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ABSTRACT. We explore the interaction between Lebesgue measure and dominating func-
tions. We show, via both a priority construction and a forcing construction, that there is
a function of incomplete degree that dominates almost all degrees. This answers a ques-
tion of Dobrinen and Simpson, who showed that such functions are related to the proof-
theoretic strength of the regularity of Lebesgue measure for Gδ sets. Our constructions
essentially settle the reverse mathematical classification of this principle.

1. INTRODUCTION

1.1. Domination. Fast growing functions have been investigated in mathematics for over
90 years. Set theorists, for example, have investigated the structure ωω/Fin and the asso-
ciated invariants of the continuum ever since Hausdorff constructed his (ω1,ω∗

1 )-gap [5];
today, this structure has a role to play in modern descriptive set theory.

Fast growing functions have deep connections with computability. A famous early ex-
ample is that of Ackermann’s function, defined in 1928 [1]. This is a computable function
that grows faster than any primitive recursive function. This example was useful in eluci-
dating the mathematical concept of computability, an understanding reflected in Church’s
Thesis.

In the 1960s, computability theorists became interested in functions that grow faster
than all computable functions.

Definition 1.1. Let f ,g : ω →ω . The function f majorizes g if f (n) > g(n) for all n∈ω . If
f (n) > g(n) for all but finitely many n, then f dominates g. These are written as f > g and
f >∗ g, respectively. We call f dominant if it dominates all (total) computable functions.

Dominant functions were explored in conjunction with Post’s Program. The goal of
Post’s Program was to find a “sparseness” property of the complement of a c.e. set A that
would ensure that A is incomplete. Yates [17] proved that even maximal c.e. sets, which
have the sparsest possible complements among coninfinite c.e. sets, can be complete. This
put an end to Post’s Program, but not to the study of sparseness properties.

Let pA(n) be the nth element of the complement of A. Having pA dominant would
certainly imply that the complement of A is sparse. On the other hand, Tennenbaum [16]
and Martin [12] showed that if A is maximal, then pA is dominant. Furthermore, Martin
characterized the Turing degrees of both the dominant functions and the maximal c.e. sets.
He showed that there is dominant function of degree a iff a is high (i.e., 0′′ 6 a′), and that
every high c.e. degree contains a maximal set. Together, these results revealed a surprising
connection between the structure of c.e. sets, the place of their Turing degree within the
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jump hierarchy, and domination properties of functions. Later research explored further
connections between domination properties, algebraic properties and computational power.

In this paper, we consider the interaction between Lebesgue measure and domination.
Motivated by results on dominating functions in generic extensions of set theory, Dobrinen
and Simpson [3] introduced the notion of a uniformly almost everywhere (a.e.) dominating
degree: a Turing degree a that computes a function f : ω → ω such that

µ ({Z ∈ 2ω : (∀g ∈ ωω)[ g 6T Z =⇒ g 6∗ f ]}) = 1.

(Here µ denotes Lebesgue measure on 2ω .) We also call such a function f uniformly a.e.
dominating.

A natural goal is to characterize those Turing degrees that are uniformly a.e. dominating.
A function of degree 0′ that dominates almost all degrees was first constructed by Kurtz
[11, Theorem 4.3]. (Kurtz used this result to exhibit a difference between the 1-generic and
the (weakly) 2-generic degrees: the upward closure of the 1-generic degrees has measure
one [11, Theorem 4.1], while the upward closure of the (weakly) 2-generic degrees has
measure zero [11, Corollary 4.3a].) Since the collection of uniformly a.e. dominating
degrees is closed upwards, Kurtz’s result implies that every degree > 0′ is in the class.
On the other hand, a uniformly a.e. dominating function is dominant, and so by Martin’s
result, every uniformly a.e. dominating degree is high. Thus, Dobrinen and Simpson asked
whether either the class of complete degrees (degrees above 0′) or the class of high degrees
is identical to the class of uniformly a.e. dominating degrees.

The truth lies somewhere in the middle. Binns, Kjos-Hanssen, Lerman and Solomon [2]
showed that not every high degree is uniformly a.e. dominating, or even a.e. dominating,
an apparently weaker notion also introduced by Dobrinen and Simpson [3]. They gave
two proofs. First, by a direct construction, they produced a high c.e. degree that is not
a.e. dominating. (A similar result was independently obtained by Greenberg and Miller,
although their example was ∆0

2, not c.e.)
Second, Binns et al. [2] showed that if A has a.e. dominating degree, then every set that

is 1-random over A is 2-random. If A is also ∆0
2, then by Nies [13], /0′ is K-trivial over A

and so A is super-high (i.e., A′ >tt /0′′). By an index set calculation, there is a c.e. set that
is high but not super-high, hence not a.e. dominating. It is open whether /0′ being K-trivial
over a 6 0′ implies that a is (uniformly) a.e. dominating; Kjos-Hanssen has some related
results.1

We prove that Dobrinen and Simpson’s other suggested characterization of the uni-
formly a.e. dominating degrees also fails.

Theorem 1.2. There is an incomplete (c.e.) uniformly a.e. dominating degree.

We provide two proofs of this result, although only one produces a c.e. degree. In Sec-
tion 2 we use a priority argument to construct an incomplete c.e. uniformly a.e. dominating
degree and in Section 4 we present a more flexible forcing construction of an incomplete
uniformly a.e. dominating degree.

1.2. Domination and Reverse Mathematics. As observed by Dobrinen and Simpson [3],
uniformly a.e. dominating degrees play a role in determining the reverse mathematical
strength of the fact that the Lebesgue measure is regular. For an introduction to reverse
mathematics, the reader is directed to Simpson [15].

1Added in proof: An upcoming paper of Binns, Kjos-Hanssen, Miller and Solomon answers this question in
the positive. Note that then the pseudojump inversion theorem of Jockusch and Shore [7] can be used to construct
an incomplete c.e. set A such that /0′ is K-trivial over A, which provides an alternate proof of Theorem 1.2.
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Regularity means that for every measurable set P there is a Gδ set Q⊇ P and an Fσ set
S⊆ P such that µ(S) = µ(P) = µ(Q), where a Gδ set is the intersection of countably many
open sets and an Fσ set is the union of countably many closed sets. Hence the following
principle is implied by the regularity of the Lebesgue measure.

