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Abstract. We study the sets that are computable from both halves of some
(Martin-Löf) random sequence, which we call 1{2-bases. We show that the
collection of such sets forms an ideal in the Turing degrees that is generated by
its c.e. elements. It is a proper subideal of the K-trivial sets. We characterise
1{2-bases as the sets computable from both halves of Chaitin’s Ω, and as the
sets that obey the cost function cpx, sq “

?
Ωs ´ Ωx.

Generalising these results yields a dense hierarchy of subideals in the K-
trivial degrees: For k ă n, let Bk{n be the collection of sets that are below any k
out of n columns of some random sequence. As before, this is an ideal generated
by its c.e. elements and the random sequence in the definition can always be
taken to be Ω. Furthermore, the corresponding cost function characterisation
reveals that Bk{n is independent of the particular representation of the rational
k{n, and that Bp is properly contained in Bq for rational numbers p ă q. These
results are proved using a generalisation of the Loomis–Whitney inequality,
which bounds the measure of an open set in terms of the measures of its
projections. The generality allows us to analyse arbitrary families of orthogonal
projections. As it turns out, these do not give us new subideals of the K-trivial
sets; we can calculate from the family which Bp it characterises.

We finish by studying the union of Bp for p ă 1; we prove that this
ideal consists of the sets that are robustly computable from some random
sequence. This class was previously studied by Hirschfeldt, Jockusch, Kuyper,
and Schupp [24], who showed that it is a proper subclass of the K-trivial sets.
We prove that all such sets are robustly computable from Ω, and that they
form a proper subideal of the sets computable from every (weakly) LR-hard
random sequence. We also show that the ideal cannot be characterised by a
cost function, giving the first such example of a Σ0

3 subideal of the K-trivial
sets.
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1. Introduction

If two infinite binary sequences are chosen independently at random, we would
expect them not to encode common noncomputable information. This is the case,
but Martin-Löf randomness is not strong enough to guarantee this kind of indepen-
dence. Martin-Löf’s notion of randomness is the most widely used in the theory of
algorithmic randomness, an area that attempts to label individual binary sequences
as “random”. For a randomness notion to make sense it must hold of almost every
sequence, and it must restrict the behavior of a sequence so that it has natural
properties in common with almost every sequence. We want, for example, random
sequences to have an equal number of 0s and 1s in the limit. This is a natural
property shared by almost every sequence. On the other hand, we do not want to
go overboard: an infinite binary sequence X P 2ω always has the unusual propery
of being in the singleton set tXu, a property shared with no other sequence. So if
we are to label sequences as “random”, we must limit ourselves to natural proper-
ties. In practice, we must specify a countable collection of measure zero sets that
“cover” the nonrandom sequences. In the case of Martin-Löf randomness, we use
the “effective measure zero sets”. These are the sets of sequences for which there
is an algorithm that takes as input a rational ε ą 0 and, as output, generates an
open cover of the set with measure less than ε.

Martin-Löf randomness is strong enough to guarantee many of the properties we
would want from random sequences. For example, they have an equal number of
0s and 1s in the limit, and in fact, satisfy the law of the iterated logarithm; when
viewed as real numbers, they are points of differentiability for every computable
function of bounded variation (Demuth [13], see also [9]); and they satisfy Birkhoff’s
ergodic theorem for computable ergodic systems with respect to effectively closed
sets [5, 18]. On the other hand, things get interesting when we look at properties
of typical sequences with respect to information content. We already alluded to an
example above: independent Martin-Löf random sequences can compute the same
noncomputable information. The subject of this paper is to understand exactly how
complex such shared information can be. A simpler example of Martin-Löf random
sequences having an unusual property was given by Kučera [27] and Gács [20]. They
showed that every sequence is computable from some random sequence. Even an
incomplete random sequence may be Turing above a noncomputable, computably
enumerable (c.e.) set (Kučera [28]). The set of sequences that are Turing above
noncomputable c.e. sets has measure zero, but it is not an effective measure zero
set.

This latter failure gives rise to a dual question: what kind of c.e. sets can be
computed by an incomplete random sequence?1 The answer to this question is now
known [25, 12, 4]: these are the K-trivial c.e. sets. The notion of K-triviality was
introduced by Solovay [37] as the antithesis of randomness: while random sequences
can be characterised as those whose initial segments cannot be compressed beyond
their length, the K-trivial sequences are those whose initial segments are maxi-
mally compressible and contain no information beyond their length. The K-trivial
sets are computationally weak (close to being computable). There are only count-
ably many of them (Chaitin [10]); they are all computable from c.e. K-trivial sets
(Nies [33]); and they coincide with the low for random sets: the sets A such that

1Henceforth in this paper “random” means Martin-Löf random.
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every ML-random sequence is ML-random relative to A (Nies [33]). The robust-
ness of K-triviality has been demonstrated through a series of characterisations,
including several in terms of notions of weakness. One such notion is being a base
for randomness: A is K-trivial if and only if it is computable from some sequence
which is random relative to A (Hirschfeldt et al. [25]). The class of K-trivial sets
induces an ideal in the Turing degrees.

The join X ‘ Y of binary sequences X,Y is the sequence
Z “ Xp0qY p0qXp1qY p1q . . .

that alternates between X and Y ; we call X and Y the “halves” of Z. If two
sequences X and Y are random relative to each other and A is computable from
both X and Y , then A is K-trivial. Two sequences X and Y are random relative to
each other if and only if the pair pX,Y q is random if and only if the join X ‘ Y is
random. For this reason we say that A is a 1{2-base if there are relatively random
sequences X and Y , both of which compute A. Note that if X and Y witness that A
is a 1{2-base, then both X and Y are random relative to A. Thus, every 1{2-base
is also a base for randomness and hence K-trivial. However, not every K-trivial
set is a 1{2-base (Bienvenu et al. [6].) This leads to three questions:

(1) Are there natural witnesses for a set being a 1{2-base?
(2) What structure do the 1{2-base sets induce in the Turing degrees?
(3) In what way can the 1{2-base sets be characterised?

We answer these questions in this paper. To answer questions (1) and (2) we show:

Theorem 1.1.
(1) Chaitin’s halting probability Ω is a universal witness for being a 1{2-base.

That is, a set A is a 1{2-base if and only if it is computable from both halves
of Ω.

(2) The 1{2-base degrees form a Σ0
3 ideal in the Turing degrees which is gen-

erated by its c.e. elements; the two halves of Chaitin’s Ω are an exact pair
for this ideal.

What would constitute an answer for the third question? In general, how can
we characterise subclasses of the K-trivials in a coherent way? Most of the cur-
rently known 15 or so equivalent definitions of K-triviality cannot be modified to
distinguish between single K-trivial sequences. K-triviality itself means having the
minimal possible initial segment complexity; lowness for randomness means not
derandomizing any random sequence—these are extreme properties, and it is not
obvious how they can be adapted to yield subclasses of the K-trivial sets. However,
there is one characterisation of the K-trivial sets that is amenable to fine-tuning:
characterisation by cost functions.

We will explore cost functions in detail in Section 2. Informally, a cost function
cpx, sq tells us how expensive it is for a computable approximation xAsy of a ∆0

2
set A to change on some value x at some stage s; a set A obeys a cost function if
the total cost accrued along some approximation is finite. Obeying a cost function
tells us that a set has an approximation with “few” changes and so it is likely to be
computationally weak. Varying the cost function allows us to quantify this notion:
roughly, the higher the cost, the fewer the changes permitted and so the closer a
set obeying the cost function is to being computable. The K-trivial sets themselves
are the sets that obey the cost function cΩpx, sq “ Ωs ´ Ωx (Nies [35], extending
an argument in [33]).
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A sufficiently more demanding cost function, i.e., one that makes changes sub-
stantially more expensive, will be obeyed by some but not all K-trivial sets. This
gives us the flexibility to explore behavior within the ideal of K-trivial sets. The
biggest success along these lines was the characterisation of the strongly jump trace-
able sets (which form a proper subideal of the K-trivial sets) using a natural family
of cost functions [22, 14].2 In this paper we answer question (3) by showing that a
set is a 1{2-base if and only if it obeys the cost function cΩ,1{2px, sq “

?
Ωs ´ Ωx.

The results described so far are a special case. By generalising we will obtain a
dense hierarchy of subideals of the K-trivial sets.

Definition 1.2. Let 1 ď k ă n. A set A is a k{n-base if there is a random n-
tuple pZ1, Z2, . . . , Znq such that A is computable from the join of any k of the sets
Z1, Z2, . . . , Zn.3

For the time being the notation “k{n-base” should not be taken literally as a
fraction (but more akin to the expression dy{dx). We will justify this notation
by showing that there are subideals of the K-trivial sets Bp indexed by rational
numbers p P p0, 1q which respect order (p ă q if and only if Bp Ă Bq) and such
that a set is a k{n-base if and only if it is in Bk{n. We note that a priori there is
no reason to believe for example that every 1{2-base is also a 2{4-base, but in fact
these notions are equivalent.

Theorem 1.3. Let 1 ď k ă n.
(1) The n-columns of Chaitin’s Ω (again see Section 2.2) are a universal witness

for being a k{n-base: a set A is a k{n-base if and only if it is computable
from the join of any k of the n-columns of Ω.

(2) A set A is a k{n-base if and only if it obeys the cost function cΩ,k{npx, sq “

pΩs ´ Ωxqk{n. The collection Bk{n of the k{n-base degrees is a Σ0
3 ideal in

the Turing degrees which is generated by its c.e. elements.

The proof of Theorem 1.3 relies on the technical notion of weak obedience to
cost functions which we introduce in Section 2. We thus delay giving an outline of
the proof until the end of that section. We remark that it has already been noticed
by Hirschfeldt et al. [24] that each k{n-base is K-trivial; if pZ1, . . . , Znq witnesses
that A is a k{n-base then for all j ď n, by van Lambalgen’s theorem, Zj is random
relative to Z‰j (the join of the other Zi); the latter computes A and so Zj is random
relative to Z‰j ‘A; using van Lambalgen’s theorem relative to A, we see that the
tuple pZ1, . . . , Znq is A-random, and so A is a base for randomness.

The notion of a k{n-base is in fact still not the most general one which we can
define. Given a collection F of subsets of t1, 2, . . . , nu we call a set A an F-base
if there is some random tuple pZ1, Z2, . . . , Znq such that A is computable from the
join

À

iPF Zi for all F P F . This notion is of independent interest but will actually
be needed in the proof of Theorem 1.3 for “degenerate” k{n-bases. We will show
that there is a rational number }F} ě 1 such that a set A is an F-base if and only

2Jump traceability offers another tool to distinguish K-trivial sets: the slower the growth of
the trace bound, the smaller the class of sets that is jump traceable with that bound. A sufficiently
slow bound guarantees K-triviality. Unfortunately, jump traceability does not seem to be well-
suited to our task because it is not even known if K-triviality itself can be characterised using
jump traceability with computable bounds.

3see Section 2.2 below for a discussion of tuples and their joins.
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if it is in the ideal B1{}F}, and that in a weak sense, Ω serves as a universal witness
for being an F-base.

The sequence of ideals xBpy naturally defines two ideals: Bă1 “
Ť

p Bp, and
Bą0 “

Ş

p Bp (where again in both the union and the intersection, p ranges over
the rational numbers in the open interval p0, 1q). Both ideals have interesting
properties.

Theorem 1.4. Bą0 is the ideal of sets which are 1{ω-bases: the sets which are
computable from each Zn in an infinite random sequence pZ1, Z2, . . . q.4

The ideal Bă1 is related to coarse computability. A coarse description of a
set A P 2ω is a set B P 2ω such that the density of the symmetric difference AMB
is 0. Say that a set A is robustly computable from a set Z if A is computable from
every coarse description of Z. This notion has been investigated by Hirschfeldt et
al. [24], where they show that if A is robustly computable from a random set then
it is K-trivial, in fact it is an pn´ 1q{n-base for some n. They also prove that not
every K-trivial set is robustly computable from a random set. We show:

Theorem 1.5. The following are equivalent for a set A:
(1) A P Bă1 (that is, A is an pn´ 1q{n-base for some n).
(2) A is robustly computable from some random sequence.
(3) A is robustly computable from Ω.
(4) There is some ε ą 0 such that A is computable from all sets B such that

the upper density of BMΩ is below ε.

We remark that the result mentioned above (that not every K-trivial set is ro-
bustly computable from a random sequence) now follows from our characterisation
using cost functions; see Section 6.

Finally we show that every set in the ideal Bă1 is computable from all LR-hard
random sequences. The notion of LR-hardness (equivalent to almost everywhere
domination) appears in the investigations into relative computability between ran-
dom and c.e. sets. If Z is random but is not LR-hard then it is Oberwolfach ran-
dom [6] and so does not compute the “smart” K-trivial sets [6]. It is open whether
this is in fact an equivalence; it is possible that every K-trivial set is computable
from all LR-hard random sequences. In Section 7, we show that the collection of
K-trivial sets computable from all LR-hard random sequences properly contains
the ideal Bă1.

We summarise our findings in Fig. 1.

2. Cost functions and the corresponding test notions

Somewhat extending [34, Section 5.3], a cost function is a computable function
c : Nˆ N Ñ tx P R : x ě 0u.5

4Equivalently, we can just require that each Zn is random relative to the join of any finite
collection of other Zk’s

5The definition of cost functions in [34, Section 5.3] requires them to have rational values
because in this case it is decidable whether a rational cost bound is satisfied. It is possible to
extend the theory of cost functions to admit computable real values instead. One uses rational
approximations of computable numbers in the construction of a non computable set obeying a
cost function. Alternatively, for this paper we could restrict the values of cost functions to be
algebraic numbers.
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Figure 1. Subclasses of the K-trivial degrees.

