Cost functions

André Nies The University of Auckland

FRG workshop, Madison, May 2009

0.1 What cost functions are good for

- Cost functions are a great tool for analyzing certain classes of Δ_2^0 sets.
- Mostly, these classes are lowness properties such as being K-trivial, or strongly jump traceable.

Cost functions help a lot to understand the following results (I will shortly explain the notions involved).

- Each *K*-trivial set is Turing below a *c.e. K*-trivial set (Nies).
- Each null Σ_3^0 class of ML-random sets has a simple Turing lower bound. Moreover, this lower bound is obtained via an injury-free construction (Hirschfeldt, Miller).
- Each strongly jump traceable c.e. set is Turing below each ω -c.e. ML-random set (Greenberg, Nies).

1 Introduction to cost functions

1.1 Definition of cost functions

Definition 1. A cost function is a computable function

$$c: \mathbb{N} \times \mathbb{N} \to \{x \in \mathbb{Q}: x \ge 0\}.$$

We view c(x, s) as the cost of changing A(x) at stage s.

1.2 Obeying a cost function

Recall that A is Δ_2^0 iff $A \leq_T \emptyset'$ iff $A(x) = \lim_s A_s(x)$ for a computable approximation $(A_s)_{s \in \mathbb{N}}$ (Limit Lemma).

Definition 2. The computable approximation $(A_s)_{s\in\mathbb{N}}$ obeys a cost function c if $\infty > \sum_{x,s} c(x,s)$ [x < s & x is least s.t. $A_{s-1}(x) \neq A_s(x)$]. We write $A \models c$ (A obeys c) if some computable approximation of A obeys c.

Usually we use this to construct some auxiliary object of finite "weight", such as a bounded request set (aka Kraft-Chaitin set), or a Solovay test.

1.3 Basic existence theorem

```
For a cost function c: \mathbb{N} \times \mathbb{N} \to \mathbb{Q}, let c(x) = \sup_s c(x, s). We say that c has the limit condition if \lim_x c(x) = 0.
```

Theorem 3 (Various authors). If a cost function c satisfies the limit condition, then some (promptly) simple set A obeys c.

Proof. Let W_e be the e-th c.e. set. If W_e is infinite we want some $x \in W_e$ to enter A. We define a computable enumeration $(A_s)_{s \in \mathbb{N}}$ as follows. Let $A_0 = \emptyset$. For s > 0,

```
\begin{array}{ll} A_s = A_{s-1} \cup \{x : \exists e \\ W_{e,s} \cap A_{s-1} = \emptyset \\ x \in W_{e,s} \\ x \geq 2e \\ c(x,s) \leq 2^{-e} \}. \end{array} \quad \begin{array}{ll} \text{We haven't met $e$-th simplicity requirement.} \\ \text{We can meet it via $x$.} \\ \text{We make $A$ co-infinite.} \\ \text{We ensure that $A$ obeys $c$.} \end{array}
```

1.4 An infinite number of visits to K-Mart

Here is a real-life analog of the foregoing construction.

- We want to buy a shirt of each color *e* at *K*-Mart, provided that there is a sufficient number of shipments of that color from China.
- For the shirt of color e we can spend at most 2^{-e} .
- Eventually, a sufficiently cheap shirt of color e will arrive, unless that color is discontinued.
- We will be able to buy all shirts that are not discontinued.
- We will spend at most $\sum_{e} 2^{-e} = 2$ dollars in total.

2 Cost functions and K-trivialilty

2.1 Machines and K

- All strings are binary. A machine is a partial recursive function M from strings to strings.
- M is called prefix free if its domain is an antichain under the prefix relation of strings.
- ullet There is a universal prefix-free machine \mathbb{U} .
- The prefix free version K(y) of descriptive string complexity (a.k.a. Kolmogorov complexity) is the length of a shortest \mathbb{U} -description of y:

$$K(y) = \min\{|\sigma| : \mathbb{U}(\sigma) = y\}.$$

• Also, $K_s(y) = \min\{|\sigma| : \mathbb{U}(\sigma) = y \text{ in } s \text{ steps}\}.$

2.2 Definition of K-triviality

- For a string y, up to constants, $K(|y|) \le K(y)$, since we can compute |y| from y (here we write numbers in binary).
- A set A is K-trivial if, for some $b \in \mathbb{N}$

$$\forall n \ K(A \upharpoonright_n) \leq K(n) + b$$
,

namely, the K complexity of all initial segments is minimal.

