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Abstract. We study the degrees of bi-hyperhyperimmune (bi-hhi) sets. Our

main result characterizes these degrees as those that compute a function that
is not dominated by any ∆0

2 function, and equivalently, those that compute

a weak 2-generic. These characterizations imply that the collection of bi-hhi

Turing degrees is closed upwards.

1. Introduction

Csima and Kalimullin [3] gave an example of a structure whose degree spectrum
is contained in the bi-hyperhyperimmune (bi-hhi) degrees. They suggested that
its spectrum might be exactly the bi-hhi degrees, but they pointed out that it is
not even known if bi-hyperhyperimmunity is closed upwards in the Turing degrees.
It was this simple, if esoteric, question that motivated our paper. We prove that
the collection of bi-hyperhyperimmune Turing degrees is closed upwards, and in
fact, that it is a very natural degree class. Even so, it turns out that Csima and
Kalimullin’s structure does not capture these degrees (see Corollary 4.3).

To put into context the fact that the collection of bi-hyperhyperimmune degrees
is closed upwards, note that the same is true of the bi-immune (Jockusch [8])
and bi-hyperimmune degrees. The latter follows from Kurtz [12], who showed
that every hyperimmune degree contains a bi-hyperimmune set (hence as Jockusch
noted, the hyperimmune and bi-hyperimmune degrees coincide), and the fact that
the collection of hyperimmune degrees is closed upwards [13]. While it is certainly
true that the collection of hyperhyperimmune degrees is closed upwards [7, 9], they
do not coincide with the bi-hyperhyperimmune degrees.1 Similarly, Jockusch [6]
proved that the immune and bi-immune degrees do not coincide. This might lead
us to look for a parallel between the bi-hhi degrees and the bi-immune degrees,
but as it turns out, the bi-hyperimmune degrees offer a much better guide to the
behavior of the bi-hhi degrees.

Basic Definitions. A weak array is a uniformly c.e. sequence A = {Fn}n∈ω of
finite sets. We say that A is disjoint if its members are pairwise disjoint. A set
X ⊆ ω contains F ⊆ ω if F ⊆ X. Similarly, X avoids F ⊆ ω if F ∩X = ∅. We say
that X is bi-hyperhyperimmune (bi-hhi) if it both contains a member and avoids
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1Every ∆0

2 hyperhyperimmune set is strongly hyperhyperimmune (this is claimed by Cooper
[1]; see Downey, Jockusch and Schupp [4] for a proof), implying that it is disjoint from an infinite
c.e. set. Therefore, no ∆0

2 set is bi-hyperhyperimmune. But there are ∆0
2 hyperhyperimmune sets.
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a member of every disjoint weak array. A degree d is bi-hyperhyperimmune if it
contains a bi-hhi set.

It will be convenient to use a strong variant of bi-hyperhyperimmunity. If F ⊆ ω
is finite, let F̂ = {n ∈ ω | min(F ) ≤ n ≤ max(F )}. We say that X ⊆ ω blockwise

contains a finite set F ⊆ ω if F̂ ⊆ X. Similarly, X blockwise avoids a finite set

F ⊆ ω if F̂ ∩X = ∅. We say that X is blockwise hyperhyperimmune if it is infinite
and blockwise avoids a member of every disjoint weak array. Call X blockwise bi-
hyperhyperimmune if it and its complement are both blockwise hyperhyperimmune,
i.e., if X both blockwise contains a member and blockwise avoids a member of every
disjoint weak array A. A degree d is blockwise bi-hhi if it contains a blockwise bi-
hhi set. Blockwise bi-hyperhyperimmunity is somewhat easier to work with than
bi-hyperhyperimmunity. In particular, we will be able to show directly that the
collection of blockwise bi-hhi Turing degrees is closed upwards. We will see that
the blockwise bi-hhi degrees coincide with the bi-hhi degrees (Theorem 1.1), but
that not every bi-hhi set is blockwise bi-hhi (Theorem 4.5).