We say that c is monotonic if cpx`1, sq ď cpx, sq ď cpx, s`1q for each x and s; we
also assume that cpx, sq “ 0 for all x ě s. All cost functions in this paper will be
monotonic without further mention. As stated above, we view cpx, sq as the cost of
changing at stage s a guess about the value Apxq for some ∆0

2 set A. Monotonicity
means that the cost of a change increases with time and that smaller changes are
more costly.

If c is a cost function, then we let cpxq “ lims cpx, sq. We say that c satis-
fies the limit condition if cpxq is finite for all x, and cpxq Ñ 0 as x Ñ 8. As
with monotonicity, all cost functions mentioned will henceforth satisfy the limit
condition.

Definition 2.1 ([34]). Let xAsy be a computable approximation of a ∆0
2 set A,

and let c be a cost function. The total c-cost of the approximation is
ÿ

sPω

tcpx, sq : x is least such that As´1pxq ‰ Aspxqu .

We say that a ∆0
2 set A obeys c if the total c-cost of some computable approximation

of A is finite. We write A |ù c.

It is not hard to show that if A is a c.e. set obeying a cost function c, then there
is a computable enumeration of A that witnesses this obedience; see [35].

Definition 2.2. For a rational number p P p0, 1s and a left-c.e. real β (equipped
with an increasing approximation xβsy) we let

cβ,ppx, sq “ pβs ´ βxqp.
(As usual, we let cβ,ppx, sq “ 0 if x ě s.)
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As mentioned above, a set A is K-trivial if and only if it obeys the cost function
cΩ “ cΩ,1. Of course, if p ă q then cΩ,q ď cΩ,p, and so if A obeys cΩ,p, then A
obeys cΩ,q. In particular, if p ď 1 and A |ù cΩ,p, then A is K-trivial.

Proposition 2.3. Let p P p0, 1s be rational. The collection of sets that obey cΩ,p
is downwards closed in the Turing degrees.

Key to the proof of Proposition 2.3 will be the fact that K-trivial sets do not
help us approximate Chaitin’s Ω substantially better than we can with no oracle.
Recall that if B is K-trivial, it is low for Martin-Löf randomness, so Ω is Martin-Löf
random relative to B.

Barmpalias and Downey [1, Lemma 2.5] proved that if f ďT B and Ω is Martin-
Löf random relative to B (i.e., B is low for Ω), then there is a constant N such
that p@kq Ω ´ Ωk ă N

`

Ω´ Ωfpkq
˘

. In other words, B does not allow us to speed
up the approximation of Ω by more than a constant. This is exactly what we will
need for the proof of Proposition 2.3, but we present a small improvement: in the
limit, B does not allow us to speed up the approximation of Ω at all.

Lemma 2.4. Assume that Ω is Martin-Löf random relative to B and that f : ω Ñ ω
is a B-computable function. For every ε ą 0,

p@8kq Ω´ Ωk ă p1` εq
`

Ω´ Ωfpkq
˘

.

In other words,

lim inf
kÑ8

Ω´ Ωfpkq
Ω´ Ωk

ě 1.

Proof. Without loss of generality, we may assume that f is strictly increasing, and
that ε is rational. Let n0 “ 0; given ns we let ns`1 “ fpnsq. For each s let
Gs “

`

Ωns`1 ,Ωns`1 `
1
ε

`

Ωns`1 ´ Ωns´1

˘ ˘

. Note that
ř

sPω µpGsq ď
2
εΩ, so xGsy is

a B-Solovay test. By assumption, Ω cannot be captured by this test, so there is an
s˚ such that if s ě s˚, then Ω R Gs. But Ω ě Ωns`1 , so it must be the case that
Ω ą Ωns`1 `

1
ε pΩns`1 ´ Ωns´1q. Rearranging:

p@s ě s˚q ε
`

Ω´ Ωns`1

˘

ą Ωns`1 ´ Ωns´1 .

Now let k ě ns˚ . Fix s ą s˚ such that k P rns´1, nsq. Since fpkq ă fpnsq “ ns`1,

p1` εq
`

Ω´ Ωfpkq
˘

ą p1` εq
`

Ω´ Ωns`1

˘

ą Ω´ Ωns`1 ` Ωns`1 ´ Ωns´1

“ Ω´ Ωns´1 ě Ω´ Ωk. �

Proof of Proposition 2.3. Suppose that A ďT B and B |ù cΩ,p. Let Φ be a Turing
functional such that ΦpBq “ A. Let ϕ be the use function for the reduction. Since
B is K-trivial and ϕ is B-computable, we can apply Lemma 2.4 (or Lemma 2.5 of
Barmpalias and Downey [1]) to get an N ą 0 such that

p@kq Ω´ Ωk ă N
`

Ω´ Ωϕpkq
˘

.

The idea of the proof is to use this inequality to bound the cost of an A-change in
terms of the cost of a corresponding B-change, where we take an approximation of
A induced by a given approximation of B.

Let xBsy be an approximation of B that witnesses that B obeys cΩ,p. At stage s,
for all n P dom ΦspBsq, let ϕspnq be the Φs-use of the stage s computation. We
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define a computable increasing sequence of stages sp0q ă sp1q ă ¨ ¨ ¨ as follows. Let
sp0q “ 0. Given spi´ 1q, let spiq ą spi´ 1q be least such that

p@k ď iq Ωi`1 ´ Ωk ă N
´

Ωspiq ´ Ωϕspiqpkq
¯

.

Included in this condition is the assumption that k P dom ΦspiqpBspiqq for all k ď i.
The choice of N guarantees that such an spiq will be found. For i ě 0, let Ai “
ΦspiqpBspiqq æ i` 1. We claim that the approximation xAiy witnesses that A obeys
cΩ,p.

Let i ě 0 and let k be least such that Ai`1pkq ‰ Aipkq. If k ą i, then the
cΩ,p-cost accrued by the approximation xAiy at stage i ` 1 is 0. If k ď i, then
the cΩ,p-cost is pΩi`1 ´ Ωkqp, which is bounded by NppΩspiq ´ Ωϕspiqpkqqp. Let
v “ ϕspiqpkq. The change in A corresponds to a change in B; specifically, there
must be a stage t P pspiq, spi ` 1qs such that Bt æ v ‰ Bt´1 æ v. The cΩ,p-cost
accrued by the approximation xBsy at stage t is at least pΩt ´Ωvqp, which in turn
is at least pΩspiq ´Ωϕspiqpkqqp. It follows that the total cost for xAjy is bounded by
Np ¨ pthe total cost for xBsyq, hence it is finite. �

Definition 2.5. Let Bp be the collection of sets that obey cΩ,p.

We have seen that Bp is closed downward under Turing reduction and only
contains K-trivial sets. Nies [35] proved several general results about the class of
sets obeying a cost function that are helpful in understanding Bp. For example,
Bp is closed under join, which along with downward closure means that it induces
an ideal in the Turing degrees. Further, every member of Bp is bounded by a
c.e. member of Bp, and the index set of c.e. members is Σ0

3. As we have already
mentioned, if p ă q, then Bp Ď Bq.

We will use the following, which is Theorem 3.4 of [35]. Here and below we write
g ďˆ h to mean that g ď ch for some constant c ą 0.

Proposition 2.6. The following are equivalent for two cost functions c and d:
(1) Every set obeying c also obeys d;
(2) d ďˆ c.

Suppose that p ă q. Since cΩ,p is not bounded by any constant multiple of cΩ,q,
the ideal Bp is properly contained in Bq. While Proposition 2.6 only produces a ∆0

2
set in Bq ´ Bp, in our case this difference between the ideals can be witnessed by
a c.e. set. For take V P Bq ´ Bp. Since Bq is characterised by obedience to a cost
function, there is a c.e. set A ěT V in Bq. Since Bp is downward closed, we have
A R Bp.

2.1. Coherent tests, and tests bounded by cost functions. A Π0
2 class (i.e.,

an effective Gδ set) is the intersection
Ş

n Vn of a nested sequence V0 Ě V1 Ě ¨ ¨ ¨ of
uniformly c.e. open sets. Nesting ensures that the class is null if and only if µpVnq Ñ
0. Such null classes characterise weak 2-randomness. If we assume that µpVnq is
bounded by a computable function tending to 0, then we have a Martin-Löf test.
Randomness notions in between Martin-Löf randomness and weak 2-randomness
can be introduced by taking a suitable noncomputable witness to the fact that
µpVnq Ñ 0. For example, Oberwolfach randomness [6] can be characterised using
tests satisfying µpVnq ď β ´ βn, where xβny is a computable increasing sequence of
approximations limiting to a left-c.e. real β. In general, cost functions can be used
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to gauge the rate that µpVnq converges to 0. This generalises the previous example
because cpn, sq “ βs ´ βn is a cost function (these are the additive cost functions
in the sense of [35]).

Definition 2.7 ([6, Def. 2.13]). Let c be a cost function. A nested sequence xVny
of uniformly c.e. open sets is a c-bounded test if µpVnq ďˆ cpnq for all n.6

The limit condition for c ensures that µpVnq Ñ 0, so
Ş

n Vn is indeed null. If
xVny is a c-bounded test, then there is a (uniform) enumeration xVn,sy of the sets Vn
such that for all n and s, Vn`1,s Ď Vn,s and µpVn,sq ď

ˆ cpn, sq (so in particular,
Vn,n “ H).

Tests bounded by additive cost functions as described above (also known as
“Auckland tests”) define the same null sets as “Oberwolfach tests” [6], which are
coherent restrictions of balanced tests [17]. The general context here is Demuth’s
framework for defining null sets using components that can be reset. We consider
nested tests xVny where Vn “ Wfpnq for some ∆0

2 function f . (Here xWey is an
effective enumeration of all effectively open sets.) We require that µpVnq ď 2´n.
If xfsy is a computable approximation for f , then Vnxsy “ Wfspnq is the stage s
approximation of the components of the test. The informal idea is that when
building such a test we start covering some reals, but at a later stage we change our
minds (fspnq ‰ fs´1pnq); we empty some of the components of the test and restart
them. A balanced test is such a test for which the approximation for fpnq changes
Op2nq times. An Oberwolfach test (a coherent balanced test) requires the changes
to be coordinated across the levels of the test: if s and t are successive stages at
which fspnq ‰ fs´1pnq and ftpnq ‰ ft´1pnq, then either fspn ´ 1q ‰ fs´1pn ´ 1q
or ftpn ´ 1q ‰ ft´1pn ´ 1q. That is, every two changes in Vnxsy prompt a change
to Vn´1xsy. If we further assume that V0 never changes, then this is equivalent to
the existence of a system of (uniformly c.e. open) components Gσ for σ P 2ăω and
a left-c.e. real α P 2ω such that µpGσq ď 2´|σ| and Vn “ Gα æn.

Definition 2.8. Let p P p0, 1s be rational. A p-Oberwolfach test consists of a
left-c.e. binary sequence α P 2ω and a uniformly c.e. open array xGσyσP2ăω such
that:

‚ For all σ P 2ăω and i ă 2, Gσ î Ď Gσ;
‚ For all σ P 2ăω, µpGσq ďˆ 2´p|σ|.

The null set defined by the test is
Ş

nGα æn.

We say that a test Q covers a test P if the null set defined by P is a subset of
the null set defined by Q. The following generalises one direction of the equivalence
of Auckland and Oberwolfach tests; the proof however required modification.

Proposition 2.9. Let p P p0, 1s be rational. Every p-Oberwolfach test can be
covered by a cΩ,p-bounded test.

Proof. Let pxGσy, αq be a p-Oberwolfach test. Let β “ α ` 1 and let βs “ αs `
p1´ 2´sq be the associated increasing approximation; so β ´ βs “ pα´ αsq ` 2´s.
We first show that the test pxGσy, αq can be covered by a cβ,p-bounded test xVny.
We let Vn “

Ť

sąnGαs æn. Certainly
Ş

nGα æn Ď
Ş

n Vn; we need to show that
µpVnq ď

ˆ pβ´βnq
p. Let k be the natural number such that 2´k´1 ď pα´αnq ă 2´k.

6We note that the concept of c-test in [6] was defined without the linear constant.
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Then there are at most two strings of the form αs æ k for s ą n. If k ě n then there
are at most two strings of the form αs æn for s ą n, and so µpVnq ďˆ 2 ¨ 2´pn;
because β ´ βn ě 2´n we get µpVnq ďˆ pβ ´ βnq

p. If k ă n then we use the fact
that xGσy is nested: in that case Vn Ď

Ť

sąnGαs æ k and so µpVnq ďˆ 2 ¨2´pk, while
pβ ´ βnq

p ě pα´ αnq
p ě 1{2p ¨ 2´pk, whence µpVnq ďˆ 2p`1pβ ´ βnq

p as required.
Next we cover xVny by a cΩ,p-bounded test xUny. For this we use the fact that Ω

is Solovay complete; there is some increasing computable function f such that
β ´ βfpnq ď

ˆ Ω´ Ωn. So we let Un “ Vfpnq. �

It is also the case that every cΩ,p-bounded test can be covered by a p-Oberwolfach
test. However, we do not need this fact and do not include a proof.

