CUTS IN THE ML DEGREES

KATHERINE ARTHUR, NOAM GREENBERG, AND JOSEPH S. MILLER

ABSTRACT. We show that the cut defined by a real number $r \in [0, 1]$ is realised in the hierarchy of *p*-bases in the ML degrees if and only if it is left- Π_3^0 .

1. INTRODUCTION

In [1], the authors characterise the sets that are computable from some pair of relatively random sequences, or equivalently, from both halves of some ML-random sequence. There are only countably many such sets, they are all K-trivial, and the Turing degrees of these sets form an ideal. It turns out that this ideal is one among a hierarchy of ideals \mathcal{B}_p in the K-trivial degrees, each indexed by rationals $p \in [0, 1]$, with p < q implying that $\mathcal{B}_p \subsetneq \mathcal{B}_q$. If p = k/n with k < n natural numbers, then \mathcal{B}_p is the collection of sets A which for some random sequence Z (equivalently, for $Z = \Omega$ being any left-c.e. random sequence), A is computable from the join of any k of the n-columns of Z. Various similar characterizations of these ideals are known; for example, see [1, Prop. 5.1].

Since the \mathcal{B}_p are a strictly ordered chain of ideals, it is natural to ask: which cuts are realised? Namely for which reals $r \in (0, 1)$ is there a set A that is an element of \mathcal{B}_p exactly for p > r? There are only countably many K-trivial sets, and so only countably many cuts are realised this way. In this paper we characterise these cuts:

Theorem 1.1. The following are equivalent for a real number $r \in (0, 1)$:

(1) There is a set A such that for all $p \in \mathbb{Q} \cap [0,1]$, $A \in \mathcal{B}_p \iff p > r$.

By (2), we mean that the right cut $\{p \in \mathbb{Q} : p > r\}$ is Σ_3^0 . We note that since each ideal \mathcal{B}_p is characterised by being computable from a collection of random sequences, [2, Thm. 2.1] implies that we may take A to be c.e. in (1).

Remark 1.2. When $r \in (0, 1)$ is rational, the conditions of Theorem 1.1 hold. However, in this case, one can also ask whether there is a set A with $A \in \mathcal{B}_p \iff p \ge r$. A positive answer follows from [2, Thm. 3.3]. Alternatively, the construction below can be modified to obtain such a set A.

The main tool used to explore the ideals \mathcal{B}_p is *cost functions*. We recall some definitions. A *cost function* is a computable function $\mathbf{c} \colon \mathbb{N}^2 \to \mathbb{R}^{\geq 0}$. In this paper we only consider cost functions \mathbf{c} with the following extra properties:

- (i) Monotonicity: for all x and s, $\mathbf{c}(x,s) \leq \mathbf{c}(x,s+1)$ and $\mathbf{c}(x,s) \geq \mathbf{c}(x+1,s)$;
- (ii) The *limit condition*: for all $x, \underline{\mathbf{c}}(x) = \lim_{s} \mathbf{c}(x, s)$ is finite and $\lim_{x \to \infty} \underline{\mathbf{c}}(x) = 0$;

⁽²⁾ r is right- Σ_3^0 .

Greenberg is supported by a Marsden Fund grant #17-VUW-090. Miller is supported by grant #358043 from the Simons Foundation.

- (iii) For all x and s, $\mathbf{c}(x,s) \leq 1$;
- (iv) For all s < x, $\mathbf{c}(x, s) = 0$.

The idea is that a cost function \mathbf{c} measures, in an analytic way, the complexity of a computable approximation $\langle A_s \rangle$ of a Δ_2^0 set A. Intuitively, the fewer the mindchanges, the simpler A is. The number $\mathbf{c}(x,s)$ is the cost of changing A on x at stage s, namely of setting $A_s(x) \neq A_{s-1}(x)$. The monotonicity condition says that the cost of changing x goes up as time passes, and that at any given stage, it is cheaper to change A on larger numbers. The limit condition puts a restraint on the costs, ensuring they are not too onerous in the limit. The notion of obedience tells us which computable approximations are simple from \mathbf{c} 's point of view:

Definition 1.3. Let $\langle A_s \rangle$ be a computable approximation of a Δ_2^0 set A, and let **c** be a cost function. The *total* **c**-*cost* of $\langle A_s \rangle$ is

$$\mathbf{c}\langle A_s \rangle = \sum_{s < \omega} \mathbf{c}_s(x) \, [\![x \text{ is least such that } A_s(x) \neq A_{s-1}(x)]\!].$$

We say that A obeys **c** if for some computable approximation $\langle A_s \rangle$ of A, $\mathbf{c} \langle A_s \rangle$ is finite.

