Randomness via effective descriptive set theory

André Nies The University of Auckland

FRG workshop, Madison, May 2009 For more detail see Chapter 9 of my book "Computability and Randomness", OUP, 2009

- A formal randomness notion is introduced by specifying a test concept.
- Usually the null classes given by tests are arithmetical.
- Here we give formal definitions of randomness notions using tools from higher computability theory.

1 Introduction

1.1 Informal introduction to Π_1^1 relations

Let $2^{\mathbb{N}}$ denote Cantor space.

- A relation B ⊆ N^k × (2^N)^r is Π¹₁ if it is obtained from an arithmetical relation by a universal quantification over sets.
- If k = 1, r = 0 we have a Π_1^1 set $\subseteq \mathbb{N}$.
- If k = 0, r = 1 we have a Π_1^1 class $\subseteq 2^{\mathbb{N}}$.
- The relation \mathcal{B} is Δ_1^1 if both \mathcal{B} and its complement are Π_1^1 .

There is an equivalent representation of Π_1^1 relations where the members are enumerated at stages that are countable ordinals. For Π_1^1 sets (of natural numbers) these stages are in fact computable ordinals, i.e., the order types of computable well-orders.

1.2 New closure properties

- Analogs of many notions from the computability setting exist in the setting of higher computability, but...
- the results about them often turn out to be different.

The reason is that there are two new closure properties.

- (C1) The Π_1^1 and Δ_1^1 relations are closed under number quantification.
- (C2) If a function f maps each number n in a certain effective way to a computable ordinal, then the range of f is bounded by a computable ordinal. This is the Bounding Principle.

1.3 Further notions

Beyond the Π_1^1 version of ML-randomness, we will study Δ_1^1 -randomness and Π_1^1 -randomness. The tests are simply the null Δ_1^1 classes and the null Π_1^1 classes, respectively.

The implications are

 Π_1^1 -randomness $\Rightarrow \Pi_1^1$ -ML-randomness $\Rightarrow \Delta_1^1$ -randomness.

The converse implications fail.

1.4 The story

- Martin-Löf (1970) was the first to study randomness in the setting of higher computability theory.
- Surprisingly, he suggested Δ¹₁-randomness as the appropriate mathematical concept of randomness.
- His main result was that the union of all Δ_1^1 null classes is a Π_1^1 class that is not Δ_1^1 .
- Later it turned out that Δ_1^1 -randomness is the higher analog of *both* Schnorr and computable randomness.

1.5 Limits of effectivity

- The strongest notion we will consider is Π¹₁-randomness, which has no analog in the setting of computability theory.
- This is where we reach the limits of effectivity.
- Interestingly, there is a *universal test*, in this case, a largest Π_1^1 null class.

2 Preliminaries on higher computability theory

- We give more details on Π_1^1 and Δ_1^1 relations.
- We formulate a few principles in effective DST from which most results can be obtained. They are proved in Sacks.

2.1 Arithmetical relations

Let $\mathcal{A} \subseteq \mathbb{N}^k \times 2^{\mathbb{N}}$ and $n \ge 1$. \mathcal{A} is Σ_n^0 if

 $\langle e_1, \ldots, e_k, X \rangle \in \mathcal{A} \iff \exists y_1 \forall y_2 \ldots Q y_n R(e_1, \ldots, e_k, y_1, \ldots, y_{n-1}, X \upharpoonright_{y_n}),$

where R is a computable relation, and Q is " \exists " if n is odd and Q is " \forall " if n is even.

 \mathcal{A} is arithmetical if \mathcal{A} is Σ_n^0 for some n.

We can also apply this to relations $\mathcal{A} \subseteq \mathbb{N}^k \times (2^{\mathbb{N}})^n$, replacing a tuple of sets X_1, \ldots, X_n by the single set $X_1 \oplus \ldots \oplus X_n$.

2.2 Π_1^1 and other relations

Definition 2.1. Let $k, r \ge 0$ and $\mathcal{B} \subseteq \mathbb{N}^k \times (2^{\mathbb{N}})^r$. \mathcal{B} is Π_1^1 if there is an arithmetical relation $\mathcal{A} \subseteq \mathbb{N}^k \times (2^{\mathbb{N}})^{r+1}$ such that $\langle e_1, \ldots, e_k, X_1, \ldots, X_r \rangle \in \mathcal{B} \leftrightarrow$

 $\forall Y \langle e_1, \ldots, e_k, X_1, \ldots, X_r, Y \rangle \in \mathcal{A}.$

 \mathcal{B} is Σ_1^1 if its complement is Π_1^1 , and \mathcal{B} is Δ_1^1 if it is both Π_1^1 and Σ_1^1 . A Δ_1^1 set is also called hyperarithmetical.

