
Cost functions

André Nies
The University of Auckland

FRG workshop, Madison, May 2009

0.1 What cost functions are good for
• Cost functions are a great tool for analyzing certain classes of ∆0

2 sets.
• Mostly, these classes are lowness properties such as being K-trivial, or strongly

jump traceable.

Cost functions help a lot to understand the following results (I will shortly explain the
notions involved).

• Each K-trivial set is Turing below a c.e. K-trivial set (Nies).
• Each null Σ0

3 class of ML-random sets has a simple Turing lower bound. Moreover,
this lower bound is obtained via an injury-free construction (Hirschfeldt, Miller).

• Each strongly jump traceable c.e. set is Turing below each ω-c.e. ML-random set
(Greenberg, Nies).

1 Introduction to cost functions

1.1 Definition of cost functions

Definition 1. A cost function is a computable function

c : N× N → {x ∈ Q : x ≥ 0}.

We view c(x, s) as the cost of changing A(x) at stage s.

1.2 Obeying a cost function

Recall that A is ∆0
2 iff A ≤T ∅′ iff A(x) = lims As(x) for a computable approxima-

tion (As)s∈N (Limit Lemma).

Definition 2. The computable approximation (As)s∈N obeys a cost function c if ∞ >∑
x,s c(x, s) [[x < s & x is least s.t. As−1(x) 6= As(x)]]. We write A |= c (A obeys c)

if some computable approximation of A obeys c.

1

Usually we use this to construct some auxiliary object of finite “weight”, such as a
bounded request set (aka Kraft-Chaitin set), or a Solovay test.

1.3 Basic existence theorem

For a cost function c : N× N → Q, let c(x) = supsc(x, s).
We say that c has the limit condition if limxc(x) = 0.

Theorem 3 (Various authors). If a cost function c satisfies the limit condition, then
some (promptly) simple set A obeys c.

Proof. Let We be the e-th c.e. set. If We is infinite we want some x ∈ We to enter A.
We define a computable enumeration (As)s∈N as follows. Let A0 = ∅. For s > 0,
As = As−1 ∪ {x : ∃e
We,s ∩As−1 = ∅ We haven’t met e-th simplicity requirement.
x ∈ We,s We can meet it via x.
x ≥ 2e We make A co-infinite.
c(x, s) ≤ 2−e}. We ensure that A obeys c.

1.4 An infinite number of visits to K-Mart

Here is a real-life analog of the foregoing construction.
• We want to buy a shirt of each color e at K-Mart, provided that there is a sufficient

number of shipments of that color from China.
• For the shirt of color e we can spend at most 2−e.
• Eventually, a sufficiently cheap shirt of color e will arrive, unless that color is dis-

continued.
• We will be able to buy all shirts that are not discontinued.
• We will spend at most

∑
e 2−e = 2 dollars in total.

2 Cost functions and K-trivialilty

2.1 Machines and K

• All strings are binary. A machine is a partial recursive function M from strings to
strings.

• M is called prefix free if its domain is an antichain under the prefix relation of
strings.

• There is a universal prefix-free machine U.
• The prefix free version K(y) of descriptive string complexity (a.k.a. Kolmogorov

complexity) is the length of a shortest U-description of y:

K(y) = min{|σ| : U(σ) = y}.

2

• Also, Ks(y) = min{|σ| : U(σ) = y in s steps}.

2.2 Definition of K-triviality

• For a string y, up to constants, K(|y|) ≤ K(y), since we can compute |y| from
y (here we write numbers in binary).

• A set A is K-trivial if, for some b ∈ N

∀n K(A�n) ≤ K(n) + b,

namely, the K complexity of all initial segments is minimal.

This is opposite to ML-randomness:

• Z is ML-random if ∃d ∀n K(Z �n) ≥ n − d (Schnorr’s Theorem). That is, all
complexities K(Z �n) are near the upper bound n + K(n);

• Z is K-trivial if each K(Z �n) has the minimal possible value K(n) ≤+ 2 log n

(all within constants).

2.3 The cost function for K-triviality

Definition 4. The standard cost function cK is given by

cK(x, s) =
∑

x<w≤s 2−Ks(w).

We could also use c(x, s) = Prob[{σ : Us(σ) ≥ x}], the chance that the universal machine
prints a string ≥ x within s steps.