In [1], it is shown that for all rational $p \in (0, 1)$, $A \in \mathcal{B}_p$ if and only if A obeys the cost function $\mathbf{c}_{\Omega,p}$ defined by

$$\mathbf{c}_{\Omega,p}(x,s) = \begin{cases} (\Omega_s - \Omega_x)^p, & \text{if } x \ge s; \\ 0, & \text{if } x < s. \end{cases}$$

Here $\langle \Omega_s \rangle$ is some increasing computable approximation of a left-c.e. ML-random sequence Ω . This characterisation of the ideals \mathcal{B}_p shows that Theorem 1.1 is really a theorem about cost functions. For two cost functions \mathbf{c} and \mathbf{c}' , write $\mathbf{c} \ll \mathbf{c}'$ if:

• for all x and s, $\mathbf{c}(x,s) \leq \mathbf{c}'(x,s)$; and

• for every constant k, $\underline{\mathbf{c}}'(x) > k\underline{\mathbf{c}}(x)$ for all but finitely many x.

We prove:

Proposition 1.4. Let $\{\mathbf{c}_p : p \in \mathbb{Q} \times (0,1)\}$ be a collection of uniformly computable cost functions, such that if p < q, then $\mathbf{c}_q \ll \mathbf{c}_p$. Then for any real number $r \in (0,1)$, the following are equivalent:

- (1) There is a set A such that for all $p \in \mathbb{Q} \cap [0,1]$, A obeys \mathbf{c}_p if and only if p > r.
- (2) r is right- Σ_3^0 .

It is readily observed that $\mathbf{c}_{\Omega,q} \ll \mathbf{c}_{\Omega,p}$ whenever p < q, and so Proposition 1.4 implies Theorem 1.1.

2. Proof of Proposition 1.4

Before we prove Proposition 1.4, we introduce some notation and state a lemma. Suppose that $\langle A_s \rangle$ is a computable approximation of a set A. A speed-up of $\langle A_s \rangle$ is an approximation $\langle A_{h(s)} \rangle$ where $h: \mathbb{N} \to \mathbb{N}$ is computable and strictly increasing. For simplicity, we write $\langle A_h \rangle$ for $\langle A_{h(s)} \rangle$. It is not difficult to see that if $\langle A_h \rangle$ is a speed-up of $\langle A_s \rangle$, then for any cost function $\mathbf{c}, \mathbf{c} \langle A_h \rangle \leq \mathbf{c} \langle A_s \rangle$. In fact, there are several reasons that the cost on the left might be smaller. Suppose that x is the least such that $A_{h(s)}(x) \neq A_{h(s-1)}(x)$. So the step s contribution to $\mathbf{c} \langle A_h \rangle$ is $\mathbf{c}(x,s)$. In contrast, the step h(s) contribution to $\mathbf{c} \langle A_s \rangle$ is at least $\mathbf{c}(x,h(s))$, which by monotonicity is at least $\mathbf{c}(x, s)$. It may be more, since it is possible that there is some y < x such that $A_{h(s)}(y) \neq A_{h(s)-1}(y)$, but it just happens that $A_{h(s)}(y) = A_{h(s-1)}(y)$. And of course, relative to $\langle A_s \rangle$, $\mathbf{c} \langle A_h \rangle$ only counts some of the stages, namely those in the range of h. We will make use of the following, which is well-known, and follows from the techniques in [3]:

Lemma 2.1. A Δ_2^0 set A obeys a cost function \mathbf{c} if and only if every computable approximation $\langle A_s \rangle$ of A has a speed-up $\langle A_h \rangle$ with $\mathbf{c} \langle A_h \rangle < \infty$.