Gδ -REG. For every Gδ set Q⊆ 2ω there is an Fσ set S⊆ Q such that µ(S) = µ(Q).

Recall that the Gδ sets are exactly those that are Π0
2 in a real parameter (that is, boldface

ΠΠΠ0
2), and the Fσ sets are exactly the ΣΣΣ0

2 sets. Hence we can consider Gδ -REG as a statement
of second order arithmetic. We will see that Gδ -REG, which appears to be a natural math-
ematical statement, does not fall in line with the commonly occurring systems of reverse
mathematics. In particular, we examine the chain

RCA0 ( DNR0 (WWKL0 (WKL0 ( ACA0.

Here RCA0 is the standard base system that all of the other systems extend; WKL0 is RCA0
plus weak König’s lemma; and ACA0 is RCA0 plus the scheme of arithmetic comprehen-
sion. These systems are studied extensively in [15]. The system WWKL0 is somewhat less
standard. It consists of RCA0 plus “weak weak König’s lemma", which is introduced in Yu
and Simpson [18]. A large amount of basic measure theory can be proved in WWKL0, so
it is a natural system for us to be concerned with. The final system, DNR0, is less natural
from a proof-theoretic standpoint but very natural for computability theorists. It is RCA0
plus the existence of a function that is diagonally non-recursive; see Giusto and Simpson
[4] and Jockusch [6].

Kurtz’s result that 0′ is uniformly everywhere dominating essentially shows that Gδ -REG
follows from ACA0. This relies on the following:

Theorem 1.3 (Theorem 3.2 of Dobrinen and Simpson [3]). A Turing degree a is of uni-
formly a.e. dominating degree iff for every Π0

2 set Q ⊆ 2ω there is a Σ0
2(a) set S ⊆ Q such

that µ(S) = µ(Q).

Dobrinen and Simpson conjectured that Gδ -REG and ACA0 are equivalent over RCA0
([3, Conjecture 3.1]). This is not true; in fact, there is an ω-model of Gδ -REG that omits
0′ and hence is not a model of ACA0. This was discovered by B. Kjos-Hanssen after the
circulation of the priority-method proof of Theorem 1.2. This proof appears to be too rigid
to allow us to obtain a version with cone avoidance, but Kjos-Hanssen found a clever way
to build the ω-model without such a result. His construction is presented in Section 3.

The forcing construction is flexible enough to prove cone avoidance and more. We can
thus improve Kjos-Hanssen’s result by showing that Gδ -REG does not imply even systems
much weaker than ACA0:

Theorem 1.4. RCA0 +Gδ -REG does not imply DNR0.

But although Gδ -REG seems to lack proof-theoretic strength, none of the traditional
systems below ACA0 are strong enough to prove it:

Proposition 1.5 (Remark 3.5 of Dobrinen and Simpson [3]). WKL0 does not imply Gδ -REG.

The proposition follows easily from the fact that there is an ω-model of WKL0 that
consists of low sets; by formalizing Theorem 1.3, every ω-model of Gδ -REG must include
uniformly a.e. dominating degrees, which by Martin’s result are high.

Furthermore, Gδ -REG seems to be “orthogonal" to the traditional systems in that its
strength is insufficient to lift one such system to the system above it:
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Theorem 1.6. WKL0 +Gδ -REG does not imply ACA0; WWKL0 +Gδ -REG does not imply
WKL0.

It remains open whether DNR0 +Gδ -REG implies WWKL0.

1.3. Notation, conventions and other technicalities. Our computability theoretic nota-
tion is not always classical or consistent, but hopefully completely understandable. Thus,
〈ϕe〉e∈ω is an effective list of all Turing functionals with oracle, and we write ϕ f

e (x),ϕ f
e,s(x)↓

, etc. This notation will be used when we try to diagonalize against some oracle f (so
ϕe : ωω → ωω ). On the other hand, for domination purposes, we write Turing functionals
as Φ(Z;x) and Φ(Z;x)[s]. In fact, we only need to consider a single Φ:

Lemma 1.7. There is a partial computable functional Φ : 2ω → ωω such that if

µ {Z ∈ 2ω : if Φ(Z) is total, then Φ(Z) 6∗ f}= 1,

then f is uniformly a.e. dominating.

Proof. Let 〈Ψi〉i∈ω be an effective list of partial computable functionals 2ω → ωω and
define Φ(0i1Z) = Ψi(Z). ¤

We assume that Φ has the following (standard) properties (for every s,n ∈ ω and Z ∈
2ω ):

(1) Φ(Z;n)↓ [s] implies Φ(Z;n)[s] 6 s.
(2) Φ(Z;n)↓ [s] implies (∀m < n) Φ(Z;m)↓ [s].

We let domΦ be the collection of Z such that Φ(Z) is total. For n ∈ ω , we let Dn =
{Z ∈ 2ω : Φ(Z;n)↓}. For a stage s∈ω , Dn[s] is given the obvious meaning. For g∈ω6ω ,
let

D[n,m)[g] = {Z ∈ 2ω : (∀k ∈ [n,m)) Φ(Z;k)↓ [g(k)]} ,

(including the case where m = ∞). It follows from condition (1) that if Z ∈ D[n,m)[g], then
g majorizes Φ(Z) on the interval [n,m).

2. A PROOF OF THEOREM 1.2 VIA A PRIORITY CONSTRUCTION

In this section we prove Theorem 1.2. We build f : ω → ω by giving a computable
sequence of approximations 〈 fs〉s∈ω . Assuming the limit exists, f = lim fs is ∆0

2. To ensure
that f has c.e. degree, it is enough to require that f is approximated from below. Formally,
(∀n)(∀s) fs(n) 6 fs+1(n). This means that W = {〈n,m〉 : f (n) > m} is a c.e. set; it is clear
that f ≡T W .