2.2. Capturing the columns of Ω. We will work with the computable probabil-
ity space p2ωqn for various n ă ω, and in fact with computable probability spaces
p2ωqF where F Ď t1, 2, . . . nu; the latter is immediately identified with p2ωq|F | by
using the increasing enumeration of F . Elements of p2ωqF will be denoted by up-
percase Roman letters. If Z P p2ωqF and i P F then Zi is the ith component of Z.
We identify n with t1, 2, . . . , nu so each Z P p2ωqn is the tuple pZ1, Z2, . . . , Znq.

For each n ă ω, the computable probability space p2ωqn is computably iso-
morphic to 2ω via a measure-preserving map (and so the map preserves both
Turing degree and ML-randomness). There are several such maps and for most
applications it does not matter which one we take. However at times it is im-
portant that we use the canonical map which distributes bits evenly: for X P 2ω
we define jnpXq “ pX1, X2, . . . , Xnq P p2ωqn by letting Xj`1pkq “ Xpnk ` jq.
The sequences X1, . . . , Xn are called the n-columns of X. We also write X “

X1 ‘X2 ‘ ¨ ¨ ¨ ‘Xn. We sometimes abuse notation and write X for jnpXq. How-
ever, we will denote the n-columns of Ω by Ω̄1, . . . , Ω̄n, so as to not confuse them
with Ωs, the stage-s approximation for Ω.

We introduce further notation which will be useful here and later. Let F Ď

t1, 2, . . . , nu. We define the projection πF : p2ωqn Ñ p2ωqF by erasing the entries
with indices outside F . For clarity, for Z P p2ωqn we also denote πF pZq by ZF .
Using this notation we can rephrase Definition 1.2:

Definition 2.10. A set A is a k{n-base if there is a random tuple Z P p2ωqn such
that A is computable from ZF for every F Ď t1, 2, . . . , nu of size k.

The tuple Z is called a witness for A being a k{n-base. The abuse of notation
mentioned above results in us sometimes calling

À

iďn Zi a witness as well. As
promised, we will show that Chaitin’s Ω (which of course can be taken to be any
left-c.e. random sequence) is a witness for every k{n-base. The following proposition
is the first step toward that result.

Proposition 2.11. Let n ě 1 and F Ď t1, 2, . . . , nu. Let Ω̄1, Ω̄2, . . . , Ω̄n be the
n-columns of Ω. Then pΩ̄jqjPF “ ΩF is captured by a cΩ,|F |{n-bounded test.

Proof. For σ P 2ăω, let Gσ “ tXF : X P 2ω & σ ă Xu, where again by XF we
really mean πF pjnpXqq. The test pxGσy,Ωq captures ΩF . If n divides |σ|, then
µpGσq precisely equals 2´p|F |{nq¨|σ| (as we specify precisely p|F |{nq|σ| many bits).
So in general µpGσq is bounded by 2n ¨ 2´|F |{n¨|σ| and is thus an |F |{n-Oberwolfach
test. The result follows from Proposition 2.9. �
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Note that we used the fact that we are dealing with the canonical “bits evenly
distributed” isomorphism between 2ω and p2ωqn. We cannot capture an arbitrary
computable split of Ω by a cΩ,1{2-test. As a result, it is not the case that for any
computable splitting of Ω into two parts, both parts compute every 1{2-base.7

2.3. Analysis of c.e. k{n bases. We can now sketch the proof of Theorem 1.3
in the special case that A is c.e. The main technical result is Proposition 2.16,
which says that if A is a k{n-base, then A obeys the cost function cΩ,k{n. Another
important fact (see for example [6]) is that if a set A obeys a cost function c, then
it is computable from any random sequence that is captured by a c-bounded test
(thus for example, any random that is not Oberwolfach random computes all K-
trivial sets). Proposition 2.11 says that any k-tuple of distinct n-columns of Ω can
by captured by a cΩ,k{n-bounded test, and so:

‚ each such k-tuple computes every k{n-base (since these obey cΩ,k{n);
‚ any set obeying the cost function cΩ,k{n is a k{n-base.

2.4. Weak obedience to cost functions. We do not know how to show directly
that, in general, every k{n-base obeys cΩ,k{n. To overcome this we introduce a
weakening of the notion of obedience.

Definition 2.12. Let xAsy be a computable approximation of a ∆0
2 set A. An

n-stage for this approximation is a stage s at which As æn “ As´1 æn, Aspnq ‰
As´1pnq, and As æn` 1 “ A æn` 1. Note that there is not necessarily an n-stage
for every n, but there are n-stages for infinitely many n.

Let c be a cost function. The weak total c-cost of the approximation xAsy is
ÿ

tcpn, sq : s is the last n-stageu .

The approximation xAsy witnesses that A weakly obeys the cost function c if the
weak total c-cost of the approximation is finite.

If A obeys c then it also weakly obeys it; the converse fails by the following,
combined with the fact that a K-trivial is never Turing complete.

Proposition 2.13. There is a c.e. set A ”T H1 that weakly obeys cΩ.

Proof. We enumerate A as follows. For each n R H1s, we have a marker γspnq ě n.
If n entersH1 at stage s, then we enumerate the marker γspnq into As and initialise
all markers γs`1pmq for m ą n to be greater than s. A k-stage is a “true stage” in
the enumeration of A, equivalently of H1. If s is a k-stage of the enumeration xAsy,
then k “ γspnq for some n, and every number that enters A after stage s is greater
than s. Thus the set of intervals I “ trk, sq : s is a k-stage of xAsyu is pairwise
disjoint. The weak total cΩ-cost of this enumeration of A is the sum of Ωs ´ Ωk,
where rk, sq is an interval in I. Therefore, it is bounded by Ω. �

Weak obedience is not very useful when we try to build our own sets. However
it suffices for the following.

Proposition 2.14. If A weakly obeys c, then A is computable from any A-random
sequence captured by a c-bounded test.

7For example, consider the 3-columns Ω̄1, Ω̄2, Ω̄3 of Ω. By considering each splitting Ω̄i, Ω̄j‘Ω̄k

(where ti, j, ku “ t1, 2, 3u), we see that if for every computable splitting of Ω into two parts, both
parts compute A, then A is a 1{3-base. However, not every 1{2-base is a 1{3-base.
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Proof. Let xAsy be an approximation witnessing that A weakly obeys c; let xVny
be a c-bounded test. Being an n-stage for the approximation is recognisable by A.
For n ă ω, let Gn “ H if there is no n-stage; otherwise, let Gn “ Vn,s, where s is
the last n-stage. In other words, Gn “

Ť

Vn,s as s ranges over all n-stages. Then
the sequence xGny is uniformly A-c.e. Since µpVn,sq ď cpn, sq, the sequence xGny
is an A-Solovay test.

Suppose that Z P
Ş

n Vn is not captured by xGny; let r be the last stage at
which Z enters any Gn. Suppose that Z enters Vn at stage s ą r; we claim that
As æn` 1 “ A æn` 1, in fact that At æn` 1 “ As æn` 1 for all t ě s. Let m
be least such that for some t ą s, Atpmq ‰ At´1pmq; let t be the last such stage.
Then t is an m-stage. Since t ą r, Z R Vm,t. Since Z P Vn,t and the sets xVk,ty are
nested, it must be that m ą n. Hence Z computes A. �

A refinement. We will require a technical refinement. Let I “ xi0, i1, . . .y be a
strictly increasing computable sequence. Let xAsy be a computable approximation
of a ∆0

2 set A. An I-n-stage of the approximation is a stage s at which: As æ in “
As´1 æ in, As æ in`1 ‰ As´1 æ in`1, and As æ in`1 “ A æ in`1. If c is a cost function,
then the total I-weak cost of the approximation is the sum of all cpn, sq where n is
the last I-n-stage. The approximation witnesses that A I-weakly obeys c if the total
I-weak cost of the approximation is finite. Weak obedience is I-weak obedience for
I being the identity sequence in “ n.

The proof of Proposition 2.14 gives its I-analogue: if A I-weakly obeys c then A
is computable from any A-random set captured by a c-bounded test. (Equivalently,
we could generalise the theory of obedience and weak obedience to computably
bounded elements of Baire space.)

Lemma 2.15. Let I be an increasing computable sequence. Suppose that A is K-
trivial and I-weakly obeys cΩ,k{n. Then A is a k{n-base; in fact, the n-columns
of Ω witness that A is a k{n-base.

Proof. Since A is low for random, any k-tuple of distinct n-columns of Ω is A-
random. So Proposition 2.11 and the I-version of Proposition 2.14 show that any
such join computes A. �

2.5. The proof of Theorem 1.3. The two main results that we show later are
the following. The first was mentioned above.

Proposition 2.16. Every c.e. k{n-base obeys cΩ,k{n.

Proposition 2.17. Every k{n-base weakly obeys cΩ,k{n. In fact, if xAsy is any com-
putable approximation of a k{n-base A, then there is a sub-approximation

@

Aspnq
D

which witnesses that A weakly obeys cΩ,k{n.

These suffice to give a proof of Theorem 1.3. To prove that every k{n-base
obeys cΩ,k{n we will show that each k{n-base is bounded by a c.e. k{n-base, and
use Propositions 2.3 and 2.16.

Theorem 2.18. Let 1 ď k ă n. The following are equivalent for a set A:
(1) A is a k{n-base;
(2) The n-columns of Ω witness that A is a k{n-base;
(3) A obeys cΩ,k{n;
(4) A is K-trivial and weakly obeys cΩ,k{n.
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Proof. (2)Ñ(1) is immediate. (3)Ñ(4) holds because obedience implies weak obe-
dience; and if A obeys cΩ,p, then it obeys cΩ and so is K-trivial. (4)Ñ(2) follows
from Lemma 2.15.

It remains to show that (1) implies (3). Suppose that A is a k{n-base. As
mentioned in the introduction, we know that A is K-trivial [24]; let

@

Āt
D

be an
approximation that witnesses that A obeys cΩ. By Proposition 2.17, there is a
sub-approximation xAsy “

@

Ātpsq
D

of A that witnesses that A weakly obeys cΩ,k{n.
This sub-approximation also witnesses that A (fully) obeys cΩ. As a consequence,
the approximation xAsy is an ω-computable approximation ([35, Fact 2.12]): there
is a computable function h bounding the number of changes of Aspnq. Using h,
we can devise a “reasonable” change-set C for the approximation xAsy. Let in “
ř

mďn hpmq (and let I “ xiny). We define the c.e. set C as follows: if Aspnq ‰
As´1pnq and s is the jth stage at which we saw a change in this approximation,
then we enumerate in´1 ` j into Cs. Then:

‚ the (full) total cΩ-cost of the enumeration xCsy is bounded by the total
cΩ-cost of the approximation xAsy, and so C is K-trivial;

‚ the I-weak total cΩ,k{n-cost of the enumeration xCsy equals the (normal)
weak total cΩ,k{n-cost of the approximation xAsy, and so C I-weakly obeys
cΩ,k{n.

By Lemma 2.15, C is a k{n-base. Since C is c.e., Proposition 2.16 says that C fully
obeys cΩ,k{n. By Proposition 2.3, A also obeys this cost function. �

3. 1{2-bases and ravenous sets

We first prove Propositions 2.16 and 2.17 for the special case k “ 1 and n “ 2.
This allows us to describe the dynamics of the construction while suppressing the
geometric considerations that appear in the general case.

3.1. Adapting the hungry sets construction. The proofs of Propositions 2.16
and 2.17 are inspired by the “hungry sets” construction from [25], which was used to
show that every set that is a base for randomness is K-trivial (or low for K). That
argument can be transformed into a direct argument showing that every c.e. set A
that is a base for randomness obeys the cost function cΩ. It may be instructive to
sketch that argument.

Sketch of a hungry sets construction for cost function obedience. Let xAsy be an enu-
meration of a c.e. set A (what we use is the fact that it is an increasing approxi-
mation of a left-c.e. real). Suppose that Z is an A-random that computes A; let Ψ
be a functional such that ΨpZq “ A.

We have a separate “ε-construction” for every dyadic rational ε ą 0. One of these
constructions will give us the speed-up of the enumeration ofA that witnesses thatA
obeys the cost function cΩ. If an ε-construction fails to do so, then it produces an
A-effectively open set Uε of measure at most ε that contains Z; so if every such
construction fails, we can build an A-Solovay test capturing Z.

Fix ε ą 0. For each string τ we define an open set Gτ . This is the “hungry set”
used to certify τ . It is a subset of Ψ´1rτ s “ tX P 2ω : ΨpXq ě τu. We require that
the sets Gτ be pairwise disjoint. The set Gτ is satiated if its measure is precisely
ε ¨

`

Ω|τ |`1 ´ Ω|τ |
˘

; this is the “goal” for Gτ . When the set reaches its goal, we
declare τ to be confirmed. If τ 1 is an immediate successor of τ , we start filling the
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set Gτ 1 only after τ is confirmed; we fill Gτ 1 by clopen subsets of Ψ´1rτ 1s disjoint
from

Ť

σďτ Gσ.
Let Uε “

Ť

năω GA æn. Then µpUεq ď
ř

ε¨pΩn`1´Ωnq ď ε¨Ω ď ε. If there is an n
such that A æn is never confirmed, then Z P Uε because Ψ´1rA æns Ď

Ť

mďnGA æm.
Suppose that every initial segment of A is confirmed at some stage. Define an

increasing sequence s0 ă s1 ă s2 ă ¨ ¨ ¨ of stages such that at stage sn the string
Asn æn is confirmed. We claim that the total cΩ cost of the approximation xAsny is
finite. Let n ě 0 and consider the cost paid at stage sn`1; it is Ωn`1 ´Ωk where k
is the least such that Asn`1pkq ‰ Asnpkq. Consider the set Vn “

Ť

mPpk,nsGAsn æm.
The sets GAsn æm are full and pairwise disjoint, so µpVnq “ ε ¨ pΩn`1 ´ Ωkq. And
further, because the approximation is left-c.e., the sets Vn are pairwise disjoint, so
the total cΩ cost is bounded by p1{εq ¨ µp

Ť

n Vnq, which is of course finite. �

Now consider a 1{2-base A witnessed by a pair Z1 and Z2; say ΨipZiq “ A for
i “ 1, 2. We attempt a similar construction. Again fixing ε, as before the aim is
to certify strings τ by filling hungry sets Gτ . If certification does not happen then
we want to capture the pair pZ1, Z2q by U “

Ť

τăAGτ , so certification happens
by letting Gτ Ď Ψ´1

1 rτ s ˆ Ψ´1
2 rτ s. The main idea is that if a string τ is certified

with weight δ “ ε ¨
`

Ω|τ |`1 ´ Ω|τ |
˘

and is then discovered to be wrong, then either
the projection π1rGτ s to the first coordinate or its projection π2rGτ s to the second
coordinate has to have measure at least

?
δ: Gτ is contained in the product of the

two projections. So we plan to charge the cΩ,1{2-cost of the change away from τ to
one of these projections.