Lemma 5. cK satisfies the limit condition.

Proof. Given e ∈ N, since
∑

w 2−K(w) ≤ 1, there is an x0 such that
∑

w≥x0
2−K(w) <

2−e. Hence cK(x, s) < 2−e for all x ≥ x0 and all s.

2.4 Cost function characterization of the K-trivials

Theorem 6 (Nies 05). A is K-trivial ⇔
some computable approximation of A obeys cK.

‘⇐’ is not too hard.
‘⇒’ is also not too hard for c.e. sets. For ∆0

2 sets, in contrast, ‘⇒’ needs a non-uniform
method known as the golden run.

Corollary 7. For each K-trivial set A, there is a c.e. K-trivial set D ≥T A.

D is the change set {〈x, i〉 : A(x) changes at least i times}. One verifies that D obeys
cK as well.
Actually this works for any cost function in place of cK!

3

2.5 The Machine Existence Theorem

We use this tool:

• A c.e. set L ⊆ N× {0, 1}∗ is a bounded request set if

1 ≥
∑

r,y 2−r [[〈r, y〉 ∈ L]].

• From a bounded request set L, one can (effectively) obtain a prefix free machine
M such that

∀r, y[〈r, y〉 ∈ L ⇔ ∃w (|w| = r & M(w) = y)].

2.6 Cost function criterion for K-triviality

Lemma 8. Suppose a computable approximation (As)s∈N of a set A obeys the stan-
dard cost function cK(x, s) =

∑
x<w≤s 2−Ks(w).

Then A is K-trivial.

Proof. We use the Machine Existence Theorem to implicitly build a prefix-free machine show-
ing that A is K-trivial.
We may assume the total cost of A-changes is at most 1. We build a bounded request set. At
stage s we enumerate the request

〈Ks(w) + 1, As�w〉

whenever w ≤ s and

(a) Ks(w) < Ks−1(w), or (b) Ks(w) < ∞ & As−1 �w 6= As �w.

In either case, the implicitly built prefix-free machine provides a description of As �w of length
Ks(w).
The total weight for (a) is at most Ω/2. The total for (b) is at most 1/2.

3 Basic properties of cost functions

We introduce monotonicity and give some examples.
We obtain some simple closure properties for the class of sets obeying a cost function

Definition 9. A cost function c(x, s) is called monotonic if it is nonincreasing in x and
nondecreasing in s. That is, c(x + 1, s) ≤ c(x, s) ≤ c(x, s + 1) for all x, s.

Exercise 10. Show that cK is monotonic.

Exercise 11. There is a computable enumeration (As)s∈N of N in the order 0, 1, 2, . . .

(i.e., each As is an initial segment of N) such that (As)s∈N does not obey cK.

Exercise 12. Prove the converse of the Existence Theorem 3 for a monotonic cost
function c : if an incomputable ∆0

2 set A obeys c, then c satisfies the limit condition.

4

3.1 The class {A : A |= c}
We say that Y is ω-c.e. if Y (x) = limsYs(x) with a computably bounded number of
changes. Equivalently, Y ≤wtt ∅′. Let Ve be the e-th ω-c.e. set (given by an index of a
wtt reduction to ∅′).
In the following let c be a monotonic cost function.

Exercise 13. (i) The index set {e : Ve |= c} is Σ0
3.

(ii) If ∀x∃s [c(x, s) > 0], then A |= c implies that A is ω-c.e.

For X ⊆ N let 2X denote {2x : x ∈ X}. Recall that A⊕B = 2A ∪ (2B + 1).

Exercise 14. A |= c & B |= c implies A⊕B |= c.

3.2 Changing early is good

Proposition 15 (Nies). Let c be a monotonic cost function. Suppose A ≤ibT B and
B |= c. Then A |= c.

The argument is fairly typical. We change A(x) as early as possible because earlier
changes are cheaper.
For a computable approximation (Es), let TC((Es), c) denote the total cost of changes.
Let A = ΓB where Γ is a Turing reduction with use bounded by the identity. We define
a computable increasing sequence of stage (s(i))i∈N by s(0) = 0 and

s(i + 1) = µs > s(i) [ΓB �s(i) [s]↓].