- The Π_1^1 relations are closed under the application of number quantifiers.
- So are the Σ_1^1 and Δ_1^1 relations.
- One can get away with \mathcal{A} in Σ_2^0 .

2.3 Well-orders and computable ordinals

In the following we will consider binary relations $W \subseteq \mathbb{N} \times \mathbb{N}$ with domain an initial segment of \mathbb{N} . They can be encoded by sets $R \subseteq \mathbb{N}$ via the usual pairing function. We identify the relation with its code.

A linear order R is a well-order if each non-empty subset of its domain has a least element. The class of well-orders is Π_1^1 . Furthermore, the index set $\{e: W_e \text{ is a well-order}\}$ is Π_1^1 .

Given a well-order R and an ordinal α , we let |R| denote the order type of R, namely, the ordinal α such that (α, \in) is isomorphic to R.

We say that α is *computable* if $\alpha = |R|$ for a computable well-order R. Each initial segment of a computable well-order is also computable. So the computable ordinals are closed downwards.

2.4 Lowness for ω_1^{ck}

We let ω_1^Y denote the least ordinal that is not computable in Y. The least incomputable ordinal is ω_1^{ck} (which equals ω_1^{\emptyset}).

An important example of a Π_1^1 class is

$$\mathcal{C} = \{Y \colon \omega_1^Y > \omega_1^{\mathrm{ck}}\}.$$

(To see that this class is Π_1^1 , note that $Y \in \mathcal{C} \leftrightarrow \exists e \left[\Phi_e^Y \text{ is well-order } \& \forall i \left[W_i \text{ is computable relation } \rightarrow \Phi_e^Y \not\cong W_i \right] \right]$. This can be put into Π_1^1 form because the Π_1^1 relations are closed under number quantification.)

If $\omega_1^Y = \omega_1^{ck}$ we say that Y is low for ω_1^{ck} .

2.5 Representing Π_1^1 relations by well-orders

- A Σ₁⁰ class, of the form {X: ∃y R(X ↾_y)} for computable R, can be thought of as being enumerated at stages y ∈ N.
- Π¹₁ classes can be described by a generalized type of enumeration where the stages are countable ordinals.

Theorem 2.2 (Representing Π_1^1 relations). Let $k, r \ge 0$. Given a Π_1^1 relation $\mathcal{B} \subseteq \mathbb{N}^k \times (2^{\mathbb{N}})^r$, there is a computable function $p: \mathbb{N}^k \to \mathbb{N}$ such that

$$\langle e_1, \dots, e_k, X_1 \oplus \dots \oplus X_r \rangle \in \mathcal{B} \leftrightarrow \Phi_{p(e_1, \dots, e_k)}^{X_1 \oplus \dots \oplus X_r}$$
 is a well-order

Conversely, each relation given by such an expression is Π_1^1 .

The order type of $\Phi_{p(e_1,\ldots,e_k)}^{X_1\oplus\ldots\oplus X_r}$ is the stage at which the element enters \mathcal{B} , so for a countable ordinal α , we let

$$\mathcal{B}_{\alpha} = \{ \langle e_1, \dots, e_k, X_1 \oplus \dots \oplus X_r \rangle \colon |\Phi_{p(e_1, \dots, e_k)}^{X_1 \oplus \dots \oplus X_r}| < \alpha \}.$$

Thus, \mathcal{B}_{α} contains the elements that enter \mathcal{B} before stage α .

2.6 A Π_1^1 complete set, and indices for Π_1^1 relations

Recall we may view sets as relations $\subseteq \mathbb{N} \times \mathbb{N}$. By the above,

$$O = \{e: W_e \text{ is a well-order}\}$$

is a Π_1^1 -complete set. That is, O is Π_1^1 and $S \leq_m O$ for each Π_1^1 set S. For $p \in \mathbb{N}$, we let \mathcal{Q}_p denote the Π_1^1 class with index p. Thus,

$$\mathcal{Q}_p = \{ X \colon \Phi_p^X \text{ is a well-order} \}.$$

Note that $\mathcal{Q}_{p,\alpha} = \{X \colon |\Phi_p^X| < \alpha\}$, so that $X \in \mathcal{Q}_p$ implies $X \in \mathcal{Q}_{p,|\Phi_n^X|+1}$.

2.7 Relativization

The notions introduced above can be relativized to a set A. It suffices to include A as a further set variable in definition of Π_1^1 relations. For instance, $S \subseteq \mathbb{N}$ is a $\Pi_1^1(A)$ set if $S = \{e: \langle e, A \rangle \in \mathcal{B}\}$ for a Π_1^1 relation $\mathcal{B} \subseteq \mathbb{N} \times 2^{\mathbb{N}}$. The following set is $\Pi_1^1(A)$ -complete:

 $O^A = \{e : W_e^A \text{ is a well-order}\}.$

A Π_1^1 object can be approximated by Δ_1^1 objects.