The problem is that while we can keep the hungry sets Gτ pairwise disjoint, this
is not true of their projections. Consider Fig. 2. The two rectangles represent Gτ
and Gτ 1 for an extension τ 1 of τ . If we required π2rGτ 1s to be disjoint from π2rGτ s
then we would not be able to capture the pair pZ1, Z2q in either Gτ or Gτ 1 .

Z1

Z2
pZ1,Z2q

Figure 2. Overlapping projections of hungry sets
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The fact that the projections of the hungry sets are not disjoint is a serious
obstacle to the plan to charge the cost of changes to the measures of these pro-
jections. In the situation described, we may first discover that τ 1 is incorrect and
charge against the projection π1rGτ 1s say; and later discover that τ is incorrect and
charge against π1rGτ s.

To overcome this problem, when we discover that τ 1 is incorrect and want to
confirm an incomparable extension τ2 of τ , for our measure calculations we ignore
the oracles that map to τ 1. That is, from the point of view of τ2, mass has been
removed from Gτ upon discovering that τ 1 was incorrect, and τ2 wants to first
“refill” Gτ before filling Gτ2 . This may seem like a bad idea because then the
telescopic sum calculation bounding the size of U is now violated. But it is not
violated if instead of an A-Solovay test we construct a difference test, where we are
actually allowed to throw out that part of Gτ that mapped to τ 1 and not count it
toward the measure of U . Now however, we need to explain why the pair pZ1, Z2q
cannot be captured by such a test. For this we need the concept of measure-theoretic
density.

3.2. Density points and difference tests. Restricting ourselves to binary den-
sity in Cantor space, for a measurable set C Ď 2ω and a sequence X P 2ω, the
density of C at X is defined by

%pC |Xq “ lim inf
nÑ8

µpC |X ænq

where for a string σ P 2ăω, the conditional measure µpC |σq is µpC X rσsq{µprσsq.
The Lebesgue density theorem says that for almost all X P C, %pC |Xq “ 1. A
sequence X is a density one point if %pC |Xq “ 1 for every effectively closed (Π0

1)
set C containing X. It is a positive density point if %pC |Xq ą 0 for every effectively
closed set C containing X. A random set X is a positive density point if and only
if it is incomplete (Bienvenu et al. [7]). There is an incomplete random set that is
not a density one point (Day and Miller [12]). Every Oberwolfach random set is a
density one point [6], so every random set that is not a density one point computes
every K-trivial set.

The concept of dyadic density is extended to the spaces p2ωqn (and so p2ωqF )
using the standard “evenly distributed bits” isomorphisms jn (see Section 2.2). It is
not difficult to see that, for example, a point pX,Y q in the plane p2ωq2 is a density
one point if and only if for every effectively closed set C Ď p2ωq2 containing pX,Y q,
lim infnÑ8 µ pC | rX æns ˆ rY ænsq “ 1.

In our investigation of 1{2-bases we will use product classes, effectively closed
subsets of the “Cantor plane” p2ωq2 of the form C1 ˆ C2, where both Ci Ď 2ω are
effectively closed.

Proposition 3.1. Suppose that pZ1, Z2q is a random pair that does not form a
minimal pair (i.e., there is a noncomputable set reducible to both Z1 and Z2, so
that the pair pZ1, Z2q witnesses that some noncomputable set is a 1{2-base). Then
the pair pZ1, Z2q has positive density in every effectively closed product class C1ˆC2
containing it.

Proof. Let C1 ˆ C2 be the product of two effectively closed sets; suppose that
Z1 P C1, Z2 P C2, and that %pC1 ˆ C2 | pZ1, Z2qq “ 0. Since %pC1 ˆ C2 | pZ1, Z2qq ě
%pC1 |Z1q ¨ %pC2 |Z2q, either %pC1 |Z1q “ 0 or %pC2 |Z2q “ 0. By [7], either Z1 or Z2
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computes H1, say Z1. But then Z2 is 2-random, so it cannot compute any ∆0
2 set,

and in particular, no 1{2-base. �

Remark 3.2. In fact, the assumption of Proposition 3.1 implies that the pair pZ1, Z2q
is a density one point in product classes. If %pC1ˆC2 | pZ1, Z2qq ă 1 then either Z1
or Z2 is not a density one point, say Z1. By [7], Z1 is almost everywhere dominating,
which implies that it is LR-hard [26]. So again, Z2 is 2-random and forms a minimal
pair with Z1.

When we discuss k{n-bases, we will need a generalisation of this fact (Lemma 4.10).
But Proposition 3.1 suffices in the simple case of 1{2-bases.

The equivalence between positive density and incompleteness for random se-
quences passes through the notion of difference randomness. A difference test is a
sequence xP XGny, where P is a fixed effectively closed set, xGny is uniformly ef-
fectively open and nested, and µpP XGnq ď 2´n; the null set defined is P X

Ş

nGn.
Franklin and Ng [19] showed that a random sequence Z computes H1 if and only if
it is captured by some difference test. Bienvenu et al. [7, Lemma 3.3] showed the
following:

Lemma 3.3. The following are equivalent for a random sequence Z and an effec-
tively closed set P containing Z:

(1) %pP |Zq “ 0;
(2) Some difference test of the form xP XGny captures Z.

Thus, Lemma 3.3 and Proposition 3.1 together show that if a pair pZ1, Z2q
witnesses that some noncomputable set is a 1{2-base, then this pair cannot be
captured by a difference test whose effectively closed component is a product class.

3.3. The c.e. construction. We can now provide the proof of Proposition 2.16
in the case of 1{2-bases:

Proposition 3.4. Every c.e. 1{2-base obeys cΩ,1{2.

Proof. Let A be a c.e. 1{2-base, witnessed by the pair pZ1, Z2q. Let Ψ1 and Ψ2 be
functionals such that ΨipZiq “ A. Let xAsy be an enumeration of A. For i “ 1, 2,
we let P is be the collection of oracles X such that Ψi,spXq does not lie strictly to
the left of As. We let P i “

Ş

s P
i
s , Ps “ P 1

s ˆ P
2
s , and P “

Ş

s Ps “ P 1 ˆ P 2.
Let ε ą 0 be a dyadic rational. We describe the ε-construction. All sets defined

henceforth depend on ε, and we omit mentioning this parameter.
At stage s ă ω, we define for all strings τ clopen sets Gτ,s Ď Ψ´1

1,srτ s ˆ Ψ´1
2,srτ s.

These sets are increasing in s. We refill Gτ,s as parts of it exit Ps. The new measure
could come from Gσ,s´1 where σ extends τ , so the sets Gτ,s will not be pairwise
disjoint.

We start with Gτ,0 “ H for all τ . At stage s, we only add mass to Gτ,s for
τ ă As, and decide whether such strings τ are confirmed at stage s. This is done
by induction on |τ |. We start with Gxy,s “ H; the empty string is always confirmed.
Let τ ă As be nonempty and suppose that we have already defined Gτ 1,s for all
proper initial segments τ 1 of τ , and that all these initial segments are confirmed at
stage s. We let Găτ,s “

Ť

τ 1ňτ Gτ 1,s.
We ensure that for all s,

µ ppGτ,s rGăτ,sq X Psq ď ε ¨ pΩ|τ | ´ Ω|τ |´1q.
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Note that this implies that µpGďτ,s X Psq ď ε ¨ Ω|τ |. To define Gτ,s, we add mass
from Ψ´1

1,srτ s ˆ Ψ´1
2,srτ s to Gτ,s´1, being careful to maintain the bound. Note that

the bound has not already been violated because Ps´1 Ě Ps and Găτ,s´1 Ď Găτ,s.
If sufficient mass is found so that equality is obtained, then we declare τ to be
confirmed at stage s and move on to the next initial segment of As. Otherwise, we
declare τ (and all of the longer initial segments of As) unconfirmed at stage s; we
let Gτ 1,s “ Gτ 1,s´1 for every τ 1 ę τ , and move to stage s` 1. Observe that if τ is
confirmed at stage s, then µpGďτ,s X Psq “ ε ¨ Ω|τ |.

For all τ , let Gτ “
Ť

sGτ,s and Gďτ “
Ť

sGďτ,s “
Ť

τ 1ďτ Gτ 1 . Then Gďτ XP “
Ť

s pGďτ,s X P q. For each τ and s, Gďτ,sXP Ď Gďτ,sXPs and so µpGďτ,sXP q ď
ε ¨ Ω|τ |. It follows that µpGďτ X P q ď ε ¨ Ω|τ |.

Let G “
Ť

τăAGτ . Then GX P is the increasing union of the sets Gďτ X P for
τ ă A, all of measure bounded by ε, and so µpGX P q ď ε.

Suppose that there is some n such that the string A æn is confirmed during
only finitely many stages; let n be the least such. Let t be sufficiently large so
that At æn ă A; At æn´ 1 is confirmed at stage t; and for both i ď 2, Zi P
Ψ´1
i,t rA æns. Then the fact that A æn is not confirmed at stage t implies that

GďA æn,t Ě Ψ´1
1,t rA æns ˆΨ´1

2,t rA æns and so pZ1, Z2q P G.
So there must be some ε for which every initial segment of A is confirmed infin-

itely often. For suppose otherwise. Then the sets Gn given by the 2´n-constructions
together with P form an A-difference test xP XGny which captures pZ1, Z2q. Rel-
ativising Lemma 3.3 to A and using the fact that pZ1, Z2q is A-random (as A is
K-trivial), we conclude that %pP | pZ1, Z2qq “ 0. However P is a product class; this
contradicts Proposition 3.1.

Fix ε for which every initial segment of A is confirmed infinitely often. Define
an increasing sequence of stages s0 ă s1 ă ¨ ¨ ¨ such that at stage sk the string
Ask æ pk ` 1q is confirmed. We claim that the total cΩ,1{2-cost of the enumeration
xAsky is finite. Let k ě 0; let x “ xk be the least such that Ask`1pxq ‰ Askpxq;
assume that x ď k. The incurred cost between sk and sk`1 is

a

Ωk`1 ´ Ωx. Let
Dk “ tAsk æ px` 1q, Ask æ px` 2q, . . . , Ask æ pk ` 1qu

and let
Vk “ Psk X

ď

τPDk

Gτ,sk .

The fact that every string in Dk is confirmed at stage sk implies that µpVkq “
ε ¨pΩk`1´Ωxq. Hence either π1rVks or π2rVks has measure at least

?
ε
a

Ωk`1 ´ Ωx.
Suppose that k ă k1. Then π1rVks and π1rVk1s are disjoint (and the same holds

for π2). The reason is that π1rVks Ď Ψ´1
1 rAsk æxk ` 1s, which is disjoint from P 1

sk`1

and so from P 1
sk1

, whereas π1rVk1s Ď P 1
sk1

. Overall, we see that the total cost paid
is bounded by 2{

?
ε. �

3.4. The general 1{2-base construction. Weak obedience is very much weaker
than full obedience. The main problem above, which drove us to use difference
tests, is no longer a problem: the notion was designed so that we always charge for
incompatible strings. We can therefore return to the basic hungry sets construction.

Proposition 3.5. Every 1{2-base weakly obeys cΩ,1{2. In fact, if xAsy is a com-
putable approximation of a 1{2-base A, then there is a computable subapproximation
xAsky that witnesses that A weakly obeys cΩ,1{2.
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Proof. We simplify the proof of Proposition 3.4. Fix a witness pZ1, Z2q and func-
tionals Ψ1 and Ψ2 as above.

Fix a dyadic rational ε ą 0. As before, we enumerate clopen setsGτ,s Ď Ψ´1
1,srτ sˆ

Ψ´1
2,srτ s. We ensure that for all τ ‰ H and all s,

µ pGďτ,sq ď ε ¨ pΩ|τ | ´ Ω|τ |´1q.

In this construction, the sets Gτ will be pairwise disjoint. A string τ is confirmed
at stage s if equality holds. We start with Gτ,0 “ H for all τ . Let s ą 0 be a
stage. The empty string is always confirmed and Gxy,s “ H. Let τ be a string,
and suppose that at stage s, its immediate predecessor τ´ is already confirmed,
but that τ is not yet confirmed. We enumerate mass from Ψ´1

1,srτ s ˆ Ψ´1
2,srτ s into

Gτ,s, ensuring that we do not overshoot the bound ε ¨ pΩ|τ | ´Ω|τ |´1q. If the bound
is met, we declare that τ is confirmed (currently and at all future stages), and go
on to deal with the two immediate successors of τ . If not, then for every proper
extension σ of τ we let Gσ,s “ Gσ,s´1 “ H.

