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Abstract. We show that the Turing degrees are not sufficient to measure the complexity of

continuous functions on [0, 1]. Computability of continuous real functions is a standard notion from

computable analysis. However, no satisfactory theory of degrees of continuous functions exists. We

introduce the continuous degrees and prove that they are a proper extension of the Turing degrees

and a proper substructure of the enumeration degrees. Call continuous degrees which are not Turing

degrees non-total. Several fundamental results are proved: a continuous function with non-total

degree has no least degree representation, settling a question asked by Pour-El and Lempp; every

non-computable f ∈ C[0, 1] computes a non-computable subset of N; there is a non-total degree

between Turing degrees a <T b iff b is a PA degree relative to a; S ⊆ 2N is a Scott set iff it is

the collection of f -computable subsets of N for some f ∈ C[0, 1] of non-total degree; and there are

computably incomparable f, g ∈ C[0, 1] which compute exactly the same subsets of N. Proofs draw

from classical analysis and constructive analysis as well as from computability theory.

§1. Introduction. The computable real numbers were introduced in Alan
Turing’s famous 1936 paper, “On computable numbers, with an application to
the Entscheidungsproblem” [40]. Originally, they were defined to be the reals
with computable decimal expansions, though in 1937 Turing suggested an al-
ternative representation, “modifying the manner in which computable numbers
are associated with computable sequences, the totality of computable numbers
being left unaltered” [41]. His second representation avoids the problem of non-
uniformity at rationals which have finite decimal expansions and is suitable for
studying computable functions of reals, though he did not do so. Turing asso-
ciates the real number (2c0 − 1)n +

∑∞
r=1(2cr − 1)(2/3)r to the infinite binary

sequence c01n0c1c2 · · · ∈ {0, 1}ω.1 Our choice of representation differs from Tur-
ing’s, but it is equivalent in the sense of Kreitz and Weihrauch [15]; in particular,
they both induce the same computable structure on R. See Weihrauch [43] for
a thorough introduction to the theory of representations.2

Definition 1.1. A representation of x ∈ R is a function λ : Q+ → Q such
that, for all ε ∈ Q+, |x− λ(ε)| < ε.

Assuming that we identify Q+ and Q with effective enumerations of these sets,
representations are simply functions from N to itself, so classical computability

The author’s research was partially supported by an NSF VIGRE Fellowship at Indiana
University Bloomington.

1Turing gives Brouwer credit for the use of overlapping intervals to define real numbers.
2Note that Weihrauch uses “representation” to denote a naming system, not an individual

name [43]; we abusively use the same word for both.
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theory supplies us with a computable structure on representations. Lifting this
structure to R, a real x ∈ R is computable if it has a computable representation.
Moreover, it is natural to define the Turing degree of x ∈ R to be

degT (x) = min{degT (λ) | λ represents x}.
Note that degT (x) is well defined for every x ∈ R and that it is identical to the
Turing degree of the binary expansion of x.

One might hope to define the Turing degree of a continuous function f ∈ C[0, 1]
in the same manner. Once we have chosen an appropriate representation for
continuous functions—this is done in Section 2 and several equivalent represen-
tations can be found in Weihrauch [43]—we would again define

degT (f) = min{degT (λ) | λ represents f},
where f ∈ C[0, 1]. But is the Turing degree of a function always defined? We
must answer the following question.

Question 1.2 (Pour-El and Lempp). Does every f ∈ C[0, 1] have a represen-
tation of least Turing degree?

An analogous question was studied in computable model theory by L. J. Richter
[29]. A countable group G can be presented as a subset of N with a binary re-
lation representing multiplication. Other countable structures, such as linear
orders and graphs, can be presented similarly. Just as a function f ∈ C[0, 1] has
infinitely many representations, G will have infinitely many presentations. Say
that G computes A ⊆ N if every one of its presentations computes A, and that
G has Turing degree a if this is the least degree of any presentation. Richter
proved that there are groups of every Turing degree, but also that there are
groups which have no Turing degree. There are even non-computable groups
which compute no non-computable subsets of N. The situation for linear orders
is more restrictive; no linear order can compute a non-computable subset of N,
so in fact, no non-computable linear order has a Turing degree.

Our goal is not only to answer Question 1.2 in the negative, but also to intro-
duce a natural degree structure which captures the complexity of the continuous
functions and initiate the study of this structure. Our methods are very dif-
ferent from those used by Richter. The outcome is also different; we not only
show that there are continuous functions with no Turing degree, but also that
every non-computable f ∈ C[0, 1] computes a non-computable subset of N, dis-
tinguishing the effective content of continuous functions from that of groups and
linear orders and from the various other classes of discrete structures that have
been studied.

The article is organized as follows. Section 2 is an introduction to computable
analysis on computable metric spaces. For our purposes, the most important
examples of computable metric spaces are 2N, NN, R, C[0, 1] and [0, 1]N; these are
discussed briefly. Section 3 defines representation reducibility, a notion of rela-
tive computability between elements of computable metric spaces. The induced
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degree structure is called the continuous degrees. Representation reducibility
agrees with Turing reducibility on 2N and NN, so the continuous degrees extend
the Turing degrees. Call a continuous degree which corresponds to a Turing
degree total. We show that every continuous degree contains elements of C[0, 1],
justifying the name, and also of [0, 1]N. Section 4 begins with a review of the
enumeration degrees (sometimes called the partial degrees). We then show that
the continuous degrees embed into the enumeration degrees and observe that
the existence of a non-total continuous degree would provide a negative answer
to Question 1.2.

The key to the results in later sections is the reduction of questions about
degrees of continuous functions to questions about sequences of reals. In Sec-
tion 5, we consider sequences in [0, 1]N which list all of the reals in [0, 1] which
they compute. Such a sequence is not computably diagonalizable. We show that
the non-total continuous degrees are exactly the degrees of sequences which are
not computably diagonalizable. In Section 6, we construct a sequence which is
not computably diagonalizable using a classical topological fixed point theorem
for multivalued functions on the Hilbert cube [0, 1]N. This proves that non-total
continuous degrees exist, which proves that there is a function f ∈ C[0, 1] with
no least Turing degree representation.

Having solved the problem which motivated this research, we begin to inves-
tigate the nature of non-total continuous degrees in Section 7. In doing so, we
distinguish the continuous degrees from the enumeration degrees and also con-
trast our results from those of Richter. A modification of Orevkov’s constructive
retraction of (the constructive points of) the unit square onto its boundary is
used to show that every sequence of computable reals is computably diagonal-
izable. This implies that every non-computable continuous function computes a
non-computable subset of N. It also provides us with an elementary difference
between the enumeration degrees and the continuous degrees; only the latter has
minimal elements.

The last two sections are concerned with the relationship of the continuous
degrees to the substructure of the Turing degrees. Classical concepts play an
important role. If a and b are Turing degrees, we say that a is a PA degree
relative to b (b � a) if every infinite b-computable subtree of 2<N has an
infinite path computable from a. A Scott ideal is a countable ideal in the Turing
degrees such that for every b ∈ I there is an a ∈ I with b� a. If I is a Scott
ideal, then the collection of subsets of N with degree in I is called a Scott set.
PA degrees and Scott sets arose from the study of complete extensions of Peano
arithmetic and turn out to be closely connected to the continuous degrees.

The main result of Section 8 is proved by a more careful analysis of the tech-
niques from Sections 6 and 7. It characterizes the intervals b ≤ a of Turing
degrees which contain a non-total continuous degree as the intervals b � a.
This is a significant restriction on the structure of the continuous degrees; using
it we prove that the continuous degrees are not a lattice and that the first order
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theory of the continuous degrees is equivalent to second order arithmetic. In
addition, we distinguish the first order theories of the continuous degrees and
the Turing degrees. Therefore, reducibility between continuous functions really
does give rise to a new degree structure. It is also proved in Section 8 that if b
is a Turing degree below a non-total continuous degree v, then there is another
Turing degree c with b � c < v. This implies that the collection of subsets
of N computable from a function f ∈ C[0, 1] of non-total degree is a Scott set.
In Section 9, we show that this is actually a characterization of the Scott sets.
We finish with two examples of classical constructions adapted to prove results
about continuous degrees. Let S be any Scott set. There are continuum many
pairwise incomparable continuous degrees such that S is the Scott set induced
by each one of them, i.e., S is the collection of subsets of N computable from
each. Finally, for any f ∈ [0, 1]N of non-total degree, there is a g ∈ [0, 1]N such
that f and g are incomparable and they compute exactly the same subsets of N.
This last theorem is proved using a variation of forcing with Π0

1 classes.

§2. Computable analysis. We begin with a short introduction to those con-
cepts from computable analysis which are necessary below. For a more complete
introduction, see Weihrauch [43] or Pour-El and Richards [28]. Computable anal-
ysis was introduced almost simultaneously by Lacombe [16, 17] and Grzegorczyk
[9, 10]. Basic computable analysis provides definitions of computability for sub-
sets of and functions on the real numbers. These notions can be generalized;
we require computable structures on several spaces, so it is convenient to work
with the espaces métriques récursifs (computable metric spaces) introduced by
Lacombe [18]. A computable metric space is a complete metric spaceM together
with a computable dense sequence QM = {qMn }n∈N ⊆M on which the metric is
computable.3 In other words, there is a computable function f : N2 × Q+ → Q
such that |f(i, j, ε)− dM(qMi , qMj )| < ε for all i, j ∈ N and ε ∈ Q+. Recall that
a metric space is separable if it has a countable dense subset and that a Polish
space is a complete separable metric space, so our computable metric spaces are
necessarily Polish spaces.

Paralleling Definition 1.1, a representation of a ∈M is a function λ : Q+ → N
such that, for all ε ∈ Q+, dM

(
a, qMλ(ε)

)
< ε. This is equivalent to the stan-

dard Cauchy representation from [43]. Once an effective enumeration of Q+

has been fixed, representations can be viewed as elements of NN, so classical
computability can be applied. An element of M is called computable if it has
a computable representation. If M0 and M1 are computable metric spaces,
then a computable function from M0 to M1 is an effective map of represen-
tations of elements of M0 to representations of elements in M1, preserving

3Several variants on computable metric spaces appear in the literature. In particular,
Weihrauch does not require M to be complete [43]—which means that it is not determined
by the computable structure—and in an early treatment [42] he only requires the distance
function on QM to be right computable (i.e., the limit of a computable decreasing sequence).
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equivalence. More formally, f : M0 → M1 is a computable function if there
is an index e ∈ N such that if λ : Q+ → N is a representation for a ∈ M0,
then ϕλe : Q+ → N is a representation for f(a) ∈ M1, where as usual, ϕe is
the eth partial computable function (with oracle). Note that if f is computable,
then approximations to f(a) are determined by suitable approximations to a; in
other words, computable functions are continuous. Similarly, ψ : M0 →M1 is a
partial computable function if there is an index e ∈ N such that if λ is a represen-
tation for a ∈M0, then either ψ(a) ↓ and ϕλe is a representation for ψ(a) ∈M1,
or ψ(a) ↑ and ϕλe is not total. We say that ϕe induces ψ. As with total com-
putable functions, partial computable functions are continuous on their domains.
Finally, given computable metric spaces M0 and M1, there is a natural com-
putable structure on the product M0 ×M1 = {a ⊕ b | a ∈ M0 and b ∈ M1}.
Simply take dM0×M1(a0 ⊕ a1, b0 ⊕ b1) = max{dM0(a0, b0), dM1(a1, b1)} and let
qM0×M1

〈i,j〉 = qM0
i ⊕ qM1

j .