We say that S ⊆ 2<ω is dense if every σ ∈ 2<ω has an extension in S. A sequence
X ∈ 2ω is weakly n-generic if for every dense Σ0

n set S ⊆ 2<ω, there is a prefix of
X in S. We will primarily be concerned with weak 2-genericity. Finally, a function
f : ω → ω is ∆0

2 escaping if it is not dominated by any ∆0
2 function.

The main theorem. We are ready to state the various characterizations of the
bi-hyperhyperimmune degrees.

Theorem 1.1. The following are equivalent for a Turing degree d :

(1) d computes a ∆0
2 escaping function.

(2) d computes a weakly 2-generic sequence.
(3) d contains a blockwise bi-hyperhyperimmune set.
(4) d contains a blockwise hyperhyperimmune set.
(5) d contains a bi-hyperhyperimmune set.

Proof. (1)⇒ (2) is Theorem 3.3. (2)⇒ (3) follows from the fact that the collection
of blockwise bi-hhi Turing degrees is closed upwards (Lemma 2.2), and the easy fact
that every weak 2-generic is a blockwise bi-hhi set (Lemma 2.3). (3) ⇒ (4) and
(3) ⇒ (5) are trivial. Finally, (4) ⇒ (1) and (5) ⇒ (1) are Lemmas 3.1 and 3.2,
respectively. �

This result answers the question that motivated this work.

Corollary 1.2. The collection of bi-hyperhyperimmune Turing degrees is closed
upwards.

Note that we have also shown that the blockwise hyperhyperimmune and block-
wise bi-hyperhyperimmune degrees coincide.

The parallel between the bi-hyperimmune and bi-hhi degrees. Compare
our main theorem to the following result.

Theorem 1.3 (Kurtz [11]). The following are equivalent for a Turing degree d :

(1) d computes a function that is not dominated by any computable function
(i.e., d has hyperimmune degree).

(2) d contains a weakly 1-generic sequence.
(3) d contains a bi-hyperimmune set.
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Some differences are clear. The collection of weakly 2-generic degrees is not
closed upwards, so “computes” in part (2) of Theorem 1.1 cannot be replaced
with “contains”. More importantly, hyperhyperimmunity is not strong enough to
guarantee that a degree is ∆0

2 escaping, a fact that is closely related to the non-
coincidence of the hyperhyperimmune and bi-hyperhyperimmune degrees.

Despite these differences, the similarity between the results is clear and it leads
to a natural question: what is the right common generalization? No one has had
the audacity to suggest a definition for bi-hyperhyperhyperimmunity, but perhaps
we could prove that a degree is ∆0

n escaping if and only if it computes a weak
n-generic. This turns out not to be the case. In Theorem 4.6, we show that
not every ∆0

3 escaping function computes a weak 3-generic. In fact, no amount
of “non-domination strength” is enough to guarantee that a function computes a
weak 3-generic.

Structure of the paper. The proof of the main theorem is contained in Sections 2
and 3. The former focuses on the blockwise versions of hhi and bi-hhi, while the
latter focuses on ∆0

2 escaping functions. Section 4 starts with a collection of facts
about the bi-hhi degrees. For example, we show that every bi-hyperhyperimmune
degree is array non-computable and every ∆0

3 degree strictly above ∅′ is bi-hhi.
We finish the paper with three counterexamples: we prove that there is a bi-hhi
degree that does not compute a presentation of Csima and Kalimullin’s structure
(mentioned above); we show that there is a bi-hhi set that is not blockwise bi-hhi;
and we prove that there is a ∆0

3 escaping function that does not compute a weak
3-generic. Related to the last example, in Theorem 3.4 we prove that every ∆0

3

escaping function computes a 2-generic.