This is *opposite* to ML-randomness:

- Z is ML-random if $\exists d \, \forall n \, K(Z \upharpoonright_n) \geq n d$ (Schnorr's Theorem). That is, all complexities $K(Z \upharpoonright_n)$ are near the upper bound n + K(n);
- Z is K-trivial if each $K(Z \upharpoonright_n)$ has the minimal possible value $K(n) \le^+ 2 \log n$ (all within constants).

2.3 The cost function for K-triviality

Definition 4. The standard cost function c_K is given by

$$c_{\mathcal{K}}(x,s) = \sum_{x < w \le s} 2^{-K_s(w)}$$
.

We could also use $c(x,s) = \text{Prob}[\{\sigma \colon \mathbb{U}_s(\sigma) \geq x\}]$, the chance that the universal machine prints a string $\geq x$ within s steps.

Lemma 5. c_K satisfies the limit condition.

Proof. Given $e \in \mathbb{N}$, since $\sum_w 2^{-K(w)} \le 1$, there is an x_0 such that $\sum_{w \ge x_0} 2^{-K(w)} < 2^{-e}$. Hence $c_{\mathcal{K}}(x,s) < 2^{-e}$ for all $x \ge x_0$ and all s.

2.4 Cost function characterization of the K-trivials

Theorem 6 (Nies 05). A is K-trivial \Leftrightarrow some computable approximation of A obeys c_K .

' \Rightarrow ' is also not too hard for c.e. sets. For Δ_2^0 sets, in contrast, ' \Rightarrow ' needs a non-uniform method known as the *golden run*.

Corollary 7. For each K-trivial set A, there is a c.e. K-trivial set $D \ge_T A$.

D is the *change set* $\{\langle x, i \rangle : A(x) \text{ changes at least } i \text{ times} \}$. One verifies that D obeys c_K as well.

Actually this works for any cost function in place of c_K !

^{&#}x27;⇐' is not too hard.

2.5 The Machine Existence Theorem

We use this tool:

• A c.e. set $L \subseteq \mathbb{N} \times \{0,1\}^*$ is a bounded request set if

$$1 \ge \sum_{r,y} 2^{-r} \left[\langle r, y \rangle \in L \right].$$

• From a bounded request set L, one can (effectively) obtain a prefix free machine M such that

$$\forall r,y[\langle r,y\rangle\in L \iff \exists w\ (|w|=r\ \&\ M(w)=y)].$$

2.6 Cost function criterion for *K*-triviality

Lemma 8. Suppose a computable approximation $(A_s)_{s\in\mathbb{N}}$ of a set A obeys the standard cost function $c_K(x,s) = \sum_{x < w \le s} 2^{-K_s(w)}$. Then A is K-trivial.

Proof. We use the Machine Existence Theorem to implicitly build a prefix-free machine showing that *A* is *K*-trivial.

We may assume the total cost of A-changes is at most 1. We build a bounded request set. At stage s we enumerate the request

$$\langle K_s(w) + 1, A_s \upharpoonright_w \rangle$$

whenever $w \leq s$ and

(a)
$$K_s(w) < K_{s-1}(w)$$
, or (b) $K_s(w) < \infty \& A_{s-1} \upharpoonright_w \neq A_s \upharpoonright_w$.

In either case, the implicitly built prefix-free machine provides a description of $A_s \upharpoonright_w$ of length $K_s(w)$.

The total weight for (a) is at most $\Omega/2$. The total for (b) is at most 1/2.

3 Basic properties of cost functions

We introduce monotonicity and give some examples.

We obtain some simple closure properties for the class of sets obeying a cost function

Definition 9. A cost function c(x, s) is called monotonic if it is nonincreasing in x and nondecreasing in s. That is, $c(x + 1, s) \le c(x, s) \le c(x, s + 1)$ for all x, s.

Exercise 10. *Show that* c_K *is monotonic.*

Exercise 11. There is a computable enumeration $(A_s)_{s\in\mathbb{N}}$ of \mathbb{N} in the order $0,1,2,\ldots$ (i.e., each A_s is an initial segment of \mathbb{N}) such that $(A_s)_{s\in\mathbb{N}}$ does not obey $c_{\mathcal{K}}$.

Exercise 12. Prove the converse of the Existence Theorem 3 for a monotonic cost function c: if an incomputable Δ_2^0 set A obeys c, then c satisfies the limit condition.

3.1 The class $\{A: A \models c\}$

We say that Y is ω -c.e. if $Y(x) = \lim_s Y_s(x)$ with a computably bounded number of changes. Equivalently, $Y \leq_{wtt} \emptyset'$. Let V_e be the e-th ω -c.e. set (given by an index of a wtt reduction to \emptyset').