To ensure that f is incomplete we will enumerate a c.e. set B and meet the requirement
Re : ϕ f

e 6= B,
for each e ∈ ω . These requirements will be handled by incompleteness strategies. The
same strategies are responsible for assigning values to f , which essentially means that they
must make f large enough to be uniformly a.e. dominating. This can be accomplished
if they are supplied with appropriate approximations to the measure of domΦ. These
approximations are given by measure guessing strategies.

We describe the incompleteness and measure guessing strategies first, in relative isola-
tion. Then we explain the priority tree and the full construction.
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2.1. Incompleteness Strategy. Let σ be an agent assigned the goal of ensuring that ϕ f
e 6=

B, for some index e = e(σ). When σ is initialized, it chooses a follower x = x(σ) that has
not been used before in the construction. A typical incompleteness strategy would wait
for a computation ϕ f

e (x)↓= 0, preserve f on the use of this computation, and enumerate
x into B. The main difference is that our incompleteness strategy will be proactive: it is
permitted to change the values of f to make ϕ f

e (x)↓= 0. Indeed, only the incompleteness
agents change the values of f at all, so they are not only permitted to make these changes,
it is crucial that they do so.

Three restrictions are placed on σ ’s ability to change the values of f . First, as already
mentioned, it cannot decrease the current values of f . Second, higher priority agents (who
wish to preserve diagonalizing computations) impose restraint N = N(σ); σ is not allowed
to change f ¹ N. The third restriction (which ensures that eventually f will be dominat-
ing) involves a rational parameter ε = ε(σ). For σ to permanently protect a computation
ϕ f

e (x)↓= 0 with use r, it must be the case that

(♦) µ
(
domΦrD[N,r)[ f ]

)
6 ε.

In other words, σ ’s action (in protecting f ¹ r) prevents f from majorizing Φ(Z) above N
for no more than ε of all Z ∈ 2ω . This is the restriction that forces σ to increase the values
of f .

The first two restrictions place no significant burden on σ , but the third is more demand-
ing. In fact, σ cannot hope to meet the third restriction without help because it does not
know what domΦ is. To approximate it, we supply σ with two useful pieces of informa-
tion: a rational q = q(σ) and a natural number M = M(σ) such that:

(1) q 6 µ(domΦ).
(2) µ(DM) 6 q+ ε/2.

In the full construction, these parameters are provided by a measure guessing agent. If σ
is on the true path, then the values of q and M that are supplied to σ will meet conditions
(1) and (2).

We are now ready to describe the behavior of σ . The possible states of σ are active,
meaning that it is currently imposing restraint to protect a computation ϕ f

e (x), and passive.
When σ is initialized, it is passive and it has restraint r(σ) = 0. If σ ever becomes active,
it will remain so unless it is reset. This happens if the execution ever moves left of σ , or if
condition (2) proves to be false for either σ or a higher priority active agent. The details of
the full construction are below.

Say that σ is visited at stage s ∈ ω . If either σ or a higher priority agent for Re is
currently active, then there is nothing to do. Otherwise, σ searches for a string g ∈ s<s of
length M or greater that has the following (computable) properties:

(1) g⊃ fs ¹ N;
(2) (∀n ∈ [N, |g|)) fs(n) 6 g(n);
(3) µ(D[N,|g|)[g]) > q− ε/2; and
(4) ϕg

e,s(x)↓= 0.

If there is such a string g, then σ lets fs+1 ⊃ g and r(σ) = |g|. It enumerates x into B
and declares itself active. If there is no such g, then σ does nothing and remains passive.

This completes the description of the incompleteness strategy. We prove below that if
σ is on the true path and it ever becomes satisfied, then (♦) holds. Because agents that are
not on the true path might also attempt to protect computations, what we actually prove is
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stronger: if an agent ever becomes active (hence is imposing restraint), either (♦) holds or
the agent is eventually reinitialized (so that its restraint is removed).

Remark 2.1. Unlike many tree constructions, it is important that at most one node on each
level (i.e. at most one node per requirement) imposes restraint. Say a node at level e ensures
that f dominates except for a set of size at most εe. We will argue that f dominates almost
everywhere, using the fact that lime→∞ ∑e′>e εe′ = 0. If several nodes on the same level e
were to impose restraint, then εe must be counted more than once, making the calculation
incorrect. This is why we stipulated that if σ is visited at some stage s and if at the same
stage, some σ ′ <L σ on the same level is active, then σ does not act. Of course, we are
making use of the fact that σ ′’s success is also σ ’s.

2.2. Measure Guessing Strategy. Measure guessing agents change neither f nor B and
they impose no restraint on other agents. Their only function is to provide the values of
q and M to the incompleteness agents at the next higher level. A measure guessing agent
τ is initialized with a rational parameter δ = δ (τ). Its primary job is to find a rational q
that approximates the measure of domΦ from below to within δ . This is done as follows.
Divide the interval [0,1] into subintervals of length δ . When τ is visited at stage s, it
compares, for each n 6 s, the measure of Dn[s] with that of Dn[t], where t was the previous
stage at which τ was visited. If the measure of some Dn has crossed the threshold from
one subinterval I′ to one on its right I, then (for the least such n) τ guesses that q = min I
approximates the measure of domΦ. Assume that τ is visited infinitely often and min I is
the largest approximation guessed infinitely often. Then µ(Dn) > min I for all n ∈ ω and
µ(Dn) > max I for finitely many n. Therefore, µ(domΦ) ∈ I.

We give the details. Let d = d1/δe. The outcomes of τ will be of the form 〈q,M〉 ∈
Q×ω , where q ∈ {0,δ ,2δ , . . . ,dδ}. When τ is first initialized, its outcome is 〈0,0〉.
Say that τ is visited at stage s ∈ ω and that the previous visit occurred at stage t < s. To
provide a guess, τ looks for n 6 s and b 6 d such that µ(Dn[t]) < bδ but µ(Dn[s]) > bδ .
For the greatest such b (or equivalently, the b corresponding to the least such n), τ lets
q = bδ . Otherwise, τ lets q = 0. Finally, τ takes the least M such that µ(DM[s]) < q + δ .
Because µ(Dn[s]) is monotonically decreasing as a function of n, for all n > M we also
have µ(Dn[s]) < q+δ . The outcome of τ at stage s is 〈q,M〉.
Remark 2.2. Suppose that τ has outcome 〈q,M0〉 at stage s0 and outcome 〈q,M1〉 at s1 > s0.
Further suppose that whenever τ is visited at a stage t between s0 and s1, its outcome at t
is of the form 〈q′,M′〉 with q′ 6 q. Then M1 = M0.