We define As(k)(x) for each k ∈ N. Then we let As(x) = As(k)(x) where k is
maximal such that s(k) ≤ s.
Suppose s(i) ≤ x < s(i + 1).
• Let As(k)(x) = v for k < i where v = ΓB(x)[s(i + 2)].
• For k ≥ i, let As(k)(x) = ΓB(x)[s(k + 2)].

(Note that these values are defined.)
Clearly limsAs(x) = A(x). We show

TC((As), c) ≤ TC((Bt), c).

Suppose that As(k)(x) 6= As(k)−1(x). Since the reduction is ibT, there is y ≤ x such
that Bt(y) 6= Bt−1(y) for some t, s(k +1) < t ≤ s(k +2). Then c(x, s(k)) ≤ c(y, t).

4 Cost functions, Kučera’s Theorem, Diamond Classes
• We consider pairs of sets A, Y such that A is c.e., Y is ML-random, and A ≤T Y .
• If Y 6≥T ∅′, then it is hard for A to get anything out of Y : the set A must be K-trivial

(Hirschfeldt, Nies, Stephan 2007).

5

4.1 Kučera’s Theorem

Theorem 16 (Kučera1986). Let Y be ∆0
2 and ML-random. Then there is a (promptly)

simple set A ≤T Y . Moreover, the use is bounded by the identity.

Kučera actually proved this for any ∆0
2 set computing a d.n.c. function. The recursion theorem

is needed in the more general case.
To prove the theorem, we need a test concept that is equivalent to ML-tests.
• A Solovay test G is given by an effective enumeration of strings σ0, σ1, . . ., such that∑

i 2−|σi| < ∞.

• Y passes G if σi 6� Y for almost all i.

We want to meet the requirements

Se : |We| = ∞⇒ A ∩We 6= ∅.

Construction. At stage s, if Se is not satisfied yet, see if there is an x, 2e ≤ x < s,
such that

x ∈ We,s −We,s−1 & ∀tx<t<s Yt �e= Ys �e .

If so, put x into A. Put the string σ = Ys �e into G. Declare Se satisfied.

• Clearly A is (promptly) simple.

• To see that A ≤T Y , choose s0 such that σ 6� Y for any σ enumerated into G
after stage s0. Given an input x ≥ s0, using Y as an oracle, compute t > x such
that Yt �x= Y �x. Then x ∈ A ↔ x ∈ At. For if we put x into A at a stage
s > t for the sake of Se then x > e, so we list σ in G where σ = Ys �e= Y �e;
this contradicts the fact that σ 6� Y .

4.2 A proof of Kučera’s Theorem using a cost function

Let cY (x, s) = 2−x for each x ≥ s. If x < s, and e < x is least such that Ys−1(e) 6=
Ys(e), let

cY (x, s) = max(cY (x, s− 1), 2−e).

Since Y is ∆0
2, the cost function cY satisfies the limit condition.

Fact 17 (Greenberg and Nies). If the ∆0
2 set A obeys cY , then A ≤T Y with use

function bounded by the identity.

We build the Solovay test as follows. When As−1(x) 6= As(x) and cY (x, s) = 2−e,
we list the string Ys �e in G. Since A obeys cY , G is indeed a Solovay test. Now as
before one shows A ≤T Y with use bounded by the identity.
Some promptly simple A obeys cY . So A ≤T Y .

6

4.3 The arithmetical hierarchy for classes

• A Π0
1 class is of the form {X : ∀y T (X�y)}

• A Σ0
2 class is of the form {X : ∃y1∀y2 V (y1, X�y2)}

• A Π0
2 class is of the form {X : ∀y1∃y2 S(y1, X�y2)},

• a Σ0
3 class is of the form {X : ∃y1∀y2∃y3 R(y1, y2, X�y3)}, where T , V , S and

R are computable relations.

Examples:

• Π0
1 means the complement of a c.e. open class.

• The class MLR is Σ0
2.

• The class of c.e. sets is Σ0
3.

• The class of computable sets is Σ0
3.

• The class of cofinite sets is Σ0
2 and not Π0

2.

4.4 Diamond Classes

For a null class H ⊆ 2N, we define

H♦ = the c.e. sets A Turing below each ML-random set in H.