In the following let c be a monotonic cost function.

Exercise 13. (i) The index set $\{e \colon V_e \models c\}$ is Σ_3^0 . (ii) If $\forall x \exists s \ [c(x,s) > 0]$, then $A \models c$ implies that A is ω -c.e.

For $X \subseteq \mathbb{N}$ let 2X denote $\{2x \colon x \in X\}$. Recall that $A \oplus B = 2A \cup (2B+1)$.

Exercise 14. $A \models c \& B \models c \text{ implies } A \oplus B \models c.$

3.2 Changing early is good

Proposition 15 (Nies). Let c be a monotonic cost function. Suppose $A \leq_{ibT} B$ and $B \models c$. Then $A \models c$.

The argument is fairly typical. We change A(x) as early as possible because earlier changes are cheaper.

For a computable approximation (E_s) , let $\mathsf{TC}((E_s),c)$ denote the total cost of changes. Let $A = \Gamma^B$ where Γ is a Turing reduction with use bounded by the identity. We define a computable increasing sequence of stage $(s(i))_{i\in\mathbb{N}}$ by s(0)=0 and

$$s(i+1) = \mu s > s(i) \left[\Gamma^B \right]_{s(i)} \left[s \right] \downarrow \right].$$

We define $A_{s(k)}(x)$ for each $k \in \mathbb{N}$. Then we let $A_s(x) = A_{s(k)}(x)$ where k is maximal such that s(k) < s.

Suppose $s(i) \le x < s(i+1)$.

- Let $A_{s(k)}(x) = v$ for k < i where $v = \Gamma^B(x)[s(i+2)]$.
- For $k \ge i$, let $A_{s(k)}(x) = \Gamma^B(x)[s(k+2)]$.

(Note that these values are defined.)

Clearly $\lim_{s} A_{s}(x) = A(x)$. We show

$$\mathsf{TC}((A_s), c) \leq \mathsf{TC}((B_t), c).$$

Suppose that $A_{s(k)}(x) \neq A_{s(k)-1}(x)$. Since the reduction is ibT, there is $y \leq x$ such that $B_t(y) \neq B_{t-1}(y)$ for some $t, s(k+1) < t \leq s(k+2)$. Then $c(x, s(k)) \leq c(y, t)$.

4 Cost functions, Kučera's Theorem, Diamond Classes

- We consider pairs of sets A, Y such that A is c.e., Y is ML-random, and $A \leq_T Y$.
- If $Y \not\geq_T \emptyset'$, then it is hard for A to get anything out of Y: the set A must be K-trivial (Hirschfeldt, Nies, Stephan 2007).

4.1 Kučera's Theorem

Theorem 16 (Kučera1986). Let Y be Δ_2^0 and ML-random. Then there is a (promptly) simple set $A \leq_T Y$. Moreover, the use is bounded by the identity.

Kučera actually proved this for any Δ_2^0 set computing a d.n.c. function. The recursion theorem is needed in the more general case.

To prove the theorem, we need a test concept that is equivalent to ML-tests.

• A *Solovay test* \mathcal{G} is given by an effective enumeration of strings $\sigma_0, \sigma_1, \ldots$, such that

$$\sum_{i} 2^{-|\sigma_i|} < \infty.$$

• Y passes \mathcal{G} if $\sigma_i \not\preceq Y$ for almost all i.

We want to meet the requirements

$$S_e: |W_e| = \infty \Rightarrow A \cap W_e \neq \emptyset.$$

Construction. At stage s, if S_e is not satisfied yet, see if there is an x, $2e \le x < s$, such that

$$x \in W_{e,s} - W_{e,s-1} \& \forall t_{x < t < s} Y_t \upharpoonright_e = Y_s \upharpoonright_e$$
.

If so, put x into A. Put the string $\sigma = Y_s \upharpoonright_e$ into \mathcal{G} . Declare S_e satisfied.

- Clearly A is (promptly) simple.
- To see that $A \leq_T Y$, choose s_0 such that $\sigma \not\preceq Y$ for any σ enumerated into $\mathcal G$ after stage s_0 . Given an input $x \geq s_0$, using Y as an oracle, compute t > x such that $Y_t \upharpoonright_x = Y \upharpoonright_x$. Then $x \in A \leftrightarrow x \in A_t$. For if we put x into A at a stage s > t for the sake of S_e then x > e, so we list σ in $\mathcal G$ where $\sigma = Y_s \upharpoonright_e = Y \upharpoonright_e$; this contradicts the fact that $\sigma \not\preceq Y$.