Examples. We describe the computable metric spaces which are most im-
portant to us. We do not give explicit enumerations of QM in these examples;
any reasonable enumerations will suffice.

(a) 2N (subsets of N) under the prefix metric:

d(A,B) =

{
2−n, if n = (µn)[A(n) 6= B(n)]

0, if A = B.

Take Q2N to be the finite sets. This is the Cantor space. Similarly, NN
under the prefix metric gives us the Baire space. Define QNN

to be the set
of functions with finite support.

These are the domains of classical computability theory with their standard
computable structure. In particular, the computable elements of 2N and NN are
exactly the computable sets and functions, and a partial function ψ : NN → NN
is computable iff there is an index e ∈ N such that (∀f)[ψ(f) ↓= ϕfe ⇐⇒ ϕfe is
total].

(b) R with the standard metric and QR = Q. Naturally, we can extend this
space to Rn or restrict it to [0, 1].

This provides definitions of computability for reals and for functions on R which
agree with the standard notions from computable analysis.

(c) C[0, 1] (the continuous functions on [0, 1]) under the uniform metric:

d(f, g) = max
x∈[0,1]

|f(x)− g(x)|.

We take QC[0,1] to be the polygonal functions having segments with rational
endpoints. Alternately, we could take QC[0,1] to be the rational polynomials
on [0, 1], which gives the same computable structure on C[0, 1] (see Caldwell
and Pour-El for details [26]).
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The computable elements of C[0, 1] are exactly the total computable functions
[0, 1]→ R.

(d) [0, 1]N (sequences of reals from [0, 1]) under the metric

d(α, β) =
∑
n∈N

|α(n)− β(n)|/2n.

This metric induces the product topology on [0, 1]N, producing a compact

space known as the Hilbert cube. Let Q[0,1]N be the finitely non-zero se-
quences of rationals from [0, 1].

The importance of [0, 1]N to the study of the degrees of continuous functions will
become clear. Although C[0, 1] is the space in which we are primarily interested,
[0, 1]N is the space with which we primarily work.

§3. The continuous degrees. We are now ready to define the degrees of
continuous functions, and in fact, of arbitrary members of computable metric
spaces. It is convenient to define an inclusive notion of relative computability so
that we may compare subsets of N, real numbers, continuous functions on [0, 1],
and infinite sequences of reals.

Definition 3.1. Given a ∈ M0 and b ∈ M1, a ≤r b (a is representation
reducible to b) if there is an index e ∈ N such that ϕλe is a representation of a
for every representation λ of b. If a ≤r b and b ≤r a, then a ≡r b (a and b are
representation equivalent).

It is clear that ≤r is reflexive and transitive. Corollary 4.3 will permit us to
drop the uniformity from the definition. In other words, it states that a ≤r b
iff every representation of b computes a representation of a. Another equivalent
formulation follows from the following result. Recall from the previous section
that ϕe is said to induce a partial computable function ψ : M0 →M1 if whenever
λ is a representation of a ∈M0, then either ψ(a) ↓ and ϕλe represents ψ(a) ∈M1,
or ψ(a) ↑ and ϕλe is not total.

Proposition 3.2. Let M0 and M1 be computable metric spaces. There is a
computable τ : N→ N such that, for all e ∈ N:

(a) ϕτ(e) induces a partial computable function ψe : M0 →M1, and
(b) if for every representation λ of a ∈ M0, ϕλe is a representation of b ∈ M1,

then ψe(a) = b.

Moreover, τ is uniform in the computable presentations of M0 and M1.

This implies that a ≤r b iff there is a partial computable ψ : M1 →M0 such
that ψ(b) = a. We omit the proof of Proposition 3.2. It is somewhat tedious
and the result plays no role below.

Definition 3.3. The continuous degrees are the equivalence classes under ≡r

of elements of computable metric spaces. We use ≤ for the induced partial order.
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The continuous degree of a ∈M is written as degr(a). If a ∈M0 and b ∈M1,
then define degr(a) ∪ degr(b) = degr(a ⊕ b). It should be clear that if a ≡r c
and b ≡r d, then (a⊕ b) ≡r (c⊕ d); so degr(a) ∪ degr(b) is well defined. Note
also that degr(a) ∪ degr(b) is the least upper bound of degr(a) and degr(b).

We say that a continuous degree is total if it contains a subset of N. Restricted
to elements of 2N and NN, representation reducibility coincides with Turing re-
ducibility. Therefore, the total degrees are an embedded copy of the Turing
degrees in the continuous degrees.

Note that representation reducibility applies to representations, which can
themselves be viewed as elements of NN (once we have chosen an effective enu-
meration of Q+). In particular, this allows us to compare an element of a
computable metric space to its own representations. The following proposition,
which is easily verified, tells us that representations behave very naturally under
representation reducibility.

Proposition 3.4. Let m be an element of a computable metric space M.

(a) If λ is a representation of m, then m ≤r λ.
(b) If degr(m) ≤ a and a is total, then m has a representation of degree ≤ a.
(c) The degree of m is total iff m has a representation λ ≡r m.

We show in Section 6 that there is a non-total continuous degree; in other
words, not every continuous degree contains a subset of N. Compare this to the
following propositions, which prove that every continuous degree is populated
by elements of [0, 1]N and, as the name suggests, of C[0, 1] (indeed, real analytic
elements of C[0, 1]).

Proposition 3.5. Every continuous degree contains an element of [0, 1]N.

Proof. Let M be an arbitrary computable metric space. Define a function
f : M → [0, 1]N by f(m) =

⊕
n min{d(m, qMn ), 1}. Clearly f is computable, so

f(m) ≤r m, for every m ∈M.
We must also prove that m ≤r f(m). Let λ : Q+ → N be a representation

of f(m). We construct a representation σ : Q+ → N for m. Take ε ∈ Q+

and let ε0 = min{ε, 1}. Search for an i ∈ N such that λ(ε0/2
i+2)(i) < ε0/2.

Assume such an i exists. The fact that |λ(ε0/2
i+2) − f(m)| < ε0/2

i+2 implies
that |λ(ε0/2

i+2)(i)− f(m)(i)| < 2iε0/2
i+2 = ε0/4, so f(m)(i) < 3ε0/4 < ε0 ≤ 1.

Therefore, d(m, qMi ) = f(m)(i) < ε0 ≤ ε, so we can let σ(ε) = i.
It remains to prove that the search for an appropriate i succeeds. Because QM

is dense inM, there is an i ∈ N such that d(m, qMi ) < ε0/4. But f(m)(i) < ε0/4
and |λ(ε0/2

i+2)(i)−f(m)(i)| < ε0/4 imply that λ(ε0/2
i+2)(i) < ε0/2. Therefore,

for every ε ∈ Q+, σ(ε) ↓. So, σ is a representation of m.
We have computed σ uniformly from λ. This proves that m ≤r f(m). There-

fore, f(m) ∈ [0, 1]N has the same degree as m, for all m ∈ M. But M is
arbitrary, so every continuous degree contains an element of [0, 1]N. a

Proposition 3.6. Every continuous degree contains an element of C[0, 1].
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Proof. Let v be an arbitrary continuous degree. By the previous proposition,
v contains a sequence α ∈ [0, 1]N. Define a function f ∈ C[0, 1] such that
f(2−n) = α(n)/2−n, for every n. Define f be linear on every segment of the
form [2−n−1, 2−n] and, because continuity leaves us no choice, let f(0) = 0.
Then it is clear that α ≡r f , so f ∈ v. a

A priori, we might expect that an understanding of the continuous degrees
would require consideration of “pathological” continuous functions, but already
we can see that this is not necessary. The function constructed in the proof above
has a computable modulus of uniformity—in fact it is Lipschitz. Furthermore,
it would not be hard, using the standard “smoothing” technique, to modify
this construction to show that every continuous degree contains an infinitely
differentiable f ∈ C[0, 1] which computes the sequence of its own derivatives
(i.e., f (n) ≤r f , uniformly in n), but we can do better with an even simpler
construction.

Proposition 3.7. Every continuous degree contains a real-analytic function.

Proof. Let v be an arbitrary continuous degree and let α ∈ [0, 1]N be a
sequence of degree v. Define a real-analytic function f : [0, 1] → R by f(x) =∑∞

n=0 α(n)xn/n! . It is clear that f ≤r α. Note that α(n) = f (n)(0) for each
n. But any real-analytic function computes the sequence of its own derivatives
[27], so α ≤r f . Therefore, v contains a real-analytic element of C[0, 1]. a

§4. The enumeration degrees. Kleene introduced a notion of computable
reducibility for partial functions which coincides with Turing reduction on the
total functions [14]. The degrees induced by this reducibility are called the
partial degrees. Modifying Myhill’s definition of the partial degrees [22], Rogers
gave an alternate definition of the same degree structure as the enumeration
degrees—the degrees of relative enumerability [30]. We follow Rogers.

Recall that We is the eth computably enumerable set and De is the finite set
with canonical index e. We say that A ⊆ N is enumeration reducible to B ⊆ N
(A ≤e B) if there exists a z ∈ N such that

(∀x)[x ∈ A ⇐⇒ (∃u)[〈x, u〉 ∈ Wz ∧Du ⊂ B]].

Informally, A ≤e B if there is effective procedure which, when given an enu-
meration of B—in any order—produces an enumeration of A. Write A ≡e B if
A ≤e B and A ≥e B and define the enumeration degrees to be the equivalence
classes under A ≡e B.

If we identify partial functions with their graphs, enumeration reducibility
induces the relation defined by Kleene. An enumeration degree is called total
if it contains the graph of a total function, or equivalently, if it contains the
graph of a characteristic function χA, for some A ⊆ N. It is well known that
A ≤T B iff χA ≤e χB. Therefore, the Turing degrees embed into the enumeration
degrees as the total degrees. We can also embed the continuous degrees into the
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Figure 1. Nested degree structures.

enumeration degrees . If α ∈ [0, 1]N, define

Ξ(α) = {〈0, i, j〉 | q[0,1]
j < α(i)} ∪ {〈1, i, j〉 | q[0,1]

j > α(i)}.

Note that from a representation of a sequence α ∈ [0, 1]N we can enumerate
Ξ(α) ⊆ N and from an enumeration of Ξ(α) we can compute a representation
of α. Furthermore, both of these computations can be done uniformly. These
observations prove the following.

Proposition 4.1. If α, β ∈ [0, 1]N, then α ≤r β iff Ξ(α) ≤e Ξ(β).

Therefore, the continuous degrees form a natural substructure of the enumera-
tion degrees. It is not hard to see that this embedding of the continuous degrees
into the enumeration degrees agrees with the usual embedding of the Turing
degrees (hence the total degrees are defined unambiguously). Furthermore, each
of these embeddings preserves joins. From now on, we identify the continuous
degrees with their image in the enumeration degrees and the Turing degrees with
the total degrees.4 We prove below that both embeddings are nontrivial, as is
implied by Figure 1.

A useful equivalent formulation of enumeration reducibility is implicit in work
of Selman [35]. This characterization was rediscovered by Rozinas [31].

Theorem 4.2. Let A,B ⊆ N.