∅'the class H

computable sets

H = the c.e. sets T-below
all sets in H ∩ MLR
♢K-trivial sets

• The larger H is, the smaller is H♦.
• H♦ induces an ideal in the c.e. Turing degrees.
• If some ML-random set Y 6≥T ∅′ is in H, then H♦ ⊆ K-trivial.

7

4.5 An existence Theorem

Theorem 18 (Hirschfeldt/Miller). For each null Σ0
3 classH, there is a promptly simple

set in H♦.

For instance, there is a promptly simple set in (ω-c.e.)♦.
• The theorem is proved by defining an appropriate cost function cH with the limit

condition.
• Whenever a c.e. set A obeys cH, then A is in H♦.
• Now recall that some promptly set A obeys cH.

This implies that a ML-random set Y that is not weakly 2-random bounds an incomputable c.e.
set: for H choose a null Π0

2 class containing Y .
Kučera’s Theorem is the special case where H = {Y } for ML-random ∆0

2 set Y . Note that this
H is Π0

2.

4.6 The cost function cH

We may at first assume thatH is a Π0
2 class. That is, H =

⋂
x Vx where Vx is c.e. open

uniformly in x, and Vx ⊇ Vx+1. Let

cH(x, s) = λVx,s.

We want to show that A |= cH⇒ A ∈ H♦.
• Let Y ∈ H ∩MLR. Intuitively, we enumerate a Turing functional Γ such that A =

ΓY . At stage t we define ΓY (x) = At(x) for all Y in Vx,t. When As(x) 6= As−1(x)
for s > t, we have to remove all those oracles by declaring them non-random.

• Thus, we enumerate the Solovay test G as follows: when As(x) 6= As−1(x), we
enumerate Vx,s into G (more precisely, we enumerate all strings σ of length s such
that [σ] ⊆ Vx,s).

Extending this to a Σ0
3 class H is left as an exercise.

4.7 Adaptive cost functions

A cost function construction can only be regarded as injury-free if the underlying cost
function is non-adaptive, that is, the cost at a stage s does not depend on As−1. The
usual construction of a low simple set has the lowness requirements

Le : ∃∞s JA(e)[s− 1]↓ ⇒ JA(e)↓.

The following adaptive cost function encodes the restraint imposed by Le: if JA(e)
newly converges at stage s− 1, then define

c(x, s) = max{c(x, s− 1), 2−e}

for each x < use JA(e)[s− 1]. If A is enumerated in such a way that the total cost of
changes is finite, then Le is injured only finitely often, so that A is low.
In contrast, a cost function c given in advance cannot be used to simulate restraints.

8

4.8 Some cost functions
Cost function Definition Purpose Ref.

cK(x, s)
∑

x<w≤s 2−Ks(w) characterize Def. 4
the K-trivials

cY (x, s) = max(cY (x, s− 1), 2−e) build a set below a Fact 17
where Ys−1(e) 6= Ys(e) ∆0

2 set Y ∈ MLR
cH(x, s) λVx,s, where Vx is uniformly build a lower page 8

Σ0
1 and H =

⋂
x Vx is null bound for H ∩MLR

cU,A(x, s)
∑

σ 2−|σ| [[UA(σ)[s− 1] ↓ & build a set that is book
x < use UA(σ)[s− 1]]] low for K

Recall that c(x) = supsc(x, s).

Exercise 19. For the cost functions c = cK and c = cY (Y ∈ ∆0
2), describe c(x) by

giving a simple expression.

5 Calculus of cost functions

5.1 Analogy with model theory
• A cost function c describes a class of ∆0

2 sets: those sets with an approximation
obeying the cost function.

• For instance, the standard cost function cK describes the K-trivial sets.
• This is somewhat similar to a sentence in some formal language describing a class

of structures.
• “A obeys c” means that A is a model of c.
• The limit condition behaves like consistency.

Here we need to disregard the computable sets.
• If a cost function c has a model, it satisfies the limit condition. This is soundness.
• If c satisfies the limit condition, it has a model. This is like the completeness theo-

rem.

5.2 The lower semilattice of cost functions

We introduce some relations and operations on monotonic cost functions. This corre-
sponds to the Lindenbaum algebra on sentences.
For a cost function c(x, s), recall that

c(x) = supsc(x, s).