We fix an effective listing $\langle h_e \rangle$ of partial "speed-up" functions. That is:

- $\langle h_e \rangle$ are uniformly partial computable;
- Each h_e is either total, or its domain is a finite initial segment of ω ;
- Each h_e is strictly increasing on its domain;
- Every strictly increasing computable function is h_e for some e.

Further, for every e and s, let $n_{e,s} = \max \operatorname{dom} h_{e,s}$; by withholding convergences, we may assume that:

- dom $h_{e,s}$ is an initial segment of ω ; and
- $h_{e,s}(n_{e,s}) < s.$

For any cost function \mathbf{c} we can define

$$\mathbf{c}\langle A_{h_e}\rangle[s] = \sum_{m \leqslant n_{e,s}} \mathbf{c}(x,m) \, [\![x \text{ is least such that } A_{h_e(m)} \neq A_{h_e(m-1)}]\!].$$

The value $\mathbf{c}\langle A_{h_e}\rangle[s]$ is computable, uniformly in e, s and in a computable index for \mathbf{c} . And if h_e is total, then $\mathbf{c}\langle A_{h_e}\rangle = \lim_s \mathbf{c}\langle A_{h_e}\rangle[s]$.

 $(1) \Longrightarrow (2)$ of Proposition 1.4 is essentially [3, Fact 2.13], which is uniform. We are given a Δ_2^0 set A; we fix a computable approximation $\langle A_s \rangle$ for A. By Lemma 2.1, A obeys \mathbf{c}_p if and only if there are some e and M such that h_e is total and for all s, $\mathbf{c}_p \langle A_{h_e} \rangle [s] \leq M$. This is a Σ_3^0 predicate of p. Note that the collection of p such that A obeys \mathbf{c}_p must be a right cut (a final segment of $\mathbb{Q} \cap (0,1)$); this follows from the assumption that $\mathbf{c}_q \leq \mathbf{c}_p$ for p < q.

Before we give the details, we briefly discuss the proof of $(2) \Longrightarrow (1)$. We are given a right- Σ_3^0 real $r \in (0, 1)$, and define a computable approximation $\langle A_s \rangle$ of the desired set A. The value of r can be guessed by the true path on a tree of strategies: one duty of the strategies is to guess, given $p \in \mathbb{Q} \cap (0, 1)$, whether p > r or not; locally the behaviour of the true path is Σ_2^0/Π_2^0 , so to approximate the Σ_3^0 predicate p > r, we need to keep trying different existential witnesses for the outermost quantifier.

Suppose that a strategy τ works with some rational number $p = p^{\tau}$. There are two possibilities. The infinite outcome $\tau^{\infty}\infty$ believes that it has proof that p > r, and so it is $\tau^{\infty}\infty$'s responsibility to ensure that A obeys \mathbf{c}_p . This is both done passively, by initialisations, and more actively, by setting strict bounds on the action of weaker requirements. The speed-up of $\langle A_s \rangle$ which witnesses that Aobeys \mathbf{c}_p is the restriction of our approximation to the τ^{∞} -stages. There are two kinds of nodes σ that my change A, and thus increase the cost measured by $\tau^{\infty}\infty$: nodes to the right of τ^{∞} , and nodes extending $\tau^{\infty}\infty$. For each node σ we assign a bound δ^{σ} on the amount of cost that σ 's action may cause to nodes (strategies) strictly above it (nodes that σ extends). We distribute the bounds δ^{σ} so that the total damage caused by all nodes extending $\tau^{\infty}\infty$ is finite. The nodes to the right of τ^{∞} (including the finite outcome τ^{fin}) contribute nothing to τ^{∞} 's cost. This is the result of initialisations and our speed-up: at the $m^{\text{th}} \tau^{\infty}$ stage, nodes to the right only change A on numbers greater than m, and we measure the \mathbf{c}_p -cost of these changes at stage m. We use the assumption (iii) above, that if s < x then $\mathbf{c}_p(x, s) = 0$.

Now consider the Σ_2^0 outcome τ fin. This outcome believes that $p \leq r$, and so tries to ensure that A does not obey \mathbf{c}_p . By Lemma 2.1, it suffices to check all speed-ups of our base approximation $\langle A_s \rangle$. We make use of the following strengthening of Lemma 2.1:

Lemma 2.2 (Fact 2.2 of [3]). Suppose that $\langle A_s \rangle$ is a computable approximation of a set A that obeys a cost function **c**. Then for any $\varepsilon > 0$, there is a speed-up of $\langle A_s \rangle$ with total cost bounded by ε .