2. Blockwise (bi-)hyperhyperimmune sets

The definition of blockwise bi-hyperhyperimmunity might seem contrived, but
in fact, it appears to be a fairly natural and robust notion. The following lemma,
which gives two nice characterizations of blockwise hyperhyperimmune sets, helps
make this case. We say that an array A is finitely intersecting if every n ∈ ω
appears in at most finitely many members of A.

Lemma 2.1. The following are equivalent for an infinite set X ⊆ ω :

(1) X is blockwise hyperhyperimmune.
(2) X avoids a member of every finitely intersecting weak array.
(3) If f : ω → ω is any ∆0

2 function, then (∃n) [n, f(n)] ∩X = ∅.
Proof. (1) ⇒ (2) Let A = {Fn}n∈ω be a finitely intersecting weak array. We
construct a disjoint weak array B = {Gn}n∈ω as follows. For each n ∈ ω, we define
Gn in stages. Let Gn,0 = {〈n, 0〉}. At a stage s ∈ ω, take m ∈ ω to be least such

that Fm,s contains no element less than 〈n, 0〉. If Fm,s ⊆ Ĝn,s, then do nothing.
Otherwise, put the least 〈n, k〉 ≥ max(Fm,s) into Gn,s+1.

Note that, for each n, there are only finitely many m ∈ ω such that Fm contains
an element less than 〈n, 0〉. Hence, the choice of m eventually stabilizes and Gn
is finite. Thus B is a weak array. The definition of B ensures that its members
are pairwise disjoint. By assumption, X blockwise avoids a member of B. But for

every G ∈ B, there is an F ∈ A such that F ⊆ Ĝ. So X avoids a member of A.
(2) ⇒ (3) Let f : ω → ω be a ∆0

2 function. Any total ∆0
2 function is majorized

by a function that is computably approximable from below, so we may assume
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that f is itself computably approximable from below. Consider the weak array
A = {[n, f(n)]}n∈ω. Note that A is finitely intersecting because each n ∈ ω is in
at most n+ 1 members of A. So by assumption, there is an interval [n, f(n)] ∈ A
such that [n, f(n)] ∩X = ∅.

(3) ⇒ (1) Let A = {Fn}n∈ω be a disjoint weak array. Define a ∆0
2 function

f : ω → ω by f(n) = max
(⋃

m≤n Fm

)
. By assumption, there is an n ∈ ω such that

[n, f(n)]∩X = ∅. It cannot be the case that F0, F1, . . . , Fn each contain an element
less than n, so there is an m ≤ n such that Fm ⊆ [n, f(n)], hence Fm ∩X = ∅. �

Lemma 2.2. The collection of blockwise bi-hyperhyperimmune Turing degrees is
closed upwards.

Proof. Assume that X ⊆ ω is blockwise bi-hyperhyperimmune and D ≥T X. We
want to code D into a new blockwise bi-hhi set Z ⊆ ω. First, let

Y = X ⊕X = {2n | n ∈ X} ∪ {2n+ 1 | n ∈ X}.

We claim that Y is blockwise bi-hhi. Let f : ω → ω be a ∆0
2 function. Applying

the condition in part (3) of Lemma 2.1 to n 7→ f(2n), there is an n ∈ ω such that
[n, f(2n)]∩X = ∅. Therefore, [2n, f(2n)]∩Y = ∅. So Y is blockwise hhi. Similarly,
ω r Y is blockwise hhi, so Y is blockwise bi-hhi.

The advantage of Y is that every maximal (under ⊆) interval contained in Y has
even length. Let {[ni,mi]}i∈ω be the maximal intervals contained in Y , in the order
that they appear. Let Z =

⋃
i∈ω[ni,mi−D(i)]. It is not hard to see that Z ≡T D.