We may assume c(x) is finite for each x (otherwise only computable sets obey c).

9

5.3 Implication of cost functions

For cost functions c, d we write c −→ d if A |= c implies A |= d for each ∆0
2 set A.

This is equivalent to d(x) = O(c(x):

Theorem 20 (Nies 2009). Let c, d be cost functions. Suppose c satisfies the limit
condition. Then

c −→ d ⇔ ∃N ∀x [Nc(x) > d(x)].

In particular, whether A |= c only depends on the function c(x).

“⇐” needs a “changing early” construction similar to Prop.15. For “⇒” we assume
that the right hand side fails. We build a counterexample: a ∆0

2 set A such that A |= c

but A 6|= d.
Not sure whether A can be made c.e.

5.4 Relating cY and cK

Let the ∆0
2 set Y be ML-random. Recall that cY is the cost function for being ≤T Y .

(Note that cY actually depends on a computable approximation of Y .)

Corollary 21. Let Y <T ∅′ be ML-random. Then cY −→ cK, and therefore cK(x) =
O(cY (x)).

Proof. Suppose A |= cY .
Let D ≥T A be the change set of the given approximation of A as in Cor. 7. Then
D |= cY and therefore D ≤T Y .
Since D is c.e. and Y <T ∅′, D is a base for ML-randomness by a result of Hirschfeldt,
Nies, and Stephan. Therefore D, and hence A, is K-trivial. Thus A |= cK.

5.5 Conjunction of cost functions

The conjunction is simply the sum.

Theorem 22 (Nies 2009). Let c, d be cost functions. Then

A |= c & A |= d ⇔ A |= c + d.

“⇐” is trivial.
“⇒” needs some work because we have to find a computable approximation of A that
obeys both c and d.

10

6 Benign cost functions and strong jump traceability

6.1 Strongly jump traceable sets
• An order function is a function h : N → N that is computable, nondecreasing, and

unbounded.
• A c.e. trace with bound h is a uniformly c.e. sequence (Tx)x∈N such that |Tx| ≤

h(x) for each x.
• Let JA(e) be the value of the A-jump at e, namely, JA(e) ' ΦA

e (e).
• The set A is called strongly jump traceable if for each order function h, there is a

c.e. trace (Tx)x∈N with bound h such that, whenever JA(x) it is defined, we have

JA(x) ∈ Tx

(Figueira, Nies, Stephan, 2004).
• SJT will denote the class of c.e. strongly jump traceable sets.

(To define jump traceability, one merely requires that the tracing works for some
bound h.)

6.2 SJT is a proper subclass of the c.e. K-trivial sets

Theorem 23 (Cholak, Downey, Greenberg 2006). The c.e. strongly jump traceable sets
form a proper subideal of the K-trivial sets.

It is currently unknown what happens within the ∆0
2 sets.

6.3 Comparing K-trivial and SJT

Within the c.e. sets:
• Both classes are closed downward under ≤T .
• Both classes are closed under ⊕.
• The c.e. K-trivials have a Σ0

3 index set;
the (c.e.) SJTs have a Π0

4-complete index set (Selwyn Ng).

Outside the c.e. sets:

• Each K-trivial is Turing-below a c.e. K-trivial.
• Currently we merely know that each strongly jump traceable set is low (Downey and

Greenberg).

6.4 Benign cost functions

Let c(x, s) be a monotonic cost function, that is, nonincreasing in x, and nondecreasing
in s. For δ ∈ Q+, a δ-collection is a set of pairwise disjoint intervals [x, s) such that
c(x, s) ≥ δ.

11

The limit condition is equivalent to ∀δ ∃x∀s [c(x, s) < δ]. This is equivalent to: each
δ-collection is finite.

Definition 24. We say that the monotonic cost function c is benign if the cardinality of
any δ-collection is bounded computably in δ.

The standard cost function cK is benign via the bound δ → 1/δ.

6.5 Characterizing SJT via cost functions
• Cholak, Downey and Greenberg showed that SJT strictly implies K-trivial for c.e.

sets.
• Greenberg and Nies reproved and extended this, using the language of cost func-

tions.

Theorem 25 (Greenberg and Nies, to appear). Let A be c.e. Then
A is strongly jump traceable ⇔

A obeys each benign cost function.

