Cost functions

André Nies
The University of Auckland

FRG workshop, Madison, May 2009

0.1 What cost functions are good for

e Cost functions are a great tool for analyzing certain classes of AY sets.
e Mostly, these classes are lowness properties such as being K-trivial, or strongly
jump traceable.

Cost functions help a lot to understand the following results (I will shortly explain the

notions involved).

e Each K-trivial set is Turing below a c.e. K-trivial set (Nies).

e Each null 2§ class of ML-random sets has a simple Turing lower bound. Moreover,
this lower bound is obtained via an injury-free construction (Hirschfeldt, Miller).

e FEach strongly jump traceable c.e. set is Turing below each w-c.e. ML-random set
(Greenberg, Nies).

1 Introduction to cost functions

1.1 Definition of cost functions
Definition 1. A cost function is a computable function
¢c:NxN—-{zeQ: z>0}

We view c(z, s) as the cost of changing A(z) at stage s.

1.2 Obeying a cost function

Recall that A is AY iff A <7 0 iff A(z) = lims As(x) for a computable approxima-
tion (A;)sen (Limit Lemma).

Definition 2. The computable approximation (As)scn obeys a cost function ¢ if oo >
Yoesc(ws)[r <s&wxisleasts.t. As_1(x) # As(x)]. We write A = ¢ (A obeys c)
if some computable approximation of A obeys c.



Usually we use this to construct some auxiliary object of finite “weight”, such as a
bounded request set (aka Kraft-Chaitin set), or a Solovay test.

1.3 Basic existence theorem

For a cost function ¢ : N x N — @, let ¢(z) = sup,c(z, ).
We say that c has the limit condition if limzc(x) = 0.

Theorem 3 (Various authors). If a cost function c satisfies the limit condition, then
some (promptly) simple set A obeys c.

Proof. Let W, be the e-th c.e. set. If W, is infinite we want some z € W, to enter A.
We define a computable enumeration (A;)sen as follows. Let Ag = ). For s > 0,
As=As1U{x:3e

We s N As—1 =0 | Wehaven’t met e-th simplicity requirement.

€ Wes We can meet it via .

x> 2e We make A co-infinite.

c(z,s) <27°} We ensure that A obeys c.

1.4 An infinite number of visits to K -Mart

Here is a real-life analog of the foregoing construction.

e We want to buy a shirt of each color e at K-Mart, provided that there is a sufficient
number of shipments of that color from China.

e For the shirt of color e we can spend at most 27°.

e Eventually, a sufficiently cheap shirt of color e will arrive, unless that color is dis-
continued.

e We will be able to buy all shirts that are not discontinued.
e We will spend at most ), 2~ = 2 dollars in total.

2 Cost functions and K -trivialilty

2.1 Machines and K

o All strings are binary. A machine is a partial recursive function M from strings to
strings.

e M is called prefix free if its domain is an antichain under the prefix relation of
strings.

e There is a universal prefix-free machine U.

e The prefix free version K (y) of descriptive string complexity (a.k.a. Kolmogorov
complexity) is the length of a shortest U-description of y:

K(y) = min{|o| : U(o) = y}.



e Also, K(y) = min{|o| : U(c) = yin s steps}.

2.2 Definition of K -triviality

e For a string y, up to constants, K (|y|) < K(y), since we can compute |y| from
y (here we write numbers in binary).

e A set Ais K-trivial if, for some b € N
vn K(AT,) < K(n)+b,
namely, the K complexity of all initial segments is minimal.

This is opposite to ML-randomness:

e 7 is ML-random if 3dVn K(Z [,,) > n — d (Schnorr’s Theorem). That is, all
complexities K (Z [,,) are near the upper bound n + K (n);

e 7 is K-trivial if each K(Z |,,) has the minimal possible value K (n) <* 2logn
(all within constants).