Lemma 2.3 (Approximation Lemma). (i) For each Π_1^1 set S and each $\alpha < \omega_1^{ck}$, the set S_{α} is Δ_1^1 .

(ii) For each Π_1^1 class \mathcal{B} and each countable ordinal α , the class \mathcal{B}_{α} is $\Delta_1^1(R)$, for every well-order R such that $|R| = \alpha$.

2.8 Π_1^1 classes and the uniform measure

Theorem 2.4 (Lusin). Each Π_1^1 class is measurable.

The following frequently used result states that the measure of a class has the same descriptive complexity as the class itself. Note that (ii) follows from (i).

Lemma 2.5 (Measure Lemma). (i) For each Π_1^1 class, the real $\lambda \mathcal{B}$ is left- Π_1^1 .

(ii) If S is a Δ_1^1 class then the real λS is left- Δ_1^1 .

Theorem 2.6 (Sacks-Tanaka). A Π_1^1 class that is not null has a hyperarithmetical member.

2.9 Reducibilities

Turing reducibility has two analogs in the new setting.

(1) Intuitively, as the stages are now countable ordinals, it is possible to look at the whole oracle set during a "computation". If full access to the oracle set is granted we obtain hyperarithmetical reducibility: $X \leq_h A$ iff $X \in \Delta_1^1(A)$.

(2) If only a finite initial segment of the oracle can be used we have the restricted version \leq_{fin-h} .

2.10 Measure and reducibilities

Theorem 2.7 (Sacks 69). $A \notin \Delta_1^1 \Leftrightarrow \{X \colon X \ge_h A\}$ is null.

Next, we reconsider the class of sets that are not low for ω_1^{ck} .

Theorem 2.8 (Spector 55). $O \leq_h X \Leftrightarrow \omega_1^{ck} < \omega_1^X$.

The foregoing two theorems yield:

Corollary 2.9. The Π_1^1 class $\mathcal{C} = \{Y : \omega_1^Y > \omega_1^{ck}\}$ is null.

2.11 The Gandy Basis Theorem

The following result is an analog of the Low Basis Theorem. The proof differs from the proof of LBT because Σ_1^1 classes are not closed in general.

Theorem 2.10 (Gandy Basis Theorem). Let $S \subseteq 2^{\mathbb{N}}$ be a non-empty Σ_1^1 class. Then there is $A \in S$ such that $A \leq_T O$ and $O^A \leq_h O$ (whence $A <_h O$).

Definition 2.11. A fin-h reduction procedure is a partial function $\Phi : \{0,1\}^* \to \{0,1\}^*$ with Π_1^1 graph such that dom (Φ) is closed under prefixes and, if $\Phi(x) \downarrow$ and $y \preceq x$, then $\Phi(y) \preceq \Phi(x)$.

We write $A = \Phi^Z$ if $\forall n \exists m \ \Phi(Z \upharpoonright_m) \succeq A \upharpoonright_n$, and

 $A \leq_{\text{fin-h}} Z$ if $A = \Phi^Z$ for some fin-h reduction procedure Φ .

If A is hyperarithmetical then $\Phi = \{ \langle x, A \upharpoonright_{|x|} \rangle \colon x \in \{0, 1\}^* \}$ is Π_1^1 , so $A \leq_{fin-h} Z$ via Φ for any Z.

2.12 A set theoretical view

For a set S we let

- L(0, S) be the transitive closure of $\{S\} \cup S$.
- L(α + 1, S) contains the sets that are first-order definable with parameters in (L(α, S), ∈), and
- $L(\eta, S) = \bigcup_{\alpha < \eta} L(\alpha, S)$ for a limit ordinal η .

We write $L(\alpha)$ for $L(\alpha, \emptyset)$.

A Δ_0 *formula* is a first-order formula in the language of set theory which involves only bounded quantification, namely, quantification of the form $\exists z \in y$ and $\forall z \in y$.

A Σ_1 formula has the form $\exists x_1 \exists x_2 ... \exists x_n \varphi_0$ where φ_0 is Δ_0 .

By Theorem 2.2 we can view Π_1^1 sets as being enumerated at stages that are computable ordinals. The following important theorem provides a further view of this existential aspect of Π_1^1 sets.

Theorem 2.12 (Gandy/Spector, 55). $S \subseteq \mathbb{N}$ is $\Pi_1^1 \Leftrightarrow$ there is a Σ_1 -formula $\varphi(y)$ such that

$$S = \{ y \in \omega \colon (L(\omega_1^{ck}), \in) \models \varphi(y) \}.$$

Given $A \subseteq \mathbb{N}$, let $L_A = L(\omega_1^A, A)$. We say that $D \subseteq (L_A)^k$ is Σ_1 over L_A if there is a Σ_1 formula φ such that

$$D = \{ \langle x_1, \dots, x_k \rangle \in (L_A)^k \colon (L_A, \in) \models \varphi(x_1, \dots, x_k) \}.$$

Thus, $S \subseteq \mathbb{N}$ is Π_1^1 iff S is Σ_1 over $L(\omega_1^{ck})$.