Thus, in order to show that A does not obey \mathbf{c}_p , it suffices to ensure that for all e, $\mathbf{c}_p \langle A_{h_e} \rangle \ge 1$. The node τ will be assigned one e. It needs to change A on numbers x so that the cost $\mathbf{c}_p \langle A_{h_e} \rangle$ increases. The node τ faces two difficulties:

- Some nodes above τ restrain τ from adding more than δ^{τ} to their cost; and δ^{τ} is much smaller than 1.
- The speed-up function h_e is revealed to τ very slowly.

The second difficulty is technical: we see $h_e(m)$ converge to some value t only at some stage s much later than t. Thus, τ discovers that it had to change A_t on some value; but A_t was already defined at stage t. This is addressed easily by giving τ an infinite collection (which we denote by $\omega^{[\tau]}$) of potential inputs for x to play with; for a suitable $x \in \omega^{[\tau]}$, the node τ keeps $A_r(x) \neq A_t(x)$ for stages $r \ge s$ until we see a value of h_e greater than s.

The first difficulty is fundamental: this is where we use the assumptions on the relative growth-rate of the cost functions \mathbf{c}_p . Take some node τ working to increase $\mathbf{c}_q \langle A_{h_e} \rangle$ for some e and q, and let ρ be some node above τ that is concerned about incurring cost from τ 's action. The node ρ only cares if it is trying to keep costs low; that is, if $\rho^{\uparrow} \infty \leq \tau$. Let $p = p^{\rho}$ be the rational number that ρ is working with; it is trying to keep the \mathbf{c}_p -cost of some approximation finite. Now the outcome $\rho^{\uparrow} \infty$, and therefore τ , believe that they have proof that p > r. The node τ is working with the assumption that $q \leq r$. Thus, we can arrange that q < p. The assumption $\mathbf{c}_q \ll \mathbf{c}_p$ now means that τ can change A to make the \mathbf{c}_q -cost large while keeping the \mathbf{c}_p -damage very small: smaller than δ^{τ} .

We now give the details. Let $r \in (0,1)$ be right- Σ_3^0 . There are uniformly computable, non-decreasing sequences $\langle \ell_s^{p,e} \rangle_{s < \omega}$ (of natural numbers) for $p \in \mathbb{Q}$ and $e < \omega$ such that for all such p, p > r if and only if for some $e < \omega$, $\langle \ell_s^{p,e} \rangle$ is unbounded.

We define a computable approximation $\langle A_s \rangle$ of a Δ_2^0 set A. We will meet two types of requirements. The first type of requirements are indexed by $p \in \mathbb{Q} \cap (0, 1)$:

 N_p : If p > r, then A obeys \mathbf{c}_p .

Requirements of the second type are indexed by $p \in \mathbb{Q} \cap (0, 1)$ and $e < \omega$:

 $R_{p,e}$: If p < r and h_e is total, then $\mathbf{c}_p \langle A_{h_e} \rangle \ge 1$.

As discussed above, meeting these requirements suffices to ensure (1) of the proposition. Approximating r. We work with a full binary tree of strategies. The strategies are the finite sequences of the symbols ∞ and fin.

By recursion on the length $|\sigma|$ of a node σ on the tree, we define:

- $p^{\sigma} \in \mathbb{Q} \cap (0,1)$ and $e^{\sigma} \in \omega$; the node σ will attempt to meet either $N_{p^{\sigma}}$ or $R_{p^{\sigma},e^{\sigma}}$;
- a rational number $r^{\sigma} > p^{\sigma}$; this is an upper bound on the value of r believed by σ .

The meaning of the outcome ∞ is that we believe that $p^{\sigma} > r$, and so we meet $N_{p^{\sigma}}$ by defining a suitable speed-up of our approximation for A. The meaning of the outcome fin is that we believe that $p^{\sigma} \leq r$, and so we meet $R_{p^{\sigma},e^{\sigma}}$.