2.3 The cost function for K -triviality

Definition 4. The standard cost function ci is given by

C}C(ir, 8) = Zz<w<s 27K5(w)'

We could also use c¢(x,s) = Prob[{c: Us(c) > z}], the chance that the universal machine

prints a string > x within s steps.
Lemma 5. cx satisfies the limit condition.

Proof. Givene € N, since Zw 2—K(w) < 1, there is an x such that 2 Kw)

27¢. Hence ci(z,s) < 27¢ forall x > xg and all s.

w>x0

2.4 Cost function characterization of the K -trivials

Theorem 6 (Nies 05). A is K-trivial <
some computable approximation of A obeys cx.

‘<’ is not too hard.
‘=" is also not too hard for c.e. sets. For Ag sets, in contrast, ‘=" needs a non-uniform
method known as the golden run.

Corollary 7. For each K-trivial set A, there is a c.e. K-trivial set D >7 A.

D is the change set {{x,i): A(x) changes at least i times}. One verifies that D obeys
cic as well.
Actually this works for any cost function in place of ¢!



2.5 The Machine Existence Theorem

We use this tool:

e Ace.set L CN x {0,1}* is a bounded request set if

123,27 [y € LI

e From a bounded request set L, one can (effectively) obtain a prefix free machine
M such that

Vryy[{r,y) € L < Jw (jw] =r & M(w) =y)].

2.6 Cost function criterion for K -triviality

Lemma 8. Suppose a computable approximation (As)sen of a set A obeys the stan-
dard cost function cxc(z,s) = 9~ Ks(w),
Then A is K-trivial.

r<w<s

Proof. We use the Machine Existence Theorem to implicitly build a prefix-free machine show-
ing that A is K-trivial.

We may assume the total cost of A-changes is at most 1. We build a bounded request set. At
stage s we enumerate the request

(Ks(w) + 1, Aslw)
whenever w < s and
(a) Ks(w) < Ks—1(w), or (b) Ks(w) < 00 & As—1 [wF As [w.

In either case, the implicitly built prefix-free machine provides a description of A [, of length
Ky(w).
The total weight for (a) is at most §2/2. The total for (b) is at most 1/2.

3 Basic properties of cost functions
We introduce monotonicity and give some examples.
We obtain some simple closure properties for the class of sets obeying a cost function

Definition 9. A cost function c¢(x, s) is called monotonic if it is nonincreasing in x and
nondecreasing in s. That is, c(z + 1, s) < c¢(z,s) < c(xz,s+ 1) forall z, s.

Exercise 10. Show that cx is monotonic.

Exercise 11. There is a computable enumeration (As)sen of N in the order 0,1,2, . ..

(i.e., each Ag is an initial segment of N) such that (Ay) sen does not obey cic.

Exercise 12. Prove the converse of the Existence Theorem 3 for a monotonic cost
function c: if an incomputable AY set A obeys c, then c satisfies the limit condition.



3.1 Theclass {A: A}

We say that Y is w-c.e. if Y(2) = lim;Y;(z) with a computably bounded number of
changes. Equivalently, Y <,,;; 0. Let V. be the e-th w-c.e. set (given by an index of a
wtt reduction to ()').

In the following let c be a monotonic cost function.

Exercise 13. (i) The index set {e: V, = c} is ¥9.
(ii) If Vx 3s [c(x, s) > 0], then A |= c implies that A is w-c.e.

For X C Nlet 2X denote {2x: = € X }. Recallthat A® B =24AU (2B +1).

Exercise 14. A = c & B = cimplies A® B = ¢

3.2 Changing early is good

Proposition 15 (Nies). Let ¢ be a monotonic cost function. Suppose A <, B and
BEc Then A= c

The argument is fairly typical. We change A(z) as early as possible because earlier
changes are cheaper.

For a computable approximation (E;), let TC((Ej), ¢) denote the total cost of changes.
Let A = I'® where I is a Turing reduction with use bounded by the identity. We define
a computable increasing sequence of stage (s(7));en by s(0) = 0 and

s(i+1) = ps > s(@) [[5 50 [s] 1]

We define A ) (z) for each & € N. Then we let A (x) = Agy)(x) where k is
maximal such that s(k) < s.