We often consider partial functions from L_A to L_A with a graph defined by a Σ_1 formula with parameters. We say the function is Σ_1 over L_A . Such functions are an analog of functions partial computable in A.

Lemma 2.13 (Bounding Principle). Suppose $f: \omega \to \omega_1^A$ is Σ_1 over L_A . Then there is an ordinal $\alpha < \omega_1^A$ such that $f(n) < \alpha$ for each n.

2.13 Summary of tools

Approximation Lemma 2.3. (i) For each Π_1^1 set S and each $\alpha < \omega_1^{ck}$, the set S_{α} is Δ_1^1 .

(ii) For each Π_1^1 class \mathcal{B} and each countable ordinal α , the class \mathcal{B}_{α} is $\Delta_1^1(R)$, for every well-order R such that $|R| = \alpha$.

Measure Lemma 2.5. (i) For each Π_1^1 class, the real $\lambda \mathcal{B}$ is left- Π_1^1 . (ii) If \mathcal{S} is a Δ_1^1 class then the real $\lambda \mathcal{S}$ is left- Δ_1^1 .

Bounding Principle 2.13. Suppose $f: \omega \to \omega_1^A$ is Σ_1 over L_A . Then there is an ordinal $\alpha < \omega_1^A$ such that $f(n) < \alpha$ for each n.

3 Analogs of Martin-Löf randomness and *K*-triviality

We develop an analog of the theory of ML-randomness and K-triviality based on Π_1^1 sets. The definitions and results are due to Hjorth and Nies (2007)

3.1 Π_1^1 Machines and prefix-free complexity

Definition 3.1. A Π_1^1 -machine is a possibly partial function $M: \{0,1\}^* \to \{0,1\}^*$ with a Π_1^1 graph. For $\alpha \leq \omega_1^{ck}$ we let $M_\alpha(\sigma) = y$ if $\langle \sigma, y \rangle \in M_\alpha$. We say that M is prefix-free if dom(M) is prefix-free.

There is an effective listing $(M^d)_{d\in\mathbb{N}}$ of all the prefix-free Π_1^1 -machines. As a consequence, there is an optimal prefix-free Π_1^1 -machine.

Definition 3.2. The prefix-free Π_1^1 -machine $\underline{\mathbb{U}}$ is given by $\underline{\mathbb{U}}(0^d 1\sigma) \simeq M^d(\sigma)$. Let $\underline{K}(y) = \min\{|\sigma|: \underline{\mathbb{U}}(\sigma) = y\}.$ For $\alpha \leq \omega_1^{ck}$ let $\underline{K}_{\alpha}(y) = \min\{|\sigma|: \underline{\mathbb{U}}_{\alpha}(\sigma) = y\}.$

Since $\underline{\mathbb{U}}$ has Π_1^1 graph, the relation " $\underline{K}(y) \leq u$ " is Π_1^1 and, by 2.3, for $\alpha < \omega_1^{ck}$ the relation " $\underline{K}_{\alpha}(y) \leq u$ " is Δ_1^1 . Moreover $\underline{K} \leq_T O$.

3.2 Machine Existence Theorem

A Π_1^1 set $W \subseteq \mathbb{N} \times \{0,1\}^*$ is called a Π_1^1 *bounded request set* if $1 \ge \sum_{\rho} 2^{-(\rho)_0} \llbracket \rho \in W \rrbracket$. (Here $(\rho)_0$ is the first component r of the pair $\rho = \langle r, y \rangle$.)

Theorem 3.3 (Machine Existence). From a Π_1^1 bounded request set W one can effectively obtain a prefix-free Π_1^1 -machine M such that

$$\forall \langle r, y \rangle \in W \, \exists w \, [|w| = r \, \& \, M(w) = y]$$

3.3 A version of Martin-Löf randomness based on Π_1^1 sets

A Π_1^1 -*ML*-test is a sequence $(G_m)_{m\in\mathbb{N}}$ of open sets such that $\forall m \in \mathbb{N} \ \lambda G_m \leq 2^{-m}$ and the relation $\{\langle m, \sigma \rangle \colon [\sigma] \subseteq G_m\}$ is Π_1^1 . A set Z is Π_1^1 -*ML*-random if $Z \notin \bigcap_m G_m$ for each Π_1^1 -ML-test $(G_m)_{m\in\mathbb{N}}$. For $b \in \mathbb{N}$ let $\underline{\mathcal{R}}_b = [\{x \in \{0,1\}^* \colon \underline{K}(x) \leq |x| - b\}]^{\prec}$.