2.3. The Priority Tree. As usual, agents are organized on a tree, with the children of an
agent representing its potential outcomes. Write α ⊂ β to mean that β is a proper extension
of α . Each agent comes with a linear ordering <L on its children. We extend <L to other
nodes as follows: say that α is to the left of β and write α <L β if there are ρ ⊆ α and
ν ⊆ β such that ρ and ν have the same parent and ρ <L ν . Write α < β if either α ⊂ β or
α <L β . This is the total ordering lexicographically induced on the tree by the ordering we
impose on the children of agents. If α < β , then we say that α has higher priority than β .

The even levels of the priority tree are devoted to measure guessing agents and the odd
levels to incompleteness agents. A measure guessing agent τ at level 2k is supplied with the
parameter δ (τ) = 3−k/2. As described above, its outcomes have the form 〈q,M〉 ∈Q×ω ,
where q is restricted to rationals of the form bδ (τ). The outcomes are ordered first by q
and then by M, with larger numbers to the left of smaller numbers.

An incompleteness agent σ = τa〈q,M〉 at level 2k + 1 has parameters e(σ) = k and
ε(σ) = 3−k = 2δ (τ). We also obviously set q(σ) = q and M(σ) = M. The two final
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parameters, the follower x(σ) and the restraint N(σ) imposed by stronger nodes, are de-
termined when σ is initialized. To initialize σ at stage s ∈ ω , set its state to passive, let
the restraint σ imposes r(σ) = 0 and choose a follower x(σ) ∈ ω that has not yet been
assigned in the construction. Furthermore, set

N(σ) = max{r(σ ′) : σ ′ <L σ is active at stage s}.
The children of σ are σaactive <L σapassive.

2.4. Full Construction. Let f0(n) = 0 for all n ∈ ω . The construction proceeds in stages.
The preliminary phase of stage s ∈ ω involves reevaluating, and possibly resetting, cur-
rently active incompleteness agents. Reset agents must be reinitialized the next time they
are visited. Say that σ = τa〈q,M〉 is active at stage s. If µ(DM[s]) > q + ε(σ)/2, then
σ acted based on a false assumption and it could be the case that σ is forcing f ¹ r(σ) to
remain prohibitively small. Therefore, we reset σ . We also reset all previously initialized
incompleteness agents of lower priority than σ (to allow them to recompute their restraints
the next time they are visited).

Remark 2.3. Suppose that τ lies on the true path and that σ = τa〈q,M〉 is active at stage
s. Further suppose that τ’s guess is found to be incorrect at s (in other words, µ(DM[s]) >
q+δ (τ)). Then the next time that τ is accessible, its new outcome lies to the left of σ and
so σ is reset. It would seem that this mechanism would suffice and that explicit resetting is
unnecessary. However, unlike many tree constructions, we need to be concerned with the
restraint imposed by nodes that lie to the left of the true path. Such unwarranted restraint
may prevent f from sufficiently dominating, and so needs to be reset when found incorrect.

During the main phase of stage s, we execute the strategies of finitely many agents on
the priority tree, following a path of length at most s. This is done in substages t 6 s. We
begin at substage t = 0 by visiting the root node α0 = λ . Say that we are visiting an agent
αt at substage t. First, reset any incompleteness agents σ such that αt <L σ . (Note that if
σ is reset and σ < σ ′, then αt <L σ ′, so σ ′ is also reset.)

Case 1: αt is a measure guessing agent. If the outcome of αt at stage s is 〈q,M〉, then
let αt+1 = αt

a〈q,M〉 and end the substage.
Case 2: αt is an incompleteness agent. If αt has never been visited before or has been

reset since the last time it was visited, then it is initialized. If αt is currently active, then
end the substage and set αt+1 = αt

aactive. Similarly, if there is a higher priority agent for
Re that is active at stage s, then set αt+1 = αt

apassive and end the substage. Otherwise,
execute the incompleteness strategy for αt at stage s. If αt becomes active (so that changes
are made to f and B), then end stage s entirely. Otherwise, let αt+1 = αt

apassive and end
the substage.

This continues until substage t = s is completed or until stage s is explicitly ended be-
cause an incompleteness agent becomes active. Finally, for any x < dom fs, if not expressly
altered by us during the stage, we let fs+1(x) = fs(x). This completes the construction.

2.5. Verification. Inductively define the true path to be the leftmost path visited infinitely
often. In particular:

• The root node λ is on the true path.
• If ρ is on the true path and ν is the leftmost child of ρ that is visited infinitely

often (if such exists), then ν is on the true path.
It is clear that if ρ is on the true path, then there is a stage s ∈ ω after which no agent left
of ρ is ever visited.
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Claim 2.4. If σ is an incompleteness agent on the true path, then there is a stage s ∈ ω at
which σ is initialized and after which it will never be reset.

Proof. Take a stage t ∈ ω large enough that no agent left of σ will ever again be visited.
By induction, we may also assume that t is large enough that the agents σ ′ ⊂ σ have all
been initialized for the final time (and will never be reset). None of these σ ′ can become
active after stage t, or else the execution would move left of σ .

Although no σ ′ <L σ can become active after stage t, they can be reset in the preliminary
phase of the construction and this will reset σ . But only active agents become reset and
only finitely many σ ′ <L σ are active at stage t. Therefore, there is a stage t ′ > t after
which no agents left of σ are ever reset.

This leaves only one way that σ = τa〈q,M〉 can be reset at any stage t ′′ > t ′: if σ is
active at stage t ′′ and µ(DM[t ′′]) > q+ε(σ)/2. But if this is the case, then 〈q,M〉 cannot be
the outcome of τ after stage t ′′, contradicting the fact that σ is on the true path. Therefore,
σ is never reset after stage t ′. But σ is visited infinitely often, so there is a stage s ∈ ω at
which σ is initialized and after which it will never be reset. ¤
Claim 2.5. The true path is infinite.