(a) (Selman, 1971) A ≤e B iff (∀C)[B is c.e. in C =⇒A is c.e. in C].
(b) (Rozinas, 1978) A ≤e B iff (∀C)[B ≤e χC =⇒A ≤e χC ].

Note that B is c.e. in C iff B ≤e χC , so (a) and (b) are identical. These results
essentially remove uniformity from the definition of enumeration reducibility5;
we now apply this to representation reducibility.

4In particular, for A ⊆ N we consider degT (A) = degr (A) = dege(χA), even though
formally these are different sets.

5We can formalize this observation as follows. Rogers embeds the enumeration degrees into
the Medvedev lattice using ι(A) = {f ∈ NN | range(f) = A} for A 6= ∅ [30]. As a consequence
of Theorem 4.2, Medvedev reducibility (which is uniform) [20] and Mučnik reducibility (which
is non-uniform) [21] agree on the image of ι.
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Corollary 4.3. Given a ∈ M0 and b ∈ M1, where M0 and M1 are com-
putable metric spaces, a ≤r b iff every representation of b computes a represen-
tation of a.

Proof. If a ≤r b, then it is immediate that every representation of b computes
a representation of a. For the other direction, assume that a �r b. Choose
α, β ∈ [0, 1]N such that α ≡r a and β ≡r b. So α �r β, which implies that
Ξ(α) �e Ξ(β). By Theorem 4.2(b), there is a C ⊆ N such that Ξ(β) ≤e χC but
Ξ(α) �e χC . Translating back, we get that β ≤r C and α �r C. Unwinding
further, b ≤r C and a �r C. By Proposition 3.4, there is a representation
λ ≤r C for b. But a �r λ, so λ does not compute any representation of a. a

Next we return to the question motivating this investigation.

Corollary 4.4. If f ∈ C[0, 1] has non-total degree, then f has no represen-
tation of least Turing degree.

Proof. Assume that f has a representation λ : Q+ → N with least Turing
degree among all representations of f . We know that λ has total degree, so by
Proposition 3.4(c), λ has a representation σ : Q+ → N such that λ ≡r σ. Every
representation of f computes λ, hence computes σ. Therefore by Corollary 4.3,
λ ≤r f . But f ≤r λ by Proposition 3.4(a). So f ≡r λ, which means that f has
total degree. a

We construct a non-total continuous degree in Section 6, answering Pour-El
and Lempp’s question in the negative. We finish this section with one more
consequence of Theorem 4.2.

Corollary 4.5. Enumeration degrees (hence continuous degrees) are deter-
mined by the total degrees above them.

As it turns out, continuous degrees are not determined by the total degrees
below them (see Theorem 9.5).

§5. Computably diagonalizable sequences. Having completed the pre-
liminaries, the next two sections are devoted to our first main result: not every
continuous degree is total. The problem is reduced to the construction of a se-
quence α ∈ [0, 1]N with the unusual property that it cannot be diagonalized by
a computable operator.

A sequence α ∈ [0, 1]N is computably diagonalizable if there is an x ∈ [0, 1]
such that x ≤r α and x /∈ range(α). Put another way, if a sequence α ∈ [0, 1]N

is not computably diagonalizable, then α is a list of all reals in [0, 1] which are
computable from itself. These sequences play an important role in the theory
of the continuous degrees; by Proposition 5.3, a continuous degree is non-total
iff it contains a sequence which is not computably diagonalizable. Thus, the
existence of such a sequence is sufficient to answer Question 1.2. We construct
a sequence which is not computably diagonalizable in the next section.
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The following lemma proves that we can compute a non-member of a sequence
α ∈ [0, 1]N from any representation of α. Note that for a sequence to fail to
be computably diagonalizable, it must be impossible to compute the same x /∈
range(α) from all representations (here we are using Corollary 4.3).

Lemma 5.1. Let α ∈ [0, 1]N. If λ is any representation of α, then there is an
x ∈ [0, 1] such that x ≤r λ (which is equivalent to x ≤T λ) and x /∈ range(α).

Proof. Let λ : Q+ → N be any representation of α. We construct a nested
sequence of closed intervals {In}n∈N computably in λ such that, for each n,
|In| = 3−n and if i < n, then α(i) /∈ In. Let I0 = [0, 1]. Assume that In = [l, r]
has been defined; we define In+1 by

In+1 =

{
[l, (2l + r)/3], if λ(2−n3−n−2)(n) ≥ (l + r)/2

[(l + 2r)/3, r], otherwise.

So In+1 is either the right third or left third of In. Also |λ(2−n3−n−2)(n)−α(n)| <
3−n−2, so α(n) /∈ In+1. Let x =

⋂
In. Then x /∈ range(α) and x is computable

from λ, as required. a
Next we give a simple condition under which a sequence has total degree.

Lemma 5.2. If α ∈ [0, 1]N contains no binary rationals, then it has total de-
gree.

Proof. We can uniformly compute the (unique) binary expansion of each
α(n) from any representation of α. Therefore, if we define a set A ⊆ N by

A = {〈n, k〉 | the kth digit in the binary expansion of α(n) is 1},
then A ≡r α. a

Proposition 5.3. A continuous degree is non-total iff it contains a sequence
α ∈ [0, 1]N which is not computably diagonalizable.

Proof. First assume that α ∈ [0, 1]N has total degree. By Proposition 3.4(c),
α has a representation λ ≡r α. By Lemma 5.1, there is an x ∈ [0, 1] with x ≤r λ
and x /∈ range(α). So x ≤r α, which means that α is computably diagonalizable.

Next, assume that v is a continuous degree containing only computably di-
agonalizable sequences. By Proposition 3.5, we can take α ∈ [0, 1]N such that
degr(α) = v. Let {bi}i∈N be an effective enumeration of the nonnegative bi-
nary rationals. Define β ∈ [0, 1]N by β =

⊕
〈i,j,k〉min{α(i)bj + bk, 1}. Clearly

α ≡r β, so β ∈ v. By assumption, every sequence of degree v is computably
diagonalizable, hence there is an r ∈ [0, 1] such that r ≤r β and r /∈ range(β).

We claim that r/(β(n) + 1) cannot be a binary rational, for any n ∈ N.
Assume, for a contradiction, that r/(β(n) + 1) = bm. There are two cases;
either r = (β(n) + 1)bm = ((α(i)bj + bk) + 1)bm = α(i)(bjbm) + (bkbm + bm),
where n = 〈i, j, k〉, or r = (β(n) + 1)bm = 2bm. In both cases, r is of the
form α(i)c1 + c2, where c1 and c2 are nonnegative binary rationals. Therefore,



12 JOSEPH S. MILLER

r ∈ range(β), which is a contradiction. This implies that r/(β(n) + 1) ∈ [0, 1] is
never a binary rational.

Therefore, the sequence γ ∈ [0, 1]N, γ =
⊕

n r/(β(n) + 1) contains no binary
rationals. By Lemma 5.2, degr(γ) is total. But clearly γ ≡r β, so v is total. a

§6. A non-total continuous degree. In this section, we construct a se-
quence of reals which is not computably diagonalizable. We require the fol-
lowing classical fixed point theorem for multivalued functions on [0, 1]N. Recall
that a subset S ⊆ [0, 1]N is convex if whenever x ∈ [0, 1] and α, β ∈ S, then
xα + (1− x)β ∈ S (where the sum is defined pointwise).

Theorem 6.1. Assume that Ψ: [0, 1]N → [0, 1]N is a multivalued function with
a closed graph such that Ψ(α) is nonempty and convex for each α ∈ [0, 1]N. Then
there is a fixed point α of Ψ (i.e., α ∈ Ψ(α)).

The generalization of Brouwer’s fixed point theorem to compact convex re-
gions in Banach spaces was done by Schauder [33], though already in 1922,
Birkhoff and Kellogg had proved important special cases [3]. Kakutani gen-
eralized Brouwer’s theorem to multivalued functions with closed graphs which
take points to nonempty convex sets [13]. The theorems of Schauder and Kaku-
tani were unified by Bohnenblust and Karlin [4], but this is not the earliest
result which implies Theorem 6.1. That honor likely goes to a purely topolog-
ical generalization of Kakutani’s fixed point theorem proved by Eilenberg and
Montgomery [8].

The following lemma provides the function to which Theorem 6.1 is applied.

Lemma 6.2. There is a multivalued function Ψ: [0, 1]N → [0, 1]N with a closed
graph and nonempty, convex images such that, for all e ∈ N, α ∈ [0, 1]N and
β ∈ Ψ(α), if for every representation λ of α, ϕλe is a representation of x ∈ [0, 1],
then β(e) = x.

The intuition behind the construction of Ψ is fairly simple. It must be shown
that each ϕe “induces” a multivalued function ψe : [0, 1]N → [0, 1] such that for
each α ∈ [0, 1]N, ψe(α) is the smallest closed interval consistent with the behavior
of ϕe on (certain special) representations of α. Then we simply let Ψ =

⊕
e ψe

to satisfy the lemma. We describe the details of this construction below, but
first we combine the lemma with Theorem 6.1 to prove the main result of this
section.

Theorem 6.3. There is a sequence α ∈ [0, 1]N which is not computably diag-
onalizable. In particular, no fixed point of the multivalued function Ψ: [0, 1]N →
[0, 1]N constructed in Lemma 6.2 is computably diagonalizable.

Proof. By Theorem 6.1, Ψ has a fixed point α ∈ [0, 1]N. We must prove that
α is not computably diagonalizable. Recall that α ∈ [0, 1]N is not computably
diagonalizable if x ∈ range(α) whenever x ∈ [0, 1] and x ≤r α. Assume that
x ∈ [0, 1] and x ≤r α. So there is an e ∈ N such that if λ is a representation
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of α, then ϕλe is a representation of x. From the lemma, using the fact that
α ∈ Ψ(α), α(e) = x. In particular, x ∈ range(α). But x was arbitrary, so α is
not computably diagonalizable. a

Not only is the α constructed above not computably diagonalizable, it satisfies
an apparently much stronger property: if x ∈ [0, 1] and ϕe witnesses the fact
that x ≤r α (i.e., ϕλe (α) is a representation of x for every representation λ of
α), then α(e) = x. Such a sequence could be called diagonally not computably
diagonalizable. We do not know if this stronger property plays an important
theoretical role.

Together with Proposition 5.3 and Corollary 4.4, Theorem 6.3 yields two of
the primary results of this paper, and in particular, the answer to Question 1.2.

Corollary 6.4. There is a non-total continuous degree.

Corollary 6.5. There is a continuous function f ∈ C[0, 1] which does not
have a representation of least Turing degree.

We now turn to the construction of a multivalued function Ψ: [0, 1]N → [0, 1]N

satisfying Lemma 6.2. The graph of Ψ will not only be closed but, in an ap-
propriate sense, will be a Π0

1 class. Recall that a Π0
1 class (of sets) is just an

effectively closed subset of 2N. More formally, a tree is a subset of 2<N which is
closed downward under initial segments. If T ⊆ 2<N is a tree, we write [T ] ⊆ 2N

for the set of infinite paths through T (which we identify with subsets of N).
Note that the closed subsets of 2N are exactly the sets of the form [T ], for trees
T ⊆ 2<N. When T is a computable tree, then we call [T ] a Π0

1 class. Equiva-
lently, the Π0

1 classes are the Π0
1-definable subsets of 2N. More information on

Π0
1 classes can be found in [5, 6].
Let π : 2N → [0, 1] be defined by π(A) =

∑
i∈A 2−i−1, for A ⊆ N. In other

words, A encodes a binary expansion of π(A). Now define Π: 2N → [0, 1]N by
Π(A) =

⊕
n∈N π(A(n)), where A(n) = {i | 〈n, i〉 ∈ A}. If Π(A) = α, then we

call A a b-representation of α. It is important to note that we can uniformly
compute representations of sequences from b-representations.6

Lemma 6.6. There is a computable Γ: 2N → NQ+
such that if A ⊆ N is a

b-representation of α ∈ [0, 1]N, then Γ(A) is a representation of α.