• In particular, A is K-trivial.
• A single benign cost function doesn’t do it, because SJT has Π0

4 complete index set
by a result of Selwyn Ng, while obeying a single cost function is Σ0

3.

• We also prove directly that each benign cost function is obeyed by some c.e. set that
is not strongly jump traceable.

• This gives a further proof that SJT is a proper subclass of the K-trivials.

For “⇐” we have to define the right benign cost function to ensure tracing of JA at
order h.
The harder direction is “⇒”. It uses the “box promotion method” of Cholak, Downey
and Greenberg.

6.6 A lowness property and its dual highness property
• Recall that Z is low if Z ′ ≤T ∅′, and Z is high if ∅′′ ≤T Z ′.
• These classes are “too big”: we have

(low)♦ = (high)♦= computable.

(For instance, (high)♦= computable because there is a minimal pair of high ML-
random sets.)

• So we will try somewhat smaller classes, replacing ≤T by the stronger truth-table
reducibility ≤tt.

Definition 26 (Mohrherr 1986). A set Z is superlow if Z ′ ≤tt ∅′. Z is superhigh if
∅′′ ≤tt Z ′.

A random set can be superlow (low basis theorem). It can also be superhigh but Turing
incomplete (Kučera coding).

12

6.7 SJT is contained in the two diamond classes
• Superlow is a countable Σ0

3 class. Superhigh is contained in a null Σ0
3 class (Simp-

son).
• So via the Hirschfeldt/Miller cost function cH introduced to prove Theorem 18 we

already know there is a promptly set in each of the corresponding diamond classes.
• Now we make such a cost function benign.

Theorem 27 (Greenberg,Nies/ Nies). Let H be either superlowness or superhighness.
Then SJT ⊆ H♦.

For the proofs they build appropriate benign cost functions.
The superlow case we have done already: Each superlow set is ω-c.e., and if Y is ω-c.e. then cY

is clearly benign.
For superhigh, Nies builds a c.f. cΓ for each tt-reduction Γ. It deals with the ML-random sets Y

such that ∅′′ = Γ(Y ′).

6.8 Conversely, these diamond classes are contained in SJT

The converse inclusion holds as well. Putting all together, we have

Theorem 28 (Greenberg, Hirschfeldt, Nies). SJT = (ω−c.e.)♦ =superlow ♦= superhigh ♦.

To prove the remaining inclusions we use a “golden run” construction with infinitely
many levels.

6.9 Diagram: SJT means computed by many oracles

∅'

superhigh

SJT= (superlow) =(superhigh)♢ ♢

superlow

K-trivial
computable

13

6.10 Corollaries to the characterizations of SJT

Often new characterizations give new views of the class. We obtain:

• a new proof of the Cholak, Downey and Greenberg result that SJT induces an ideal
in the c.e. Turing degrees (because every diamond class does that).

• a cost function construction (hence, injury-free) of a promptly simple set in SJT via
the Hirschfeldt/MIller cost function cH where H = ω-c.e., say.
(Recall that if A obeys cH, then A ∈ H♦ ⊆ SJT.)

6.11 Open questions on classes between SJT and K-trivial
• No natural classes are currently known to lie properly between SJT and K-trivial
• A good candidate is (AED)♦. Here AED is the class of almost everywhere dominat-

ing sets Z of Dobrinen and Simpson: for almost all sets X , each function f ≤T X

is dominated by a function g ≤T Z. For the highness properties, there are proper
implications

Turing-complete ⇒ AED ⇒ superhigh.

• For the corresponding diamond classes, Greenberg and Nies proved that SJT is
properly contained in (AED)♦.

• However, (AED)♦ may coincide with K-trivial.
• This would imply that the classes ML-coverable and ML-noncuppable also coincide

with K-trivial.

6.12 Classes of c.e. sets between SJT and K-trivial

K-trivial

ML-coverable ML-noncuppable

AED♢

SJT

(The dashed arrows may be coincidences.)
• A is ML-coverable if A ≤T Y for some ML-random Y 6≥T ∅′.
• A is ML-noncuppable if
∅′ ≤T A⊕ Y for ML-random Y implies ∅′ ≤T Y .

14