Proof. We prove that there is no last node on the true path. First, consider an incomplete-
ness agent σ on the true path. By Claim 2.4, there is a last stage t at which σ is initialized.
After stage t, σ may become active at most once, so one of the outcomes of σ is eventually
permanent.

Now consider a measure guessing agent τ on the true path. The first coordinate of the
outcome of τ is taken from the finite set Q = {bδ (τ) : 0 6 b 6 d1/δ (τ)e}. Let q be the
greatest element of Q that occurs as the first coordinate of the outcome infinitely often.
Assume that no greater first coordinate occurs after stage s ∈ω . Let 〈q,M〉 be the outcome
of τ at some stage > s. By Remark 2.2, if 〈q′,M′〉 is the outcome of τ at some other
stage > s, then either q′ < q or q′ = q and M′ = M. Therefore, either 〈q,M〉 <L 〈q′,M′〉
or 〈q,M〉= 〈q′,M′〉, and the second case occurs infinitely often. Hence τa〈q,M〉 is on the
true path. ¤
Remark 2.6. Let τ be a measure guessing node, and suppose that τ and τa〈q,M〉 are on the
true path. Then µ(Dn) > q for all n ∈ ω and µ(DM) 6 q + δ (τ). Therefore, µ(domΦ) ∈
[q,q+δ (τ)].

We are primarily interested in the incompleteness agents that are eventually permanently
active. Let the set of all such agents be G = {σ0,σ1, . . .}, with σ0 < σ1 < · · · . The fact
that we can thus enumerate G relies on the following:

Fact 2.7. The collection of nodes that lie either on, or to the left of the true path that are
ever visited has order type ω under <. This is because for each node α on the true path,
only finitely many nodes to the left of α are ever visited.

Claim 2.8. Assume that σ is initialized at stage s ∈ ω and is never reset after stage s.
Suppose that σ ′ < σ . Then if σ ′ is active at s, it remains permanently so (hence σ ′ ∈ G);
otherwise, σ ′ never becomes active after s (hence σ ′ /∈ G).

Proof. First assume that σ ′ is active at stage s. If σ ′ is ever reset, then every lower priority
agent is reset, including σ . But this never happens, so σ ′ ∈ G.

Now suppose that σ ′ is not active at stage s. It follows that σ ′apassive < σ (as σ is
accessible at stage s). If σ ′ becomes active at some later stage, then σ ′aactive would be
accessible. But this would reset σ because σ ′aactive lies to the left of σ . ¤
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For all i ∈ ω , let Ni and ri denote the final values of N(σi) and r(σi), respectively.

Claim 2.9. For all i ∈ ω:
(a) Once σi becomes permanently active, f cannot change below ri.
(b) Ni+1 = ri.

Proof. (a) Assume that σi is permanently active after stage s ∈ ω . From s onwards, σi
imposes restraint ri on weaker agents, so such agents do not change f ¹ ri. Any action by a
stronger agent is impossible after the last stage si at which σi is initialized, and si < s.

(b) At stage si, the agents σ < σi that are active are exactly σ0, . . . ,σi−1, and their
restraints have reached their final values. Thus σi defines Ni = max{r j : j < i} at stage si.
When σi later becomes active, it imposes a permanent restraint ri, which is greater than Ni.
It follows that r0 < r1 < · · · , and so Ni+1 = ri. ¤

Claim 2.10. G is infinite.

Proof. We can enumerate 〈ϕe〉e∈ω in such a way that there are infinitely many e such that
for all t ∈ ω , for all x 6 t and all g ∈ (t +1)6t we have ϕg

e,t(x) ↓= 0; we retroactively
assume that we used such an enumeration. We will show that for each such e, G contains
an agent working for Re.

Pick such an e and let σ = τa〈q,M〉 be the agent of length 2e + 1 on the true path.
Assume that the final initialization of σ occurs at stage s ∈ ω .

Case 1: An agent σ ′ <L σ for Re is active at stage s. If σ ′ is ever reset, then σ would
also be reset. This is impossible, so σ ′ ∈ G.

Case 2: No such σ ′ exists. No σ ′ <L σ becomes active after stage s, so as long as
σ remains passive, its full strategy will be executed every time it is visited. At stage s, a
follower x is chosen and the final restraint N is determined. By Claim 2.9, f ¹ N is fixed
after stage s.

We know that 〈q,M〉 is the correct outcome of τ , so (∀n) µ(Dn) > q (recall that 〈Dn〉 is a
decreasing sequence.) Let v = max{N,M}. There is a t0 such that µ(Dv[t0]) > q−ε(σ)/2.
For any string g ∈ ωv+1 extending f ¹ N such that g(n) > t0 for all n ∈ [N,v+1), we have
µ(D[N,|g|)[g]) > q− ε(σ)/2.

Consider a stage t > max{t0,x,v+1} at which σ is accessible. Let g = f ¹ Na〈t〉v+1−N .
Of course ft(n) 6 t for all n, so by the assumptions on e, ϕg

e,t(x)↓= 0. Thus g satisfies all
the conditions that make it eligible to be picked as a new initial segment of f . It follows
that if σ did not act before stage t, then it does so and becomes permanently active. ¤

Claim 2.11. f = lims fs exists.

Proof. Combining Claims 2.9(b) and 2.10, the intervals { [Ni,ri)}i∈ω partition ω . Further-
more, by Claim 2.9(a), f is stable on [0,ri) once σi becomes permanently active. Therefore,
lims fs(n) converges for all n ∈ ω . ¤

Claim 2.12. For all i, µ
(
domΦrD[Ni,ri)[ f ]

)
6 ε(σi).

Proof. Assume for a contradiction that µ
(
domΦrD[Ni,ri)[ f ]

)
> ε(σi). Let σi = τa〈q,M〉.

Take s ∈ ω to be the stage at which σi becomes permanently active and let g ∈ ω<ω be the
string that was used at that activation. So ri = |g| and g⊂ f . This implies that D[Ni,ri)[g] =
D[Ni,ri)[ f ]. But of course, domΦ⊆ DM . Therefore, µ

(
DMrD[Ni,ri)[g]

)
> ε(σi).

