Math 234 Fi	nal Exa	am	Spring 2017
Name:	_ TA:	□ Jing Hao	\Box Vlad A. Matei
Section:	_	\square Moises Herradon	□ Tony Yuan
		\Box Brandon J. Legried	□ Yuhua Zhu

- $\bullet\,$ Show your work and write clearly.
- Make sure that your answers stand out.
- Have a great Summer!

Question	Points	Score
1	12	
2	16	
3	18	
4	18	
5	12	
6	12	
7	12	
Total:	100	

1.	Consider the	points $A =$	(1, 2, 3),	B = (1, -	-2, 2), and	d C =	(2, 1, 4)	١.

(a) [6 points] Find the area of the triangle formed by $A,\,B,\,$ and C.

Answer:

(b) [6 points] Find t such that D=(3,-2,t) is a point on the plane formed by $A,\,B,$ and C.

2.	(a) [6 points]	Consider the qu	adratic form	f(x,y)	$= x^2 +$	Cxy + 2y	y^2 , where	C i	s a
	constant.	For which values	s of C is $f(x, y)$	y) indefii	nite?				

			mani 291. I mai Exam
(b)	[10 points] Consider the function $f($ critical points of f . For each critical minimum, or saddle point of f .	$(x,y) = x^3 + 6xy + 3y$ I point, classify it as a	$x^2 - 9x$. Find all of the a local maximum, local
		Answer:	

3. (a) [8 points] Consider the line segment joining the points (1,2,3) and (1,-2,2). Let $\vec{\boldsymbol{v}} = \begin{pmatrix} yz \\ x^2 \\ y+z \end{pmatrix}$. Find $\int_{\mathcal{C}} \vec{\boldsymbol{v}} \cdot d\vec{\boldsymbol{x}}$.

$$\vec{\boldsymbol{v}} = \begin{pmatrix} yz \\ x^2 \\ y+z \end{pmatrix}$$
. Find $\int_{\mathcal{C}} \vec{\boldsymbol{v}} \cdot d\vec{\boldsymbol{x}}$.

(b) [5 points] Let $\mathbf{r} = \begin{pmatrix} r^2 e^y + 1 \end{pmatrix}$. That a function $z = f(x,y)$ such that $\mathbf{v} \cdot f = 1$	b) [5 points] Let \vec{F} =	$\begin{pmatrix} 2xe^y \\ x^2e^y + 1 \end{pmatrix}$. Find a function $z = f(x, y)$ such that $\vec{\nabla} f = \vec{\nabla} f$
---	-------------------------------	---	---

Answer:

(c) [5 points] Take \vec{F} as defined in part (b). Let \mathcal{C} be a curve with initial point (0,5) and final point (2,3). Find $\int_{\mathcal{C}} \vec{F} \cdot d\vec{x}$.

4. (a) [6 points] Let \mathcal{R} be the region in the first quadrant of the plane bounded above by $y=4-x^2$. Let \mathcal{C} be the boundary of \mathcal{R} with counterclockwise orientation and let $\vec{\boldsymbol{v}}=\begin{pmatrix} xy\\2y \end{pmatrix}$. Use Green's theorem to find $\int_{\mathcal{C}} \vec{\boldsymbol{v}} \cdot d\vec{\boldsymbol{x}}$.

Answer:

(b) [6 points] Let \mathcal{C} be as in part (a) and let $\vec{\boldsymbol{v}} = \begin{pmatrix} x^2 \\ xy \end{pmatrix}$. Find the outward flux of $\vec{\boldsymbol{v}}$ across \mathcal{C} , i.e., find $\int_{\mathcal{C}} \vec{\boldsymbol{v}} \cdot \vec{\boldsymbol{N}} \, ds$, where $\vec{\boldsymbol{N}}$ is the outward pointing unit normal to \mathcal{C} .

(c) [6 points] Let $\mathcal{R} = \{(x, y, z) \colon 0 \leq x \leq 1, 0 \leq y \leq 2, 0 \leq z \leq 3\}$. Let \mathcal{S} be the boundary of \mathcal{R} and let \vec{N} be the outward pointing unit normal to \mathcal{S} . Finally, let $\vec{v} = \begin{pmatrix} 2x + \sin(z^2) \\ \cos(z^2) \\ yz \end{pmatrix}$. Find $\iint_{\mathcal{S}} \vec{v} \cdot \vec{N} \, dA$, i.e., the outward flux of \vec{v} across \mathcal{S} .

5. [12 points] Let $\vec{F} = \begin{pmatrix} y \\ x \\ z \end{pmatrix}$ and let \mathcal{S} be the surface in three dimensional space given by $z = x^2$ for $-1 \le x \le 1$ and $0 \le y \le 2$. Find $\iint_{\mathcal{S}} \vec{F} \cdot \vec{N} \, dA$, where \vec{N} is the unit normal to \mathcal{S} that points upward (i.e., with positive z-coordinate).

6.	[12 points] I	Find the sur	face area of	the part of	the parabo	$oloid z = x^2$	$+y^2$ for	which
	$x^2 + y^2 \le 1.$							
				Answe	er:			
				1				

7.	[12 points] unit circle.	Find	the	maximum	and	minimum	values	of $f(x,y)$	$=x^2+$	$2y^2 - x$ on	the
						Ans	wer:				