Math 234

Exam II (with answers)

Spring 2017

- 1. Suppose that $P(x, y) = Ax^2 + y^2$ and $Q(x, y) = Bx^2y + Cxy$, where A, B, and C are constants.
 - (a) [7 points] For which values of the constants A, B, and C does there exist a function f(x, y) such that $f_x = P$ and $f_y = Q$?

Solution: There is a function f(x, y) such that $f_x = P$ and $f_y = Q$ if and only if $P_y = Q_x$ (i.e., if and only if the hypothetical mixed partials are equal). So we need

$$\frac{\partial P}{\partial y} = 2y = 2Bxy + Cy = \frac{\partial Q}{\partial x}$$

By matching up the coefficients on like terms, we see that this is only possible if B = 0 and C = 2. There is no restriction on A.

(b) [7 points] Find such a function f(x, y) for those values of A, B, and C for which it exists.

Solution: From part (a), we have $P(x, y) = Ax^2 + y^2$ and Q(x, y) = 2xy, where A is arbitrary. At this point, it's actually pretty easy to guess a function f(x, y) such that $f_x = P$ and $f_y = Q$, but for completeness, we will find the function systematically.

First, if we integrate P with respect to x, treating y as constant, we find that

$$f(x,y) = \frac{A}{3}x^3 + xy^2 + D(y),$$

where D(y) is an unknown function of y. Now differentiate with respect to y to get

 $f_y = 2xy + D'(y).$

But if $f_y = Q = 2xy$, then D'(y) = 0, so D(y) is a constant (with respect to both x and y). Let's call this constant K, so the final answer is

$$\frac{A}{3}x^3 + xy^2 + K$$
, where K is an arbitrary constant.

- 2. Consider the function $f(x, y) = 3xy x^3 y^3$.
 - (a) [7 points] Find all of the critical points of f.

Solution: The critical points occur when the gradient is 0, so taking the gradient of f, we have

$$\vec{\nabla}f = \begin{pmatrix} 3y - 3x^2\\ 3x - 3y^2 \end{pmatrix}.$$

So we have to solve the equations

$$3y - 3x^2 = 0$$
, and
 $3x - 3y^2 = 0$.

These reduce to $y = x^2$ and $x = y^2$. Plugging the first into the second, we get $y = y^4$. So either y = 0, or we can divide by y to get $1 = y^3$, hence y = 1. If y = 0, then x = 0 by the second equation. If y = 1, then x = 1. So the critical points are (0,0) and (1,1).

(b) [7 points] For each critical point, classify it as a local maximum, local minimum, or saddle point of f.

Solution: To classify the critical point (a, b) using the second derivative test, we have to analyze the quadratic form

$$Q(\Delta x, \Delta y) = \frac{1}{2} \left[f_{xx}(a, b)(\Delta x)^2 + 2f_{xy}(a, b)\Delta x \Delta y + f_{yy}(a, b)(\Delta y)^2 \right].$$

Note that $f_{xx} = -6x$, $f_{xy} = 3$, and $f_{yy} = -6y$. So the quadratic form becomes

$$Q(\Delta x, \Delta y) = \frac{1}{2} \left[-6a(\Delta x)^2 + 2 \cdot 3\Delta x \Delta y - 6b(\Delta y)^2 \right]$$
$$= -3a(\Delta x)^2 + 3\Delta x \Delta y - 3b(\Delta y)^2.$$

For the critical point (0,0), we have $Q(\Delta x, \Delta y) = 3\Delta x \Delta y$, which is clearly indefinite. Therefore, (0,0) is a saddle point |. For the critical point (1, 1), we have

$$Q(\Delta x, \Delta y) = -3(\Delta x)^2 + 3\Delta x \Delta y - 3(\Delta y)^2$$

= $-3 \left[(\Delta x)^2 - \Delta x \Delta y + (\Delta y)^2 \right]$
= $-3 \left[\left(\Delta x - \frac{1}{2} \Delta y \right)^2 - \left(-\frac{1}{2} \Delta y \right)^2 + (\Delta y)^2 \right]$
= $-3 \left[\left(\Delta x - \frac{1}{2} \Delta y \right)^2 - \frac{1}{4} (\Delta y)^2 + (\Delta y)^2 \right]$
= $-3 \left[\left(\Delta x - \frac{1}{2} \Delta y \right)^2 + \frac{3}{4} (\Delta y)^2 \right],$
negative definite. Therefore, $\overline{(1, 1)}$ is a local maximum.

which is ega $, [(\underline{}, \underline{})]$

3. [15 points] Maximize f(x, y) = xy subject to the constraint $8x^2 + y^2 = 1$.