Proposition 3.4. $(\underline{\mathcal{R}}_b)_{b\in\mathbb{N}}$ is a Π_1^1 -*ML*-test.

We have a higher analog of the Levin-Schnorr Theorem:

Z is Π_1^1 -ML-random $\Leftrightarrow Z \in 2^{\mathbb{N}} - \mathcal{R}_b$ for some b.

Since $\bigcap_b \underline{\mathcal{R}}_b$ is Π_1^1 , this implies that the class of Π_1^1 -ML-random sets is Σ_1^1 . We provide two examples of Π_1^1 -ML-random sets.

1. By the Gandy Basis Theorem there is a Π_1^1 -ML-random set $Z \leq_T O$ such that $O^Z \leq_h O$.

2. Let $\underline{\Omega} = \lambda [\operatorname{dom} \underline{\mathbb{U}}]^{\prec} = \sum_{\sigma} 2^{-|\sigma|} [\![\underline{\mathbb{U}}(\sigma) \downarrow]\!]$. Note that $\underline{\Omega}$ is left- Π_1^1 . $\underline{\Omega}$ is shown to be Π_1^1 -ML-random similar to the usual proof.

Theorem 3.5 (Kučera - Gács). Let Q be a closed Σ_1^1 class of Π_1^1 -ML-random sets such that $\lambda Q \ge 1/2$ (say $Q = 2^{\mathbb{N}} - \underline{\mathcal{R}}_1$). For each set A there is $Z \in Q$ such that $A \leq_{\text{fin-h}} Z$.

3.4 An analog of *K*-triviality

Definition 3.6. A is <u>K</u>-trivial if $\exists b \forall n \underline{K}(A \upharpoonright_n) \leq \underline{K}(n) + b$. Given a limit ordinal $\eta \leq \omega_1^{ck}$, we say that A is <u>K</u>-trivial at η if $\exists b \forall n \underline{K}_{\eta}(A \upharpoonright_n) \leq \underline{K}_{\eta}(n) + b$.

Proposition 3.7. There is a <u>K</u>-trivial Π_1^1 set A that is not Δ_1^1 .

To prove this, one transfers the usual cost function construction to the setting of Π_1^1 sets.

Fix b and $\eta \leq \omega_1^{ck}$. The sets that are <u>K</u>-trivial via b at η are the paths through the tree

$$T_{\eta,b} = \{ z \colon \forall u \le |z| \underline{K}_n(z \upharpoonright_u) \le \underline{K}_n(u) + b \}.$$

If $\eta < \omega_1^{ck}$ then $T_{\eta,b}$ is Δ_1^1 because $\underline{\mathbb{U}}_{\eta}$ is a Δ_1^1 set.

Proposition 3.8 (Higher Chaitin). Let $\eta \leq \omega_1^{ck}$ be a limit ordinal (with the technical closure condition $\forall \alpha < \eta[g(\alpha) < \eta \text{ for a certain } \Delta_1^1 \text{ order function } g)$.

- For each b, at most $O(2^b)$ sets are <u>K</u>-trivial at η with constant b.
- If $\eta < \omega_1^{ck}$ and A is <u>K</u>-trivial at η , then A is hyperarithmetical.

Lemma 3.9. If A is <u>K</u>-trivial and $\omega_1^A = \omega_1^{ck}$, then A is hyperarithmetical.

Proof. Suppose A is <u>K</u>-trivial via b. We show that A is <u>K</u>-trivial at η via b for some appropriate $\eta < \omega_1^{\text{ck}}$.

Recall that $L_A = L(\omega_1^A, A)$. We define by transfinite recursion in L_A a function $h: \omega \to \omega_1^{ck}$ which is Σ_1 over L_A : let h(0) = 0 and

$$h(n+1) = \mu\beta > g(h(n)). \,\forall m \le n \,\underline{K}_{\beta}(A \upharpoonright_m) \le \underline{K}_{\beta}(m) + b.$$

Since A is <u>K</u>-trivial, h(n) is defined for each $n \in \omega$. Let $\eta = \sup(\operatorname{ran} h)$. Then $\eta < \omega_1^A = \omega_1^{\operatorname{ck}}$ by the Bounding Principle, so η is as required.

3.5 Lowness for Π_1^1 -ML-randomness

<u>MLR</u>^A denotes the class of sets which are Π_1^1 -ML-random relative to A.

Definition 3.10. A is low for Π_1^1 -ML-randomness if $\underline{\mathsf{MLR}}^A = \underline{\mathsf{MLR}}$. A is called a base for Π_1^1 -ML-randomness if $A \leq_{fin-h} Z$ for some $Z \in \underline{\mathsf{MLR}}^A$.