Clearly, Z ≤T D, and i ∈ D if and only if the ith maximal interval contained in
Z has odd length. We claim that Z is blockwise bi-hhi. Because Z ⊆ Y , it is
clearly blockwise hhi. Let f : ω → ω be a ∆0

2 function. Since f(n) + 1 is also a ∆0
2

function and ω r Y is blockwise hhi, by Lemma 2.1 there is an n ∈ ω such that
[n, f(n) + 1] ⊆ Y . This implies that [n, f(n)] ⊆ Z, so Z is blockwise bi-hhi. �

It is easy to see that blockwise bi-hyperhyperimmunity is a comeager property.

Lemma 2.3. Weak 2-generic sets are blockwise bi-hyperhyperimmune.

Proof. Assume that X ⊆ ω is weakly 2-generic. If A = {Fn}n∈ω is a disjoint weak

array, then {σ ∈ 2<ω | (∃n, s)(∀t ≥ s)(∀m)[m ∈ F̂n,t → σ(m) = 1]} is a dense Σ0
2

set of strings. So X must blockwise contain a member of A. Because ω r X is
weakly 2-generic too, X must also blockwise avoid a member of A. Therefore, X
is blockwise bi-hhi. �

3. ∆0
2 escaping functions

In this section we finish the proof of the main theorem by proving the necessary
facts about ∆0

2 escaping functions. There are ∆0
2 hyperhyperimmune sets, so it is

not the case that every hyperhyperimmune set computes a ∆0
2 escaping function.

However, it is easy to see that blockwise hyperhyperimmunity is sufficient.

Lemma 3.1. Every blockwise hyperhyperimmune set computes a ∆0
2 escaping func-

tion.

Proof. Assume that X = {x0 < x1 < x2 < · · · } is blockwise hhi. Consider the
X-computable function g : ω → ω defined by g(n) = xn for all n ∈ ω. We claim
that g is ∆0

2 escaping. Let f : ω → ω be a ∆0
2 function. There is an n ∈ ω such that
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[n, f(n)] ∩X = ∅. This implies that g(n) = xn > f(n). Therefore, no ∆0
2 function

majorizes g, hence no ∆0
2 function dominates g. �

We can prove that a hyperhyperimmune set computes a ∆0
2 escaping function if

we make a small assumption about its complement. Let ω[n] = {〈n,m〉}m∈ω.

Lemma 3.2. Assume that X is hyperhyperimmune and (∀n) ω[n] ∩X 6= ∅. Then
X computes a ∆0

2 escaping function. In particular, every bi-hyperhyperimmune set
computes a ∆0

2 escaping function.

Proof. For each n ∈ ω, let g(n) be the least m ∈ ω such that 〈n,m〉 ∈ X. By
assumption, g : ω → ω is total, hence X-computable. We claim that g is ∆0

2

escaping. It is sufficient to show that no ∆0
2 function majorizes g. Any total ∆0

2

function is majorized by a function that is computably approximable from below,
so in fact, it is sufficient to show that no function that is computably approximable
from below majorizes g. Let f : ω → ω be such a function. Consider the disjoint
weak array {{〈n,m〉 | m ≤ f(n)}}n∈ω. If X avoids the n-th set in this array, then
g(n) > f(n). Thus, g is ∆0

2 escaping.
The second part follows because if X ⊆ ω is bi-hhi, then its complement is

immune. So ω rX does not contain the infinite c.e. set ω[n], for each n ∈ ω. �

The next result is the last and most technically involved step in the proof of
Theorem 1.1.

Theorem 3.3. Every ∆0
2 escaping function computes a weak 2-generic.

Proof. Let g : ω → ω be a ∆0
2 escaping function. We may assume that g is increas-

ing. Let {Uk}k∈ω be an effective list of Σ0
1[∅′] sets of strings (not necessarily dense)

and Uk,s a uniformly computable Σ2 approximation, i.e., σ ∈ Uk ⇐⇒ (∃s)(∀t ≥
s)(σ ∈ Uk,s). The goal is to construct a weakly 2-generic sequence X ∈ 2ω.

