
Math 234 Exam II (with answers) Spring 2017

1. Suppose that P (x, y) = Ax2 + y2 and Q(x, y) = Bx2y + Cxy, where A, B, and C are
constants.

(a) [7 points] For which values of the constants A, B, and C does there exist a function
f(x, y) such that fx = P and fy = Q?

Solution: There is a function f(x, y) such that fx = P and fy = Q if and only
if Py = Qx (i.e., if and only if the hypothetical mixed partials are equal). So we
need

∂P

∂y
= 2y = 2Bxy + Cy =

∂Q

∂x
.

By matching up the coefficients on like terms, we see that this is only possible
if B = 0 and C = 2. There is no restriction on A.

(b) [7 points] Find such a function f(x, y) for those values of A, B, and C for which it
exists.

Solution: From part (a), we have P (x, y) = Ax2+y2 and Q(x, y) = 2xy, where
A is arbitrary. At this point, it’s actually pretty easy to guess a function f(x, y)
such that fx = P and fy = Q, but for completeness, we will find the function
systematically.

First, if we integrate P with respect to x, treating y as constant, we find that

f(x, y) =
A

3
x3 + xy2 +D(y),

where D(y) is an unknown function of y. Now differentiate with respect to y to
get

fy = 2xy +D′(y).

But if fy = Q = 2xy, then D′(y) = 0, so D(y) is a constant (with respect to
both x and y). Let’s call this constant K, so the final answer is

A

3
x3 + xy2 +K, where K is an arbitrary constant.

2. Consider the function f(x, y) = 3xy − x3 − y3.
(a) [7 points] Find all of the critical points of f .

Solution: The critical points occur when the gradient is 0, so taking the gra-
dient of f , we have

~∇f =

(
3y − 3x2

3x− 3y2

)
.
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So we have to solve the equations

3y − 3x2 = 0, and

3x− 3y2 = 0.

These reduce to y = x2 and x = y2. Plugging the first into the second, we get
y = y4. So either y = 0, or we can divide by y to get 1 = y3, hence y = 1. If
y = 0, then x = 0 by the second equation. If y = 1, then x = 1.

So the critical points are (0, 0) and (1, 1) .

(b) [7 points] For each critical point, classify it as a local maximum, local minimum,
or saddle point of f .

Solution: To classify the critical point (a, b) using the second derivative test,
we have to analyze the quadratic form

Q(∆x,∆y) =
1

2

[
fxx(a, b)(∆x)2 + 2fxy(a, b)∆x∆y + fyy(a, b)(∆y)2

]
.

Note that fxx = −6x, fxy = 3, and fyy = −6y. So the quadratic form becomes

Q(∆x,∆y) =
1

2

[
−6a(∆x)2 + 2 · 3∆x∆y − 6b(∆y)2

]
= −3a(∆x)2 + 3∆x∆y − 3b(∆y)2.

For the critical point (0, 0), we have Q(∆x,∆y) = 3∆x∆y, which is clearly

indefinite. Therefore, (0, 0) is a saddle point .

For the critical point (1, 1), we have

Q(∆x,∆y) = −3(∆x)2 + 3∆x∆y − 3(∆y)2

= −3
[
(∆x)2 −∆x∆y + (∆y)2

]
= −3

[(
∆x− 1

2
∆y

)2

−
(
−1

2
∆y

)2

+ (∆y)2

]

= −3

[(
∆x− 1

2
∆y

)2

− 1

4
(∆y)2 + (∆y)2

]

= −3

[(
∆x− 1

2
∆y

)2

+
3

4
(∆y)2

]
,

which is negative definite. Therefore, (1, 1) is a local maximum .

3. [15 points] Maximize f(x, y) = xy subject to the constraint 8x2 + y2 = 1.
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Solution: We use the method of Lagrange multipliers. Let g(x, y) = 8x2 + y2, so
the constraint is g(x, y) = 1. We have

~∇f =

(
y
x

)
and ~∇g =

(
16x
2y

)
.

Note that ~∇g = 0 implies that x, y = 0, which is not consistent with the constraint.
So we have to solve the equations

~∇f =

(
y
x

)
= λ

(
16x
2y

)
= λ~∇g,

along with the constrain equation, g(x, y) = 1. All together, we have to solve the
system of equations

y = 16xλ,

x = 2yλ, and

8x2 + y2 = 1.

From the first two we get y = 32yλ2. Note that if y = 0, then x = 0, which as we
noted is inconsistent with the third equation. Therefore, we can divide by y to get
1 = 32λ2, or λ = ± 1

4
√
2
.

Case 1: λ = 1
4
√
2
. Plugging λ into the first two equations makes them equivalent, so

we are down to

y = 2
√

2x, and

8x2 + y2 = 1.

Now this gives us 8x2 + (2
√

2x)2 = 16x2 = 1, so x = ±1/4. Plugging back into the
first equation gives us the solutions (1/4, 1/

√
2) and (−1/4,−1/

√
2).

Case 2: λ = − 1
4
√
2
. Plugging λ into the first two equations makes them equivalent,

so we are down to

y = −2
√

2x, and

8x2 + y2 = 1.