By the Π_1^1 version of the Kučera- GácsTheorem, a set that is low for Π_1^1 -ML-randomness is a base for Π_1^1 -ML-randomness.

Theorem 3.11. A is a base for Π_1^1 -ML-randomness \Leftrightarrow A is Δ_1^1 .

 $\Leftarrow: A \leq_{fin-h} Z$ for each Z, so A is a base for Π_1^1 -ML-randomness.

 \Rightarrow : Suppose A is a base for Π_1^1 -ML-randomness. Thus $A = \Phi^Z$ for some fin-h reduction procedure Φ and $Z \in \mathsf{MLR}^A$.

Assume for a contradiction that A is not Δ_1^1 .

Step 1. We show that $\omega_1^A = \omega_1^{\text{ck}}$. The class $\{Y \colon A = \Phi^Y\}$ is null. For each n let

$$V_n = [\{\rho \colon A \upharpoonright_n \preceq \Phi^\rho\}]^{\prec} = [\{\rho \colon \exists \alpha < \omega_1^{\mathrm{ck}} A \upharpoonright_n \preceq \Phi^\rho_\alpha\}]^{\prec}.$$

If $\omega_1^{ck} < \omega_1^A$ then by the Approximation Lemma 2.3(i) relative to A, the following set is $\Delta_1^1(A)$:

$$\{\langle n, \rho \rangle \colon \exists \alpha < \omega_1^{\operatorname{ck}} A \upharpoonright_n \preceq \Phi_{\alpha}^{\rho} \}.$$

So by the Measure Lemma 2.5, the following function is $\Delta_1^1(A)$:

$$h(n) = \mu k. \, \lambda V_k \le 2^{-n}.$$

Then $(V_{h(n)})_{n \in \mathbb{N}}$ is a Π_1^1 -ML-test relative to A which succeeds on Z, contrary to the hypothesis that $Z \in \underline{\mathsf{MLR}}^A$.

Step 2. We show that A is <u>K</u>-trivial, which together with $\omega_1^A = \omega_1^{ck}$ implies that A is Δ_1^1 (Lemma 3.9).

This is a straightforward adaptation of the result of Hirschfeldt, Nies, and Stephan (2007) that in the computability setting, each base for ML-randomness (defined in terms of \leq_T) is K-trivial.

Note that \leq_T becomes \leq_{fin-h} here.

4 Δ_1^1 -randomness and Π_1^1 -randomness

- We show that Δ_1^1 -randomness coincides with the higher analogs of both Schnorr randomness and computable randomness.
- There is a universal test for Π_1^1 randomness
- Z is Π_1^1 -random \Leftrightarrow Z is Δ_1^1 -random and $\omega_1^Z = \omega_1^{ck}$.

Definition 4.1. Z is Δ_1^1 -random if Z avoids each null Δ_1^1 class (Martin-Löf, 1970). Z is Π_1^1 -random if Z avoids each null Π_1^1 class (Sacks, 1990).

We have the proper implications

 Π_1^1 -random $\Rightarrow \Pi_1^1$ -*ML*-random $\Rightarrow \Delta_1^1$ -random

- Δ_1^1 random is equivalent to ML-random in each $\emptyset^{(\alpha)}$, where α is a computable ordinal.
- Each Π_1^1 -random set Z satisfies $\omega_1^Z = \omega_1^{ck}$ because the Π_1^1 class $\{X : \omega_1^X > \omega_1^{ck}\}$ is null.
- Thus, the Π_1^1 -ML-random set $\underline{\Omega}$ is not Π_1^1 -random, because $\underline{\Omega} \equiv_{wtt} O$.

4.1 Notions that coincide with Δ_1^1 -randomness

A Π_1^1 -Schnorr test is a Π_1^1 -ML-test $(G_m)_{m\in\mathbb{N}}$ such that λG_m is left- Δ_1^1 uniformly in m. A supermartingale $M: \{0,1\}^* \to \mathbb{R}^+ \cup \{0\}$ is hyperarithmetical if $\{\langle x,q \rangle : q \in \mathbb{Q}_2 \& M(x) > q\}$ is Δ_1^1 . Its success set is $\mathsf{Succ}(M) = \{Z: \limsup_n M(Z \upharpoonright_n) = \infty\}$.

Theorem 4.2. (i) Let \mathcal{A} be a null Δ_1^1 class. Then $\mathcal{A} \subseteq \bigcap G_m$ for some Π_1^1 -Schnorr test $\{G_m\}_{m\in\mathbb{N}}$ such that $\lambda G_m = 2^{-m}$ for each m.

