Math 234	Exam II		Spring 2017
Name:	TA:	\Box Jing Hao	\Box Vlad A. Matei
Section:		\Box Moises Herradon	\Box Tony Yuan
		\Box Brandon J. Legried	I Yuhua Zhu

- You may **not** use a calculator, notes, a notecard, or books.
- Show your work and write clearly.
- Make sure that your answers stand out.
- Good Luck!

Question	Points	Score
1	14	
2	14	
3	15	
4	15	
5	14	
6	14	
7	14	
Total:	100	

- 1. Suppose that $P(x,y) = Ax^2 + y^2$ and $Q(x,y) = Bx^2y + Cxy$, where A, B, and C are constants.
 - (a) [7 points] For which values of the constants A, B, and C does there exist a function f(x, y) such that $f_x = P$ and $f_y = Q$?

Answer:

(b) [7 points] Find such a function f(x, y) for those values of A, B, and C for which it exists.

- 2. Consider the function $f(x, y) = 3xy x^3 y^3$.
 - (a) [7 points] Find all of the critical points of f.

Answer:

(b) [7 points] For each critical point, classify it as a local maximum, local minimum, or saddle point of f.

3. [15 points] Maximize f(x, y) = xy subject to the constraint $8x^2 + y^2 = 1$.

4. [15 points] Find the volume of the solid bounded by the cylinders $x^2 + y^2 = 1$ and $x^2 + z^2 = 1$.

5. [14 points] Evaluate the following integral by first changing the order of integration:

$$\int_0^1 \int_{\sqrt{x}}^1 x e^{y^5} dy \, dx.$$

6. [14 points] An object occupies the region inside the sphere of radius 3 and its density is given by $\mu(x, y, z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$. Find its mass.

7. [14 points] Find $\int_{\mathcal{C}} (x-1)^2 + y^2 ds$, where \mathcal{C} is the circle $x^2 + y^2 = 4$ (traversed once).