As before we let Gτ “
Ť

sGτ,s, and G “
Ť

τăAGτ ; so µpGq ď ε. If some initial
segment τ of A is never confirmed, then pZ1, Z2q P G. If this holds for every ε ą 0,
then pZ1, Z2q is captured by an A-ML test. However, since A is a 1{2-base, it
is K-trivial, and so low for random, and so pZ1, Z2q is A-random and cannot be
captured by such a test. Thus, fix some ε ą 0 such that in the ε-construction, every
initial segment of A is eventually confirmed.

Again define an increasing sequence s0 ă s1 ă ¨ ¨ ¨ such that Ask æ pk ` 1q is
confirmed at stage sk. We show that the weak total cΩ,1{2-cost of the enumeration
xAsky is finite. Let N be the set of n for which the approximation xAsky has an
n-stage; for n P N , let kpnq be the last n-stage for this approximation. The weak
total cost is

ř

nPN

a

Ωkpnq ´ Ωn.
For n P N , for brevity let tpnq “ skpnq´1 and σn “ Atpnq æ kpnq. Let

Vn “

kpnq
ď

m“n`1
Gσn æm,tpnq

Then
Vn Ď Ψ´1

1 rσn æ pn` 1qs ˆΨ´1
2 rσn æ pn` 1qs,

and µpVnq “ ε ¨ pΩkpnq´Ωnq, so µpπirVnsq ě
?
ε
a

Ωkpnq ´ Ωn for at least one i ď 2.
Let n ă n1 be two elements of N . Then

A æ pn` 1q “ Atpn1q æ pn` 1q “ Askpnq æ pn` 1q

is incomparable with σn æ pn` 1q, and so σn æ pn` 1q and σn1 æ pn1 ` 1q are incom-
parable. For each i ď 2, πirVns Ď Ψ´1

i rσn æ pn` 1qs and the same holds for n1,
and so πirVns and πirVn1s are disjoint. This shows that the weak total cost of the
approximation xAsky is bounded by 2{

?
ε. �

4. F-bases

We want to adapt the proof from the previous section to the case of k{n-bases.
In fact, it is useful and convenient to work in more generality. Recall the notation
introduced in Section 2.2: if F Ď t1, 2, . . . , nu, then πF : p2ωqn Ñ p2ωqF is the
projection map erasing entries not indexed by elements of F . For Z P p2ωqn we
also write ZF for πF pZq.
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Definition 4.1. Let F be a nonempty family of subsets of t1, . . . , nu. We say
that A is an F-base if there is a random tuple Z P p2ωqn such that A ďT ZF for all
F P F .

We will prove that a set is an F-base if and only if it obeys cΩ,p for the appro-
priate choice of p. The power p that corresponds to F will be 1{}F}, where we
define }F} using a linear optimisation problem.

4.1. The norm of F . Fix a nonempty F Ď Ppt1, 2, . . . , nuq. We attempt to
quantify the “amount of disjointness” present in F .

‚ An assignment xxF yFPF is a normalised weighting of the sets in F if for
all F P F , xF is a nonnegative real number, and for all i P t1, . . . , nu,
ř

txF : F P F and i P F u ď 1.
We let

}F} “ sup
#

ÿ

FPF
xF : xxF y is a normalised weighting of the sets in F

+

.

For example, if H R F and the sets in F are pairwise disjoint, then }F} “ |F |.
On the other hand, if

Ş

F ‰ H then }F} “ 1. Since we have assumed that
F ‰ H, we always have }F} ě 1. If F contains the empty set, then }F} “ 8.
Otherwise each weight in a normalised weighting xxF y is bounded by 1, and so
}F} ď |F |. It is also the case that }F} ď n; to see this, note that if H R F , then
ř

FPF xF ď
ř

iďn

ř

txF : F P F and i P F u ď
ř

iďn 1 “ n.
The norm }F} is the solution to a linear optimisation (linear programming)

problem in standard form: let M be the n ˆ |F |-incidence matrix (the pi, F q-
entry is 1 if i P F , 0 otherwise). The problem is to maximise

ř

F xF under the
constraints xxF y ě 0 and M ¨ xxF y ď 1 (where we think of xxF y as a column). This
problem is feasible (the constraints are not contradictory), as is witnessed by the
zero vector (or by the constant weighting p1{|F |q ¨1, which witnesses that }F} ě 1).
Further, if F does not contain the empty set, then the problem is bounded since the
feasible solutions all have entries between 0 and 1. This implies that if F does not
contain the empty set, then the problem has an optimal solution, that is, there is
a normalised weighting xxF y such that

ř

F xF “ }F}. Moreover, since the problem
is defined with rational coefficients, }F} is rational and an optimal solution can be
taken to consist of rational numbers; this is because xxF y can be taken to be a basic
feasible solution, i.e., a vertex of the convex region defined by the constraints. For
more information on linear programming, see for example [3].

A linear optimisation problem in standard form has a dual problem. The dual for
the problem defining }F} is to minimise

ř

iďn yi where xyiy ě 0 and xyiy ¨M ě 1
(where we think of xyiy as a row). Conceptually:

‚ an n-tuple of nonnegative real numbers xyiy is a weighting of coordinates,
normalised for F if for all F P F ,

ř

iPF yi ě 1.
The dual problem is to minimise the sum of the weights of such a weighting. The
strong duality theorem (see for example [3, Theorem 4.4]) says that as long as a
linear optimisation problem has an optimal solution, then its dual problem also
has an optimal solution, and the optimal values are the same. This gives us an
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alternate expression for }F} in the case that F does not contain the empty set:

}F} “ min
#

ÿ

iďn

yi : xyiy is a weighting of coordinates normalised for F

+

.

Example 4.2. Let F be the collection of all k-element subsets of t1, 2, . . . , nu. We
can use both expressions for }F} to show that }F} “ n{k.

In one direction, let xxF y be the constant weighting of sets xF “ n
k

L`

n
k

˘

. Each
i ď n is an element of precisely

`

n´1
k´1

˘

“ k
n

`

n
k

˘

many of the sets in F and so xxF y
is indeed a normalised weighting of the sets in F . This weighting witnesses that
}F} ě n{k. On the other hand, the constant weighting yi “ 1{k of coordinates is
normalised for F , so the dual expression shows that }F} ď n{k.

4.2. F-bases: the easy direction. As promised above, we will show that a set
is an F-base if and only if it obeys cΩ,1{}F}. Actually this is not strictly true; it
fails when }F} “ 1. So we first discuss the extreme values. We note that for a
nonempty family F of subsets of t1, 2, . . . , nu,

‚ }F} “ 1 if and only if
Ş

F ‰ H. If }F} ą 1 then }F} ě n{pn´ 1q.
‚ }F} “ 8 if and only if H P F .

If }F} “ 1, then every set is an F-base (this follows from the Kučera–Gács theorem),
so no obedience of any cost function can be deduced. On the other hand, if }F} “ 8,
then the equivalence between being a base and obeying the cost function holds
trivially: in that case being an F-base is the same as being computable, and the
cost function cΩ,0 fails the limit condition and any set obeying it is computable.

Henceforth we restrict ourselves to nonempty families F satisfying 1 ă }F} ă 8.
Note that for such a family, every F-base is an pn´ 1q{n-base. Fix n and let F be
such a family.

Lemma 4.3. Let I be an increasing computable sequence. Suppose that A is K-
trivial and I-weakly obeys cΩ,1{}F}. Then A is an F-base.

Proof. Let xyiy be an optimal solution for the dual problem defining }F} (an optimal
normalised weighting of coordinates). We may assume that each yi is rational. For
each i ď n, we let Zi be a yi{}F}-part of Ω, with the parts chosen disjointly; since

ÿ

iăn

yi{}F} “ 1,

Ω is exhausted when it is distributed between the sequences Zi in this way. (For-
mally, we let m be a common denominator of the fractions yi{}F} and let Zi be
the join of m ¨ yi{}F}-many of the m-columns of Ω.) If yi “ 0, then we let Zi be
random relative to Ω (joined with the other Zj for which yj “ 0).

Now consider F P F . Since
ř

iPF yi ě 1, ZF accounts for at least 1{}F} of Ω, and
so Proposition 2.11 and the I-version of Proposition 2.14 show that ZF computes A.
Therefore, Z witnesses that A is an F-base. �

We note that if yi is positive for all i, then the distribution of the bits of Ω
as performed in the proof of Lemma 4.3 gives a measure-preserving, computable
isomorphism j : 2ω Ñ p2ωqn such that jpΩq witnesses that A is an F-base.

We will prove the following generalisations of Propositions 2.16 and 2.17.

Proposition 4.4. Every c.e. F-base obeys cΩ,1{}F}.
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Proposition 4.5. Every F-base weakly obeys cΩ,1{}F}. In fact, if xAsy is any com-
putable approximation of an F-base A, then there is a sub-approximation

@

Aspnq
D

that witnesses that A weakly obeys cΩ,1{}F}.

Example 4.2 shows that these propositions imply Propositions 2.16 and 2.17. We
get an analogue of Theorem 2.18.

Theorem 4.6. The following are equivalent for a set A:
(1) A is an F-base;
(2) A obeys cΩ,1{}F};
(3) A is K-trivial and weakly obeys cΩ,1{}F}.

The proof of Theorem 4.6 is identical to the proof of Theorem 2.18, except that
we use Propositions 4.4 and 4.5 and replace Lemma 2.15 by Lemma 4.3.

As discussed above, if yi ą 0 for all i then Ω is a universal witness for F-bases,
but only in a weak sense: if A is an F-base then we can divide the digits of Ω
effectively into n many parts that together witness that A is an F-base. However,
unlike the case of k{n-bases, we cannot require that this is the even division of bits
which gives the standard isomorphism between 2ω and p2ωqn. For a very simple
example, let n “ 3 and F “

  

1, 2
(

,
 

3
((

. Then }F} “ 2, so Theorem 4.6 says that
being an F-base is the same as being a 1{2-base. A 1{2-base may not be computable
from any of the 3-columns of Ω; but if Ω̄1, Ω̄2, Ω̄3, Ω̄4 are the four 4-columns of Ω
then the triple pΩ̄1, Ω̄2, Ω̄3 ‘ Ω̄4q witnesses that every 1{2-base is an F-base.

4.3. A generalisation of the Loomis–Whitney inequality. We need a geo-
metric lemma for the proofs of Propositions 4.4 and 4.5. In the proofs of Propo-
sitions 3.4 and 3.5, we relied on the fact that the area of a 2-dimensional set is
bounded by the product of the measures of its projections into each dimension.
To generalise to F-bases, we need to bound the volume of an n-dimensional set in
terms of its projections onto the subspaces corresponding to members of F .

We again fix n ě 1 and a family F of subsets of t1, . . . , nu. Recall the definition
of a normalised weighting of the sets in F that was used for the definition of }F}:
a sequence xxF yFPF of nonnegative real numbers such that

ř

tF : iPF u xF ď 1 for all
i ď n.

Lemma 4.7. Suppose that xxF y is a normalised weighting of the sets in F . If
U Ď p2ωqn is Borel, then

µpUq ď
ź

FPF
µpπF rU sq

xF .

As we will see below, this result is a generalisation of the Loomis–Whitney in-
equality [29]. It is not new; it seems to first appear in 1995 in Bollobás and Thoma-
son [8] as an application of their “box theorem”, where it is stated for sufficiently
nice compact subsets of Rn, though the restriction is not essential. To prove their
main result, they (apparently independently) reprove a weaker generalisation of the
Loomis–Whitney inequality that (in its discrete form) is due to Shearer in 1978.
Shearer’s result first appeared in [11], where it is proved from an inequality on en-
tropies. This connection between entropy and combinatorics has become common;
a recent paper of Madiman, Marcus, and Tetali [31] starts with:
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It is well known in certain circles that there appears to exist an
informal parallelism between entropy inequalities on the one hand,
and set cardinality inequalities on the other.

In their paper, in fact, the authors derive the discrete version of Lemma 4.7 (i.e.,
Claim 4.7.1 below) from one of their main results, a corresponding inequality on en-
tropy. An earlier derivation, with entropy replaced by Kolmogorov complexity, was
given by Romashchenko, Shen, and Vereshchagin [36]. Claim 4.7.1 is an immediate
consequence of their Theorems 1 and 2.

We provide a proof for completeness.

Proof. We will reduce the statement of the lemma to a statement of finite combi-
natorics. Before we do so, we make two simplifications:

(1) It suffices to prove the lemma for clopen sets U .
(2) We may assume that the weighting xxF y is tight:

ř

tF : iPF u xF “ 1 for all
i ď n.

For (1), note that the desired property of the set U is certainly closed under
taking countable increasing unions. If U is closed, then U “

Ş

k Uk, where xUky
is a decreasing sequence of clopen sets. The compactness of p2ωqn implies that
πF rU s “

Ş

k πF rUks, and so taking limits gives the desired inequality for all closed
sets, and hence for all Fσ sets. We then use the regularity of Lebesgue measure to
replace an arbitrary Borel U by an Fσ subset of the same measure. The projections
of this subset may be smaller, but of course, this makes the inequality stronger.