- (ii) If $(G_m)_{m \in \mathbb{N}}$ is a Π_1^1 -Schnorr test then $\bigcap_m G_m \subseteq \text{Succ}(M)$ for some hyperarithmetical martingale M.
- (iii) $\mathsf{Succ}(M)$ is a null Δ_1^1 class for each hyperarithmetical supermartingale M.

The foregoing characterization of Δ_1^1 -randomness via hyperarithmetical martingales can be used to separate it from Π_1^1 -ML-randomness.

Theorem 4.3. For every unbounded non-decreasing hyperarithmetical function h, there is a Δ_1^1 -random set Z such that $\forall^{\infty} n \ \underline{K}(Z \upharpoonright_n | n) \leq h(n)$.

The higher analog of the Levin-Schnorr Theorem implies:

Corollary 4.4. There is a Δ_1^1 -random set that is not Π_1^1 -ML-random.

By Sacks-Tanaka the class of Δ_1^1 -random sets is not Π_1^1 . In particular, there is no largest null Δ_1^1 class. However, the class of Δ_1^1 -random sets is Σ_1^1 (Martin-Löf; see Book, Ex 9.3.11).

4.2 More on Π_1^1 -randomness

There is a universal test for Π_1^1 -randomness.

Theorem 4.5 (Kechris (1975); Hjorth, Nies (2007)). *There is a null* Π_1^1 *class* Q *such that* $S \subseteq Q$ *for each null* Π_1^1 *class* S.

Proof.

• We show that one may effectively determine from a Π_1^1 class S a null Π_1^1 class $\widehat{S} \subseteq S$ such that

$$\mathcal{S}$$
 is null $\Rightarrow \widehat{\mathcal{S}} = \mathcal{S}$.

• Assuming this, let Q_p be the Π_1^1 class given by the Turing functional Φ_p in the sense of Theorem 2.2. Then $Q = \bigcup_p \widehat{Q}_p$ is Π_1^1 , so Q is as required.

4.3 A Π_1^1 -random Turing below *O*

Applying the Gandy Basis Theorem to the Σ_1^1 class $2^{\mathbb{N}} - \mathcal{Q}$ yields:

Corollary 4.6. There is a Π_1^1 -random set $Z \leq_T O$ such that $O^Z \leq_h O$.

This contrasts with the fact that in the computability setting already a weakly 2-random set forms a minimal pair with \emptyset' .

4.4 Classifying Π_1^1 -randomness within Δ_1^1 -randomness

For each Π_1^1 class S we have $S \subseteq \{Y : \omega_1^Y > \omega_1^{ck}\} \cup \bigcup_{\alpha < \omega_1^{ck}} S_\alpha$, because $Y \in S$ implies $Y \in S_\alpha$ for some $\alpha < \omega_1^Y$. For the largest null Π_1^1 class Q, equality holds because $\{Y : \omega_1^Y > \omega_1^{ck}\}$ is a null Π_1^1 class:

$$\mathcal{Q} = \{Y \colon \omega_1^Y > \omega_1^{\mathrm{ck}}\} \cup \bigcup_{\alpha < \omega_1^{\mathrm{ck}}} \mathcal{Q}_{\alpha}.$$

For $\alpha < \omega_1^{ck}$ the null class Q_{α} is Δ_1^1 by the Approximation Lemma 2.3(ii). So, by de Morgan's, the foregoing fact yields a characterization of the Π_1^1 -random sets within the Δ_1^1 -random sets by a lowness property in the new setting.

Theorem 4.7. Z is Π_1^1 -random $\Leftrightarrow \omega_1^Z = \omega_1^{ck} \& Z$ is Δ_1^1 -random.

5 Lowness properties in higher computability theory

We study some properties that are closed downward under \leq_h , and relate them to higher randomness notions. The results are due to Chong, Nies and Yu (2008).

5.1 Hyp-dominated sets

Definition 5.1. We say that A is hyp-dominated if each function $f \leq_h A$ is dominated by a hyperarithmetical function.

A is hyp-dominated $\Rightarrow \omega_1^A = \omega_1^{ck}$. Weakly Δ_1^1 random means in no *closed* null Δ_1^1 class.

Theorem 5.2 (Kjos-Hanssen, Nies, Stephan, Yu (2009)). Z is Π_1^1 -random $\Leftrightarrow Z$ is hyp-dominated and weakly Δ_1^1 -random.

" \Rightarrow " is in the Book 9.4.3. " \Leftarrow " is a franco-stephanian domination argument using the Bounding Principle (see Book, Ex 9.4.6. and solution).

5.2 Traceability

The higher analogs of c.e., and of computable traceability coincide, again because of the Bounding Principle.