Proof. Compute Γ as follows. Let A ⊆ N and α = Π(A). For ε ∈ Q+, choose
n ∈ N least such that (n + 2)2−n < ε. Let β =

⊕
i∈N
∑

k∈A(i),k≤n−i 2
−k−1. For

6The reverse is not true, so b-representation is not equivalent—again in the sense of Kreitz
and Weihrauch [15, 43]—to our standard representation for sequences. In fact, there is a
computable α ∈ [0, 1]N without a computable b-representation. We use b-representations
because for every α ∈ [0, 1]N, the set Π−1(α) ⊆ 2N of b-representations of α is compact. It
is worth noting that there are representations equivalent to the standard one which also have
this property.
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i ≤ n, |α(i)− β(i)| ≤ 2−n+i, so

d[0,1]N(α, β) =
∞∑
i=0

|α(i)− β(i)|/2i ≤
n∑
i=0

2−n+i/2i +
∑
i>n

1/2i = (n+ 2)2−n < ε.

Note that β = q
[0,1]N
m for some m ∈ N. Define Γ(A)(ε) = m. Therefore, Γ(A) is

a representation of α. Clearly, Γ: 2N → NQ+
is computable. a

In the following proof, we construct Ψ so that

{A ⊆ N | A = B ⊕ C where Π(C) ∈ Ψ(Π(B))}
is a Π0

1 class. Although this more than the lemma requires, it will be very
useful in Sections 8 and 9. It is worth noting that the definition of Π0

1 class
can be generalized from subsets of 2N to subsets of arbitrary computable metric
spaces and even effective topological spaces [18], providing a natural notion of
effectiveness for closed sets. These classes (which Weihrauch calls co-r.e. closed
sets [43]) play an important role in computable analysis. The generalization
would not significantly simplify our presentation, so we avoid it here. However,
under the broader definition, the graph of Ψ would itself be a Π0

1 class.

Proof of Lemma 6.2. For A ⊆ N and e ∈ N, we inductively define closed
intervals I(A; e, n) as follows. Let I(A; e, 0) = [0, 1]. For n > 0, let

E =
[
ϕΓ(A)
e (2−n)− 2−n, ϕΓ(A)

e (2−n) + 2−n
]
.

Note that E may not be defined; if it is, then let

I(A; e, n) =

{
I(A; e, n− 1) ∩ E, if I(A; e, n− 1) ∩ E 6= ∅
I(A; e, n− 1), otherwise.

Then I is a partial computable function from 2N×N2 to rational subintervals of
[0, 1]. Define I(A; e, ω) =

⋂
n∈N I(A; e, n), where we ignore undefined terms and

interpret the empty intersection as [0, 1]. Then I(A; e, ω) is a nested intersection
of (possibly infinitely many) compact intervals, so it is either a closed interval

or a single point. In particular, I(A; e, ω) is not empty. Note that if ϕ
Γ(A)
e is a

representation of x ∈ [0, 1], then I(A; e, ω) = {x}. Informally, I(A; e, ω) captures

the ambiguity of ϕ
Γ(A)
e .

Even if A,B ∈ N are b-representations of the same sequence, I(A; e, ω) and
I(A; e, ω) need not be equal. We next want to define closed intervals J(A; e, n,m)
which address this irregularity. First define σ, τ ∈ 2<N to be compatible, written
as compat(σ, τ), if they can be extended to b-representations of the same se-
quence. Compatibility is clearly decidable. Note that for A ⊆ N, if σ ∈ 2<N can
not be extended to a b-representation of Π(A), then for large enough m ∈ N,
A � m and σ are not compatible. Now define the convex union of closed inter-
vals [a, b] and [c, d] to be [a, b] t [c, d] = [min{a, c},max{b, d}]. For A ⊆ N and
e, n,m ∈ N, let

J(A; e, n,m) =
⊔
{I(σ; e, n) | σ ∈ {0, 1}m and compat(σ,A � m)},
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where J(A; e, n,m) is defined only if all the terms in the convex union are defined.
It is clear from the definition that J(A; e, n,m) is a partial computable function.
Observe that if J(A; e, n,m) is defined and m̂ > m, then J(A; e, n, m̂) is also de-
fined and J(A; e, n, m̂) ⊆ J(A; e, n,m); the convex union will not gain new (dis-
tinct) terms but it may lose terms corresponding to σ ∈ 2m which cannot be ex-
tended to a b-representation of Π(A). Define J(A; e, n, ω) =

⋂
m∈N J(A; e, n,m),

where the intersection ignores undefined terms but we interpret the empty in-
tersection as undefined. We claim that

J(A; e, n, ω) =
⊔
{I(B; e, n) | B ⊆ N and Π(B) = Π(A)}.

This is a consequence of compactness. First assume that there is a B ⊆ N
such that Π(B) = Π(A) and I(B; e, n) ↑. In this case, the right side of the
equality is clearly undefined. Also note that J(A; e, n,m) is undefined for every
m. Hence, J(A; e, n, ω) is undefined, so the equality holds. Therefore, we may
assume that for every b-representation B ⊆ N of Π(A), I(B � k ; e, n) ↓ for
large enough k ∈ N. But the class of b-representations of Π(A) is a closed
subset of 2N. So by compactness, we can find a single k which works for all
B. Now choose a number m ≥ k large enough that every σ ∈ 2k which does
not extend to a b-representation of Π(A) is incompatible with A � m. For this
m, J(A; e, n,m) = J(A; e, n, ω) =

⊔
{I(B; e, n) | B ⊆ N and Π(B) = Π(A)},

proving the claim. It follows that if A,B ∈ N are b-representations of the same
sequence, then J(A; e, n, ω) = J(B; e, n, ω) (or both are undefined).

Let J(A; e, ω, ω) =
⋂
n∈N J(A; e, n, ω) =

⋂
n,m∈N J(A; e, n,m), where we ignore

undefined terms and take the empty intersection to be [0, 1]. So J(A; e, ω, ω) ⊆
[0, 1] is either a closed interval or a single point and Π(A) = Π(B) implies that
J(A; e, ω, ω) = J(B; e, ω, ω).7

Fix A ⊆ N and e ∈ N and assume that for every representation λ of Π(A) =

α ∈ [0, 1]N, ϕλe represents x ∈ [0, 1]. So a fortiori, ϕ
Γ(B)
e represents x ∈ [0, 1]

for every b-representation B ⊆ N of α. We claim that J(A; e, ω, ω) = {x}.
Fix n ∈ N. We know that for every b-representation B ⊆ N of α, I(B; e, n)
is defined, contains x and has length at most 2−n+1. Therefore, J(A; e, n, ω)
contains x and has length less than 2−n+2. It follows that J(A; e, ω, ω) = {x}.

We can now define the multivalued function Ψ: [0, 1]N → [0, 1]N by Ψ(α) =⊕
e∈N J(A; e, ω, ω), where A ⊆ N is any b-representation of α. Note that Ψ(α)

does not depend on the choice of A. It is clear from the properties of J(A; e, ω, ω)
that Ψ has nonempty, convex images and that for all e ∈ N, α ∈ [0, 1]N and
β ∈ Ψ(α), if ϕλe is a representation of x ∈ [0, 1] for every representation λ of
α, then β(e) = x. To complete the proof of the lemma we must show that the
graph of Ψ is closed.

7The informal description of this construction on page 12 mentions a multivalued function
ψe : [0, 1]N → [0, 1] which is “induced” by ϕe. That function, in the notation of the construc-
tion, is given by ψe(α) = J(A; e, ω, ω), where A ⊆ N is any b-representation of α (and the
choice of A is irrelevant).
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Define a class G ⊆ 2N by

A⊕B ∈ G ⇐⇒ (∀e, n,m)[J(A; e, n,m) ↓ =⇒π(B(e)) ∈ J(A; e, n,m)].

This is a Π0
1 definition (J(A; e, n,m) ↓ is Σ0

1 and π(B(e)) ∈ J(A; e, n,m) is Π0
1).

Therefore, G is a Π0
1 class. In particular, G is a closed (hence compact) subset

of 2N. But note that G = {A⊕ B ⊆ N | Π(B) ∈ Ψ(Π(A))}. In other words, the
graph of Ψ is the image of G under Π× Π: 2N × 2N → [0, 1]N × [0, 1]N. But the
continuous image of a compact set is compact, so the graph of Ψ is closed. a

§7. Diagonalizing sequences of computable reals. In the introduction,
we drew an analogy between continuous functions with non-total degree and
countable structures with no Turing degree—in other words, with no presenta-
tion of least Turing degree—as studied by L. J. Richter [29]. We now make a
closer comparison of these phenomena. Richter produced structures which have
no Turing degree in two ways. For some theories (e.g., partial orders and abelian
groups), she showed that there were structures realizing every possible enumer-
ation degree. Because there are non-total enumeration degrees, such theories
have structures with no Turing degree. For other theories (e.g., linear orders
and boolean algebras), she showed that every structure has a minimal pair of
presentations. For such theories, no structure can compute a non-computable
subset of N, so no non-computable structure has a Turing degree. In this section,
we shown that neither approach can be used to produce a continuous function
with non-total degree. It follows from Corollary 7.3 that not every enumera-
tion degree is realized by a continuous function and that every non-computable
continuous function computes a non-computable subset of N.

We turn to the details.

Definition 7.1. A non-total enumeration degree is quasi-minimal if 0 is the
only total degree below it.

Medvedev established the existence of quasi-minimal degrees, and thus of non-
total enumeration degrees [20]. As Myhill later showed, the subsets of N of
quasi-minimal degree form a co-meager set [22]; quasi-minimal enumeration de-
grees are the rule, not the exception. Our goal is to prove that the continuous
degrees are a proper substructure of the enumeration degrees by showing that no
continuous degree is quasi-minimal. Again we exploit the notion of computable
diagonalizability.

Theorem 7.2. Every sequence α ∈ [0, 1]N of computable reals is computably
diagonalizable.

Before proving the theorem we consider its consequences.

Corollary 7.3. No continuous degree is quasi-minimal.

Proof. Assume that v is a quasi-minimal continuous degree. Since v is non-
total, by Proposition 5.3, v contains a sequence α ∈ [0, 1]N which is not com-
putably diagonalizable. For each coordinate α(i) of α, we have that α(i) ≤r α.
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But α(i) ∈ [0, 1] has total degree, so it must be computable by the quasi-
minimality of v. Therefore, α ∈ v is a sequence of computable reals. By
Theorem 7.2, α is computably diagonalizable, but this is a contradiction. a

In other words, every non-computable f ∈ C[0, 1] computes a non-computable
subset of N. As explained above, Corollary 7.3 implies that not every enumer-
ation degree is continuous. Even better, we can distinguish the enumeration
degrees and continuous degrees as partial orders. If a is a minimal Turing de-
gree, then any non-total continuous degree below a would be quasi-minimal,
hence there are none. This proves the following.