4.2 A proof of Kučera's Theorem using a cost function

Let $c_Y(x,s) = 2^{-x}$ for each $x \ge s$. If x < s, and e < x is least such that $Y_{s-1}(e) \ne Y_s(e)$, let

$$c_Y(x,s) = \max(c_Y(x,s-1),2^{-e}).$$

Since Y is Δ_2^0 , the cost function c_Y satisfies the limit condition.

Fact 17 (Greenberg and Nies). If the Δ_2^0 set A obeys c_Y , then $A \leq_T Y$ with use function bounded by the identity.

We build the Solovay test as follows. When $A_{s-1}(x) \neq A_s(x)$ and $c_Y(x,s) = 2^{-e}$, we list the string $Y_s \upharpoonright_e$ in \mathcal{G} . Since A obeys c_Y , \mathcal{G} is indeed a Solovay test. Now as before one shows $A \leq_T Y$ with use bounded by the identity.

Some promptly simple A obeys c_Y . So $A \leq_T Y$.

4.3 The arithmetical hierarchy for classes

- A Π_1^0 class is of the form $\{X : \forall y T(X|_y)\}$
- A Σ^0_2 class is of the form $\{X: \exists y_1 \forall y_2 \ V(y_1, X \upharpoonright_{y_2})\}$
- A Π_2^0 class is of the form $\{X : \forall y_1 \exists y_2 S(y_1, X \upharpoonright_{y_2})\},\$
- a Σ_3^0 class is of the form $\{X:\exists y_1\forall y_2\exists y_3\ R(y_1,y_2,X\!\upharpoonright_{y_3})\}$, where T,V,S and R are computable relations.

Examples:

- Π_1^0 means the complement of a c.e. open class.
- The class MLR is Σ_2^0 .
- The class of c.e. sets is Σ_3^0 .
- The class of computable sets is Σ_3^0 .
- The class of cofinite sets is Σ^0_2 and not Π^0_2 .

4.4 Diamond Classes

For a null class $\mathcal{H} \subseteq 2^{\mathbb{N}}$, we define

 \mathcal{H}^{\Diamond} = the c.e. sets A Turing below each ML-random set in \mathcal{H} .

- The larger \mathcal{H} is, the smaller is \mathcal{H}^{\Diamond} .
- \mathcal{H}^{\Diamond} induces an ideal in the c.e. Turing degrees.
- If some ML-random set $Y \not\geq_T \emptyset'$ is in \mathcal{H} , then $\mathcal{H}^\lozenge \subseteq K$ -trivial.

4.5 An existence Theorem

Theorem 18 (Hirschfeldt/Miller). For each null Σ_3^0 class \mathcal{H} , there is a promptly simple set in $\mathcal{H}^{\diamondsuit}$.

For instance, there is a promptly simple set in $(\omega$ -c.e.) $^{\lozenge}$.

- The theorem is proved by defining an appropriate cost function $c_{\mathcal{H}}$ with the limit condition.
- Whenever a c.e. set A obeys $c_{\mathcal{H}}$, then A is in \mathcal{H}^{\Diamond} .
- Now recall that some promptly set A obeys $c_{\mathcal{H}}$.

This implies that a ML-random set Y that is not weakly 2-random bounds an incomputable c.e. set: for \mathcal{H} choose a null Π_2^0 class containing Y.

Kučera's Theorem is the special case where $\mathcal{H} = \{Y\}$ for ML-random Δ_2^0 set Y. Note that this \mathcal{H} is Π_2^0 .

4.6 The cost function $c_{\mathcal{H}}$

We may at first assume that \mathcal{H} is a Π_2^0 class. That is, $\mathcal{H} = \bigcap_x V_x$ where V_x is c.e. open uniformly in x, and $V_x \supseteq V_{x+1}$. Let

$$c_{\mathcal{H}}(x,s) = \lambda V_{x,s}$$
.

We want to show that $A \models c_{\mathcal{H}} \Rightarrow A \in \mathcal{H}^{\Diamond}$.