Suppose s(i) <z < s(i + 1).

e Let Ay (z) = v for k < iwhere v =T5(x)[s(i + 2)].

e Fork > i, let Ay (x) = TB(2)[s(k + 2)].

(Note that these values are defined.)

Clearly lims A, (z) = A(z). We show

TC((45),¢) < TC((B), ©)-

Suppose that A, (z) # Ask)—1(x). Since the reduction is ibT, there is y < x such
that B, (y) # By—1(y) for some ¢, s(k+1) < t < s(k+2). Then ¢(z, s(k)) < c(y, t).

4 Cost functions, Kucera’s Theorem, Diamond Classes

e We consider pairs of sets A, Y such that A is c.e., Y is ML-random, and A < Y.
o IfY X1 IV, then it is hard for A to get anything out of Y: the set A must be K-trivial
(Hirschfeldt, Nies, Stephan 2007).



4.1 Kucera’s Theorem

Theorem 16 (Kuceral986). Let Y be A and ML-random. Then there is a (promptly)
simple set A <1 Y. Moreover, the use is bounded by the identity.

Kudera actually proved this for any AJ set computing a d.n.c. function. The recursion theorem
is needed in the more general case.
To prove the theorem, we need a test concept that is equivalent to ML-tests.

o A Solovay test G is given by an effective enumeration of strings o¢, 01, . . ., such that
271l < 0o,

e Y passes G if o; A 'Y for almost all i.

We want to meet the requirements

Se: [We|=o00= ANW,. #0.

Construction. At stage s, if Se is not satisfied yet, see if there is an x, 2e < x < s,
such that

HAS We,s - We,s—l & vtr<1‘,<s }/t re: )/s [p .
If so, put x into A. Put the string o = Yy | into G. Declare S, satisfied.
e Clearly A is (promptly) simple.

e To see that A <7 Y, choose sg such that o A Y for any o enumerated into G
after stage so. Given an input x > sg, using Y as an oracle, compute ¢ > x such
that Y; [,= Y [,. Thenx € A < z € A,. For if we put x into A at a stage
s > t for the sake of S, then x > e, so we list 0 in G where 0 = Y [.=Y [¢;
this contradicts the fact that o A Y.

4.2 A proof of Kucera’s Theorem using a cost function

Let ¢y (z,8) = 27% foreach x > s. If x < s, and e < x is least such that Ys_1(e) #
Yi(e), let

ey (x,8) = max(cy (z,s —1),27°).
Since Y is AY, the cost function ¢y satisfies the limit condition.

Fact 17 (Greenberg and Nies). If the A set A obeys cy, then A <t Y with use
function bounded by the identity.

We build the Solovay test as follows. When As_1(z) # Ag(z) and cy (z,s) = 27€,
we list the string Y; [, in G. Since A obeys cy, G is indeed a Solovay test. Now as
before one shows A < Y with use bounded by the identity.

Some promptly simple A obeys c¢y. So A <r Y.



4.3 The arithmetical hierarchy for classes
e AT class is of the form {X: VyT'(X[,)}
o A XY class is of the form {X : Jy;Vy V(y1, X 1y, )}
o ATIJ class is of the form {X : Vy13ya2 S(y1, X[y, )}

e a X9 class is of the form {X : Jy;Vyo3ys R(y1,y2, X |y )}, where T, V, S and
R are computable relations.

Examples:

e II{ means the complement of a c.e. open class.

The class MLR is 39.

The class of c.e. sets is 3.

The class of computable sets is 9.

The class of cofinite sets is ¥ and not IT9.

4.4 Diamond Classes
For a null class H C 2N, we define

HO = the c.e. sets A Turing below each ML-random set in H.