Corollary 7.4. The minimal continuous degrees are exactly the minimal
Turing degrees.

In particular, minimal continuous degrees exist. Gutteridge proved that there
are no minimal enumeration degrees [11] (another proof was given by Cooper
[7]). Therefore, the continuous degrees are not elementarily equivalent to the
enumeration degrees. The same question is answered for the Turing degrees in
Proposition 8.8, where we exhibit a natural elementary difference between the
continuous degrees and the Turing degrees.

We turn to the proof of Theorem 7.2. We need a slight generalization of a
result of V. P. Orevkov [24]. Working in the Russian school of constructive
mathematics, Orevkov constructed a continuous retraction of the constructive
points of the unit square [0, 1]2 onto its boundary ∂([0, 1]2). In classical terms,
his construction gives the following theorem.

Theorem 7.5 (Orevkov, 1963). There is a partial computable g : [0, 1]2 →
∂([0, 1]2) defined for all computable points and fixing points on ∂([0, 1]2).

The construction in the proof of Lemma 7.7 is essentially identical to Orevkov’s
(see Beeson [2] for a detailed presentation of a variant of this proof); we give it
for the sake of completeness. It is well know that there is a nonempty Π0

1 class
which contains no computable elements [14]. Using this fact, we first produce a
computable “singular covering” of (the computable reals in) [−1, 1].

Lemma 7.6. There is a computable sequence {Jn}n∈N of closed rational inter-
vals in [−1, 1] such that

(a) any two distinct Jn intersect at most on an endpoint,
(b) J =

⋃
n∈N Jn contains all computable reals in [−1, 1],

(c) if x ∈ (−1, 1) is an endpoint of Jn, then x is also the endpoint of Jk for
some k 6= n, and

(d) J is open (in the subspace topology on [−1, 1]).

Proof. Associate to each σ ∈ 2<N a closed rational interval Iσ ⊆ [0, 1] by
successive bisection as follows. Let I∅ = [0, 1]. If Iσ = [lσ, rσ] has already been
defined, let Iσ̂0 = [lσ, (lσ + rσ)/2] and Iσ̂1 = [(lσ + rσ)/2, rσ]. Note that lσ
has binary expansion σ̂0ω and rσ has binary expansion σ̂1ω. Let T ⊆ 2<N be
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a computable infinite tree with no computable paths. Let S = {σn}n≥1 be an
enumeration without repetitions of all σ /∈ T such that (∀τ ⊂ σ)[τ ∈ T ]. Note
that S must be infinite because T is infinite and has no computable paths. Set
J0 = [−1, 0] and Jn = Iσn , for n ≥ 1. Let J =

⋃
n∈N Jn.

Let σ, τ ∈ 2<N be distinct. If Iσ and Iτ intersect at more than a single point,
then either σ ⊂ τ or τ ⊂ σ, so it is not possible to have both σ and τ in S. This
proves (a). Take x ∈ [−1, 1]. If x < 0 then x ∈ J , so assume x ∈ [0, 1]. Note
that x /∈ J iff the binary expansion of x is in [T ]. The fact that [T ] contains
no computable paths proves (b). Now note that 0ω /∈ [T ], so 0m = σn ∈ S for
some m,n ∈ N. Thus 0 is an endpoint of both J0 and Jn. Next consider lσ 6= 0,
for some σ ∈ S. As noted above, lσ has binary expansion σ̂0ω. Let b ∈ 2N be
the other binary expansion of lσ (which is a binary rational). Because b /∈ [T ]
and σ 6⊂ b, there must be a τ 6= σ such that τ ⊂ b and τ ∈ S. If some binary
expansion of x begins with τ , then x ∈ Iτ . Therefore, lσ ∈ Iτ . Since lσ ∈ Iσ ∩ Iτ ,
we must have lσ = rτ by (a). The same argument holds if rσ 6= 1, for some
σ ∈ S. This proves (c). Finally, (d) follows from (c). a

Note that the degrees of reals in [−1, 1]rJ are exactly the same as the degrees
of paths through T . We return to this observation in Section 8; for now, it is
sufficient that J contains the computable reals in [−1, 1].

Lemma 7.7. Let x ∈ R2 and ε ∈ R+ be computable. There is a partial com-
putable gx,ε : R2 → R2 r (x − ε, x + ε)2 which is defined for all computable
points, fixes points on R2r (x− ε, x+ ε)2, and maps points in (x− ε, x+ ε)2 to
∂([x− ε, x+ ε]2). Moreover, we can compute gx,ε uniformly from x and ε.

Proof. First we construct g〈0,0〉,1. Take {Jn}n∈N from the previous lemma.
Let An =

⋃
k≤n(Jn× Jk ∪ Jk × Jn). Define B0 = R2r (−1, 1)2 and Bn+1 = Bn ∪

An. We define a computable sequence {hn}n∈N of partial computable functions
hn : R2 → R2 such that range(hn) = Bn and hn+1 � Bn = hn. Let h0 be the
identity on B0. So Bn = (R2 r (−1, 1)2) ∪ (

⋃
k<n Jk)

2.
Suppose that hn has been defined. We must extend it to An. Note that An is

a finite union of rectangles properly contained in C = Jn× [−1, 1]∪ [−1, 1]× Jn
and that only the boundary of C intersects Bn. Let P1, . . . , Pm be the connected
components of An. If ∂Pi∩∂C = ∅, then Pi = C. But this is impossible, because
An ⊇ Pi is not all of C; in particular, Jn × Jn+1 ⊂ C, but Jn × Jn+1 * An.
Therefore, some open segment si on the boundary of Pi is in the interior of C;
clearly si is disjoint from Bn. In other words, the only part of Pi on which hn
might already be defined is ∂Pi r si.

Now extend hn to Pi as follows. First extend hn to all of ∂Pi r si such that
hn[∂Pi r si] ⊆ ∂([−1, 1]2). This is possible because we can easily extend hn to
any segment for which it is already defined on the endpoints. It is also easy to
retract Pi onto ∂Pi r si (because Pi is simply connected). By composing the
retraction with the extension of hn, we define hn+1 on Pi. Doing this for each
1 ≤ i ≤ m defines hn+1 on An, as required.
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To compute g〈0,0〉,1(z), search for a n ∈ N such that z is in the interior of Bn. If
such an n is found, set g〈0,0〉,1(z) = hn(z). Therefore, g〈0,0〉,1 : R2 → R2r (−1, 1)2

is a partial computable function which fixes points on R2 r (−1, 1)2, and maps
points in (−1, 1)2 to ∂([−1, 1]2). Moreover, g〈0,0〉,1 is defined for all points in the
interior of some Bn. These are exactly the points in (R2 r [−1, 1]2) ∪ J2, where
J =

⋃
n∈N Jn (because the endpoints of Ji are in the interior of

⋃
n≤j Jn, for large

enough j). Therefore, g〈0,0〉,1(z) is defined for all computable z ∈ R2.
Finally, if x ∈ R2 and ε ∈ R+ are computable, define gx,ε(z) = εg〈0,0〉,1((z −

x)/ε)+x. Note that gx,ε has the required properties. The construction is clearly
uniform in x and ε. a

In the next proof, we use the fact that gx,ε moves every point in R2 less than

2
√

2 ε, while also ensuring that no point in the range is within less than ε of x.

Proposition 7.8. There is a partial computable function f : [0, 1]N → [0, 1]2

such that f is defined on all sequences of computable reals and if f(α)↓ = 〈a0, a1〉,
then either a0 /∈ range(α) or a1 /∈ range(α).

Proof. We inductively define a sequence {fn}n∈N of functions fn : [0, 1]N →
[0, 1]2. Let α ∈ [0, 1]N and set f 0(α) = 〈1/2, 1/2〉. Assume that we have already
defined fn(α). Let

fn+1(α) = g〈α(j),α(k)〉,4−n−1/2(fn(α)),

where n = 〈j, k〉. Define f(α) = limn→∞ f
n(α). It remains to show that f

satisfies the theorem.
First fix α ∈ [0, 1]N and assume that fn(α) ↓ for all n. We know that, for

n = 〈j, k〉, the function g〈α(j),α(k)〉,4−n−1/2 moves each point by less than
√

2 4−n−1.
Hence f(α) = limn→∞ f

n(α) exists and, in fact,

|f(α)− fn(α)| <
∞∑
i=n

√
2 4−i−1 =

√
2

3
4−n.

In particular, |f(α) − 〈1/2, 1/2〉| <
√

2/3 < 1/2, so f(α) ∈ [0, 1]2. Also note
that f(α) is computable from the sequence {fn(α)}n∈N. But {fn(α)}n∈N is
computable uniformly from α, so f : [0, 1]N → [0, 1]2 is a partial computable
function.

Now fix α ∈ [0, 1]N with f(α) ↓= 〈a0, a1〉. Assume, for a contradiction, that
both a0 ∈ range(α) and a1 ∈ range(α). In particular, assume that 〈a0, a1〉 =
〈α(j), α(k)〉. Consider fn+1(α), where n = 〈j, k〉. It follows from the definition
of g〈α(j),α(k)〉,4−n−1/2 that |〈α(j), α(k)〉 − fn+1(α)| ≥ 4−n−1/2. But from above,

we know that |f(α)− fn+1(α)| < (
√

2/3) 4−n−1. Therefore,

|〈α(j), α(k)〉 − f(α)| ≥ |〈α(j), α(k)〉 − fn+1(α)| − |f(α)− fn+1(α)|

>
1

2
4−n−1 −

√
2

3
4−n−1 > 0.

But this is a contradiction. So either a0 /∈ range(α) or a1 /∈ range(α).



20 JOSEPH S. MILLER

Finally, assume that α ∈ [0, 1]N is a sequence of computable reals. We show,
by induction on n, that fn(α) converges to a computable point for each n. As-
sume that fn(α) is defined and is computable. Let n = 〈j, k〉; the function
g〈α(j),α(k)〉,4−n−1/2 is partial computable and converges on computable points.
Thus, fn+1(α) = g〈α(j),α(k)〉,4−n−1/2(fn(α)) exists. Also, the image of a com-
putable point under a partial computable function is computable, so fn+1(α)
is computable. Therefore, fn(α) exists for all n. This implies that f(α) con-
verges. a

We have all but finished the proof of Theorem 7.2.

Proof of Theorem 7.2. Consider the partial computable coordinate func-
tions f0 and f1 of the function f : [0, 1]N → [0, 1]2 constructed in Proposi-
tion 7.8. If α ∈ [0, 1]N is a sequence of computable reals, then f(α) ↓ and
either f0(α) /∈ range(α) or f1(α) /∈ range(α). Therefore, α is diagonalized by
either f0 or f1. a

This proves that two partial computable functions suffice to diagonalize all
sequences in [0, 1]N of computable reals. It is worth pointing out that no single
partial computable function can diagonalize all such sequences. To see this,
assume that g : [0, 1]N → [0, 1] is a partial computable function which converges
on sequences of computable reals. Let αx = (x, 0, 0, . . . ) and define a partial
computable function h : [0, 1] → [0, 1] by h(x) = g(αx). Note that h must
converge on all computable reals in [0, 1]. Therefore, h has a computable fixed
point8 c ∈ [0, 1]. So g(αc) = c ∈ range(αc), proving that g does not diagonalize
all sequences of computable reals.