By the definition of the incompleteness strategy, µ(D[Ni,ri)[g]) > q− ε(σi)/2. Also
ri > M, so D[Ni,ri)[g] ⊆ DM . Together with the conclusion of the previous paragraph, we
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have µ(DM) > q + ε(σi)/2. But then µ(DM[t]) > q + ε(σi)/2, for any sufficiently large
t ∈ω . Therefore, σi would be reset at the first phase of stage t, which is a contradiction. ¤

Claim 2.13. f is uniformly a.e. dominating.

Proof. Fix e ∈ ω . The construction ensures that at most one incompleteness agent at each
level can be active at a time; hence at most one can belong to G. Thus there is an i ∈ ω
large enough that (∀ j > i) |σ j| > 2e + 1. Furthermore, ∑ j>i ε(σ j) 6 ∑k>e 3−k = 3−e+1/2
for this choice of i. By Claims 2.9(b) and 2.10, the intervals { [N j,r j)} j>i partition [Ni,∞).
Therefore, if Z ∈⋂

j>i D[N j ,r j)[ f ], then f majorizes Φ(Z) above Ni. By Claim 2.12,

µ
(

domΦr
⋂

j>i

D[N j ,r j)[ f ]
)

6 ∑
j>i

µ
(

domΦrD[N j ,r j)[ f ]
)

6 3−e+1

2
.

In other words, the set of Z ∈ domΦ such that f fails to dominate Φ(Z) has measure at
most 3−e+1/2. But e ∈ ω was arbitrary, so f is uniformly a.e. dominating. ¤

Claim 2.14. f <T 0′.

Proof. It is sufficient to prove that B
T f . Fix an index e ∈ ω .
Case 1: There is an Re agent σi ∈ G. Let s ∈ ω be the last stage at which σi becomes

active and let xi = x(σi)[s]. By Claim 2.9(a), this is done via g = fs+1 ¹ ri = f ¹ ri. Because
σi is activated, we know that xi ∈ B and ϕg

e,s(xi) = 0. Therefore, ϕ f
e (xi) = 0 6= B(xi).

Case 2: There is no agent for Re in G. Let σ = τa〈q,M〉 be the incompleteness agent
of length 2e + 1 on the true path. Assume that σ is initialized for the last time at stage
s ∈ ω . Let x = x(σ)[s] and N = N(σ)[s]. Note that x /∈ B, because σ does not become
active after stage s (else σ ∈ G, so we would be in Case 1). Assume, for a contradiction,
that ϕ f

e (x) = 0. Take g ∈ω<ω such that |g|> max{M,N}, g is an initial segment of f , and
ϕg

e (x) = 0.
By Claim 2.8, σ ′ < σ is active at stage s iff σ ′ ∈ G. Choose i ∈ ω such that σi−1 <

σ < σi. In particular, N = Ni. Since σ is on the true path, we have σ ⊂ σ j for all j > i.
This shows that (∀ j > i) |σ j| > 2e + 1. Now take m ∈ ω large enough that rm > |g|.
Then, ∑ j∈[i,m] ε(σ j) < ∑k>e 3−k = 3−e/2. By the same argument as given in Claim 2.13,
µ

(
domΦrD[N,rm)[ f ]

)
< 3−e/2. Therefore, µ

(
domΦrD[N,|g|)[g]

)
< 3−e/2. We know

that µ(domΦ) > q. This proves that µ(D[N,|g|)[g]) > q−3−e/2.
Let t > s be a stage at which σ is accessible that is large enough so that ϕg

e,t(x)↓= 0.
There is nothing stopping σ from acting at stage t, which is the desired contradiction. ¤

3. REVERSE MATHEMATICS I: AVOIDING CONE AVOIDANCE

Although the above c.e. construction (Section 2) does not seem to generalize to yield
a cone avoidance result, Kjos-Hanssen showed that it does have a reverse mathematical
consequence.

Theorem 3.1 (Kjos-Hanssen). There is an ω-model of RCA0 + Gδ -REG that does not
contain 0′. Hence Gδ -REG does not imply ACA0 over RCA0.

Proof. We construct an ideal of Turing degrees that (as an ω-model) satisfies Gδ -REG
but does not contain 0′. The ideal is the downward closure of an increasing sequence
a1 < h1 < a2 < h2 < .. . . We let a1 = 0 and let h1 be the c.e. degree given by Theorem 1.2.
The degree h1 is high. In the structure D [h1,h′1] we can find some a2 that is low(h1) and
that joins 0′ to h′1 = 0′′ (Posner and Robinson [14]). Now in the structure D [a2,a′2] =
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D [a2,0′′], a relativized version of Theorem 1.2 yields a degree h2 < 0′′ that is uniformly
almost everywhere dominating over a2. We cannot have h2 > 0′ because h2 > a2 and
h2 < 0′′.

We now repeat. Again, using a relativized version of [14], we get an a3 ∈ D [h2,0′′′]
that is low(h2) and joins 0′′ to 0′′′; and an h3 ∈D [a3,0′′′) that is uniformly a.e. dominating
over a3. As before, h3 is not above 0′′. But as h3 > a2 and 0′ ∨ a2 = 0′′ we cannot have
h3 > 0′. The process now repeats itself to get the rest of the sequence. ¤

4. A PROOF OF THEOREM 1.2 VIA A FORCING CONSTRUCTION

In this section we introduce a forcing notion that produces a uniformly a.e. dominating
function and that allows us to obtain cone avoidance and more.

4.1. The notion of forcing. We approximate a function f G. A condition is a pair 〈 f ,ε〉
where f ∈ ω<ω and ε is a positive rational. The idea is that p = 〈 f ,ε〉 states that f is an
initial segment of f G and further p makes an ε-promise: the collection of Z ∈ domΦ such
that f G fails to majorize Φ(Z) from | f | onwards has size < ε . Thus, an extension g ⊃ f
respects the ε-promise if

µ
(
domΦrD[| f |,|g|)[g]

)
< ε.

