the fact that V ∩ 2n is prefix-free, we have∑

I∈T0

|I|s =
∑
τ∈V

2−s|τ | =
∑
n∈ω

2−sn|V ∩ 2n| =
∑
n∈ω

2(1/2−s)n2−n/2|V ∩ 2n|

=
∑
n∈ω

2(1/2−s)n DW(V ∩ 2n) ≤
∑
n∈ω

2(1/2−s)nw =
w

1− 21/2−s <∞.

Now fix n ∈ ω and let k be the number of intervals of length 2−n added to T1. By
construction, 2−nk < µ([V ∩ 2>n]). Let P ⊆ V ∩ 2>n be a prefix-free set such that
[P ] = [V ∩ 2>n]. Then by the same argument as in the previous lemma, µ([P ]) <
2−n/2 DW(P ). Putting it all together we have 2−nk < 2−n/2 DW(P ) ≤ 2−n/2w, so
k < 2n/2w. Thus∑

I∈T1

|I|s <
∑
n∈ω

2n/2w(2−n)s =
∑
n∈ω

2(1/2−s)nw <∞.

This proves that T is a Solovay s-test.
Next we prove that T covers µ([V ]). Call τ ∈ Vt+1 r Vt timely if Vt+1 ∩ 2≤|τ | =

V ∩2≤|τ |, in other words, if only strings longer than τ enter V after τ . Because V is
infinite, there are infinitely many timely τ ∈ V ; fix one. Let t+1 be the stage that τ
enters V and let n = |τ |. We claim that there is an interval of length 2−n in T that
contains µ([V ]). Note that if u > t, then µ([V ])− µ([Vu]) ≤ µ([V ∩ 2>n])− µ([Vu ∩
2>n]). In response to τ entering V , we put the interval [µ([Vt+1]), µ([Vt+1]) + 2−n]
into T0 ⊆ T at stage t + 1. Let I = [µ([Vu]), µ([Vu]) + 2−n] be the last interval of
length 2−n added to T . If µ([V ]) /∈ I, then µ([V ]) > µ([Vu]) + 2−n. Since u > t, we
have µ([V ∩2>n]) > µ([Vu∩2>n]) + 2−n, so another interval of length 2−n is added
to T1 ⊆ T after stage u. This is a contradiction, so µ([V ]) ∈ I. We have proved
that for any n that is the length of a timely element of V , there is an interval of
length 2−n in T that contains µ([V ]). Since there are infinitely many timely strings,
µ([V ]) is covered by T .

Since T is a Solovay s-test for every s > 1/2, we have shown that dim(µ([V ])) ≤
1/2. But [V ] = [Soc], so this completes the proof. �

By applying the method of Theorem 4.1 to the identity functional, it can be
proved that if 〈σ, S〉 extends the condition from Lemma 3.4, then dim

(
µ
(
P〈σ,S〉

))
≥

1/2. Hence, Lemma 3.6 is tight. We will not use this observation, so the details
are omitted.

The final lemma gives a simple hypothesis on a collection of conditions that
guarantees that they have a common extension.

Lemma 3.7. Assume that 〈σ0, S0〉, . . . , 〈σn, Sn〉 is a sequence of conditions such
that P〈σ0,S0〉 ∩ · · · ∩ P〈σn,Sn〉 has positive measure. Then there is a condition 〈τ, T 〉
such that 〈τ, T 〉 4 〈σi, Si〉, for each 0 ≤ i ≤ n.

Proof. The σi are comparable by hypothesis, so let σ = σ0 ∪ · · · ∪ σn. Let P =
P〈σ0,S0〉 ∩ · · · ∩ P〈σn,Sn〉 = [σ] r [Soc

0 ∪ · · · ∪ Soc
n ]. In particular, P ⊆ [σ]. It is not

necessarily the case that P corresponds to a condition. Instead, it is quite possible
that (Soc

0 ∪ · · · ∪Soc
n )oc contains σ. However, we will show that there is a condition

〈τ, Tτ 〉 such that P〈τ,Tτ 〉 ⊆ P .
Choose b ∈ ω such that µ(P ) ≥ 2−b. Take m ≥ b and define

Dm = {τ < σ : |τ | = m and no prefix of τ is in Soc
i for any 0 ≤ i ≤ n}.
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Now µ(P ) ≤ |Dm|2−m, because if τ ∈ 2m is not in Dm, then [τ ] is disjoint from
[P ]. Hence |Dm| ≥ 2m−b.