§8. Intervals containing a non-total continuous degree. We have not
fully exploited the constructions of the previous two sections. A more care-
ful analysis of these constructions—or more exactly, of relativizations of these
constructions—will provide significant insight into the relationship of the con-
tinuous degrees to the Turing degrees. We begin with a review of the necessary
computability theory. If T ⊆ 2<N is a tree computable in a Turing degree b,
then [T ] is called a Π0

1(b) class.

Definition 8.1. If a and b are Turing degrees, then a is a PA degree relative
to b (a � b) if every nonempty Π0

1(b) class contains a path computable from
a. For A,B ⊆ N, we write A� B to mean that degT (A)� degT (B).

Simpson discusses this relation in [36]. A degree b� 0 is called a PA degree.
It follows from work of Scott [34] and Solovay (unpublished) that the PA degrees
are exactly the degrees of complete consistent extensions of Peano arithmetic.
Note that the collection of such extensions is a Π0

1 class, so there is a nonempty
Π0

1 class containing only members of PA degree. The proof of Lemma 8.3 requires
the relativization of this observation: for every Turing degree b, there exists a

8This follows from the intermediate value theorem for partial computable functions which
converge on the computable reals. That, in turn, follows from the classical bisection proof.
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nonempty Π0
1(b) class containing only members of PA degree relative to b. A

well-known example is the class

DNC B
2 = {f ∈ 2N | (∀e ∈ N)[f(e) 6= ϕBe (e)]},

of diagonally not B-computable {0, 1}-valued functions, where B ⊆ N has de-
gree b. The proof that every element of DNC B

2 has PA degree relative to b is
straightforward. In fact, the PA degrees relative to b are exactly the degrees of
members of DNC B

2 .
The main result of this section is Corollary 8.5, which characterizes the total

degrees b < a between which there is a non-total degree as the intervals b� a.
For one direction, we relativize the effective content of Section 6.

Theorem 8.2. If a and b are total degrees and b � a, then there is a non-
total degree v with b < v < a.

Proof. Recall that the multivalued function Ψ: [0, 1]N → [0, 1]N constructed
in the proof of Lemma 6.2 has the property that {A⊕B ⊆ N | Π(B) ∈ Ψ(Π(A))}
is a Π0

1 class, where Π: 2N → [0, 1]N is the function taking b-representations to
the sequences that they represent. Choose b ∈ [0, 1] of degree b and define a
new multivalued function Ψb : [0, 1]N → [0, 1]N by

Ψb(α)(n) =

{
b, if n = 0

Ψ(α)(n− 1), if n > 0.

It follows that {A ⊕ B ⊆ N | Π(B) ∈ Ψb(Π(A))} is a Π0
1(b) class. Of course,

{A ⊕ A | A ⊆ N} is a Π0
1 class, so the intersection G = {A ⊕ A ⊆ N | Π(A) ∈

Ψb(Π(A))} is a Π0
1(b) class. Theorem 6.1 implies that Ψb has a fixed point, so G

is nonempty. Therefore, there is some a-computable A⊕ A ∈ G. Let α = Π(A)
and v = degr(α). So v ≤ a. Note that α ∈ Ψb(α). As in Theorem 6.3, the fixed
points of Ψb are not computably diagonalizable and hence, by Proposition 5.3,
have non-total degree. Therefore, v is non-total. Finally, α(0) = b because α is
in the image of Ψb. So b ≤ v. a

We now relativize the results of Section 7. Let b be a Turing degree. We say
that a sequence α ∈ [0, 1]N is b-computably diagonalizable if there is an x ∈ [0, 1]
such that x has degree ≤ degr(α)∪b and x /∈ range(α). Theorem 7.2 states that
sequences of computable reals are computably diagonalizable. We generalize
this result and give a sufficient condition for a sequence to be b-computably
diagonalizable.

Lemma 8.3. Let I be a countable ideal in the Turing degrees and b a Turing
degree such that c ∈ I implies that b 6� c. Then every sequence α ∈ [0, 1]N with
degT (αi) ∈ I, for all i ∈ N, is b-computably diagonalizable.

Proof. Let T ⊆ 2<N be any tree (computable or not) such that [T ] is
nonempty and contains no computable elements. Apply the construction in
Lemma 7.6 to produce a sequence {Jn}n∈N of closed rational intervals in [−1, 1].
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Let J =
⋃
n∈N Jn. As noted previously, the reals in [−1, 1] r J have the same

degrees as the paths through [T ]. Now take T computable in b such that the
Π0

1(b) class [T ] is nonempty and contains only elements of degree PA relative to
b. Then the sequence {Jn}n∈N is computable in b and J contains all reals in
[−1, 1] with degree in I (none of which are PA relative to b); the other conditions
of Lemma 7.6 are unchanged.

Now use {Jn}n∈N in the construction of g〈0,0〉,1 : R2 → R2 r (x − 1, x + 1)2 as
in Lemma 7.7. Then g〈0,0〉,1 is partial computable relative to b and is defined
on all points with degree in I. Recall that if x ∈ R2 and ε ∈ R+, we define
gx,ε(z) = εg〈0,0〉,1((z − x)/ε) + x. As before, gx,ε : R2 → R2 r (x− ε, x+ ε)2 fixes
points on R2r(x−ε, x+ε)2, and maps points in (x−ε, x+ε)2 to ∂([x−ε, x+ε]2).
Assume that degT (x),degT (ε) ∈ I. Then if z ∈ R2 has degree in I, so does
(z−x)/ε. Therefore, gx,ε is defined on all points with degree in I. Furthermore,
gx,ε(z) is computable from x ⊕ ε ⊕ z and b (with all possible uniformity). In
particular, gx,ε(z) has degree in I whenever z ∈ R2 does.

Next we inductively define a sequence {fn}n∈N of functions fn : [0, 1]N → [0, 1]2

as in Proposition 7.8. For α ∈ [0, 1]N set f 0(α) = 〈1/2, 1/2〉 and

fn+1(α) = g〈α(j),α(k)〉,4−n−1/2(fn(α)),

where n = 〈j, k〉. Assume degT (αi) ∈ I, for all i ∈ N. Then by induction on n,
fn(α) ↓ and degT (fn(α)) ∈ I. Define f(α) = limn→∞ f

n(α). By the same argu-
ments as before, f(α) ↓∈ [0, 1]2 and if f(α) = 〈a0, a1〉, then either a0 /∈ range(α)
or a1 /∈ range(α). Without loss of generality, assume a0 /∈ range(α). Also as
before, f(α) is computable from the sequence {fn(α)}n∈N. But {fn(α)}n∈N is
computable with respect to α and b, so f(α) has degree ≤ degr(α)∪b. Because
a0 ≤r f(α), we have that α is b-computably diagonalizable. But α ∈ [0, 1]N was
an arbitrary sequence of reals with degrees in I. a

Given a continuous degree v, we define the Turing ideal below v by IT (v) =
{a ≤ v | a total}. As the name suggests, IT (v) can be viewed as a countable
ideal in the Turing degrees.

Theorem 8.4. If v is a non-total continuous degree and b < v is total, then
there is a total degree c with b� c < v.

Proof. Let v be a continuous degree and assume that there is a total degree
b < v such that if c < v is total, then c 6� b. We must prove that v is also
total. Let I = IT (v). Then I and b satisfy the hypotheses of Lemma 8.3. Take
an arbitrary sequence α ∈ [0, 1]N of degree v. Every coordinate of α has degree
in I, so by the lemma, there is an x ∈ [0, 1] such that x has degree ≤ degr(α)∪b
and x /∈ range(α). But b ≤ degr(α) = v. Therefore x has degree ≤ v, so α is
computably diagonalizable. This proves that every sequence in v is computably
diagonalizable. Thus by Proposition 5.3, v is total. a

Corollary 8.5. Let a and b be total degrees. Then b � a iff there is a
non-total degree v with b < v < a.
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Proof. One direction was already proved in Theorem 8.2. For the other
direction, assume that there is a non-total v such that b < v < a. By Theo-
rem 8.4, there is a total degree c with b � c < v. So c ≤ a, but b � c ≤ a
implies that b� a (every Π0

1(b) class has a member computable from c, hence
from a). This completes the proof. a

Now that we know where non-total degrees occur, certain results for the con-
tinuous degrees can be proved using facts about the Turing degrees. This allows
us to benefit from the large body of existing work, although direct proofs could
avoid some of the machinery implicit in the results cited below.

We provide two examples. Fix a non-computable c.e. degree a0 6� 0. The
existence of such a degree follows from the Arslanov completeness criterion [1];
in fact, 0′ is the only c.e. PA degree. Note that the continuous degrees between
0 and a0 are exactly the Turing degrees in this interval.

Proposition 8.6. The continuous degrees do not form a lattice.

Proof. Using the Sacks Density Theorem [32] repeatedly, produce an in-
creasing sequence of c.e. degrees b0 < b1 < b2 < · · · < a0, where a0 is from
the preceding lemma. Choose c and d be an exact pair for {bn}n∈N in the Tur-
ing degrees [39]. In other words, for all total degrees e, e ≤ c and e ≤ d iff
(∃n)[e ≤ bn]. Assume, for a contradiction, that v = c ∩ d ∩ a0 in the continuous
degrees. Because v ≤ a0, we know that v is total. Also v is below both c and
d, so v ≤ bn for some n ∈ N. But then bn+1 ≤ c ∩ d ∩ a0 = v ≤ bn, which is a
contradiction. a

Simpson proved that the first order theory of the Turing degrees is equivalent
to second order arithmetic [37]. Slaman and Woodin proved the corresponding
theorem for the enumeration degrees [38]. It should come as no surprise that
the first order theory of the continuous degrees has the same complexity; this is
verified in our second example. It is convenient to introduce some notation for
initial segments of the Turing degrees and the continuous degrees. If b is a Turing
degree, then define [0,b]T = IT (b) = {a ≤ b | a total}. For v continuous, let
[0,v]r = {w ≤ v | w continuous}.

Proposition 8.7. The first order theory of the continuous degrees (as a par-
tial order) is equivalent to the second order theory of arithmetic.

Proof Sketch. Interpreting the theory of the continuous degrees in second
order arithmetic is routine. For the other direction, we use a method introduced
by Nerode and Shore to translate second order arithmetic into the theory of
the Turing degrees [23]. They encode structures as computably presentable
countable distributive lattices; let L encode the standard model of arithmetic.
Two facts about the continuous degrees must be verified to apply the translation.

(i) There is a continuous degree v such that L is isomorphic [0,v]r.
(ii) If w is a continuous degree such that [0,w]r is a distributive lattice and
B ⊆ [0,w]r is a collection of minimal degrees, then there are continuous
degrees y and z such that (∀ minimal b)[b ∈ B ⇐⇒ (b ≤ y ∧ b ≤ z)].



24 JOSEPH S. MILLER

The elements of an encoded structure are represented by minimal degrees, so
(ii) allows us to interpret second order quantification (which also allows us to
recognize the standard model of arithmetic). The details of the translation can
be found in [23] and [19].

We verify the two conditions. Lerman proved in [19] that if a is a non-
computable c.e. degree, then there is a d ≤ a such that L is isomorphic to
[0,d]T (in fact, L can be replaced by any 0′ presentable upper semi-lattice with
least element). Apply this theorem to a non-computable c.e. degree a0 6� 0—
below which all continuous degrees are total—to get a v ≤ a0 such that L is
isomorphic to [0,v]T = [0,v]r. This proves (i).