However, this is not a good definition of a partial ordering on the conditions; we can
have g keep the ε-promise of 〈 f ,ε〉 and h keep the δ -promise of 〈g,δ 〉 but fail to respect
the ε-promise of 〈 f ,ε〉. Thus, the relation would not be transitive. A simple modification
ensures that every h that keeps the δ -promise of 〈g,δ 〉 also keeps the ε-promise of 〈 f ,ε〉.
We say that a condition 〈g,δ 〉 extends another condition 〈 f ,ε〉 if f ⊂ g, δ 6 ε and further,
if f 6= g, then

µ
(
domΦrD[| f |,|g|)[g]

)
+δ < ε.

Lemma 4.1. The extension relation is transitive.

Proof. Suppose that 〈g,δ 〉 extends 〈 f ,ε〉 and is extended by 〈h,γ〉; we show that 〈h,γ〉
extends 〈 f ,ε〉. If either f = g or g = h, then this is easy. Otherwise, the point is that

D[| f |,|h|)[h] = D[| f |,|g|)[g]∩D[|g|,|h|)[h]

and so

µ
(
domΦrD[| f |,|h|)[h]

)
6 µ

(
domΦrD[| f |,|g|)[g]

)
+ µ

(
domΦrD[|g|,|h|)[h]

)
6

(ε−δ )+(δ − γ) = ε− γ,

as required. ¤

Notation. We let P be the collection of all conditions. For a condition p = 〈 f ,ε〉 we write
f p = f and εp = ε . We also let np = | f p|.
Lemma 4.2. For all n < ω , the set {p ∈ P : np > n} is dense in P.

Proof. Let p ∈ P. Let n > np. For large enough s,

µ(DnrDn[s]) < εp.

Now take g ∈ ωn extending f p such that Dn[s] ⊂ D[np,n)[g] (for example, by defining
g(m) = s for m > np). As domΦ ⊂ Dn, we get that µ

(
domΦrD[np,n)[g]

)
< εp. We

can then pick some small δ so that 〈g,δ 〉 extends p. ¤



12 CHOLAK, GREENBERG, AND MILLER

If G⊂ P is generic (from now, by the word “generic" we mean, “sufficiently generic for
the given argument"), then we let

f G =
⋃

p∈G

f p.

The following is a corollary of Lemma 4.2:

Corollary 4.3. If G is generic, then f G ∈ ωω .

We now show that the ε-promises are kept.

Lemma 4.4. Let p ∈ P, and suppose that p ∈ G and that G is generic. Then

µ
(
domΦrD[np,ω)

[
f G])

6 εp.

Proof. The sequence 〈D[np,m)[ f G]〉m>np decreases with m and

D[np,ω)
[

f G]
=

⋂

m>np
D[np,m)

[
f G]

.

So it is enough to prove that µ
(
domΦrD[np,m)

[
f G

])
6 εp, for all m > np. For any m,

there is a q ∈ G extending p such that nq > m. By the definition of our partial ordering,

µ
(
domΦrD[np,nq) [ f q]

)
< εp.

But D[np,nq) [ f q]⊆ D[np,m)
[

f G
]

because f q ⊂ f G, which completes the proof. ¤

The following is immediate.

Lemma 4.5. For all ε > 0, the set {p ∈ P : εp < ε} is dense in P. ¤

As a corollary,

Corollary 4.6. If G⊂ P is generic, then f G is uniformly almost everywhere dominating.

4.2. Cone avoidance, etc. We show that if G is generic, then indeed f G has no special
properties beyond domination. The following is the crucial technical lemma. Consider
the proof that if g is Cohen generic over A and A is not computable, then g does not
compute A. If some condition τ ∈ 2<ω forces that ϕg

e = A (and in particular is total), then
A =

⋃
σ⊃τ ϕσ

e is computable because the collection of extensions of τ is computable. We
would like to do the same, but our partial ordering is not computable. This difficulty is
overcome as follows: given p ∈ P, we can make a promise ε∗ much tighter than εp and
find a rational q sufficiently close to domΦ such that every sufficiently long string g⊃ f p

respecting the ε∗-promise satisfies µ(D[np,|g|)[g]) > q and every string satisfying the latter
(computable) condition respects the εp-promise. We can now imitate the diagonalization
argument (and more): if p forces that ϕ f G

e = A, then we compute A by examining ϕg
e for

strings g satisfying the middle condition above. We argue that this must give us all of A,
for otherwise we could extended p to keep the ε∗-promise and avoid ϕ f G

e = A.

Lemma 4.7. Let p ∈ P. Then there is a c.e. set

S⊂ { f q : q 6 p}
and a p∗ 6 p such that {q 6 p∗ : f q ∈ S} is dense below p∗.
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Proof. Find some n > np such that µ (DnrdomΦ) < εp/2; also find a rational q <
µ(domΦ) such that µ(domΦ)−q < εp/2. Let

S =
{

g ∈ ω<ω : g⊃ f p, |g|> n, and µ(D[np,|g|)[g]) > q
}

It is clear that S is c.e. Let g ∈ S; we show that for some q 6 p we have f q = g. We
have µ(D[np,|g|)[g]) > µ(domΦ)− εp/2 and µ(D|g|) < µ(domΦ)+ εp/2; together we get
µ

(
D|g|rD[np,|g|)[g]

)
< εp. Of course, domΦ⊂ D|g| and so µ

(
domΦrD[np,|g|)[g]

)
< εp.

Next, let p∗ = 〈 f p,δ 〉 where δ < εp (so p∗ 6 p) and δ < µ(domΦ)−q. Suppose that
q 6 p∗ and nq > n. Then from

µ
(
domΦrD[np,nq) [ f q]

)
< δ

we can conclude that µ(D[np,nq)[ f q]) > q, so f q ∈ S. ¤

Lemma 4.8. If A is noncomputable and G⊂ P is generic over A, then f G 6>T A.

Proof. Let Ψ : ωω → 2ω be a Turing functional. We show that the union of

E0 = {p ∈ P : Ψ( f p)⊥ A} and

E1 = {p ∈ P : (∃x)(∀q 6 p) Ψ( f q,x) ↑}
is dense in P. Of course if G∩ (E0∪E1) 6= /0, then Ψ( f G) 6= A.