We define X(n) at stage n ∈ ω of the construction. We may inductively assume
that at the start of stage n, for each k < n there is a distinguished string σk
associated to Uk. Furthermore, the distinguished strings form a chain comparable
to X �n (not necessarily ordered by their indices). If σk /∈ Uk,s for any stage
s ∈ (g(n− 1), g(n)], then declare σk to no longer be distinguished.

Now for each k ≤ n with no distinguished string, we want to find it one. Let
τ be the longest element in the chain of X �n and the currently distinguished
strings. Find the k ≤ n lacking a distinguished string and the σ < τ that minimize
max{|σ|, s(σ, k)}, where s(σ, k) is the last stage s ≤ g(n) such that σ /∈ Uk,s. In
other words, we are looking for a short extension of τ that has looked like it is in
Uk for a long time. Make σk = σ the distinguished string for Uk. Let τ = σk and
repeat this process until every k ≤ n has a distinguished string.

Note that the distinguished strings still form a chain comparable to X �n. Define
X(n) to preserve comparability with this chain. This completes the construction.

Verification. Assume that Uk is dense. We define a ∆0
2 function f : ω → ω such

that if n ∈ ω is the least number greater than or equal to k such that g(n) ≥ f(n),
then at the end of stage n of the construction above, the distinguished string σk
for Uk is contained in Uk,s for all s ≥ g(n). Therefore, it will remain distinguished
and will be a prefix of X.

Fix n ≥ k. Assume that we know g �n; we will remove this assumption below.
We want to define f(n) to be large enough to lock in the distinguished string for
Uk. By assumption, we know the sequence of distinguished strings at the start of
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stage n. Let s0 = g(n − 1) (or 0, if n = 0). Take s1 large enough that for every
j < n, if σj has not permanently entered Uj by stage s0, then it will leave before
stage s1. So, if g(n) ≥ f(n) ≥ s1, the only distinguished strings that remain at the
start of stage n are those that will never be canceled.

Let τ be the longest element in the chain of X �n and the remaining distinguished
strings. Pick the shortest σ ∈ Uk that extends τ and let s2 ≥ max{s1, |σ|} be large
enough that σ has permanently entered Uk. Pick s3 ≥ s2 large enough that, for all
j ≤ n, all elements of Uj,s2 of length at most s2 that have not permanently entered
Uj by stage s2 will leave by stage s3. Now if g(n) ≥ s3, then the only thing that
stops σ from becoming the distinguished string for Uk is the presence of a better
candidate σj for Uj , with j ≤ n. Note that s(σj , j) ≤ max{|σ|, s(σ, k)} ≤ s2, so
σj must have appeared by s2. The fact that σj did not leave Uj by s3 tells us
that it is locked in as the distinguished string for Uj . If j 6= k, then repeat the
process just described starting with s1 equal to s3. This process can only repeat
finitely many times. After the final repetition, s3 will be large enough to guarantee
that if g(n) ≥ s3, then the distinguished string σ chosen for Uk is permanent. Let
f(n) = s3. Note that this whole process can be carried out with a ∅′ oracle.

We must remove the assumption that we know g �n. Take g � k as given. For
each n ≥ k, assume that g �[k, n) has not yet exceeded f �[k, n). This gives us a
finite number of possibilities for g �n; apply the process above to each case to find a
sufficiently large value of f(n), and let f(n) be the maximum of these. So if n ≥ k
is least such that g(n) ≥ f(n), then at stage n of the construction of X, we lock in
a distinguished string σk ∈ Uk. This guarantees that σk ≺ X. �

We will show in Theorem 4.6 that there is a ∆0
3 escaping function that does not

compute a weak 3-generic. Compare that to the following result.

Theorem 3.4. Every ∆0
3 escaping function computes a 2-generic.