We use an effective ω -ordering of all the pairs $(p, e) \in (\mathbb{Q} \cap (0, 1)) \times \omega$. We start with the root of the tree, which is the empty sequence $\langle \rangle$, by letting $(p^{\Diamond}, e^{\Diamond})$ be the least pair in our ordering; we let $r^{\Diamond} = 1$.

Suppose that σ is on the tree and that we have already defined p^{σ}, e^{σ} and r^{σ} . We then define these parameters for the children $\sigma^{\gamma} \infty$ and σ^{γ} fin. We start with the latter:

(a)
$$r^{\sigma \circ \infty} = p^{\sigma}$$
.

(b)
$$r^{\sigma \hat{fin}} = r^{\sigma}$$

Then, for both children τ of σ , we let (p^{τ}, e^{τ}) be the next pair (p, e) on our list after (p^{σ}, e^{σ}) such that $p < r^{\tau}$.

For brevity, for any node σ , we write:

- ℓ_s^{σ} for $\ell_s^{p^{\sigma}, e^{\sigma}}$.
- h^{σ} for $h_{e^{\sigma}}$ (and similarly h_s^{σ} for $h_{e^{\sigma},s}$).

Allocating capital to nodes. Computably, we assign to each node σ a positive rational number δ^{σ} such that

$$\sum \delta^{\sigma} \leqslant 1$$

(where the sum ranges over all strategies σ). The idea of the parameter δ^{σ} is that σ promises any τ with $\tau^{\uparrow} \infty \leq \sigma$ that it will not add more than δ^{σ} to the cost accrued by τ .¹

Construction. At stage s, we define the path of accessible nodes by recursion. If a strategy σ is accessible at stage s, then we say that s is a σ -stage.

We start with $A_0 = 0^{\infty}$.

The root is always accessible. Suppose that a node σ is accessible at stage s. If $|\sigma| = s$, we halt the stage. We also initialise all nodes weaker than σ .

Suppose that $|\sigma| < s$.

First, let t < s be the last σ^{∞} -stage before stage s; t = 0 if there was no such stage. If $\ell_s^{\sigma} > t$, then we let σ^{∞} be the next accessible node.

Suppose that $\ell_s^{\sigma} \leq t$. We will define the notion of a σ -action stage. Let w be the last σ -action stage prior to stage s; w = 0 if there was no such stage. Let

¹Actually, it will be $2\delta^{\sigma}$, for a truly unimportant reason. The last σ -action may add to the cost σ is measuring a quantity close to 1, making the total cost close to 2; from τ 's point of view, the increase is then close to $2\delta^{\sigma}$.

More importantly, note that the value δ^{σ} does not depend on the stage number. A reasonable approach would be to shrink δ^{σ} each time σ is initialised. We do not need to do this, because even when σ is initialised, the amount that it previously added to the total cost it is monitoring has not gone away, and so it does not need to start afresh.

 $n = \max \operatorname{dom} h_s^{\sigma}$; let s^* be the last stage prior to stage s at which σ fin was initialised. If:

- (i) $\mathbf{c}_{p^{\sigma}}(\langle A_{h^{\sigma}} \rangle)[s] < 1;$
- (ii) n > w; and
- (iii) there is a number $x > s^*, x \in \omega^{[\sigma]}$ satisfying²

$$\mathbf{c}_{r^{\sigma}}(x,s) \leq \mathbf{c}_{p^{\sigma}}(x,n) \cdot \delta^{\sigma}$$

then we choose the least such x, set $A_{s+1}(x) = 1 - A_s(x)$, and call s a σ -action stage. Otherwise, σ makes no change to A at stage s. In either case, we let σ fin be the next accessible node.

2.1. Verification. Let δ^* denote the true path. Because we never terminate a stage s before we get to a node of length s, and the strategy tree is binary splitting, the true path is infinite.

Toward verifying that the requirements are met, we show that the true path approximates r correctly. For the first part of the next lemma, note that if τ extends σ , then $r^{\sigma} \ge r^{\tau}$, so $\inf_{\sigma \in \delta^*} r^{\sigma} = \lim_{\sigma \in \delta^*} r^{\sigma}$.

Lemma 2.3.