Solution: We use the method of Lagrange multipliers. Let $g(x, y) = 8x^2 + y^2$, so the constraint is g(x, y) = 1. We have

$$\vec{\nabla} f = \begin{pmatrix} y \\ x \end{pmatrix}$$
 and $\vec{\nabla} g = \begin{pmatrix} 16x \\ 2y \end{pmatrix}$.

Note that $\vec{\nabla}g = 0$ implies that x, y = 0, which is not consistent with the constraint. So we have to solve the equations

$$\vec{\nabla}f = \begin{pmatrix} y \\ x \end{pmatrix} = \lambda \begin{pmatrix} 16x \\ 2y \end{pmatrix} = \lambda \vec{\nabla}g,$$

along with the constrain equation, g(x, y) = 1. All together, we have to solve the system of equations

$$y = 16x\lambda,$$

 $x = 2y\lambda,$ and
 $8x^2 + y^2 = 1.$

From the first two we get $y = 32y\lambda^2$. Note that if y = 0, then x = 0, which as we noted is inconsistent with the third equation. Therefore, we can divide by y to get $1 = 32\lambda^2$, or $\lambda = \pm \frac{1}{4\sqrt{2}}$.

Case 1: $\lambda = \frac{1}{4\sqrt{2}}$. Plugging λ into the first two equations makes them equivalent, so we are down to

$$y = 2\sqrt{2}x$$
, and
 $x^2 + y^2 = 1.$

8

Now this gives us $8x^2 + (2\sqrt{2}x)^2 = 16x^2 = 1$, so $x = \pm 1/4$. Plugging back into the first equation gives us the solutions $(1/4, 1/\sqrt{2})$ and $(-1/4, -1/\sqrt{2})$.

Case 2: $\lambda = -\frac{1}{4\sqrt{2}}$. Plugging λ into the first two equations makes them equivalent, so we are down to

$$y = -2\sqrt{2}x$$
, and $8x^2 + y^2 = 1$.

Now this gives us $8x^2 + (-2\sqrt{2}x)^2 = 16x^2 = 1$, so $x = \pm 1/4$. Plugging back into the first equation gives us the solutions $(1/4, -1/\sqrt{2})$ and $(-1/4, 1/\sqrt{2})$.

We have found all of the possible points at which the maximum may occur. To finish, we check the values of f(x, y) to figure out where it actually occurs.

(x,y)	f(x,y)
$\left(\frac{1}{4}, \frac{1}{\sqrt{2}}\right)$	$\frac{1}{4\sqrt{2}}$
$\left(-\frac{1}{4},-\frac{1}{\sqrt{2}}\right)$	$\frac{1}{4\sqrt{2}}$
$\left(\frac{1}{4},-\frac{1}{\sqrt{2}}\right)$	$-\frac{1}{4\sqrt{2}}$
$\left(-\frac{1}{4},\frac{1}{\sqrt{2}}\right)$	$-\frac{1}{4\sqrt{2}}$

So the maximum possible value of f(x, y) subject to the constraint g(x, y) = 1 is $\boxed{\frac{1}{4\sqrt{2}}}$. It occurs at the points $\boxed{\left(\frac{1}{4}, \frac{1}{\sqrt{2}}\right)}$ and $\left(-\frac{1}{4}, -\frac{1}{\sqrt{2}}\right)$.

4. [15 points] Find the volume of the solid bounded by the cylinders $x^2 + y^2 = 1$ and $x^2 + z^2 = 1$.

Solution: Note: It might be tempting to set this problem up in cylindrical coordinates, but as it turns out, that makes the calculation much worse.

From the first equation we get

$$-1 \le x \le 1$$
, and $-\sqrt{1-x^2} \le y \le \sqrt{1-x^2}$.