Definition 5.3. (i) Let h be a non-decreasing Δ_1^1 function. A Δ_1^1 trace with bound h is a uniformly Δ_1^1 sequence of sets $(T_n)_{n \in \omega}$ such that $\forall n \# T_n \leq h(n)$. $(T_n)_{n \in \omega}$ is a trace for the function f if $f(n) \in T_n$ for each n.

(ii) A is Δ_1^1 traceable if there is an unbounded non-decreasing hyperarithmetical function h such that each function $f \leq_h A$ has a Δ_1^1 trace with bound h.

As usual, the particular choice of the bound h does not matter.

5.3 Examples

- Chong, Nies and Yu showed that there are 2^{\aleph_0} many Δ_1^1 traceable sets.
- In fact, each generic set for forcing with perfect Δ_1^1 trees (introduced in Sacks 4.5.IV) is Δ_1^1 traceable.
- Also, by Sacks 4.10.IV, there a generic set $Z \leq_h O$. Then Z is Δ_1^1 traceable and $Z \notin \Delta_1^1$.

5.4 Low(Δ_1^1 -random)

 Δ_1^1 traceability characterizes lowness for Δ_1^1 -randomness. The following is similar to results of Terwijn/Zambella (1998) Kjos-Hanssen/Nies/Stephan (2007).

Theorem 5.4. *The following are equivalent for a set A.*

- (i) A is Δ_1^1 -traceable (or equivalently, Π_1^1 traceable).
- (ii) Each null $\Delta_1^1(A)$ class is contained in a null Δ_1^1 class.
- (iii) A is low for Δ_1^1 -randomness.
- (iv) Each Π_1^1 -ML-random set is $\Delta_1^1(A)$ -random.

5.5 Low(Π_1^1 -random)

For each set A there is a largest null $\Pi_1^1(A)$ class $\mathcal{Q}(A)$ by relativizing Theorem 4.5. Clearly $\mathcal{Q} \subseteq \mathcal{Q}(A)$;

A is called *low for* Π_1^1 *-randomness* iff they are equal.

Lemma 5.5. If A is low for Π_1^1 -randomness then $\omega_1^A = \omega_1^{ck}$.

Proof. Otherwise, $A \ge_h O$ by Theorem 2.8. By Corollary 4.6 there is a Π_1^1 -random set $Z \le_h O$, and Z is not even $\Delta_1^1(A)$ random.

Question 5.6. Does lowness for Π_1^1 -randomness imply being in Δ_1^1 ?

5.6 Π_1^1 -random cuppable

By the following result, lowness for Π_1^1 -randomness *implies* lowness for Δ_1^1 -randomness. We say that A is Π_1^1 -random cuppable if $A \oplus Y \ge_h O$ for some Π_1^1 -random set Y.

Theorem 5.7. A is low for Π_1^1 -randomness \Leftrightarrow (a) A is not Π_1^1 -random cuppable & (b) A is low for Δ_1^1 -randomness.

Proof.

 \Rightarrow : (a) By Lemma 5.5 $A \geq_h O$. Therefore the $\Pi^1_1(A)$ class

$$\{Y: Y \oplus A \ge_h O\}$$

is null, by relativizing Cor. 2.9 to A. Thus A is not Π_1^1 -random cuppable. (b) Suppose for a contradiction that Y is Δ_1^1 -random but $Y \in C$ for a null $\Delta_1^1(A)$ class C. The union \mathcal{D} of all null Δ_1^1 classes is Π_1^1 by Martin-Löf (1970) (see Book Ex. 9.3.11). Thus Y is in the $\Sigma_1^1(A)$ class $C - \mathcal{D}$.

By the Gandy Basis Theorem 2.10 relative to A there is $Z \in C - D$ such that $\omega_1^{Z \oplus A} = \omega_1^{ck}$. Then Z is Δ_1^1 -random but not $\Delta_1^1(A)$ -random, so by Theorem 4.7 and its relativization to A, Z is Π_1^1 -random but not $\Pi_1^1(A)$ -random, a contradiction. \Leftarrow : By Fact 4.4 relative to A we have

$$\mathcal{Q}(A) = \{Y \colon \omega_1^{Y \oplus A} > \omega_1^A\} \cup \bigcup_{\alpha < \omega_i^A} \mathcal{Q}(A)_{\alpha}$$

By hypothesis (a) $O \not\leq_h A$ and hence $\omega_1^A = \omega_1^{ck}$, so

$$\omega_1^{Y \oplus A} > \omega_1^A$$
 is equivalent to $O \leq_h A \oplus Y$.

If Y is Π_1^1 -random then firstly $O \leq_h A \oplus Y$ by (a), and secondly $Y \notin \mathcal{Q}(A)_{\alpha}$ for every $\alpha < \omega_1^A$ by hypothesis (b). Therefore $Y \notin \mathcal{Q}(A)$ and Y is $\Pi_1^1(A)$ -random.