For (2), we add “slack sets”. Let F̂ “ F Y ttiu : i ď nu . For every F P F
that is not a singleton, let x̂F “ xF . For each i ď n such that tiu R F , let
x̂tiu “ 1´

ř

tF : iPF u xF ; if tiu P F , then let x̂tiu “ xtiu ` p1´
ř

tF : iPF u xF q. Then
xx̂F y is a tight weighting of the sets in F̂ . If the lemma holds for U and for F̂ ,
then it also holds for U and for F , as xF ď x̂F for all F P F , µpπF rU sq ď 1, and
µpπtiurU sq

x̂tiu ď 1 for all tiu P F̂ r F .

So we suppose that U is clopen and that xxF y is tight. Fix m ă ω sufficiently
large so that 2´m is smaller than the granularity of U . This means that U is the
union of basic clopen sets of the form

ś

iďnrσis where each σi is a binary string of
length m.8 For i ď n, let Xi be the set 2m of binary strings of length m. Define a
relation R Ď

ś

iďnXi by letting σ̄ “ pσ1, . . . , σnq P R if rσ̄s “
ś

irσis Ď U (if σ̄ R R
then rσ̄s X U “ H). The measure of U is the relative size dpRq of the relation R,
the number of n-tuples in R divided by the number of possible tuples, i.e., the size
of

ś

iXi; in this case the relative size is |R|{2mn.
Extend the notation πF to give the obvious function from

ś

iďnXi to
ś

iPF Xi

(erasing entries). For F P F , the forward image πF rRs is the relation associated
with πF rU s: for σ̄ P

ś

iPF Xi, if σ̄ P πF rRs then rσ̄s Ď πF rU s; otherwise rσ̄s and
πF rU s are disjoint. Thus µpπF rU sq is the density of the relation πF rRs, namely
dpπF rRsq “ |πF rRs|{|

ś

iPF Xi|. The desired inequality for U follows from a com-
binatorial statement:

8Note that Xi does not depend on i here, but we need to index these sets since we soon deal
with projections of

ś

i Xi.
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Claim 4.7.1. Let xXiyiďn be a sequence of nonempty finite sets. Let R Ď
ś

iďnXi

be a relation. Then
dpRq ď

ź

FPF
dpπF rRsq

xF .

To visualise the situation, consider the example that defined 2{3-bases, i.e., n “ 3
and F “

 

t1, 2u, t1, 3u, t2, 3u
(

. We use the optimal weighting xF “ 1{2 for all
F P F , which witnesses the fact that }F} “ 3{2. The measure-theoretic inequality
we need bounds µpUq by the product of the square roots of the measures of its
projections onto the three orthogonal 2-dimensional planes. The corresponding
combinatorial statement involves a tripartite graph with three vertex sets X1, X2
and X3: for F “ ti, ju P F , πF rRs is a set of edges between Xi and Xj ; the
combinatorial lemma bounds the relative size of the triangle relation in the graph.

We prove Claim 4.7.1 by induction on
ř

iďn |Xi| (in the example above, by
induction on the number of vertices in the tripartite graph). The base case is
|Xi| “ 1 for all i, in which case either R is empty and has density 0, or R “

ś

iXi

and each πF rRs “
ś

iPF Xi has density 1. For the induction step, choose some
i˚ ď n such that |Xi˚ | ą 1. Partition Xi˚ into two nonempty sets Y0 and Y1. For
both j “ 0, 1, we apply the induction hypothesis to Rj , the restriction of R to those
tuples whose pi˚qth entry lies in Yj . Note that R “ R0YR1 is a disjoint union. We
let:

‚ for j ă 2, yj “ |Yj | and rj “ |Rj |;
‚ for F P F and j ă 2, sF,j “ |πF rRjs|;
‚ for nonempty F Ď t1, . . . , nu, zF “

ś

iPFrti˚u |Xi|;
‚ and for brevity, z˚ “ zt1,...,nu “

ś

i‰i˚ |Xi|.
Let F˚ “ tF P F : i˚ P F u. The induction hypothesis yields, for both j “ 0, 1,

rj
yjz˚

ď
ź

FPF˚

ˆ

sF,j
yjzF

˙xF

¨
ź

FPFrF˚

ˆ

sF,j
zF

˙xF

.

The assumption that
ř

FPF˚ xF “ 1 means that the occurrences of yj cancel out.
Let

q “ z˚ ¨
ź

FPF˚

1
zF xF

¨
ź

FPFrF˚

ˆ

|πF rRs|

zF

˙xF

.

For all F P F and j ă 2, sF,j ď |πF rRs| and xF ě 0, so

(4.1) rj ď q ¨
ź

FPF˚
sF,j

xF .

We observe that if i˚ P F , then πF pRq “ πF rR0s Y πF rR1s is a disjoint union. So
to complete the induction step, we need to show that

r0 ` r1

py0 ` y1qz˚
ď

ź

FPF˚

ˆ

sF,0 ` sF,1
py0 ` y1qzF

˙xF
ź

FPFrF˚

ˆ

|πF rRs|

zF

˙xF

.

Equivalently, we need to show that
pr0 ` r1q ď q ¨

ź

FPF˚
psF,0 ` sF,1q

xF .

This follows from Eq. (4.1) and the inequality
ź

FPF˚
sF,0

xF `
ź

FPF˚
sF,1

xF ď
ź

FPF˚
psF,0 ` sF,1q

xF ,
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which follows from the weighted arithmetic mean–geometric mean inequality using
the assumption that

ř

FPF˚ xF “ 1. �

Lemma 4.7 can be seen as a generalisation of the Loomis–Whitney inequality [29],
which bounds the measure of an n-dimensional set using the measures of its pn´1q-
dimensional projections. To see the connection, we give a proof of the Loomis–
Whitney result from ours.

Corollary 4.8 (Loomis and Whitney [29]). Let n ě 1. For j ď n, let πj “
πt1,...,nurtju be the projection from r0, 1sn to the pn ´ 1q-dimensional orthogonal
subspace xj “ 0. If U Ă r0, 1sn is Borel, then

µpUqn´1 ď
ź

jďn

µpπjrU sq.

Proof. Apply Lemma 4.7 with F being the set of subsets of t1, 2, . . . , nu of size
n´ 1, and use the optimal weighting xF “ 1{pn´ 1q. �

Lemma 4.7 gives an upper bound for the size of a set in terms of its projections.
We will use it in the reverse direction, to give a lower bound for the size of one of
the projections in terms of the size of the set. This can be stated in a clean, sharp
form using }F}. As usual, fix a family F .

Lemma 4.9. Let U Ď p2ωqn be Borel. There is an F P F such that

µpπF rU sq ě µpUq1{}F}.

Moreover, this cannot be improved: there is a U Ď p2ωqn, of arbitrary measure ď 1,
such that for all F P F , µpπF rU sq ď µpUq1{}F}.

Proof. Let U be Borel and assume that µpπF rU sq ă µpUq1{}F} for all F P F . Let
xxF y be an optimal solution for the definition of }F} (a normalised weighting of
the sets in F such that

ř

xF “ }F}). Apply Lemma 4.7 using xxF y to get

µpUq ď
ź

FPF
µpπF rU sq

xF ă
ź

FPF
µpUqxF {}F} “ µpUq,

where the strict inequality follows from the fact that }F} ą 0 and so xF ą 0
for some F . This is a contradiction, so there must be some F P F such that
µpπF rU sq ě µpUq1{}F}.

To prove sharpness, fix a measure c (which must be in r0, 1s). Let y P Rn be
an optimal solution for the dual problem defining }F}: a normalised weighting
of the coordinates such that

ř

i yi “ }F}. Let U “
ś

iďn

“

0, cyi{}F}
‰

. Note that
µpUq “

ś

iďn c
yi{}F} “ c. Fix any F P F . Since

ř

iPF yi ě 1 and c ď 1,

µpπF rU sq “
ź

iPF

cyi{}F} “ c
ř

iPF yi{}F} ď c1{}F} “ µpUq1{}F}. �

4.4. The proofs of Propositions 4.4 and 4.5. We extend the proofs of Propo-
sitions 3.4 and 3.5. Say Z witnesses that A is an F-base; we fix functionals ΨF for
F P F such that ΨF pZF q “ A. The hungry sets Gτ only contain tuples X P p2ωqn
such that ΨF pXF q ě τ for all F P F . If every ε-construction failed, then in the c.e.
case we would capture Z by a difference test based on the effectively closed class
P “

Ş

FPF π
´1
F rPF s, where PF Ď p2ωqF is the class of oracles Y P p2ωqF for which

ΨF pY q does not lie to the left of A. We need to show that this is impossible. As in
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the case of 1{2-bases we use the concept of Lebesgue density; again by Lemma 3.3
due to [7], it suffices to show that the density %pP |Zq is positive.

We show that if we choose the functionals cleverly, then the density %pP |Zq is
actually 1. We will want to show that %pPF |ZF q “ 1 for all F P F ; this implies
that %pπ´1

F rPF s |Zq “ 1, from which %pP |Zq “ 1 follows. However, consider the
redundant case n “ 2 and F “

 

t1u, t2u, t1, 2u
(

. In general, for any F , we could
choose ΨF in such a way that PF is contained in an arbitrary effectively closed
subset of p2ωqF .9 For F “ t1, 2u and Z “ Ω, we have ZF “ Ω, which is complete,
and so we could choose PF so that %pPF |Ωq “ 0. However, Z does witness that
1{2-bases are F-bases too. The problem occurs because the reduction ΨF does not
need to consult both parts of the oracle. We prove:

Lemma 4.10. Suppose that A is an pn ´ 1q{n-base as witnessed by Z. If F Ď

t1, . . . , nu is minimal such that A ďT ZF , then ZF is a density-one point for
effectively closed classes in p2ωqF .

Given the lemma, for each F P F we choose some minimal F̂ Ď F such that
A ďT ZF̂ ; for ΨF we choose a functional that only looks at the columns indexed
by elements of F̂ . We then have that PF “ Q ˆ p2ωqFrF̂ where Q Ď p2ωqF̂ is
effectively closed. Lemma 4.10 says that %pQ |ZF̂ q “ 1, from which it follows that
%pPF | ZF q “ 1, as required. As mentioned earlier, the fact that }F} ą 1 means
that Z witnesses that A is a pn´ 1q{n-base, so the lemma applies.

To prove Lemma 4.10, we use a weak van-Lambalgen-type property for Lebesgue
density:

Lemma 4.11. Let X0, X1 P 2ω. Suppose that X0 is a density one point relative
to X1, and X1 is a density one point relative to X0. Then X “ pX0, X1q is a
density one point.

Proof. Let C Ď 2ω ˆ 2ω be an effectively closed set such that X P C. For Z P 2ω,
let CZ “ tY P 2ω : pZ, Y q P Cu. Let ε ą 0. Since X1 P CX0 and CX0 is effectively
closed relative toX0, there is an n˚ such that for allm ě n˚, µpCX0 |X1 æmq ě 1´ε.
Now let

P “ tZ P 2ω : p@m ě n˚q µpCZ |X1 æmq ě 1´ εu .
The set P is effectively closed relative to X1, so there is an n˚˚ ě n˚ such that for
allm ě n˚˚, µpP |X0 æmq ě 1´ε. So ifm ě n˚˚, then µpC |X æ 2mq ě p1´εq2. �

Proof of Lemma 4.10. By permuting, we may assume that F “ t1, 2, . . . , ku for
some k ă n. LetW “ pZk`1, . . . , Znq. For i ď k let Yi “ pZ1, . . . , Zi´1, Zi`1, . . . , Zkq.

First we see that for all i ď k, Zi is a density 1 point relative to Yi. Suppose not.
By [7], a random set X that is not a density 1 point is LR-hard: H1 ďLR X, which
means that every X-random set is 2-random. Relativising, we see that pZi, Yiq ěLR
Y 1i . Now W is random relative to ZF “ pZi, Yiq and so is 2-random relative to Yi.
Every weakly 2-random set forms a minimal pair with H1. Relativising to Yi, every
set that is computable from both pW,Yiq and Y 1i is Yi-computable. Since pW,Yiq
consists of n´ 1 many columns of Z, it computes A. Also A is ∆0

2, so it certainly
is Y 1i -computable. Hence A ďT Yi, contradicting the minimality of F .

9If Q Ď p2ωqF is effectively closed and ΓpZF q “ A, then we modify Γ so that when we discover
that σ drops out of Q at stage s, we map all X ě σ to ΓspX q̂ 08, which would lie to the left of A.
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Now by induction on i ď k, we see that pZ1, . . . , Ziq is a density 1 point relative
to pZi`1, . . . , Zkq. This is already established for i “ 1. Let i ą 1 and suppose
that pZ1, . . . , Zi´1q is a density 1-point relative to pZi, . . . , Zkq. We use Lemma 4.11
relativised to pZi`1, . . . , Zkq (and the fact that Zi is a density 1 point relative to Yi)
to obtain the desired result. �

For the benefit of the reader, we sketch the proof of Proposition 4.4 (Proposi-
tion 4.5 is again easier).

Sketch of the proof of Proposition 4.4. We explain how to modify the proof of Propo-
sition 3.4. Let A be a c.e. F-base, witnessed by the tuple Z “ pZ1, Z2, . . . , Znq. For
F P F wisely choose a functional ΨF such that ΨF pZF q “ A, as discussed after the
statement of Lemma 4.10; it only looks at oracles for a minimal F̂ Ď F . For each
F P F and s ă ω we let PF,s be the set of X P p2ωqF such that ΨF,spXq does not
lie to the left of As. We let Ps “

Ş

FPF π
´1
F rPF,ss.

