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1. a.
Clearly ĉ(x) is nonincreasing and uniformly left-c.e. Given such an f , there
exists d computable and nondecreasing in t with f(y) = limt d(y, t). Let
c(x, s) = maxx≤y,t<s d(y, t), which is clearly monotonic. Note ĉ = f since ∀x
f(x) = supy≥x f(y) = supy,t≥x d(y, t) = sups c(x, s) ≥ supt d(x, t) = f(x).

b.
Define computable functions f, g by

f(0) = g(0) = 1

f(2n + 1) = f(2n) g(2n + 1) = f(2n + 1)/n + 1

g(2n + 2) = g(2n + 1) f(2n + 2) = g(2n + 2)/n + 1.

Observe g(2n + 1) ≤ f(2n) ≤ g(2n) and f(2n + 2) ≤ g(2n + 1) ≤
f(2n + 1). That is, f and g are nonincreasing, so we may apply a., to define
cost functions c, d with ĉ = f , d̂ = g. Since for all n, nf(2n+2) < g(2n+2),
and ng(2n + 1) < f(2n + 1), by Thm. 20 of the tutorial, c 9 d and d 9 c.

2.
The existence of c follows from SJT = (H)♦ for H a null Σ0

3 class (i.e.,
superlow) – use cH. Such a c cannot be benign because no single benign cost
function characterizes SJT.

3.
By relativizing the universal ML-test to ∅′, there is a Π0,∅′

1 class P of 2-random
reals. The relativized Low Basis Theorem yields Z ∈ P with (Z⊕∅′)′ ≡T ∅′′.
Since Z is 2-random, by a result of Kautz Z ′ ≡T Z ⊕ ∅′. Thus Z is Low2.
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4.
Since all K-trivial degrees are ∆0

2, every noncomputable K-trivial degree
is hyperimmune, and thus contains a weakly 1-generic real by a result of
Kurtz. A weakly 1-generic real is contained in every open c.e. set of measure
1 since such sets are dense in 2ω, and is thus weakly random. That is, every
noncomputable K-trivial degree contains a weakly random set. However,
every Schnorr random set is high or ML-random, and is therefore not K-
trivial (recall all K-trivial sets are low).

5. The desired set may be enumerated in stages α < ωCK
1 . We assume the

graph of U is enumerated one element at a time and only at successor stages.
Hence, for each α, there is at most one w where Kα(w) 6= Kα+1(w). We will
use the cost function

c(x, α) =
∑
w≥x

2−Kα(w)

because when an x is enumerated, it may require new requests for infinitely
many initial segments. Since c(x, α) need not be in Q2, we use Q(x, α) :=
{q ∈ Q2|q < c(x, α)}. To determine Q(x, α + 1) effectively from Q(x, α), if
2−Kα(w) increases by r for a (unique) w ≥ x, we add to Q(x, α) q + r for all
q ∈ Q(x, α) and all q < r.

The construction proceeds as in the construction of a simple K-trivial,
save using Q(x, α) to determine if the cost of an enumeration is low enough.
Using the uniform enumeration of Π1

1 sets, the resulting real intersects all
infinite Π1

1 sets and is not ∆1
1. That the resulting real is K-trivial is proved

in the same way as before, except by building a bounded Π1
1 request set.

Additional details for 5 (originally omitted to avoid exceeding 15 line limit):
Let A be the real constructed above, and assume the cost of enumerating

A is at most 1. We prove A is K-trivial by first enumerating a Π1
1 bounded

request set W . Requests of the form 〈Kα+1(w)+1, Aα+1 � w〉 are enumerated
into W at stage α + 1 if Kα+1(w) 6= Kα(w), or if both Kα+1(w) < ∞ and
Aα+1 � w 6= Aα � w (although Π1

1 enumeration was given by enumerating at
most 1 element per stage, as with computable enumeration it is clear more
than 1, or even infinitely many elements may be enumerated in a stage, as
long as the enumeration is uniform). W is bounded, because requests of the
first kind contribute at most Ω/2 and requests of the second kind contribute
at most 1/2 (since 2−Kα+1(w) is in Q(x, α), where x is the element (not more
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than w) enumerated in A at stage α + 1).
Let Md be a Π1

1 machine for W . We claim K(A � w) ≤ K(w) + d + 1 for
all w. Given w, let α be maximal such that α = 0 or Aα+1 � w 6= Aα � w. In
the latter case,

K(A � w) ≤ KMd
(A � w) + d ≤ Kα+1(w) + 1 + d,

caused by a request at stage α+1. In this case, if Kα+1(w) = K(w), the claim
is proven. If Kα+1(w) 6= K(w), or α = 0, then the inequality is caused by a
request at stage β + 1, where β > α is minimal such that Kβ+1(w) = K(w).

6. We wish to carry out the Friedburg-Mucnik construction with Π1
1 enumer-

ations and fin-h reductions in place of computable enumerations and Turing
computations. To do this, we need to index the fin-h reductions, which we
can if we remove the condition that dom(Φ) be closed under prefixes – simply
enumerate all partial functions with Π1

1 graph, and ignore any enumeration
that would violate the compatibility rule. The resulting index Φe of reduc-
tions will include all the fin-h reductions, but maybe also some others. We
seek to fulfill the requirements

R2e : P 6= ΦQ
e

R2e+1 : Q 6= ΦP
e

We use the same method as in the original construction – i.e., decide
whether or not to enumerate x into P [e] if Φ

Qα+1

e,α+1(x) converges, making sure
to only use x if it is larger than the uses of all lower-numbered requirements
that are marked as satisfied. The construction is run over stages α < ωCK

1 .
The verification that this works proceeds exactly as it does in the computable
case.

7.
Since Ω is left-Π1

1, {Ω} is a Π1
1 class, as X = Ω iff

∀Z[∀n(X � n ≤ Z � n) ∨ ∃q(q < X ∧ Z < q)],

where q ranges over Q2. But {Ω} is not ∆1
1 since Ω is ∆1

1-random.
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