- Let $Y \in \mathcal{H} \cap \mathsf{MLR}$. Intuitively, we enumerate a Turing functional Γ such that $A = \Gamma^Y$. At stage t we define $\Gamma^Y(x) = A_t(x)$ for all Y in $V_{x,t}$. When $A_s(x) \neq A_{s-1}(x)$ for s > t, we have to remove all those oracles by declaring them non-random.
- Thus, we enumerate the Solovay test \mathcal{G} as follows: when $A_s(x) \neq A_{s-1}(x)$, we enumerate $V_{x,s}$ into \mathcal{G} (more precisely, we enumerate all strings σ of length s such that $[\sigma] \subseteq V_{x,s}$).

Extending this to a Σ_3^0 class \mathcal{H} is left as an exercise.

4.7 Adaptive cost functions

A cost function construction can only be regarded as *injury-free* if the underlying cost function is *non-adaptive*, that is, the cost at a stage s does not depend on A_{s-1} . The usual construction of a low simple set has the lowness requirements

$$L_e : \exists^{\infty} s J^A(e)[s-1] \downarrow \Rightarrow J^A(e) \downarrow.$$

The following adaptive cost function encodes the restraint imposed by L_e : if $J^A(e)$ newly converges at stage s-1, then define

$$c(x,s) = \max\{c(x,s-1), 2^{-e}\}\$$

for each $x < \text{use } J^A(e)[s-1]$. If A is enumerated in such a way that the total cost of changes is finite, then L_e is injured only finitely often, so that A is low.

In contrast, a cost function c given in advance cannot be used to simulate restraints.

4.8 Some cost functions

Cost function	Definition	Purpose	Ref.
$c_{\mathcal{K}}(x,s)$	$\sum_{x < w \le s} 2^{-K_s(w)}$	characterize	Def. 4
	_	the K -trivials	
$c_Y(x,s)$	$= \max(c_Y(x, s-1), 2^{-e})$	build a set below a	Fact 17
	where $Y_{s-1}(e) \neq Y_s(e)$	Δ_2^0 set $Y \in MLR$	
$c_{\mathcal{H}}(x,s)$	$\lambda V_{x,s}$, where V_x is uniformly	build a lower	page 8
	Σ_1^0 and $\mathcal{H} = \bigcap_x V_x$ is null	bound for $\mathcal{H} \cap MLR$	
$c_{\mathbb{U},A}(x,s)$	$\sum_{\sigma} 2^{- \sigma } \left[\mathbb{U}^A(\sigma)[s-1] \downarrow \& \right]$	build a set that is	book
	$x < use \ \mathbb{U}^A(\sigma)[s-1]] \hspace{-0.05cm}]$	low for K	

Recall that $c(x) = \sup_{s} c(x, s)$.

Exercise 19. For the cost functions $c = c_K$ and $c = c_Y$ $(Y \in \Delta_2^0)$, describe c(x) by giving a simple expression.

5 Calculus of cost functions

5.1 Analogy with model theory

- A cost function c describes a class of Δ_2^0 sets: those sets with an approximation obeying the cost function.
- ullet For instance, the standard cost function $c_{\mathcal{K}}$ describes the K-trivial sets.
- This is somewhat similar to a sentence in some formal language describing a class of structures.
- "A obeys c" means that A is a model of c.
- The *limit condition* behaves like *consistency*. Here we need to disregard the computable sets.
- If a cost function c has a model, it satisfies the limit condition. This is soundness.
- If c satisfies the limit condition, it has a model. This is like the completeness theorem.

5.2 The lower semilattice of cost functions

We introduce some relations and operations on *monotonic* cost functions. This corresponds to the Lindenbaum algebra on sentences.

For a cost function c(x, s), recall that

$$c(x) = \sup_{s} c(x, s).$$

We may assume c(x) is finite for each x (otherwise only computable sets obey c).

5.3 Implication of cost functions

For cost functions c, d we write $c \longrightarrow d$ if $A \models c$ implies $A \models d$ for each Δ_2^0 set A. This is equivalent to d(x) = O(c(x)):

Theorem 20 (Nies 2009). Let c, d be cost functions. Suppose c satisfies the limit condition. Then

$$c \longrightarrow d \Leftrightarrow \exists N \, \forall x \, [Nc(x) > d(x)].$$

In particular, whether $A \models c$ only depends on the function c(x).

" \Leftarrow " needs a "changing early" construction similar to Prop.15. For " \Rightarrow " we assume that the right hand side fails. We build a counterexample: a Δ_2^0 set A such that $A \models c$ but $A \not\models d$.

Not sure whether A can be made c.e.

5.4 Relating c_Y and c_K

Let the Δ_2^0 set Y be ML-random. Recall that c_Y is the cost function for being $\leq_T Y$. (Note that c_Y actually depends on a computable approximation of Y.)