HY = the c.. sets T-below
computable sets all setsin H N MLR

K-trivial sets

e The larger H is, the smaller is H°.
o 7 induces an ideal in the c.e. Turing degrees.
e If some ML-random set Y #7 (/' is in H, then HO C K-trivial.



4.5 An existence Theorem

Theorem 18 (Hirschfeld/Miller). For each null 333 class H, there is a promptly simple

set in HO.

For instance, there is a promptly simple set in (w-c.e.)?.

e The theorem is proved by defining an appropriate cost function cy; with the limit
condition.

e Whenever a c.e. set A obeys ¢y, then A is in HO.

e Now recall that some promptly set A obeys cyy.

This implies that a ML-random set Y that is not weakly 2-random bounds an incomputable c.e.

set: for H choose a null II3 class containing Y.

Kucera’s Theorem is the special case where H = {Y} for ML-random AS set Y. Note that this
H is II9.

4.6 The cost function ¢y,

We may at first assume that H is a II3 class. That is, H = (), V,, where V; is c.e. open
uniformly in z, and V; O V4. Let
cx(x,s) = AV 5.

We want to show that A |= ¢y = A € HO.

e LetY € H N MLR. Intuitively, we enumerate a Turing functional I" such that A =
I'Y . Atstage t we define I'Y (z) = Ay(z) forall Y in V. ;. When A4(x) # As_1(2)
for s > t, we have to remove all those oracles by declaring them non-random.

e Thus, we enumerate the Solovay test G as follows: when Ag(x) # As_1(x), we
enumerate V;, ; into G (more precisely, we enumerate all strings o of length s such
that [o] C V, 5).

Extending this to a ¥9 class H is left as an exercise.

4.7 Adaptive cost functions

A cost function construction can only be regarded as injury-free if the underlying cost
function is non-adaptive, that is, the cost at a stage s does not depend on A;_;. The
usual construction of a low simple set has the lowness requirements

L.: 3%°sJA(e)[s — 1] = J4(e) .
The following adaptive cost function encodes the restraint imposed by L.: if J4(e)
newly converges at stage s — 1, then define
c(x,8) = max{c(z,s — 1),27¢}
for each z < use J4(e)[s — 1]. If A is enumerated in such a way that the total cost of

changes is finite, then L. is injured only finitely often, so that A is low.
In contrast, a cost function c given in advance cannot be used to simulate restraints.



4.8 Some cost functions

Cost function ‘ Definition ‘ Purpose Ref.
exc(z,s) s 2 W) characterize Def. 4
j the K -trivials
cy (z,s) = max(cy (xz,s — 1),27¢) build a set below a Fact 17
where Y;_1(e) # Ys(e) AYsetY € MLR
en(z, s) AV, s, where V,, is uniformly | build a lower page 8
20 and H =), V, is null bound for H N MLR
cy.a(m,s) >, 271l [UA(o)[s — 1] | & | build a set that is book
x < use UA(o)[s — 1]] low for K

Recall that ¢(z) = sup,c(z, s).

Exercise 19. For the cost functions ¢ = cx and ¢ = cy (Y € AY), describe c(z) by
giving a simple expression.

5 Calculus of cost functions

5.1 Analogy with model theory

e A cost function ¢ describes a class of AY sets: those sets with an approximation
obeying the cost function.

e For instance, the standard cost function cx describes the K -trivial sets.

e This is somewhat similar to a sentence in some formal language describing a class
of structures.

e “A obeys ¢” means that A is a model of c.

e The limit condition behaves like consistency.
Here we need to disregard the computable sets.

e If a cost function c has a model, it satisfies the limit condition. This is soundness.

o If ¢ satisfies the limit condition, it has a model. This is like the completeness theo-
rem.

5.2 The lower semilattice of cost functions

We introduce some relations and operations on monotonic cost functions. This corre-
sponds to the Lindenbaum algebra on sentences.
For a cost function ¢(z, s), recall that

c(x) = supe(x, s).

We may assume c¢(x) is finite for each = (otherwise only computable sets obey c).