Proof. Given a ∆0
3 escaping function g : ω → ω, the construction is the same as

above. The verification is almost the same, except that we define a ∆0
3 function

f : ω → ω for every Uk, whether or not it is dense. At the point in the definition
of f(n) that we want the shortest σ ∈ Uk that extends τ , there is no longer a
guarantee that such a σ exists. We ask ∅′′ if there is a σ ∈ Uk that extends τ . If so,
we proceed as before, trying to ensure that there is a σk ∈ Uk such that σk ≺ X. If
not, then finish with the definition of f(n). In the latter case, if g(n) ≥ f(n), then
Uk is not dense along X. �

4. Consequences and counterexamples

The next result collects several observations about the bi-hyperhyperimmune
degrees, all of which follow easily from the work above.

Proposition 4.1.

(1) Every bi-hyperhyperimmune degree is array non-computable. (Hence no
array computable degree computes a weak 2-generic.)

(2) No bi-hyperhyperimmune has minimal Turing degree.
(3) Every ∆0

3 degree strictly above ∅′ is bi-hyperhyperimmune.
(4) Not every Σ0

2 r ∆0
2 degree is bi-hyperhyperimmune.

(5) Every degree strictly above ∅′ computes a non-∆0
2 degree that is not bi-

hyperhyperimmune.
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(6) There are downward cones of bi-hyperhyperimmune degrees.

Proof. (1) We have shown that every bi-hhi computes a ∆0
2 escaping function. On

the other hand, Downey, Jockusch and Stob [5] proved that all functions of array
computable degree are dominated by the modulus function of ∅′.

(2) No weak 2-generic (indeed, no 1-generic) is minimal.
(3) Miller and Martin [13] showed that every non-computable ∆0

2 degree is hy-
perimmune. Relativizing to ∅′, every ∆0

3-degree strictly above ∅′ is hyperimmune
relative to ∅′, hence ∆0

2 escaping.
(4) Shore [14] and Cooper, Lewis and Yang [2] independently proved the existence

of minimal degrees in Σ0
2 r ∆0

2.
(5) There is a ∆0

2 function tree T : 2<ω → 2<ω such that every path through
T has minimal Turing degree. Let D >T ∅′ and consider T [D], which is minimal,
hence does not have bi-hhi degree. Note that T [D] ≤T T ⊕ D ≤T ∅′ ⊕ D ≤T D.
But D ≤T T [D]⊕ T and D is not ∆0

2, so T [D] is not ∆0
2.

(6) Based on a result of Martin, Jockusch [10] proved that the 2-generic degrees
are downwards dense, meaning that every non-computable degree below a 2-generic
computes a 2-generic. This implies that every non-computable degree below a 2-
generic is bi-hyperhyperimmune. �

We finish the paper with three counterexamples. The first gives a negative
answer to Question 6.6 in Csima and Kalimullin [3]. If n ∈ ω and F ⊆ ω, they
defined {n} ⊕ F to be the following infinite graph. It consists of an ω-chain with
an (n + 5)-cycle linked to 0. For each m ∈ F , there is a 3-cycle linked to m, and
for each m /∈ F , there is a 4-cycle linked to m. Consider the graph H that is the
disjoint union of all {n} ⊕ F such that

• n ∈ ω,
• F ⊆ ω is finite, and
• if {Wϕn(m)}m∈ω is a disjoint weak array, then (∃m) Wϕn(m) ⊆ F .

Csima and Kalimullin proved that every degree that computes a copy of H is bi-hhi.
They suggested that the spectrum of H, i.e., the collection of degrees computing
a copy of H, might be exactly the bi-hyperhyperimmune degrees. This is not the
case.

Proposition 4.2. If a is in the spectrum of H then a is high2 (i.e., a′′ ≥ 0′′′).