- (a) $r = \inf_{\sigma \in \delta^*} r^{\sigma}$.
- (b) For all rational $p \in (0, r)$, for all e, there is some $\sigma \in \delta^*$ with $(p^{\sigma}, e^{\sigma}) = (p, e)$.

Proof. First, by induction on the length of $\sigma \in \delta^*$ we verify that $r^{\sigma} > r$. For the root this is clear since r < 1. If $\sigma \in \delta^*$ and $r^{\sigma} > r$, there are two cases. If $\sigma^{\uparrow} \infty \in \delta^*$ then $\langle \ell_s^{\sigma} \rangle$ is unbounded, which implies that $p^{\sigma} = r^{\sigma^{\uparrow} \infty} > r$. Otherwise $\sigma^{\uparrow} \text{fin} \in \delta^*$ and $r^{\sigma^{\uparrow} \text{fin}} = r^{\sigma} > r$.

Let $\tilde{r} = \inf_{\sigma \in \delta^*} r^{\sigma}$. Let $p \in (0, \tilde{r})$ be rational and let $e < \omega$. For all $\tau \in \delta^*$, $r^{\tau} > p$. Thus, we never skip over the pair (p, e) when assigning pairs to the nodes on the true path. It follows that there is some $\sigma \in \delta^*$ with $(p^{\sigma}, e^{\sigma}) = (p, e)$. This verifies (b).

Suppose, for a contradiction, that $\tilde{r} > r$. Let $p \in (r, \tilde{r})$ be rational, and let e witness that p > r, that is, $\langle \ell_s^{p,e} \rangle$ is unbounded. Let $\sigma \in \delta^*$ with $(p^{\sigma}, e^{\sigma}) = (p, e)$. Then $\sigma^{\uparrow} \infty \in \delta^*$ and $r^{\sigma^{\uparrow} \infty} = p < \tilde{r}$, which is a contradiction.

The next lemma shows that action by a node does increase the total cost it is monitoring. Let σ be any node, and let s be a σ -action stage. We let

- $n_s^{\sigma} = \max \operatorname{dom} h_s^{\sigma};$
- y_s^{σ} be the number acted upon by σ , that is, the unique number $y \in \omega^{[\sigma]}$ such that $A_{s+1}(y) \neq A_s(y)$.

Lemma 2.4. Let σ be any node, and suppose that s < s' are two σ -action stages. Then

$$\mathbf{c}_{p^{\sigma}}(\langle A_{h^{\sigma}} \rangle)[s'] \geq \mathbf{c}_{p^{\sigma}}(\langle A_{h^{\sigma}} \rangle)[s] + \mathbf{c}_{p^{\sigma}}(y_s^{\sigma}, n_s^{\sigma}).$$

Proof. Let $y = y_s^{\sigma}$. We may assume that $s' = s^+$ is the next σ -action stage after stage s. Also let s^- be the previous σ -action stage prior to stage s ($s^- = 0$ if there was no such stage). Since σ does not act between stages s^- and s, and between stages s and s^+ ,

• $A_t(y)$ is constant for $t \in (s^-, s]$; and

 $\mathbf{6}$

²Recall that $\omega^{[\rho]}$, for $\rho \in \{\infty, \texttt{fin}\}^{<\omega}$, is a partition of ω into pairwise disjoint, infinite computable sets.

• $A_t(y)$ is constant for $t \in (s, s^+]$.

The point is that no other node can change A on an element of $\omega^{[\sigma]}$. Note that

$$s^- < n_s^\sigma \leqslant h^\sigma(n_s^\sigma) < s < n_{s^+}^\sigma \leqslant h^\sigma(n_{s^+}^\sigma) < s^+.$$

Thus there is some $m \in (n_s^{\sigma}, n_{s^+}^{\sigma}]$ such that $s^- < h^{\sigma}(m-1) \leq s < h^{\sigma}(m) \leq s^+$. Then $A_{h^{\sigma}(m-1)}(y) \neq A_{h^{\sigma}(m)}(y)$. This shows that stage m of the approximation $A_{h^{\sigma}}$ contributes at least $\mathbf{c}_{p^{\sigma}}(y, m) \geq \mathbf{c}_{p^{\sigma}}(y, n_s^{\sigma})$ to $\mathbf{c}_{p^{\sigma}}(\langle A_{h^{\sigma}} \rangle)[s^+]$, and this was not seen at stage s.