5.3 Implication of cost functions

For cost functions ¢, d we write ¢ — d if A |= c implies A |= d for each AJ set A.
This is equivalent to d(x) = O(c(x):

Theorem 20 (Nies 2009). Let c,d be cost functions. Suppose c satisfies the limit
condition. Then

¢—d & ANVz[Ne(z) > d(z)).
In particular, whether A |= c only depends on the function c(x).

“«<" needs a “changing early” construction similar to Prop.15. For “=" we assume
that the right hand side fails. We build a counterexample: a A set A such that A |= ¢
but A } d.

Not sure whether A can be made c.e.

5.4 Relating cy and cx

Let the Ag set Y be ML-random. Recall that cy is the cost function for being <7 Y.
(Note that cy actually depends on a computable approximation of Y.)

Corollary 21. Let Y <p (' be ML-random. Then cy — cx, and therefore cxc(x) =
O(ey (x)).

Proof. Suppose A |= cy.

Let D > A be the change set of the given approximation of A as in Cor. 7. Then
D = ¢y and therefore D <r Y.

Since Disc.e. andY <t (', D is a base for ML-randomness by a result of Hirschfeldt,
Nies, and Stephan. Therefore D, and hence A4, is K-trivial. Thus A = ck.

5.5 Conjunction of cost functions

The conjunction is simply the sum.

Theorem 22 (Nies 2009). Let ¢, d be cost functions. Then
AEc& AEd & AEc+d.

“<” is trivial.

“=" needs some work because we have to find a computable approximation of A that
obeys both ¢ and d.

10



6 Benign cost functions and strong jump traceability

6.1 Strongly jump traceable sets

e An order function is a function h : N — N that is computable, nondecreasing, and
unbounded.

e A c.e. trace with bound h is a uniformly c.e. sequence (T}).en such that |T,| <
h(z) for each z.

e Let J*(e) be the value of the A-jump at e, namely, J4(e) ~ ®4(e).

e The set A is called strongly jump traceable if for each order function h, there is a
c.e. trace (T} ),en With bound h such that, whenever J4 () it is defined, we have

JA(x) € Ty

(Figueira, Nies, Stephan, 2004).

e SJT will denote the class of c.e. strongly jump traceable sets.

(To define jump traceability, one merely requires that the tracing works for some
bound h.)

6.2 SJT is a proper subclass of the c.e. K -trivial sets

Theorem 23 (Cholak, Downey, Greenberg 2006). The c.e. strongly jump traceable sets
form a proper subideal of the K -trivial sets.

It is currently unknown what happens within the A sets.

6.3 Comparing K -trivial and SJT

Within the c.e. sets:
e Both classes are closed downward under <r.
e Both classes are closed under &.
e The c.e. K-trivials have a Eg index set;
the (c.e.) SITs have a Hg—complete index set (Selwyn Ng).

Outside the c.e. sets:
e Each K-trivial is Turing-below a c.e. K-trivial.

o Currently we merely know that each strongly jump traceable set is low (Downey and
Greenberg).

6.4 Benign cost functions

Let ¢(z, s) be a monotonic cost function, that is, nonincreasing in 2, and nondecreasing
in s. For 6 € QT, a §-collection is a set of pairwise disjoint intervals [z, s) such that
c(xz,s) > 0.

11



The limit condition is equivalent to V6 3x Vs [¢(z, s) < §]. This is equivalent to: each
d-collection is finite.

Definition 24. We say that the monotonic cost function c is benign if the cardinality of
any d-collection is bounded computably in §.

The standard cost function ¢x is benign via the bound § — 1/4.

6.5 Characterizing SJT via cost functions

e Cholak, Downey and Greenberg showed that SJT strictly implies K -trivial for c.e.
sets.

e Greenberg and Nies reproved and extended this, using the language of cost func-
tions.