Again we fix a dyadic rational ε ą 0, and enumerate clopen sets Gτ,s Ď p2ωqn,
with ΨF,spπF pXqq ě τ for all F P F and X P Gτ,s. The goal ε ¨ pΩ|τ |´Ω|τ|´1q for
pGτrGτ´qXP is the same, as well as the confirmation process and the instructions
of how to increase each Gτ,s.

The definitions, at the end of the construction, of P and G are the same, as well
as the argument that µpGXP q ď ε. Similar also is the argument that if some initial
segment of A is confirmed at only finitely many stages then Z P G X P . If this
happens for every ε, then Z is captured by the A-difference test xP XGεy. As before
it follows that %pP |Zq “ 0. As described above, for each F P F , since ZF̂ P PF̂ ,
%pPF̂ | ZF̂ q “ 1 (Lemma 4.10), and so %pPF | ZF q “ 1, so %pπ´1

F rPF s | Zq “ 1, so
%pP |Zq “ 1.

We again choose ε such that in the ε-construction, every initial segment of A
is confirmed infinitely often. As above, we define the increasing computable se-
quence xsky so that Aspkq æ pk ` 1q is confirmed at stage sk. We also define Vk
exactly as above. Again the fact that every string Ask æx` 1, . . . , Ask æ pk ` 1q is
confirmed implies that µpVkq “ ε ¨ pΩk`1 ´ Ωxq. For every F P F and every k,
πF rVks Ď Ψ´1

F rAsk æ pxk ` 1qs, which is disjoint from PF,sk1 for all k
1 ą k, whereas

πF rVks Ď PF,sk for all k. Hence for k ă k1 we get πF rVks X πF rVk1s “ H for all
F P F . Finally, Lemma 4.9 shows that for every k there is some F P F such that

µpπF rVksq ě pε ¨ pΩk`1 ´ Ωxqq1{}F}.
This shows that the total cΩ,1{}F}-cost of this enumeration is bounded by |F |{ε1{}F}.

�

5. Consequences of the characterisation of F-bases

The generality of the development in the previous section allows us to prove a
number of interesting results. The first was already mentioned, namely the char-
acterisation of k{n-bases: Example 4.2 shows that Propositions 4.4 and 4.5 imply
Propositions 2.16 and 2.17 and so complete our proof of Theorems 1.3 and 2.18.

5.1. Cyclic k{n-bases. Note that
`

n
k

˘

can be quite large compared to n, especially
if k « n{2. This makes the definition of a k{n-base look very demanding, as it
requires a set to be computable from a large number of different random tuples.
It turns out that we can get away with a weaker hypothesis. Fix natural numbers
0 ă k ă n. For each i ď n, let Fi “ ti, i` 1 pmod nq, . . . , i` k ´ 1 pmod nqu. Let
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F “ tFiuiăn. We call a set A a cyclic k{n-base if it an F-base. Note that this
definition only requires A to be computable from n distinct tuples. And yet, it is
enough to capture that A is a k{n-base.

Proposition 5.1. A set is a cyclic k{n-base if and only if it is a k{n-base.

Proof. Clearly, every k{n-base is a cyclic k{n-base. So assume that A is a cyclic
k{n-base. Let F be as above. So A is an F-base. We show that }F} “ n{k;
Theorems 2.18 and 4.6 imply that A is a k{n-base.

Again we use the duality in the definition of }F}. To bound the norm from
below consider the constant weighting xF “ 1{k for all F P F . This is normalised
since every i ď n is an element of precisely k many sets in F . Hence }F} ě n{k.
From above, consider the weighting yi “ 1{k; each set in F has size k and so xyiy
is normalised for F . Hence }F} ď n{k. �

Since every k{n-base is witnessed by the n-columns of Ω, so is every cyclic k{n-
base.

5.2. Degenerate k{n-bases. Assume that 1 ă k ă n. We call A a degenerate
k{n-base if there is a random tuple Z that witnesses that A is a k{n-base but this is
not tight: there is some G Ď t1, . . . , nu such that |G| ă k and A ďT ZG. We show
that degenerate k{n-bases must obey cost functions that are stronger than cΩ,k{n.

Proposition 5.2. Let p “ max
 

k
n`1 ,

k´1
n´1

(

. A set A is a degenerate k{n-base if
and only if it is a p-base.

Proof. Let F consist of all k-element subsets of t1, . . . , nu along withG “ t1, . . . , k´
1u. Note that a set is a degenerate k{n-base if and only if it is an F-base, so by
Theorem 4.6, all we have to do is prove that }F} “ 1{p. Let M be the matrix from
the definition of }F}. There are two cases.

Case 1: 2k´1 ď n. In this case, it is easy to check that p “ k{pn`1q. Consider
the following vector x P R|F |. We will indicate the coordinate of x corresponding
to F P F by xF . Let xG “ 1. If F is a k-element subsets of tk ´ 1, . . . , n´ 1u, let
xF “

n´k`1
kpn´k`1

k q
(note that such sets exists because n ´ k ` 1 ě k). Let the other

coordinates of x be 0. We claim that Mx “ 1. If i P t0, . . . , k ´ 2u, then Mxpiq “
ř

txF : F P F and i P F u “ xG “ 1. If i P tk´1, . . . , n´1u, then i is in a fraction
of k{pn´ k ` 1q of the k-element subsets of tk ´ 1, . . . , n´ 1u. There are

`

n´k`1
k

˘

such sets F , each with xF “ n´k`1
kpn´k`1

k q
, so Mxpiq “

ř

txF : F P F and i P F u “ 1.
This proves that Mx “ 1, hence

}F} ě
ÿ

FPF
xF “ 1`

ˆ

n´ k ` 1
k

˙

n´ k ` 1
k
`

n´k`1
k

˘ “
n` 1
k

“ 1{p.

Next consider the following vector y P Rn. For i P t0, . . . , k ´ 2u, let yi “
1{pk ´ 1q. For i P tk ´ 1, . . . , n ´ 1u, let yi “ 1{k. We claim that MT y ě 1.
Again, we use elements of F to index the corresponding dimensions. Note that
MT ypGq “

ř

iPG yi “ pk ´ 1q 1
k´1 “ 1. For any other F P F we have MT ypF q “

ř

iPF yi ě
ř

iPF
1
k “ k 1

k “ 1. This proves that MT y ě 1, hence

}F} ď
ÿ

iăn

yi “ pk ´ 1q 1
k ´ 1 ` pn´ k ` 1q1

k
“
n` 1
k

“ 1{p.

Therefore, }F} “ 1{p.
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Case 2: 2k ´ 1 ą n. In this case, it is easy to check that p “ pk ´ 1q{pn ´ 1q.
Consider the following vector x P R|F |. Let xG “ pn´kq{pk´1q. If F is a k-element
subset of t0, . . . , n´ 1u that contains tk´ 1, . . . , n´ 1u, let xF “ 1{

`

k´1
2k´1´n

˘

(note
that such sets exist because k ą n ´ k ` 1). Let the other coordinates of x be
0. We claim that Mx “ 1. If i P t0, . . . , k ´ 2u, then i is in G and in a fraction
of p2k ´ 1 ´ nq{pk ´ 1q of the k-element subsets of t0, . . . , n ´ 1u that contain
tk ´ 1, . . . , n´ 1u. There are

`

k´1
2k´1´n

˘

such sets. Therefore, Mxpiq “
ř

txF : F P
F and i P F u “ pn´kq{pk´1q`p2k´1´nq{pk´1q “ 1. On the other hand, if i P
tk´1, . . . , n´1u, then i is not in G but is in every k-element subset of t0, . . . , n´1u
that contains tk ´ 1, . . . , n´ 1u. So Mxpiq “

ř

txF : F P F and i P F u “ 1. This
proves that Mx “ 1, hence

}F} ě
ÿ

FPF
xF “

n´ k

k ´ 1 `
ˆ

k ´ 1
2k ´ 1´ n

˙

1
`

k´1
2k´1´n

˘ “
n´ 1
k ´ 1 “ 1{p.

Next consider the following vector y P Rn. For i P t0, . . . , k´2u, let yi “ 1{pk´1q.
For i P tk ´ 1, . . . , n ´ 1u, let yi “ n´k

pn´k`1qpk´1q . We claim that MT y ě 1. As in
Case 1, MT ypGq “

ř

iPG yi “ pk ´ 1q 1
k´1 “ 1. Consider any other F P F . At least

k ´ pn ´ k ` 1q “ 2k ´ n ´ 1 coordinates in F are from t0, . . . , k ´ 2u. Therefore,
MT ypF q “

ř

iPF yi ě p2k ´ n´ 1q 1
k´1 ` pn´ k ` 1q n´k

pn´k`1qpk´1q “ 1. This proves
that MT y ě 1, hence

}F} ď
ÿ

iăn

yi “ pk ´ 1q 1
k ´ 1 ` pn´ k ` 1q n´ k

pn´ k ` 1qpk ´ 1q “
n´ 1
k ´ 1 “ 1{p.

Therefore, }F} “ 1{p. �

Corollary 5.3. There is a (c.e.) k{n-base that is not a degenerate k{n-base.

Proof. It is easy to see that both k{pn` 1q and pk ´ 1q{pn´ 1q are less than k{n.
Therefore, by Proposition 2.6, there is a c.e. set A that obeys cΩ,k{n but not cΩ,p
for p “ max

 

k
n`1 ,

k´1
n´1

(

. By Proposition 5.2, A is not a degenerate k{n-base. �

5.3. 1{ω-bases. A 1{n-base is computable from each of the n coordinates of some
Martin-Löf random pZ1, . . . , Znq. One can generalise this to infinite sequences. We
now work in the computable probability space p2ωqω. It is effectively isomorphic
to 2ω via a measure-preserving map. Such a map is determined by a computable
partition of ω into infinitely many computable sets (“columns”). Below we will use
the fact that this can be done in such a way that the density of each column is
positive.

Definition 5.4. A set A is a 1{ω-base if there is a Martin-Löf random sequence
pZ1, Z2, . . . q such that p@iq A ďT Zi.

Such bases are now easy to characterise.

Proposition 5.5. A set is a 1{ω-base iff it is a p-base for every rational p ą 0.

Proof. Assume that A is a 1{ω-base witnessed by pZ1, Z2, . . . q. For each n, the
sequence pZ1, . . . , Znq witnesses that A is a 1{n-base. This implies that A is a
p-base for every rational p ą 0

Now assume that A is a p-base for every rational p ą 0. Consider breaking Ω up
into countably many sequences tΩ̄nunPω such that Ω “ Ω1 ‘ pΩ2 ‘ pΩ3 ‘ p¨ ¨ ¨ qqq,
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where here ‘ is the usual split into evens and odds. In other words, Ω̄n is a 2´n-part
of Ω. For each n, we know that A is a 2´n-base. Hence by Theorem 2.18, A ďT Ω̄n.
Therefore, A is a 1{ω-base as witnessed by the sequence pΩ̄1, Ω̄2, . . . q. �

The proof shows that every 1{ω-base is witnessed by a single Martin-Löf random
sequence pΩ̄1, Ω̄2, . . . q that arises from a computable partition of Ω. Again we
remark that the proof used a partition of ω into columns of positive density; if we
use Gödel’s pairing function (as is commonly done), then each column has density
0 and the proof will not work. This distinction is only important when we consider
the ways in which Ω can be considered as a universal witness for being a 1{ω-base;
it does not affect the definition of being a 1{ω-base, in that a set A is a 1{ω-base if
and only for some, or any, effective measure-preserving isomorphism j : 2ω Ñ p2ωqω
there is a random sequence Z P 2ω such that A is computable from each coordinate
of jpZq.

As mentioned in the introduction, the notion of a 1{ω-base could theoretically
be weakened, but we obtain an equivalent notion. The proof of the first direction
of Proposition 5.5 shows:

Proposition 5.6. A set A is a 1{ω-base if and only if there is a countable infinite
set Q Ă 2ω such that: (a) every Z P Q computes A; and (b) the join of any finitely
many elements of Q is random.

5.3.1. 1{ω-bases and strong jump-traceability. Recall that a set A is ω-c.a. if it
can be computably approximated with a computably bounded number of changes;
equivalently, A ďwtt H

1. A set is strongly jump-traceable (SJT) if it is h-jump
traceable for every order function h; see [23] for a survey. Every strongly jump
traceable set is a 1{ω-base. For, by [21] and [14] together, any SJT set is computable
from every ω-c.a. random sequence; the columns of Ω are ω-c.a.

On the other hand, there is an 1{ω-base that is not SJT. To see this, let c “
ř

n 2´ncΩ,2´n . Then any set obeying c is an 1{ω-base, and c is a benign cost
function in the sense of [22]. Thus there is a computable order h such that every
h-jump traceable obeys c (ibid.). But by work of Ng [32], h-jump traceability is
strictly weaker than SJT.

We conjecture that the 1{ω bases form a Π0
4 complete ideal.

6. Robust computability from random sequences

Recall that a set is robustly computable from a sequence Z if it is computable
from every Y such that the upper density of Y MZ is 0 (such a Y is called a “coarse
description” of Z). This notion was investigated in [24], where it is shown that
every set that is robustly computable from a random sequence is K-trivial, and in
fact, is a pk ´ 1q{k-base for some k.

In this section we provide the proof of the converse, Theorem 1.5, which states
that the following are equivalent for a set A:

(1) A P Bă1 (that is, A is a p-base for some p ă 1).
(2) A is robustly computable from some random sequence.
(3) A is robustly computable from Ω.
(4) There is a δ ą 0 such that A is computable from all sets Z such that the

upper density of ZMΩ is less than δ.
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Proof. (4)Ñ(3)Ñ(2) are trivial. As mentioned, the implication (2)Ñ(1) is in the
proof of [24, Thm. 3.2].