Lemma 2.5. Let τ be any node. Then

$$\sum \left\{ \mathbf{c}_{p^{\tau}}(y_s^{\tau}, n_s^{\tau}) : s \text{ is a } \tau \text{-action stage} \right\} < 2.$$

Proof. For $t \leq \omega$, let

 $S_t^{\tau} = \sum \left\{ \mathbf{c}_{p^{\tau}}(y_s^{\tau}, n_s^{\tau}) : s \text{ is a } \tau \text{-action stage } \& \ s < t \right\}.$

Then Lemma 2.4 implies that for every τ -action stage s,

$$S_s^{\tau} \leq \mathbf{c}_{p^{\tau}}(\langle A_{h^{\tau}} \rangle)[s] < 1$$

If there are infinitely many τ -action stages then $S^{\tau}_{\omega} \leq 1$. Otherwise, let s be the last τ -action stage. As $\mathbf{c}_{p^{\tau}}(y^{\tau}_{s}, n^{\tau}_{s}) \leq 1$, we have

$$S_{\omega}^{\tau} = S_s^{\tau} + \mathbf{c}_{p^{\tau}}(y_s^{\tau}, n_s^{\tau}) < 2.$$

Lemma 2.6. Let σ be a node and suppose that $\sigma \hat{\mathsf{fin}} \in \delta^*$. Then there are only finitely many σ -action stages. If h^{σ} is total then $\mathbf{c}_{p^{\sigma}}\langle A_{h^{\sigma}} \rangle \geq 1$.

Proof. If h^{σ} is partial, then there cannot be more than one σ -action stage after stage max dom h^{σ} . Suppose that h^{σ} is total. We will show that eventually, $\mathbf{c}_{p^{\sigma}}(\langle A_{h^{\sigma}} \rangle)[s] \ge 1$, which will also imply that there are only finitely many σ -action stages. Suppose, for a contradiction, that for all s, $\mathbf{c}_{p^{\sigma}}(\langle A_{h^{\sigma}} \rangle)[s] < 1$.

Let s^* be the last stage at which $\sigma^{\hat{}}$ in is initialised. Since $r^{\sigma} > p^{\sigma}$, we know that for all but finitely many x,

$$\underline{\mathbf{c}}_{r^{\sigma}}(x) < \underline{\mathbf{c}}_{p^{\sigma}}(x) \cdot \delta^{\sigma}.$$

Let x^* be the least $x > s^*$, $x \in \omega^{[\sigma]}$ satisfying this inequality. Then for all but finitely many stages t, for all s,

$$\mathbf{c}_{r^{\sigma}}(x^*,s) < \mathbf{c}_{p^{\sigma}}(x^*,t) \cdot \delta^{\sigma}.$$

For sufficiently late stages s, we have $n = \max \operatorname{dom} h_s^{\sigma} > x^*$ and $\mathbf{c}_{r^{\sigma}}(x^*, s) < \mathbf{c}_{p^{\sigma}}(x^*, n) \cdot \delta^{\sigma}$. This shows that there are infinitely many σ -action stages. Let t^* be a late σ -action stage; let $\varepsilon^* = \mathbf{c}_{p^{\sigma}}(x^*, t^*)$, which is positive. For every σ -action stage $s > t^*$, by minimality of y_s^{σ} , we have $y_s^{\sigma} \leq x^*$, and as $n_s^{\sigma} > t^*$, monotonicity of $\mathbf{c}_{p^{\sigma}}$ implies that $\mathbf{c}_{p^{\sigma}}(y_s^{\sigma}, n_s^{\sigma}) \geq \varepsilon^*$. Thus by Lemma 2.4, between any two σ -action stages, the partial cost $\mathbf{c}_p(\langle A_{h_e} \rangle)[s]$ grows by at least ε^* , so eventually grows beyond 1, which is a contradiction.

Now fix some $p \in \mathbb{Q} \cap (0, 1)$.

Lemma 2.7. Suppose that p < r. Then for all e, the requirement $R_{p,e}$ is met.