Take τ ∈ Dm and let Tτ = [τ ]<ω ∩ (Soc
0 ∪ · · · ∪ Soc

n ). If τ /∈ T oc
τ , then 〈τ, Tτ 〉

is the condition required by the lemma. On the other hand, τ ∈ T oc
τ implies that

DW(Tτ ) ≥W(Tτ ) = 2−m/2. So assuming that τ ∈ T oc
τ for each τ ∈ Dm:

n+ 1 ≥
∑

0≤i≤n

W(Si) =
∑

0≤i≤n

DW(Soc
i ) ≥ DW(Soc

0 ∪ · · · ∪ Soc
n )

≥
∑
τ∈Dm

DW(Tτ ) ≥
∑
τ∈Dm

2−m/2 ≥ 2m−b2−m/2 = 2m/2−b.

But m ≥ b was arbitrary, so we have a contradiction. �

Note that ∅′ can find the common extension guaranteed by the lemma.

4. The counterexample

We prove the main result.

Theorem 4.1. There is an A ≤T ∅′ such that dim(A) = 1/2 and if B ≤T A, then
dim(B) ≤ 1/2.

Proof. We build a sequence of conditions 〈σ0, S0〉 < 〈σ1, S1〉 < 〈σ2, S2〉 < · · · and
take A =

⋃
t σt, which will be total. Equivalently, A will be the unique element of⋂

t P〈σt,St〉. The construction will be carried out with a ∅′ oracle, so A ≤T ∅′. We
take 〈σ0, S0〉 to be the condition from Lemma 3.4. This guarantees that dim(A) ≥
1/2, because this is true of every element of P〈σ0,S0〉.

Let {Ψe}e∈ω be an effective enumeration of the partial computable functionals.
For all e, n ∈ ω, we must meet the requirement

Re,n : if ΨA
e is total, then (∃k > n) K(ΨA

e � k) ≤ (1/2 + 2−n)k.

These requirements guarantee that if B ≤T A, then dim(B) ≤ 1/2. In particular,
dim(A) = 1/2.

Stage t = 0. Take 〈σ0, S0〉 to be the condition from Lemma 3.4.
Stage t+ 1 = 〈e, n〉 (we satisfy Re,n). Choose b ∈ ω such that 2−b < µ(P〈σt,St〉).

Note that b exists by Lemma 3.5 and can be found using ∅′ because the set {r ∈
Q : µ(P ) < r} is Σ0

1 uniformly in an index for a Π0
1 class P . We define a prefix-free

machine M . The idea will be that M waits for a large set of oracles that appear
to be in P〈σt,St〉 to compute the same sufficiently long initial segment via Ψe and
then compresses that initial segment.

We define M(ρ) for ρ ∈ 2<ω as follows. First, wait until U(ρ) ↓. If this never
happens, then M(ρ) ↑. So the domain of M is a subset of the domain of U , hence
prefix-free. Let σ = U(ρ) and m = |σ|. The only case that will be of interest will
be when σ is an initial segment of the binary expansion of µ(P〈σt,St〉).

3 We write
.σ for the dyadic rational whose binary expansion, after the radix point, is σ0ω. To
each τ ∈ 2<ω we associate a c.e. set Tτ = {ν < σt : τ 4 Ψν

e}. Now search for a
τ ∈ 2m−b such that µ(P〈σt,St∪Tτ 〉) < .σ; this is a Σ0

1 condition, so if it is true, we
will eventually find out. For the first such τ found, let M(ρ) = τ . This completes
the definition of M .

3If µ(P〈σt,St〉) is a dyadic rational—which it is not—either expansion will do.
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We can effectively find a c ∈ ω such that (∀τ) K(τ) ≤ KM (τ) + c. Now ∅′ can
search for a σ ∈ 2<ω such that σ is an initial segment of the binary expansion of
µ(P〈σt,St〉) of length m > n+ b, and K(σ) + c ≤ (1/2 + 2−n)(m− b). Such a σ must
exist by Lemma 3.6. Let ρ be a minimal U -program for σ. The construction breaks
into two cases, depending on whether M(ρ) converges (which ∅′ can determine, of
course).