It remains to show (1) Ñ (4). Recall that for strings σ, τ of the same length n,
we let

dpσ, τq “
|ti : σpiq ‰ τpiqu|

n
and that for X,Y P 2ω we let dpX,Y q “ lim supn dpX æn, Y ænq. For all strings σ
and all q P r0, 1s, we let Bpσ, qq “ tτ : |τ | “ |σ| & dpσ, τq ď qu. A well-known
estimate gives |Bpσ, qq| ď 2Hpqqn when q ď 1{2, where H is binary entropy: Hpqq “
´q log2pqq ´ p1 ´ qq log2p1 ´ qq (see for example [30, Cor.9,p.310]). Now choose δ
small enough so that Hp2δq ă 1´ p (so if p is close to 1, then δ will be small; if p
is very small, then δ can approach 1{4).

Let A be a p-base; take Z P 2ω such that dpΩ, Zq ă δ. We show that Z
computes A. By our proof of Theorem 2.18, we may assume that A is c.e. For
every string τ , let Gτ “

Ť

trρs : ρ P Bpτ, 2δqu. Then
µpGτ q “ 2´|τ ||Bpτ, 2δq| ď 2´|τ |2p1´pq|τ | “ 2´p|τ |.

Fix σ ă Z such that for all m ě |σ|, dpZ æm,Ω æmq ď δ. We define a func-
tional Γ using an approximation xAsy of A that witnesses that A obeys cΩ,p. We
also use an approximation of Ω such that Ωs`1´Ωs ě 2´s´1. We define Γ as follows:
for every n ě |σ|, for every string τ of length n extending σ, we set Γpτ, nq “ Aspnq
where s is the least stage s ą n such that for all m P r|σ|, ns, dpτ æm,Ωs æmq ď δ
(note δ and not 2δ). If there is no such stage s, then Γpτ, nqÒ.

The assumption on Z implies that ΓpZ, nqÓ for all n ě |σ|. Let spnq be the stage
at which the computation ΓpZ æn, nq is made. We need to show that for all but
finitely many n P A, n enters A by stage spnq.

We enumerate open sets Un for n ě |σ|. If n R A then Un “ H. If n P A,
let t “ tpnq be the stage at which n is enumerated into A (i.e., n P At r At´1).
If tpnq ď n then Un “ H. Suppose that n ă tpnq. Resembling the proof of
Proposition 2.9, let k “ kt be the unique k such that 2´k´1 ď Ωt´Ωn ă 2´k. Note
that by our choice of approximation to Ω, we have k ď n. We let Un “

Ťtpnq
s“nGΩt æ k.

Again, there are at most two values ρ for Ωs æ k for s P rn, ts. Thus our calculation
above shows that µpUnq ď 2 ¨ 2´pk ď 2 ¨ 2p ¨ pΩt ´ Ωnqp. Recall that the cΩ,p-cost
of enumerating n into A is exactly pΩt ´ Ωnqp. Since A obeys cΩ,p, we see that
ř

n µpUnq is finite, that is, xUny is a Solovay test. Thus, Ω P Un for only finitely
many n.

Since Ωs Ñ Ω, for all but finitely many n, Ω´Ωn ă 2´|σ|, which shows that for all
but finitely many n P A, ktpnq ě |σ|. Let n ě |σ| and suppose that ΓpZ, nq ‰ Apnq;
so n P A and spnq ă tpnq. Suppose that ktpnq ě |σ|. We show that Ω P Un. Note
that n ă spnq so n ă tpnq. Let k “ ktpnq. Then GΩspnq æ k Ď Un, and since k P
r|σ|, ns, we have dpZ æ k,Ωspnq æ kq ď δ. But by assumption on Z, dpZ æ k,Ω æ kq ď δ.
So dpΩspnq æ k,Ω æ kq ď 2δ, i.e., Ω æ k P BpΩspnq æ k, 2δq, so Ω P GΩspnq æ k. �

We remark that (2)Ñ(4) above is implied by [24, Thm. 3.7], which is more
general; the proof is more elaborate.

Theorem 3.19 of [24] states that not every K-trivial set is robustly computable
from a random sequence. This fact can now be established using cost functions. It
is not difficult to construct a cost function c such that c ąˆ cΩ but for all p ă 1,
c ăˆ cΩ,p. By Proposition 2.6 there is a set A obeying cΩ but not c. That set is
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K-trivial but not a p-base for any p ă 1, hence not robustly reducible to a random.
We extend this result a little. Say that an ideal I Ď ∆0

2 is characterised by a cost
function c if I is the collection of sets that obey c.
Proposition 6.1. The ideal Bă1 is not characterised by a cost function.

In particular, Bă1 is not the ideal of K-trivial sets, as the latter is characterised
by cΩ. Proposition 6.1 gives the first example of a Σ0

3 subideal of the K-trivial sets
that is not characterised by any cost function.10 The next lemma, which is key to
the proof of Proposition 6.1, essentially says that there is no greatest lower bound
for a strictly descending uniform sequence of cost functions.
Lemma 6.2. Let xdny be a computable sequence of cost functions such that p@nq dn`1 ď
dn. Let e be a cost function such that p@nq e ďˆ dn and dn ęˆ e. Then there is
a cost function c ě e such that p@nq c ďˆ dn and c ęˆ e.
Proof. We define cpx, sq by induction on s, starting with cpx, sq “ 0 for all x ě s.
At stage s we let, for each n ă s, kspnq be the least k such that n ¨epk, sq ď dnpk, sq
(for all s and n, kspnq ď s by one of our assumptions on cost functions). We then
define, for x ă s,

cpx, sq “

#

maxtcpx, s´ 1q, n ¨ epx, squ if n is greatest such that x “ kspnq;
maxtcpx, s´ 1q, epx, squ if x ‰ kspnq for all n ă s.

The point is that for each n, the set tkspnq : s ă ωu is bounded: since dn ęˆ e
there is some k such that for almost all s, n ¨ epk, sq ă dnpk, sq. If k “ kspnq for
infinitely many s then n ¨epkq ď cpkq, so c ęˆ e. But this also shows that for all n,
for almost all k, cpkq ď maxtepkq,dnpkqu, so c ďˆ dn follows from e ďˆ dn. �

Proof of Proposition 6.1. Suppose, for a contradiction, that Bă1 is characterised
by the cost function e. Proposition 2.6 implies that for all p, e ďˆ cΩ,p. Apply
Lemma 6.2 for e and dn “ cΩ,pn´1q{n to obtain a cost function c. Then c ďˆ dn
for each n implies that c characterises a class containing Bă1. However c ęˆ
e, so by Proposition 2.6 again, there is a set obeying e but not c, which is a
contradiction. �

7. Being computable from all weakly LR-hard randoms

This section provides further evidence that the ideal Bă1 is, in a sense, much
smaller than the ideal of K-trivials. We show that it is properly contained in the
ideal of degrees which lie below every so-called weakly LR-hard sequence; the latter
ideal itself is properly contained in the K-trivial degrees.

As mentioned earlier, a set X is LR-hard if every X-random sequence is 2-
random.
Proposition 7.1. If a set A is computable from all LR-hard random sequences,
then it is K-trivial.
Proof. Day and Miller [12] showed that if A is not K-trivial, then there is a ran-
dom X that is not a density 1 point and yet does not compute A. Such a random
must be LR-hard [7]. �

10Every K-trivial set is ω-c.a. and there is a uniform listing of all such sets (e.g., [34, 1.4.5]).
By a Σ0

3-ideal we mean that the collection of sets in the ideal is a Σ0
3 subset of Cantor space, or

equivalently, that the collection of ω-c.a. indices of the elements of the ideal is Σ0
3.
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It is still unknown whether every K-trivial is computable from every LR-hard
random sequence. We say that X is weakly LR-hard if every X-random sequence
is Schnorr random relative to H1.
Proposition 7.2. There is a K-trivial set that is not computable from all weakly
LR-hard randoms.
Proof. Barmpalias, Miller, and Nies [2] have shown that X is weakly LR-hard if
and only ifH1 is c.e. traceable by X: there is a computable bound h such that each
function f ďT H

1 has an h-bounded trace c.e. in X. A c.e. set is array computable
if and only if it is c.e. traceable, and it is known that such a set can be properly low2.
Hence, by pseudojump inversion for ML-random sets, there is a weakly LR-hard
ML-random ∆0

2 set X that is properly high2.
Every random set Turing above every K-trivial is not Oberwolfach random in

the sense of [6]. Hence it is LR-hard, and in particular high. So not every K-trivial
is computable from all weakly LR-hard randoms. �

For background, there are several results characterising sub-ideals of the K-
trivials as those degrees computable from all random elements of some null Σ0

3
class. One example is the class of strongly jump-traceable sets; they are precisely
the sets computable from all superhigh random sequences [21, 23]. Theorem 2.18
implies that the ideal of k{n-bases is such a class: the collection of sets computable
from the n-columns of Ω. This notion is closely related to that of a diamond class:
the class of c.e. sets computable from all random sequences is some null Σ0

3 class.
This restriction to c.e. sets is often immaterial, since the ideals under discussion
are generated by their c.e. elements. However, at times we need to work harder
to show one implication for general sets. For example, proving Proposition 7.1 for
c.e. sets A does not require the work of Day and Miller; we can use the existence
of an incomplete LR-hard random, which follows from pseudo-jump inversion for
randoms.

We also remark that the ideal of sets computable from every JT-hard random
(studied implicitly in [22] and in more detail in [34, Section 8.5]) contains the ideal
of sets below every weakly LR-hard random; the former though is not yet known
to be properly contained in the K-trivials.

Remark 7.3. Recall that X is LK-hard if p@yq KXpyq ď` KH
1

pyq. A computable
measure machine is a prefix free machine M such that µrdomM să (the measure of
its domain) is a computable real [34, 3.5.14]. We say that X is weakly LK-hard if
p@yq KXpyq ď` KM pyq for each computable measure machine M relative to H1.

Kjos-Hanssen et al. [26] have proved that every LR-hard set is LK-hard. An
adaptation of their argument, available in [16, Section 2], shows that every weakly
LR-hard set is weakly LK-hard.
Theorem 7.4.

(1) Every set in Bă1 is computable from all weakly LR-hard random sets.
(2) Some set not in Bă1 is computable from all weakly LR-hard random sets.

Proof. (1) Fix p ă 1. We show that every p-base is computable from all weakly
LR-hard random sets. Let Z be weakly LR-hard.

We will build a discrete measure ν such that νpmq is ∆0
2 uniformly in m and

ř

m νpmq is a computable real. Let α be the universal uniform left-c.e. discrete mea-
sure, namely, αZpnq is the chance that the standard universal prefix-free machine
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with oracle Z prints out n. Since Z is weakly LK-hard, by Remark 7.3, αZ ěˆ ν;
this uses a slight adaptation of the Coding Theorem (e.g., [34, Thm. 2.2.25] or [15,
Thm. 3.9.4]).

We view α as a function of two variables, and let

αXs pωq “
ÿ

nPω

αXs pnq “ ΩXs ;

Let µ denote Lebesgue measure and c the counting measure on ω. By Fubini’s
Theorem

Is “

ż

αspX,nqdpµˆ cq “

ż

αXs pωqdµ

So Is ď 1 for each s.
Let γn “ 2pp´1qn. The point is that

ř

γn is finite and computable, and 2´pnγn “
2´n. We define νpmq as a ∆0

2 real uniformly in m. We view m as a code for a pair
of numbers. The algorithm for defining ν is as follows:

If Is P pk ¨ 2´n, pk` 1q ¨ 2´ns, let νspn, tq “ γn, and νspn, t1q “ 0 for
all t1 ‰ t, where t is the least stage such that It ą k ¨ 2´n.

The total weight of ν is
ř

γn ă 8.
Now fix a constant d such that d ¨αZ ě ν. We define a p-OW test that succeeds

on all the oracles X such that d ¨ αX ě ν. If Is P pk2´n, pk ` 1q2´ns then the kth

version of Un at stage s is the collection of oracles X such that d ¨ αXs pn, tq ě γn,
where t is the least stage such that It ą k ¨ 2´n.

The measure of each version of Un is at most d ¨ 2´n{γn “ d ¨ 2´pn. This is
because by convention, for all X, αXt pn, tq “ 0; so if Is P pk2´n, pk ` 1q2´ns then
ş

αXs pn, tq dµ ď Is ´ It ď 2´n.
If A is a p-base, then A obeys cΩ,p, and hence A ďT Z (Proposition 2.9 and

Proposition 2.14).

(2) We modify the construction for (1). We choose a non-decreasing computable
function h : r0, 1s Ñ R such that hpxq ě x and:

‚
ř

n 2´n{hp2´nq ă 8;
‚ For all p ă 1, hpxq ďˆ xp; and
‚ For all M ą 0, hpMxq ďˆ hpxq.

For example we can choose hpxq “ xplog xq2.
We carry out the construction above with γn “ 2´n{hp2´nq. This tells us that

every LR-hard set can be captured by an h-OW test, namely a test pGσ, αq as
in Definition 2.8 but such that µpGσq ďˆ hp2´|σ|q. We then follow the proof of
Proposition 2.9 to see that every such test can be covered by a cΩ,h-test, namely a
test xVny such that µpVnq ďˆ hpΩ´Ωnq. So every set that obeys cΩ,h is computable
from all weakly LR-hard random sequences. Since cΩ,h ď

ˆ cΩ,p for all p ă 1,
Proposition 6.1 implies that there is a set that obeys cΩ,h but is not in Bă1. �
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