Theorem 25 (Greenberg and Nies, to appear). Let A be c.e. Then
A is strongly jump traceable <
A obeys each benign cost function.

e In particular, A is K-trivial.
e A single benign cost function doesn’t do it, because SJT has I1} complete index set
by a result of Selwyn Ng, while obeying a single cost function is 3.

e We also prove directly that each benign cost function is obeyed by some c.e. set that
is not strongly jump traceable.

e This gives a further proof that SJT is a proper subclass of the K -trivials.

For “<” we have to define the right benign cost function to ensure tracing of J4 at

order h.

The harder direction is “=-". It uses the “box promotion method” of Cholak, Downey
and Greenberg.

6.6 A lowness property and its dual highness property
e Recall that Z is low if Z/ <7 (', and Z is highif 0" <1 Z'.
e These classes are “too big”: we have

(low)® = (high)<>= computable.

(For instance, (high)®= computable because there is a minimal pair of high ML-
random sets.)
e So we will try somewhat smaller classes, replacing <t by the stronger truth-table
reducibility <.
Definition 26 (Mohrherr 1986). A set Z is superlow if Z' <, (/. Z is superhigh if
@// S[[ Z/.
A random set can be superlow (low basis theorem). It can also be superhigh but Turing
incomplete (Kucera coding).

12



6.7 SJT is contained in the two diamond classes

o Superlow is a countable 9 class. Superhigh is contained in a null X9 class (Simp-
son).

e So via the Hirschfeldt/Miller cost function ¢ introduced to prove Theorem 18 we
already know there is a promptly set in each of the corresponding diamond classes.

o Now we make such a cost function benign.

Theorem 27 (Greenberg,Nies/ Nies). Let H be either superlowness or superhighness.
Then SJT C HO.

For the proofs they build appropriate benign cost functions.

The superlow case we have done already: Each superlow set is w-c.e., and if Y is w-c.e. then cy
is clearly benign.

For superhigh, Nies builds a c.f. cr for each tt-reduction I'. It deals with the ML-random sets Y
such that "' = T(Y”).

6.8 Conversely, these diamond classes are contained in SJT

The converse inclusion holds as well. Putting all together, we have

Theorem 28 (Greenberg, Hirschfeldt, Nies). SJT = (w—c.e.)® =superlow = superhigh ©.
To prove the remaining inclusions we use a “golden run” construction with infinitely

many levels.

6.9 Diagram: SJT means computed by many oracles

.. computable “,
K-trivial

SJT= (Superl()w)O :(Slll?@"hlgh)O

13



6.10 Corollaries to the characterizations of SJT

Often new characterizations give new views of the class. We obtain:
e anew proof of the Cholak, Downey and Greenberg result that SJT induces an ideal
in the c.e. Turing degrees (because every diamond class does that).

e a cost function construction (hence, injury-free) of a promptly simple set in SJT via
the Hirschfeldt/Mlller cost function ¢y where H = w-c.e., say.
(Recall that if A obeys ¢y, then A € H® C SJT))

6.11 Open questions on classes between SJT and K -trivial

e No natural classes are currently known to lie properly between SJT and K -trivial

e A good candidate is (AED)®. Here AED is the class of almost everywhere dominat-
ing sets Z of Dobrinen and Simpson: for almost all sets X, each function f <p X
is dominated by a function ¢ <7 Z. For the highness properties, there are proper
implications

Turing-complete = AED => superhigh.

e For the corresponding diamond classes, Greenberg and Nies proved that SJT is
properly contained in (AED)?.

e However, (AED)® may coincide with K -trivial.

o This would imply that the classes ML-coverable and ML-noncuppable also coincide
with K -trivial.

6.12 Classes of c.e. sets between SJT and K -trivial

K-trivial
o~ *
ML-coverable ML-no\ncuppable
*® 4
AED?
SIT

(The dashed arrows may be coincidences.)
e Ais ML-coverable if A <7 Y for some ML-random Y %1 (/.
e A is ML-noncuppable if

)/ <p A®Y for ML-random Y implies )/ <7 Y.

14