Proof. It is routine to check that

U = {n ∈ ω | {Wϕn(m)}m∈ω is a disjoint weak array with no empty members}

is Π0
3 complete. (The real complexity comes from the fact that every member of

the array is finite, not from the completeness of ϕn, the disjointness of the array, or
the nonemptiness of the members.) Note that {n} ⊕ ∅ is a component of H if and
only if n /∈ U . But if a computes a copy of H, then a′′ can determine if {n} ⊕ ∅ is
a component of H. Therefore, a′′ ≥ 0′′′. �

Corollary 4.3. There is a bi-hyperhyperimmune degree that does not compute a
copy of H.

Proof. It is not hard to see that there is a bi-hyperhyperimmune degree that is not
high2. For example, if A ≤T ∅′′ is 2-generic, then A′′ ≡T A⊕ ∅′′ ≡T ∅′′ [10]. Such
an A has bi-hhi degree, but does not compute a copy of H. �
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Question 4.4. Is the collection of bi-hyperhyperimmune Turing degrees the spec-
trum of a structure?

There is a ∆0
2 hyperhyperimmune set. On the other hand, we have proved that

every blockwise hyperhyperimmune computes a ∆0
2 escaping function, hence cannot

be ∆0
2. Therefore, there is a hhi set that is not blockwise hhi. This simple argument

does not work to prove that there is a bi-hhi set that is not blockwise bi-hhi, as we
know that the two properties agree degree-wise.

Theorem 4.5. There is a bi-hyperhyperimmune set X ⊆ ω such that neither X
nor ω rX is blockwise hyperhyperimmune.

Proof. Let {{Vk,j}j∈ω | k ∈ ω} be an effective list of all uniform sequences of
disjoint c.e. sets. Define a ∆0

2 function f : ω → ω as follows. Fix n ∈ ω. For each
k < n, let j(k) be least such that Vk,j(k) ∩ [0, n] = ∅. Note that j(k) ≤ n + 1, so
∅′ can find it. If Vk,j(k) = ∅, then let g(k) = 0. Otherwise, let g(k) be an element
of Vk,j(k). It should be clear that ∅′ can compute g(k). For each k,m < n, define
i(k,m) such that m ∈ Vk,i(k,m), if such an index exists. Let h(k,m) be a member
of Vk,i(k,m) larger than n. If h(k,m) is otherwise undefined, let h(k,m) = 0. Again,
∅′ can compute h(k,m). Let f(n) = max{n+ 2, g(k), h(k,m)}k,m<n.

Our goal is to construct a bi-hyperhyperimmune set X ⊆ ω that neither contains
nor avoids an interval of the form [n, f(n)]. By Lemma 2.1, this ensures that neither
X nor its complement is blockwise hyperhyperimmune. We construct X by initial
segments. Let τ0 = 01. Assume that, at the beginning of stage k ∈ ω, we have a
string τk ∈ 2<ω that neither contains nor avoids an interval of the form [n, f(n)]. If
A = {Vk,j}j∈ω has an infinite member, then it is not a weak array, so let τk+1 = τk.
If A has an empty member, then X automatically contains and avoids this member,
so again let τk+1 = τk. Otherwise, we want to extend τk to σ so that σ contains
a member of A. The definition of f forces [n, f(n)] to have length at least three,
meaning that it is always safe to extend τk by adding alternating ones and zeros,
starting with whichever differs from the last bit of τk. So we may assume that
|τk| > k.

Let p = |τk|. Choose F ∈ A such that q = min(F ) > p. Extend τk to a
string ρ of length q − 1 by adding alternating ones and zeros. Define σ extending
ρ0 such that σ only adds zeros except at the positions in F , where it adds ones,
and |σ| = max(F ) + 1. We claim that σ does not contain an interval of the form
[n, f(n)]. If it does, then we must have n ≥ q and n ∈ F . But A has no empty
member, so g(k) is in a member of A disjoint from [0, n]. Therefore, n < g(k) and
g(k) /∈ F , so f(n) ≥ g(k) implies that [n, f(n)] 6⊆ σ. We also claim that σ does
not avoid an interval of the form [n, f(n)]. If it does, then it must be the case that
n ∈ (q,max(F )). But q ∈ F and k, q < n, so we define h(k, q) to be an element of
F larger than n, if possible. This is possible because n < max(F ), so f(n) ≥ h(k, q)
implies that [n, f(n)] ∩ σ 6= ∅.