Now this gives us 8x2 + (−2
√

2x)2 = 16x2 = 1, so x = ±1/4. Plugging back into the
first equation gives us the solutions (1/4,−1/

√
2) and (−1/4, 1/

√
2).

We have found all of the possible points at which the maximum may occur. To finish,
we check the values of f(x, y) to figure out where it actually occurs.

(x, y) f(x, y)(
1
4
, 1√

2

)
1

4
√
2(

−1
4
,− 1√

2

)
1

4
√
2(

1
4
,− 1√

2

)
− 1

4
√
2(

−1
4
, 1√

2

)
− 1

4
√
2
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So the maximum possible value of f(x, y) subject to the constraint g(x, y) = 1 is

1

4
√

2
. It occurs at the points

(
1

4
,

1√
2

)
and

(
−1

4
,− 1√

2

)
.

4. [15 points] Find the volume of the solid bounded by the cylinders x2 + y2 = 1 and
x2 + z2 = 1.

Solution: Note: It might be tempting to set this problem up in cylindrical coordi-
nates, but as it turns out, that makes the calculation much worse.

From the first equation we get

−1 ≤ x ≤ 1, and−
√

1− x2 ≤ y ≤
√

1− x2.

The second equation gives us that

−
√

1− x2 ≤ z ≤
√

1− x2.

So the volume is∫ 1

−1

∫ √1−x2
−
√
1−x2

√
1− x2 −

(
−
√

1− x2
)
dy dx =

∫ 1

−1

∫ √1−x2
−
√
1−x2

2
√

1− x2 dy dx.

Note that∫ √1−x2
−
√
1−x2

2
√

1− x2 dy =
(

2
√

1− x2
)
y
∣∣∣√1−x2
−
√
1−x2

=
(

2
√

1− x2
)(√

1− x2 −
(
−
√

1− x2
))

= 4
(
1− x2

)
.

So the volume is∫ 1

−1

∫ √1−x2
−
√
1−x2

2
√

1− x2 dy dx =

∫ 1

−1
4
(
1− x2

)
dx = 4

(
x− x3/3

) ∣∣∣1
−1

= 4(1− 1/3)− 4((−1)− (−1)/3) = 16/3 .

5. [14 points] Evaluate the following integral by first changing the order of integration:∫ 1

0

∫ 1

√
x

xey
5

dy dx.
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Solution: Note that ∫ 1

0

∫ 1

√
x

xey
5

dy dx =

∫∫
D
xey

5

dA,

where D is the region pictured below.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

y =
√ x or

x =
y
2

x

y

Note that D = {(x, y) : 0 ≤ y ≤ 1, 0 ≤ x ≤ y2}, so∫∫
D
xey

5

dA =

∫ 1

0

∫ y2

0

xey
5

dx dy.

Calculating the inner integral, we get∫ y2

0

xey
5

dx =
1

2
x2ey

5
∣∣∣y2
0

=
1

2

(
y2
)2
ey

5

=
1

2
y4ey

5

.

The outer integral is ∫ 1

0

1

2
y4ey

5

dy =
1

10
ey

5
∣∣∣1
0

=
1

10
(e− 1) .

6. [14 points] An object occupies the region inside the sphere of radius 3 and its density is

given by µ(x, y, z) =
1√

x2 + y2 + z2
. Find its mass.

Solution: This problem is most easily solved using spherical coordinates. Let S be
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the sphere of radius 3 (centered at the origin).

Mass =

∫∫∫
S
µ dV =

∫ 2π

0

∫ π

0

∫ 3

0

µ ρ2 sinϕ dρ dϕ dθ =

∫ 2π

0

∫ π

0

∫ 3

0

ρ sinϕ dρ dϕ dθ,

using the fact that ρ =
√
x2 + y2 + z2, so µ(x, y, z) = 1/ρ. Calculating the inner

integral, we get ∫ 3

0

ρ sinϕ dρ =
1

2
ρ2 sinϕ

∣∣∣3
0

=
9

2
sinϕ.

Now the middle integral is∫ π

0

9

2
sinϕ dϕ = −9

2
cosϕ

∣∣∣π
0

= −9

2
(cosπ − cos 0) = −9

2
(−1− 1) = 9.

Finally, we have

Mass =

∫ 2π

0

9 dθ = 18π .

7. [14 points] Find

∫
C
(x− 1)2 + y2ds, where C is the circle x2 + y2 = 4 (traversed once).

Solution: We parameterize C using ~x(t) =

(
2 cos t
2 sin t

)
, for 0 ≤ t ≤ 2π. Note that

‖~x′(t)‖ = 2. Therefore,∫
C
(x− 1)2 + y2ds =

∫ 2π

0

[
(2 cos t− 1)2 + (2 sin t)2

]
‖~x′(t)‖ dt

= 2

∫ 2π

0

4 cos2 t− 4 cos t+ 1 + 4 sin2 t dt = 2

∫ 2π

0

5− 4 cos t dt

= 2 (5t− 4 sin t)
∣∣∣2π
0

= 20π .
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