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1. a.
Clearly ¢(x) is nonincreasing and uniformly left-c.e. Given such an f, there
exists d computable and nondecreasing in t with f(y) = lim;d(y,t). Let
c(z, s) = max,<y s d(y,t), which is clearly monotonic. Note ¢ = f since Vx
F() = 5D, F(y) = SUPy 1o d(y,£) = sUp, (3, 5) > sup, d(, ) = £(x).

b.
Define computable functions f, g by

f(0)=9(0)=1
f(2n+1) = f(2n) g2n+1)=f2n+1)/n+1
g2n+2)=g2n+1) f2n+2)=g2n+2)/n+ 1.

Observe g(2n + 1) < f(2n) < ¢g(2n) and f(2n +2) < g(2n + 1) <
f(2n+1). That is, f and g are nonincreasing, so we may apply a., to define
cost functions ¢, d with é = f, d = g. Since for all n, nf(2n+2) < g(2n+2),
and ng(2n + 1) < f(2n + 1), by Thm. 20 of the tutorial, ¢ - d and d —» c.

2.

The existence of ¢ follows from SJT = (H)® for H a null I class (i.e.,
superlow) — use ¢z. Such a ¢ cannot be benign because no single benign cost
function characterizes SJT.

3.

By relativizing the universal ML-test to (', there is a H?’W class P of 2-random
reals. The relativized Low Basis Theorem yields Z € P with (Z&0') =1 (”.
Since Z is 2-random, by a result of Kautz Z' =¢ Z @ (/. Thus Z is Lows,.



4.

Since all K-trivial degrees are A9, every noncomputable K-trivial degree
is hyperimmune, and thus contains a weakly 1-generic real by a result of
Kurtz. A weakly 1-generic real is contained in every open c.e. set of measure
1 since such sets are dense in 2“, and is thus weakly random. That is, every
noncomputable K-trivial degree contains a weakly random set. However,
every Schnorr random set is high or ML-random, and is therefore not K-
trivial (recall all K-trivial sets are low).

5. The desired set may be enumerated in stages a < w¢%. We assume the
graph of U is enumerated one element at a time and only at successor stages.
Hence, for each «, there is at most one w where K (w) # K, (w). We will
use the cost function

o(z,a) = Z 9—K,(w)

w>x

because when an x is enumerated, it may require new requests for infinitely
many initial segments. Since ¢(z, @) need not be in Qy, we use Q(z,a) :=
{q € Qq]q < ¢(x,)}. To determine Q(x,a + 1) effectively from Q(zx, ), if
27 Ka(w) increases by r for a (unique) w > x, we add to Q(x, ) ¢ + r for all
q € Q(x,a) and all ¢ < r.

The construction proceeds as in the construction of a simple K-trivial,
save using Q(z, a) to determine if the cost of an enumeration is low enough.
Using the uniform enumeration of II} sets, the resulting real intersects all
infinite IT} sets and is not A]. That the resulting real is K-trivial is proved
in the same way as before, except by building a bounded TI} request set.

Additional details for 5 (originally omitted to avoid exceeding 15 line limit):

Let A be the real constructed above, and assume the cost of enumerating
A is at most 1. We prove A is K-trivial by first enumerating a I} bounded
request set W. Requests of the form (K, (w)+1, Aaq1 [ w) are enumerated
into W at stage o + 1 if K, (w) # K, (w), or if both K, ,(w) < oo and
Agr1 | w # A, | w (although TT} enumeration was given by enumerating at
most 1 element per stage, as with computable enumeration it is clear more
than 1, or even infinitely many elements may be enumerated in a stage, as
long as the enumeration is uniform). W is bounded, because requests of the
first kind contribute at most /2 and requests of the second kind contribute
at most 1/2 (since 2 £a+1() is in Q(x, @), where x is the element (not more



than w) enumerated in A at stage a + 1).

Let M, be a IT{ machine for /. We claim K(A | w) < K(w) +d+ 1 for
all w. Given w, let @ be maximal such that « =0 or A,y [w # Ay [ w. In
the latter case,

K(ATw) € Ky (AT w)+d < Koy (w) + 1+,
caused by a request at stage a+1. In this case, if K, (w) = K(w), the claim
is proven. If K (w) # K(w), or o = 0, then the inequality is caused by a
request at stage 3 + 1, where 3 > « is minimal such that K, ,(w) = K(w).

6. We wish to carry out the Friedburg-Mucnik construction with IT{ enumer-
ations and fin-h reductions in place of computable enumerations and Turing
computations. To do this, we need to index the fin-h reductions, which we
can if we remove the condition that dom(®) be closed under prefixes — simply
enumerate all partial functions with IT{ graph, and ignore any enumeration
that would violate the compatibility rule. The resulting index ®. of reduc-
tions will include all the fin-h reductions, but maybe also some others. We
seek to fulfill the requirements

Ry : P # ®9
Roey1: Q # ®F

We use the same method as in the original construction — i.e., decide
whether or not to enumerate z into P if @fgfl (z) converges, making sure
to only use z if it is larger than the uses of all lower-numbered requirements
that are marked as satisfied. The construction is run over stages o < w{%.
The verification that this works proceeds exactly as it does in the computable

case.

7.
Since Q is left-IT{, {Q} is a II] class, as X = Q iff

VZIVn(X [n<Z[n)V3qqg< XNZ<q),

where ¢ ranges over Q. But {Q} is not A] since Q is Aj-random.