Proof. By Lemma 2.3(b), let $\sigma \in \delta^*$ such that $(p^{\sigma}, e^{\sigma}) = (p, e)$. Since p < r, $\sigma^{\hat{}} \texttt{fin} \in \delta^*$. Then Lemma 2.6 implies that $R_{p,e}$ is met.

Lemma 2.8. Suppose that p > r. Then the requirement N_p is met.

Proof. Let σ be the longest node on the true path such that $r^{\sigma} > p$. So $p^{\sigma} \leq p$ and $\sigma^{\gamma} \propto \in \delta^*$. Let s^* be sufficiently late so that:

- σ is not initialised after stage s^* ; and
- For every τ such that $\tau \hat{\mathsf{fin}} \leq \sigma$, there are no τ -action stages after stage s^* ; the latter uses Lemma 2.6. Let $s_0 < s_1 < s_2 < \ldots$ be the increasing enumeration of the $\sigma \hat{\infty}$ -stages after stage s^* . We show that $\mathbf{c}_{p^{\sigma}} \langle A_{s_k} \rangle$ is finite, which suffices since $p^{\sigma} \leq p$.

Let $k \ge 1$; let x_k be the least such that $A_{s_k}(x_k) \ne A_{s_{k-1}}(x_k)$. Let τ_k be the node such that $x_k \in \omega^{[\tau_k]}$. So there is some τ_k -action stage $t_k \in [s_{k-1}, s_k)$ such that $x_k = y_{t_k}^{\tau_k}$. Since $t_k > s^*$, we know that τ_k fin lies to the right of $\sigma \, \infty$, or τ_k extends $\sigma \, \infty$. In the first case (which includes the case $\tau_k = \sigma$), τ_k fin is initialised at stage s_{k-1} , and so $x_k > s_{k-1} \ge k$, which implies that $\mathbf{c}_{p^{\sigma}}(x_k, k) = 0$; so stage k contributes no cost to the total cost $\mathbf{c}_{p^{\sigma}}\langle A_{s_k} \rangle$.

Suppose that τ_k extends $\sigma \, \infty$. Then $t_k = s_{k-1}$, and more importantly, $r^{\tau_k} \leq r^{\sigma \, \infty} = p^{\sigma}$. Thus

$$\mathbf{c}_{p^{\sigma}}(x_k,k) \leqslant \mathbf{c}_{r^{\tau}}(x_k,s_{k-1}) \leqslant \mathbf{c}_{p^{\tau}}(x_k,n_{s_{k-1}}^{\tau}) \cdot \delta^{\tau}.$$

It follows that

$$\begin{split} \mathbf{c}_{p^{\sigma}} \langle A_{s_k} \rangle &= \sum_k \mathbf{c}_{p^{\sigma}}(x_k, k) \leqslant \\ &\sum_{\tau \geqslant \sigma \hat{\ } \infty} \delta^{\tau} \cdot \sum \left\{ \mathbf{c}_{p^{\tau}}(y_s^{\tau}, n_s^{\tau}) \, : \, s \text{ a } \tau \text{-action stage} \right\} \leqslant \sum_{\tau} 2\delta^{\tau} \leqslant 2 \end{split}$$

(using Lemma 2.5), and so is finite as required.

References

- Noam Greenberg, Joseph S. Miller, and André Nies. Computing from projections of random points: a dense hierarchy of subideals of the K-trivial degrees. Journal of Mathematical Logic, To appear.
- [2] Noam Greenberg, Joseph S. Miller, André Nies, and Daniel Turetsky. Martin-Löf reducibility and cost functions. Submitted.
- [3] André Nies. Calculus of cost functions. In *The Incomputable*, Theory Appl. Comput., pages 183–216. Springer, Cham, 2017.

 $(K. Arthur) \dots$

(N. Greenberg) School of Mathematics, Statistics and Operations Research, Victoria University of Wellington, Wellington, New Zealand

Email address: greenberg@msor.vuw.ac.nz

URL: http://homepages.mcs.vuw.ac.nz/~greenberg/

(J. S. Miller) DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN–MADISON, 480 LINCOLN DR., MADISON, WI 53706, USA

Email address: jmiller@math.wisc.edu

URL: http://www.math.wisc.edu/~jmiller/