The second equation gives us that

$$-\sqrt{1-x^2} \le z \le \sqrt{1-x^2}.$$

So the volume is

$$\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \sqrt{1-x^2} - \left(-\sqrt{1-x^2}\right) dy \, dx = \int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} 2\sqrt{1-x^2} \, dy \, dx.$$

Note that

$$\int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} 2\sqrt{1-x^2} \, dy = \left(2\sqrt{1-x^2}\right) y \Big|_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} = \left(2\sqrt{1-x^2}\right) \left(\sqrt{1-x^2} - \left(-\sqrt{1-x^2}\right)\right) = 4\left(1-x^2\right).$$

So the volume is

$$\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} 2\sqrt{1-x^2} \, dy \, dx = \int_{-1}^{1} 4\left(1-x^2\right) dx = 4\left(x-x^3/3\right)\Big|_{-1}^{1}$$
$$= 4(1-1/3) - 4((-1)-(-1)/3) = \boxed{16/3}.$$

5. [14 points] Evaluate the following integral by first changing the order of integration:

$$\int_0^1 \int_{\sqrt{x}}^1 x e^{y^5} dy \, dx.$$

Solution: Note that

$$\int_0^1 \int_{\sqrt{x}}^1 x e^{y^5} dy \, dx = \iint_{\mathcal{D}} x e^{y^5} \, dA,$$

where \mathcal{D} is the region pictured below.

Note that $\mathcal{D} = \{(x, y) \colon 0 \le y \le 1, 0 \le x \le y^2\}$, so

$$\iint_{\mathcal{D}} x e^{y^5} \, dA = \int_0^1 \int_0^{y^2} x e^{y^5} dx \, dy.$$

Calculating the inner integral, we get

$$\int_{0}^{y^{2}} x e^{y^{5}} dx = \frac{1}{2} x^{2} e^{y^{5}} \Big|_{0}^{y^{2}} = \frac{1}{2} (y^{2})^{2} e^{y^{5}} = \frac{1}{2} y^{4} e^{y^{5}}.$$

The outer integral is

$$\int_{0}^{1} \frac{1}{2} y^{4} e^{y^{5}} dy = \frac{1}{10} e^{y^{5}} \Big|_{0}^{1} = \boxed{\frac{1}{10} (e-1)}$$

6. [14 points] An object occupies the region inside the sphere of radius 3 and its density is given by $\mu(x, y, z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$. Find its mass.

Solution: This problem is most easily solved using spherical coordinates. Let \mathcal{S} be

the sphere of radius 3 (centered at the origin).

$$\text{Mass} = \iiint_{\mathcal{S}} \mu \ dV = \int_0^{2\pi} \int_0^{\pi} \int_0^3 \mu \ \rho^2 \sin \varphi \ d\rho \ d\varphi \ d\theta = \int_0^{2\pi} \int_0^{\pi} \int_0^3 \rho \sin \varphi \ d\rho \ d\varphi \ d\theta,$$

using the fact that $\rho = \sqrt{x^2 + y^2 + z^2}$, so $\mu(x, y, z) = 1/\rho$. Calculating the inner integral, we get

$$\int_0^3 \rho \sin \varphi \, d\rho = \frac{1}{2} \rho^2 \sin \varphi \Big|_0^3 = \frac{9}{2} \sin \varphi.$$

Now the middle integral is

$$\int_0^{\pi} \frac{9}{2} \sin \varphi \, d\varphi = -\frac{9}{2} \cos \varphi \Big|_0^{\pi} = -\frac{9}{2} \left(\cos \pi - \cos 0 \right) = -\frac{9}{2} \left(-1 - 1 \right) = 9.$$

Finally, we have

$$Mass = \int_0^{2\pi} 9 \ d\theta = \boxed{18\pi}$$

7. [14 points] Find $\int_{\mathcal{C}} (x-1)^2 + y^2 ds$, where \mathcal{C} is the circle $x^2 + y^2 = 4$ (traversed once).

Solution: We parameterize C using $\vec{x}(t) = \begin{pmatrix} 2\cos t \\ 2\sin t \end{pmatrix}$, for $0 \le t \le 2\pi$. Note that $\|\vec{x'}(t)\| = 2$. Therefore, $\int_{\mathcal{C}} (x-1)^2 + y^2 ds = \int_0^{2\pi} \left[(2\cos t - 1)^2 + (2\sin t)^2 \right] \|\vec{x'}(t)\| dt$ $= 2 \int_0^{2\pi} 4\cos^2 t - 4\cos t + 1 + 4\sin^2 t dt = 2 \int_0^{2\pi} 5 - 4\cos t dt$ $= 2 (5t - 4\sin t) \Big|_0^{2\pi} = \boxed{20\pi}.$