Case 1: M(ρ) ↓= τ . In this case, we know that µ(P〈σt,St∪Tτ 〉) < .σ and
µ(P〈σt,St〉) ≥ .σ. Thus P〈σt,St〉rP〈σt,St∪Tτ 〉 = [(St ∪Tτ )oc] r [Soc

t ] is nonempty. So
there is a σt+1 ∈ Tτ such that [σt+1] * [Soc

t ]; otherwise Soc
t would be the optimal

cover of (St∪Tτ )oc. Note that ∅′ can find such a σt+1. By definition, σt+1 < σt; since
Tτ is closed upwards, we may additionally require that σt+1 properly extends σt. Let
St+1 = [σt+1]<ω∩St. Since no prefix of σt+1 is in Soc

t , we have Soc
t+1 = [σt+1]<ω∩Soc

t .
This implies that P〈σt+1,St+1〉 = [σt+1] ∩ P〈σt,St〉 6= ∅. Thus 〈σt+1, St+1〉 is a valid
condition and P〈σt+1,St+1〉 ⊆ P〈σt,St〉, so 〈σt+1, St+1〉 4 〈σt, St〉.

To verify that R〈e,n〉 has been satisfied, take A ∈ P〈σt+1,St+1〉. Since σt+1 4 A

and σt+1 ∈ Tτ , we see that τ 4 ΨA
e . Let k = |τ | = m− b, which is larger than n by

our choice of σ. Then

K(ΨA
e � k) = K(τ) ≤ KM (τ) + c ≤ |ρ|+ c = K(σ) + c

≤ (1/2 + 2−n)(m− b) = (1/2 + 2−n)k.

Case 2: M(ρ) ↑. In this case, µ(P〈σt,St∪Tτ 〉) ≥ .σ for each τ ∈ 2m−b. Thus
〈σt, St ∪ Tτ 〉 is a valid condition extending 〈σt, St〉. Furthermore, since P〈σt,St∪Tτ 〉 ⊆
P〈σt,St〉 and µ(P〈σt,St〉) ≤ .σ + 2−m, we have µ(P〈σt,St〉 r P〈σt,St∪Tτ 〉) ≤ 2−m. So

µ

( ⋂
τ∈2m−b

P〈σt,St∪Tτ 〉

)
= µ

(
P〈σt,St〉 r

⋃
τ∈2m−b

(P〈σt,St〉 r P〈σt,St∪Tτ 〉)

)
≥ µ(P〈σt,St〉)−

∑
τ∈2m−b

µ(P〈σt,St〉 r P〈σt,St∪Tτ 〉) > 2−b − 2m−b2−m = 0.

Thus by Lemma 3.7, there is a condition 〈σt+1, St+1〉 that extends 〈σt, St ∪ Tτ 〉
for every τ ∈ 2m−b. A fortiori, 〈σt+1, St+1〉 4 〈σt, St〉. Furthermore, ∅′ can find
〈σt+1, St+1〉 and we may assume, without loss of generality, that σt+1 properly
extends σt.

To verify that R〈e,n〉 is satisfied in this case as well, assume that ΨA
e is total and

let τ = ΨA
e � (m−b). Since σt 4 A, some ρ 4 A is in Tτ . Therefore, A ∈ [(St∪Tτ )oc]

and hence A /∈ P〈σt,St∪Tτ 〉 ⊇ P〈σt+1,St+1〉.
End of Construction.

Let A =
⋃
t σt. This is total because we ensured that σt+1 properly extended

σt, for every t ∈ ω. The construction was done relative to ∅′, so A is ∆0
2. The

remainder of the verification was given above. �
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[14] Per Martin-Löf. The definition of random sequences. Information and Control, 9:602–619,
1966.

[15] Elvira Mayordomo. A Kolmogorov complexity characterization of constructive Hausdorff di-

mension. Inform. Process. Lett., 84(1):1–3, 2002.
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