The process to extend σ to τk+1 to avoid a member of A, while preserving the
property that it neither contains nor avoids an interval of the form [n, f(n)], is
completely symmetric. Let X =

⋃
k∈ω τk. The construction ensures that X is

bi-hyperhyperimmune but that neither X nor its complement is blockwise hyper-
hyperimmune. �

As mentioned in the introduction, Kurtz [11] proved that every function that is
not dominated by a computable function, i.e., every ∆0

1 escaping function, computes
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a weak 1-generic. We have shown that every ∆0
2 escaping function computes a weak

2-generic. Our final counterexample shows that this pattern does not extend, at
least not in the most näıve way. Recall that, by Theorem 3.4, every ∆0

3 escaping
function does compute a 2-generic.

Theorem 4.6. There is a ∆0
3 escaping function that does not compute a weak

3-generic.

Proof. We build a ∆0
3 function tree f : ω<ω → ω<ω such that if h ∈ ωω, then f [h]

does not compute a weak 3-generic. Furthermore, for all τ ∈ ω<ω and n ∈ ω, it
will be the case that f(τn) extends f(τ)m for some m ≥ n. So, there is an h ∈ ωω
such that f [h] is ∆0

3 escaping.
Let {τs}s∈ω be an effective enumeration of ω<ω such that each string is enu-

merated only after its proper prefixes have been enumerated. In particular, τ0 is
the empty string. The construction of f is done relative to ∅′′. We begin stage
s ∈ ω of the construction with f defined on τ0, . . . , τs. For each t ≤ s, we have an
associated infinite c.e. set of strings Vt,s extending f(τt). When we define f(τtn),
it will be an extension of an element of Vt,s. During the construction, we build a
sequence of dense Σ0

1[∅′′] sets of binary strings {Ue}e∈ω. We ensure that if h ∈ ωω

and ϕ
f [h]
e ∈ 2ω, then no prefix of ϕ

f [h]
e is in Ue. So f [h] does not compute a weak

3-generic by ϕe, for each e ∈ ω.
Let f(τ0) be the empty string and let V0,0 = {m}m∈ω. At stage s =< e, i >, we

make sure that every string of length i has an extension in Ue. Let k = i+s+1. For
each t ≤ s, use ∅′′ to determine if there is a binary string ρt of length k such that
infinitely many σ ∈ Vt,s can be extended to strings σ′ such that ϕσ

′

e � k = ρt. If so,
let Vt,s+1 be an infinite set of such extensions (each extending a different element
of Vt,s). If not, let ρt be undefined and let Vt,s+1 be Vt,s without the finitely

many σ that can be extended to σ′ to make ϕσ
′

e � k converge to a binary string. Put
every binary string of length k into Ue except for ρ0, . . . , ρs. This ensures that every
binary string of length i has an extension in Ue. We have done this while not adding

a prefix of any possible ϕ
f [h]
e . Assume that τs+1 = τtn. Choose σ ∈ Vt,s+1 such

that σ extends f(τt)m for some m ≥ n. Remove σ from Vt,s+1 and let f(τs+1) = σ.
Let Vs+1,s+1 = {σm}m∈ω. This completes stage s.

The construction ensures that if h ∈ ωω, then f [h] does not compute a weak
3-generic. As noted, h can be chosen so that f [h] is ∆0

3 escaping. �

The construction actually shows that no amount of “non-domination strength”
is enough to compute a weak 3-generic. In particular, if {gi}i∈ω is any countable
collection of functions, we can choose h so that f [h] is not dominated by any gi. It
is still the case that f [h] does not compute a weak 3-generic.
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