Let p ∈ P, and take S and p∗ given by Lemma 4.7. If there are g,g′ ∈ S such that
Ψ(g) ⊥ Ψ(g′), then one of them is incompatible with A, so p has an extension in E0. If⋃

g∈S Ψ(g) is total, then it is computable, hence different from A. Again, p has an extension
in E0.

Otherwise, for some x ∈ ω , we have Ψ(g,x) ↑ for all g ∈ S. This implies that p∗ ∈ E1:
for all q 6 p∗, f q has an extension in S, and so Ψ( f q,x) ↑. ¤
Lemma 4.9. If G⊂ P is generic, then f G does not have PA-degree.

Proof. Let ψ : ω → 2 be a partial computable function that has no total computable exten-
sion. We show that f G does not compute a 0-1 valued total extension of ψ .

Let Θ : ωω → 2ω be a Turing functional. We show that the union of

E0 = {p ∈ P : (∃x ∈ domψ) Θ( f p,x)↓ 6= ψ(x)} and

E1 = {p ∈ P : (∃x)(∀q 6 p) Θ( f q,x) ↑}
is dense in P. Of course if G∩ (E0∪E1) 6= /0, then Θ( f G) is not a total extension of ψ .

Let p ∈ P; take S and p∗ given by Lemma 4.7. If there is a g ∈ S such that Θ(g) ⊥ ψ ,
then p has an extension in E0. If for some x, Θ(g,x) ↑ for all g ∈ S, then p∗ ∈ E1.

One of the above must be the case; otherwise, we could compute a completion of ψ as
follows: for each x, search for a g ∈ S such that Θ(g,x)↓ . For the first such g found, let
h(x) = Θ(g,x). Then h is computable, and must extend ψ . ¤

In fact, the same proof gives us somewhat more:

Lemma 4.10. If G⊂ P is generic, then f G does not have DNR-degree.

Proof. Let 〈ϕe〉e∈ω be an enumeration of all partial computable functions from ω to ω .
Let Ψ : ωω → ωω be a Turing functional. We show that the union of

E0 = {p ∈ P : (∃e) Ψ( f p,e)↓= ϕe(e)↓} and

E1 = {p ∈ P : (∃x)(∀q 6 p) Ψ( f q,x) ↑}
is dense in P. Of course if G∩ (E0∪E1) 6= /0, then Ψ( f G) is not DNR.
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Let p ∈ P, and take S and p∗ given by Lemma 4.7. If there is a g ∈ S and e ∈ ω such
that Ψ(g,e)↓= ϕe(e)↓ , then p has an extension in E0. If there is an x such that Ψ(g,x) ↑
for all g ∈ S, then p∗ ∈ E1.

Otherwise, define a total function h : ω → ω as follows: for each x, search for a g ∈ S
such that Ψ(g,x)↓ . Let h(x) = Ψ(g,x) for the first such g discovered. Then h is computable
and DNR, which is impossible. ¤

4.3. Relativization. Let B⊂ ω . All the results of this section relativize to working above
B. Namely, we can define a notion of forcing PB; all is exactly as above, except that instead
of Dn and domΦ we use {Z : Φ(B⊕Z,n)↓} and {Z : Φ(B⊕Z) is total}. With exactly the
same proofs, we see that a generic yields a function f G that is uniformly almost everywhere
dominating over B. Lemma 4.7 now becomes the following:

Lemma 4.11. Let p ∈ PB. Then there is a set S, c.e. in B, such that S⊂ { f q : q 6 p} and
some p∗ 6 p such that {q 6 p∗ : f q ∈ S} is dense below p∗.

These are the analogous corollaries:

Lemma 4.12. Suppose that A 66T B and that G⊂ PB is generic over A. Then B⊕ f G 6>T A.

Lemma 4.13. Suppose that B does not have PA-degree and that G⊂ PA is generic over B.
Then B⊕ f G does not have PA-degree.

Lemma 4.14. Suppose that B is not DNR, and that G⊂ PB is generic. Then B⊕ f G is not
DNR.

5. REVERSE MATHEMATICS II

The above forcing argument directly yields the results concerning the proof-theoretic
strength of Gδ -REG.

Recall from Simpson [15] that M ⊆ 2ω is an ω-model of RCA0 iff it forms an ideal in
the Turing degrees, and it is an ω-model of WKL0 iff it is a Scott system: i.e., a Turing
ideal such that for all A ∈ M, there is a B ∈ M of PA-degree relative to A. Similarly, Yu
and Simpson [18] proved that a Turing ideal M ⊆ 2ω is an ω-model of WWKL0 iff for all
A ∈M, there is a B ∈M that is sufficiently random over A (it is enough that B is 1-random
relative to A by a result of Kučera [10]).

Proof of Theorem 1.4. An ideal of Turing degrees that models Gδ -REG but does not in-
clude any DNR degrees is easily built using Lemma 4.14. ¤

Proof of Theorem 1.6. For the first part, we can inductively construct an ω-model of WKL0 +
Gδ -REG that avoids 0′ by alternatively appealing to Lemma 4.12 and to the fact that a sim-
ilar cone avoidance lemma holds for obtaining paths through trees, hence for PA-degrees
(Jockusch and Soare [8, Theorem 2.5]).

For the second part, a similar construction yields an ω-model of WWKL0 + Gδ -REG
that does not satisfy WKL0, this time using Lemma 4.13 and the following claim, which
essentially appears in Yu and Simpson [18].

Claim 5.1. Suppose that B does not have PA-degree. If A is sufficiently random over B,
then A⊕B does not have PA-degree.
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Proof. This is from [18, Page 172]. Let E and F be disjoint c.e. sets that cannot be sepa-
rated by any set computable in B. By relativizing a result from Jockusch and Soare [9], the
measure of

S = {Z : (∃Y 6T Z⊕B) E ⊆ Y ∧F ∩Y = /0}
is zero. This is the collection of sets Z such that Z⊕B computes a separator of E and F .
If A is sufficiently random over B, then A /∈ S, meaning that it satisfies the claim. (In fact,
since S is a Σ0

3(B)-class, it suffices for A to be (weakly) 2-random relative to B [11].) ¤
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