Now take w and B as in (ii). Let Ir be the ideal generated by B in the
continuous degrees. Because [0,w]r is a distributive lattice, all minimal degrees
in Ir are in B. Let I be the total degrees in Ir. Note that I is an ideal in the
Turing degrees and that B ⊆ I. Let y and z be an exact pair for I in the Turing
degrees. Because every minimal degree b is total, b ∈ B iff b ≤ y and b ≤ z.
This proves (ii), so the translation of second order arithmetic given in [23] works
for the continuous degrees as well. a

In Section 7, we saw that the existence of a minimal degree distinguishes the
continuous degrees from the enumeration degrees, but we have not yet seen an
elementary difference between the continuous degrees and the Turing degrees.
We finish this section with a natural example of such a difference. First, note
that there is significant agreement between the theories of the two structures.
In particular, the previous proof shows that the same translation used in [23]
to interpret second order arithmetic into the first order theory of the Turing
degrees works also for the continuous degrees.

Proposition 8.8. The continuous degrees are not elementarily equivalent to
the Turing degrees.

Proof. Let ϕ be the first order sentence

(∃a)(∀b ≥ a)(∃c0, c1 < b)[b = c0 ∪ c1 ∧ 0 = c0 ∩ c1].

In words, ϕ states that there is a cone of degrees which are each the join of
a minimal pair. Note that meet and join are definable in the order, so ϕ can
be expressed in the language of partial orders. We claim that ϕ is true for the
Turing degrees but false for the continuous degrees. For the Turing degrees, ϕ is
satisfied by a = 0′. In fact, Posner [25] proved that for every b ≥ 0′, the degrees
below b are complemented. In other words, for any c0 < b, there is a c1 such
that b = c0 ∪ c1 and c0 and c1 form a minimal pair.

Now consider the continuous degrees. By Theorem 8.2, every cone in the
continuous degrees contains a non-total degree. Therefore, to show that ϕ fails
for the continuous degrees it is sufficient to prove that the join of a minimal pair
of continuous degrees must be total.
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Take two sequences α0, α1 ∈ [0, 1]N which form a minimal pair in the con-
tinuous degrees. In particular, neither is computable and there is no non-
computable total degree below both. By Corollary 7.3, there are non-computable
reals x0, x1 ∈ [0, 1] such that x0 ≤r α0 and x1 ≤r α1. But then x0 �r α1

and x1 �r α0. We claim that x0 ⊕ α1 has total degree. To see this, de-
fine a new sequence β ∈ [0, 1]N by β(i) = (α1(i) + x0)/2. Then β contains
no binary rationals, since x0 �r α1. So by Lemma 5.2, β has total degree.
Therefore, x0 ⊕ α1 ≡r x0 ⊕ β has total degree (the join of total degrees is
total). By the same argument, x1 ⊕ α0 must have total degree. But then
α0 ⊕ α1 ≡r (x0 ⊕ α0)⊕ (x1 ⊕ α1) ≡r (x0 ⊕ α1)⊕ (x1 ⊕ α0) also has total degree.
Therefore, every minimal pair of continuous degrees has total join, completing
the proof. a

§9. The ideal below a non-total continuous degree. Recall from the
last section that if v is a continuous degree, then the Turing ideal below v
is IT (v) = {a ≤ v | a total}. Note that if α ∈ [0, 1]N is not computably
diagonalizable, then IT (degr(α)) = {degT (αi)}i∈N. Our first goal in this section
is to characterize the Turing ideals below non-total continuous degrees as the
Scott ideals. A nonempty countable class S ⊆ 2N is called a Scott set if

(a) A,B ∈ S implies that A⊕B ∈ S
(b) A ∈ S and B ≤T A implies B ∈ S, and
(c) for every A ∈ S, there is a B ∈ S such that B � A.

This notion is classical; Scott proved that S ⊆ 2N is a Scott set iff it is the field
of (standard initial segments of) sets arithmetically definable in some complete
extension of Peano arithmetic [34]. If I is a countable ideal in the Turing degrees,
we call I a Scott ideal if a ∈ I implies that there is a b ∈ I with b� a. Note
that a Scott ideal is just the collection of Turing degrees of elements of a Scott
set. By Theorem 8.4, if v is non-total, then IT (v) is a Scott ideal. In other
words, if f ∈ C[0, 1] has non-total degree, then the collection of f -computable
subsets of N is a Scott set. Conversely, every Scott set is represented in this
way; by Theorem 9.3, the Scott ideals are exactly the ideals below non-total
continuous degrees. In fact, by Theorem 9.5, if I is a Scott ideal, then there are
2ℵ0 pairwise incomparable continuous degrees v such that I = IT (v). We finish
the article by proving that if v is any non-total continuous degree, then there is
another degree w|v with the same Turing ideal.

To prove these theorems we must be able to control the construction of se-
quences which are not computably diagonalizable, in particular, sequences which
are fixed points of the multivalued function Ψ: [0, 1]N → [0, 1]N from Section 6.
Two lemmas will be useful. By the first lemma, we may construct such sequences
in stages by “finite extensions”. The second lemma tells us that at any stage of
such a construction there is a coordinate whose value is unconstrained.
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Lemma 9.1. Let α ∈ [0, 1]N be the union of a sequence α0 ⊆ α1 ⊆ α2 ⊆ · · · of
partial functions αs : N → [0, 1]. If each αs can be extended to a fixed point of
Ψ, then α is a fixed point of Ψ.

Proof. This is immediate. For each n, let α̂n ∈ [0, 1]N be an extension of
αn to a fixed point of Ψ. Note that limn→∞ α̂n = α. For each n, we know that
〈α̂n, α̂n〉 is in the graph of Ψ because α̂n is a fixed point of Ψ. But the graph of
Ψ is closed, so 〈α, α〉 is in the graph of Ψ. So α is a fixed point of Ψ. a

The second lemma deserves considerably more attention. Recall from Section 6
that Π: 2N → [0, 1]N is the computable function taking every b-representation
to the sequence which it represents.

Lemma 9.2. Let G ⊆ 2N be a Π0
1 class. Let α0 : N→ [0, 1] be a partial sequence

with finite support which can be extended to a fixed point of Ψ in Π[G]. Then
there is an index e ∈ N such that for any x ∈ [0, 1], there is an extension of α0

to a fixed point α of Ψ such that α ∈ Π[G] and α(e) = x.

Proof. Let FixG = {α ∈ [0, 1]N | α ∈ Ψ(α) ∩ Π[G]}. We will define an
index e ∈ N which attempts to prevent any extension of α0 from being in FixG,
contrary to assumption. We start with an informal description, the construction
is given in more detail below. By the recursion theorem, we can find e ∈ N such
that, if λ is a representation of an extension β ∈ [0, 1]N of α0, then ϕλe searches
for a restriction on the possible values of the eth coordinate of sequences in FixG
which extend α0. If no restriction is found, then ϕλe diverges. On the other
hand, if a c ∈ [0, 1] is found such that α(e) 6= c for every α ∈ FixG which
extends α0, then ϕλe converges to a representation of c. It is important to note
that the search will depend only on α0. In other words, if the search is successful,
then the same c ∈ [0, 1] is chosen for every β extending α0 and—more to the
point—every representation λ of β.

Assume that the search succeeds in finding a restricted value c ∈ [0, 1]. Let
α ∈ FixG be an extension of α0. By the definition of Ψ in Lemma 6.2, the
fact that ϕλe is a representation of c for every representation λ of α implies that
β(e) = c for every β ∈ Ψ(α). In particular, α ∈ Ψ(α) implies α(e) = c. But this
contradicts the fact that c cannot be the eth coordinate of any element of FixG
which extends α0. Therefore, the search for a restriction must fail; so for any
x ∈ [0, 1], there is an extension of α0 to a fixed point α of Ψ such that α ∈ Π[G]
and α(e) = x. Therefore, e ∈ N satisfies the lemma.

We must now describe the details of the definition of ϕλe . For each n ∈ N
such that α0(n) ↓, let Bn ⊆ N to be the binary representation of α0(n). For
concreteness, whenever α0(n) is a binary rational we take Bn to be finite. We
can uniformly compute each of the sets Bn from any representation λ of any
extension β ∈ [0, 1]N of α0. This is because it takes only a finite amount of
information to record where α0 is defined, for which coordinates n ∈ N the value
α0(n) is a binary rational, and what each of these values is. The remainder of
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the construction is done relative to B =
⊕
{Bn | α0(n) ↓}, guaranteeing that

the result of the search will be independent of the choices of β and λ.
Recall from the proof of Lemma 6.2 that {A⊕D ⊆ N | Π(D) ∈ Ψ(Π(A))} is a

Π0
1 class. It should also be clear that {A⊕ Y ⊆ N | Π(A) = Π(Y )} is a Π0

1 class.
Using König’s Lemma, it can be shown that the computable projection of a Π0

1

class is again a Π0
1 class [5, Theorem 9.9(c)] (note also that this is uniform and

relativizes as expected). So we see that

{A ⊆ N | Π(A) ∈ G} = {A ⊆ N | (∃Y ⊆ N)[Y ∈ G and Π(A) = Π(Y )]}

is a Π0
1 class. Therefore, {A ⊆ N | Π(A) ∈ FixG} is a Π0

1 class. Let b = degT (B)
and consider the Π0

1(b) class

{A ⊆ N | Π(A) extends α0} = {A ⊆ N | (∀n)[α0(n) ↓ =⇒ π(A(n)) = π(Bn)]},

where A(n) = {i | 〈n, i〉 ∈ A} and π : 2N → [0, 1] takes every binary representa-
tion to the real that it represents. So finally, for each e ∈ N,

Fe = {X ⊆ N | (∃A ⊆ N)[Π(A) ∈ FixG, Π(A) extends α0 and A(e) = X]}

is a Π0
1(b) class. Note that Fe is the class of binary expansions of reals x ∈ [0, 1]

such that α0 can be extended to an α ∈ FixG with α(e) = x. By the recursion
theorem, there is an e ∈ N such that if λ is a representation of an extension of
α0, then ϕλe builds the b-computable tree T ⊆ 2<N associated to Fe and waits
to find a σ ∈ 2<N such that σ /∈ T . When such a σ is found, ϕλe converges to a
representation of c = π(σ̂0ω) ∈ [0, 1]. This completes the definition of ϕλe . a

We can now characterize the Turing ideals of non-total continuous degrees.

Theorem 9.3. If I is a countable ideal in the Turing degrees, then I is a
Scott ideal iff there is a non-total continuous degree v such that I = IT (v).

Proof. We have already observed that the ideal below a non-total continuous
degree must be a Scott ideal, so only the other direction requires proof. Let
I = {vi}i∈N be a Scott ideal and let {xi}i∈N be a sequence of reals in [0, 1] with
degT (xi) = vi. We construct a sequence {αs}s∈N of partial functions αs : N →
[0, 1] such that if s < t, then αt is a proper extension of αs. We require that each
αs be defined on a finite initial segment of N and be extendable to a fixed point
of Ψ. By Lemma 9.1, α =

⋃
s αs is a fixed point of Ψ, so α is not computably

diagonalizable and v = degr(α) is non-total. Additionally, we require that the
reals in the range of αs all have degree in I and that xs ∈ range(αs+1). A
sequence which is not computably diagonalizable lists exactly the reals in [0, 1]
which it computes, so this ensures that IT (v) = I.
The Construction.

Stage s = 0. Let α0 = ∅.
Stage s + 1. (We ensure that xs ∈ range(α).) Assume that we have defined

αs. Let e be the coordinate guaranteed by Lemma 9.2 with G = 2N. Define a
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partial sequence

α′s(i) =

{
αs(i), if i ∈ range(αs)

xs, if i = e.

Hence, α′s can be extended to a fixed point of Ψ. The reals in the range of
α′s have degree in I, so there is an b ∈ I which computes α′s. Take c ∈ I
such that c � b. Then c computes a fixed point α̂ of Ψ extending α′s because
{A ⊆ N | α̂ = Π(A) extends α′s and α̂ ∈ Ψ(α̂)} is a Π0

1(b) class. Every real
in the range of α̂ is computable from c, so each must have degree in I. Let
αs+1 = α̂ � (e+ 1) and note that αs+1 satisfies all of our requirements.

This completes the construction and the proof. a

Corollary 9.4. The class S ⊆ 2N is a Scott set iff S = {A ⊆ N | A ≤r f}
for some f ∈ C[0, 1] of non-total degree.

We can combine the method used in the proof above with constructions from
classical computability theory to derive results about the continuous degrees
which share a given Turing ideal. For the first example, we build a full binary
tree of partial sequences to prove that every Scott ideal is the Turing ideal be-
low continuum many incomparable continuous degrees. Compare this to Corol-
lary 4.5, which says that a continuous degree is uniquely determined by the class
of total degrees above it.

Theorem 9.5. If I is a Scott ideal in the Turing degrees, then there are 2ℵ0

pairwise incomparable continuous degrees with Turing ideal I.

Proof. Let {xi}i∈N be a sequence of reals from [0, 1] representing the degrees
in I. For each σ ∈ 2<N, we construct a partial function ασ : N → [0, 1] such
that if σ ⊂ τ , then ατ is a proper extension of ασ. As in the previous proof,
we require that each ασ be defined on a finite initial segment of N, that each
can be extended to a fixed point of Ψ, that the reals in the range of ασ all
have degree in I and that x|σ|−1 ∈ range(ασ) (when σ 6= ∅). If f ∈ 2N, let
αf =

⋃
σ⊂f ασ. As before, the requirements placed on {ασ}σ∈2<N guarantee that

αf is not computably diagonalizable and IT (αf ) = I. We also want to ensure
that if f, g ∈ 2N and f 6= g, then αf |rαg. This is done by meeting, for each
e ∈ N, the following requirement.

Re : For every σ, τ ∈ 2e+1 with σ 6= τ , if γσ and γτ are any
total extensions of ασ and ατ to fixed points of Ψ, then
there is a representation λ of γσ such that ϕλe does not
represent γτ .

The Construction.
Stage s = 0. Let α∅ = ∅.
Stage s+ 1. We are given ασ, for each σ ∈ 2s.

Step 1. (We ensure that xs ∈ range(αf ), for each f ∈ 2N.) For each σ ∈ 2s,
we can use Lemma 9.2 to extend ασ to a partial sequence βσ such that xs ∈
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range(βσ), as in the proof of the previous theorem. Of course, βσ must meet the
same requirements as ασ. In particular, βσ is defined on a finite initial segment
of N, it can be extended to a fixed point of Ψ, and the reals in its range have
degrees in I.

Step 2. (We satisfy Rs.) For each ρ ∈ 2s, we temporarily set αρ̂0 =
αρ̂1 = βρ; these will be redefined to satisfy Rs. Take σ, τ ∈ 2s+1 with σ 6= τ .
Let γσ ∈ [0, 1]N be an extension of ασ to a fixed point of Ψ and let λ be a
representation of γσ such that ϕλs represents an extension γτ of ατ . If no such
γσ, γτ and λ exist, then Rs is already satisfied for σ and τ . So we may assume,
for the sake of argument, that they have been given.

Let e ∈ N be the coordinate provided by Lemma 9.2 applied to ατ (again with
G = 2N). Extend ατ to α′τ so that α′τ (e) 6= γτ (e). As usual, ensure that α′τ is
defined on a finite initial segment of N, extends to a fixed point of Ψ, and that
all reals in the range have degree in I. We now show how to extend ασ. Take
ε0 ∈ Q+ such that ε0 ≤ 2e|α′τ (e)− γτ (e)| and let F ⊆ Q+ be the finite use of the
computation of ϕλs (ε0). Then for any λ0 which agrees with λ on F , ϕλ0s cannot
represent an extension of α′τ . Choose δ ∈ Q+ small enough that for every ε ∈ F ,
d[0,1]N(γσ − λ(ε)) ≤ ε− δ. Choose a b ∈ I which computes ασ and consider the
Π0

1(b) class

G = {A ⊆ N | Π(A) extends ασ to a fixed point of Ψ

and (∀ε ∈ F )[d[0,1]N(Π(A)− λ(ε)) ≤ ε− δ]}.
Because γσ ∈ Π[G], we know that G is nonempty. Take c ∈ I such that c� b.
Then c computes an element of G, so c computes an extension γ̂σ of ασ to a
fixed point of Ψ such that γ̂σ has a representation λ0 which agrees with λ on
F . Choose m ∈ N large enough that α′σ = γ̂σ � m extends ασ and every total
extension of α′σ has a representation which agrees with λ on F . Every real in the
range of α′σ is computable from c, so each must have degree in I. By redefining
ασ and ατ to be α′σ and α′τ , we ensure that Rs is satisfied for the current choice
of σ and τ . Repeat the argument until Rs has been satisfied for every ordered
pair of distinct strings σ, τ ∈ 2s+1. a

Corollary 9.6. There are continuous functions f, g ∈ C[0, 1] such that f |rg
and f and g compute the same subsets of N.

The final theorem allows us to strengthen the corollary by fixing one of the
functions. The proof uses a slight variation on the technique from [12] of forcing
with Π0

1 classes. Note also that this proof uses the full strength of Lemma 9.2,
unlike the other proofs in this section.

Theorem 9.7. For any non-total continuous degree v, there is a continuous
degree w such that v|w and IT (v) = IT (w).

Proof. Let α ∈ [0, 1]N be a sequence of degree v. We construct a sequence
{βs}s∈N of partial functions βs : N→ [0, 1] such that if s < t, then βt is a proper
extension of βs. At the same time, we construct a sequence {Gs}s∈N of Π0

1 classes
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2N = G0 ⊇ G1 ⊇ G2 ⊇ · · · such that each βs can be extended to a fixed point of
Ψ in Π[Gs]. Furthermore, we require that each βs be defined on a finite initial
segment of N, that range(βs) ⊆ range(α) and that α(s) ∈ range(βs+1). Let
β =

⋃
s βs ∈ [0, 1]N and w = degT (β). The requirements guarantee that β is

not computably diagonalizable and, because α and β list the same reals, that
IT (v) = IT (w). Also note that β ∈ Π[Gs], for each s ∈ N. Finally, to ensure
that α|rβ, we meet the following requirements for each e ∈ N.

Re : There is a representation λ of α such that ϕλe does not
represent any extension of βe+1.

Se : For every extension γ ∈ Π[Ge+1] of βe+1 to a fixed point
of Ψ, there is a representation λ of γ such that ϕλe does
not represent α.

The Construction.
Stage s = 0. Let β0 = ∅ and G0 = 2N.
Stage s+ 1. Assume that we have defined a partial sequence βs and a Π0

1 class
Gs ⊆ 2N satisfying the requirements given. In particular, βs can be extended to
a fixed point of Ψ in Π[Gs].

Step 1. (We ensure that α(s) ∈ range(βs+1).) Let e1 be the coordinate
guaranteed by Lemma 9.2 for βs and Gs. Define a partial sequence

β′s(i) =

{
βs(i), if i ∈ range(βs)

α(s), if i = e1.

Because βs+1 will extend β′s, we have ensured that α(s) ∈ range(βs+1). We also
know that β′s extends to a fixed point of Ψ in Π[Gs].

Step 2. (We satisfy Rs.) Now apply Lemma 9.2 to β′s and Gs to get a new
coordinate e2. Let λ be any representation of α. If ϕλs is not a representation
of a sequence γ ∈ [0, 1]N, then set β′′s = β′s. Otherwise, extend β′s to a partial
sequence β′′s by setting β′′s (e2) equal to any real in range(α) r {γ(e2)}. Either
way, ϕλs does not represent any extension of β′′s . But βs+1 will extend β′′s , so Rs

will be satisfied. Of course, β′′s can be extended to a fixed point of Ψ in Π[Gs]
and range(β′′s ) ⊆ range(α).

Step 3. (We satisfy Ss.) This is the heart of the proof. Recall from
Lemma 6.6 that there is a computable function Γ: 2N → NQ+

taking every
b-representation to a representation of the same sequence. For each ε ∈ Q+,

consider the Π0
1 class Fε = {A ⊆ Gs | ϕΓ(A)

s (ε) ↑} ⊆ Gs. The proof breaks into
two cases, based on whether or not there exists an ε ∈ Q+ such that β′′s can be
extended to a fixed point of Ψ which is in Π[Fε].

First assume that there is such an ε. As in previous arguments, the b-
representations of fixed points of Ψ which extend β′′s form a Π0

1(b) class, where
b is the Turing degree of β′′s . We have assumed that the intersection of this
class with Fε is nonempty. By Theorem 8.4, there is a total degree c such that
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b� c < v, so α computes an element from any nonempty Π0
1(b) class. There-

fore, α computes (a b-representation of) an extension γ ∈ Π[Fε] of β′′s to a fixed
point of Ψ. Let Gs+1 = Fε and βs+1 = γ � n, where n = 1 + max{i | β′′s (i) ↓}.
This satisfies requirement Ss, because every extension γ ∈ Π[Gs+1] of βs+1 to a
fixed point of Ψ has a representation λ for which ϕλs (ε) ↑. Because γ is com-
putable from α, range(γ) ⊆ range(α), so range(βs+1) ⊆ range(α) as is required.

Now assume that for every ε ∈ Q+, no extension of β′′s to a fixed point of Ψ
is in Π[Fε]. As above, α computes a b-representation A ⊆ N of an extension
γ ∈ Π[Gs] of β′′s to a fixed point of Ψ. Since A cannot also compute α—or α ≡r A

would have total degree—ϕ
Γ(A)
s is not a representation of α. But we know that

ϕ
Γ(A)
s (ε) ↓, for every ε ∈ Q+, because γ /∈ Π[Fε]. Therefore, there is an ε such

that d[0,1]N(α, ϕ
Γ(A)
s (ε)) ≥ ε. Choose m ∈ N large enough so that ϕ

Γ(A�m)
s (ε) ↓.

Now choose n ∈ N large enough so that βs+1 = γ � n extends β′′s and every
total extension of βs+1 has a b-representation extending A � m. This implies
that every total extension of βs+1 has a representation λ such that ϕλs (ε) =

ϕ
Γ(A)
s (ε), hence ϕλs is not a representation of α. Therefore, Ss is satisfied without

even specifying Gs+1 (so just take Gs+1 = Gs). Note again that range(βs+1) ⊆
range(α).

This completes the construction and the proof. a
Corollary 9.8. For any f ∈ C[0, 1] of non-total degree, there is a g ∈ C[0, 1]

such that f |rg and f and g compute the same subsets of N.
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