Corollary 21. Let $Y <_T \emptyset'$ be ML-random. Then $c_Y \longrightarrow c_K$, and therefore $c_K(x) = O(c_Y(x))$.

Proof. Suppose $A \models c_Y$.

Let $D \ge_T A$ be the change set of the given approximation of A as in Cor. 7. Then $D \models c_Y$ and therefore $D \le_T Y$.

Since D is c.e. and $Y <_T \emptyset'$, D is a base for ML-randomness by a result of Hirschfeldt, Nies, and Stephan. Therefore D, and hence A, is K-trivial. Thus $A \models c_K$.

5.5 Conjunction of cost functions

The conjunction is simply the sum.

Theorem 22 (Nies 2009). Let c, d be cost functions. Then

$$A \models c \& A \models d \Leftrightarrow A \models c + d.$$

[&]quot;⇐" is trivial.

[&]quot; \Rightarrow " needs some work because we have to find a computable approximation of A that obeys both c and d.

6 Benign cost functions and strong jump traceability

6.1 Strongly jump traceable sets

- An *order function* is a function $h: \mathbb{N} \to \mathbb{N}$ that is computable, nondecreasing, and unbounded
- A c.e. trace with bound h is a uniformly c.e. sequence $(T_x)_{x\in\mathbb{N}}$ such that $|T_x| \leq h(x)$ for each x.
- Let $J^A(e)$ be the value of the A-jump at e, namely, $J^A(e) \simeq \Phi_e^A(e)$.
- The set A is called *strongly jump traceable* if for *each* order function h, there is a c.e. trace $(T_x)_{x\in\mathbb{N}}$ with bound h such that, whenever $J^A(x)$ it is defined, we have

$$J^A(x) \in T_x$$

(Figueira, Nies, Stephan, 2004).

• *SJT* will denote the class of *c.e.* strongly jump traceable sets.

(To define *jump traceability*, one merely requires that the tracing works for *some* bound h.)

6.2 SJT is a proper subclass of the c.e. K-trivial sets

Theorem 23 (Cholak, Downey, Greenberg 2006). *The c.e. strongly jump traceable sets form a* proper *subideal of the K-trivial sets*.

It is currently unknown what happens within the Δ_2^0 sets.

6.3 Comparing K-trivial and SJT

Within the c.e. sets:

- Both classes are closed downward under \leq_T .
- ullet Both classes are closed under \oplus .
- The c.e. K-trivials have a Σ⁰₃ index set;
 the (c.e.) SJTs have a Π⁰₄-complete index set (Selwyn Ng).

Outside the c.e. sets:

- Each K-trivial is Turing-below a c.e. K-trivial.
- Currently we merely know that each strongly jump traceable set is *low* (Downey and Greenberg).

6.4 Benign cost functions

Let c(x,s) be a monotonic cost function, that is, nonincreasing in x, and nondecreasing in s. For $\delta \in \mathbb{Q}^+$, a δ -collection is a set of pairwise disjoint intervals [x,s) such that $c(x,s) \geq \delta$.

The limit condition is equivalent to $\forall \delta \exists x \, \forall s \, [c(x,s) < \delta]$. This is equivalent to: *each* δ -collection is finite.

Definition 24. We say that the monotonic cost function c is benign if the cardinality of any δ -collection is bounded computably in δ .

The standard cost function c_K is benign via the bound $\delta \to 1/\delta$.

6.5 Characterizing SJT via cost functions

- Cholak, Downey and Greenberg showed that SJT strictly implies K-trivial for c.e.
- Greenberg and Nies reproved and extended this, using the language of cost functions.

Theorem 25 (Greenberg and Nies, to appear). Let A be c.e. Then A is strongly jump traceable \Leftrightarrow

A obeys each benign cost function.

- In particular, A is K-trivial.
- A single benign cost function doesn't do it, because SJT has Π_4^0 complete index set by a result of Selwyn Ng, while obeying a single cost function is Σ_3^0 .
- We also prove directly that each benign cost function is obeyed by some c.e. set that is not strongly jump traceable.
- This gives a further proof that *SJT* is a proper subclass of the *K*-trivials.

For " \Leftarrow " we have to define the right benign cost function to ensure tracing of J^A at order h.

The harder direction is "⇒". It uses the "box promotion method" of Cholak, Downey and Greenberg.

6.6 A lowness property and its dual highness property

- Recall that Z is low if $Z' \leq_T \emptyset'$, and Z is high if $\emptyset'' \leq_T Z'$.
- These classes are "too big": we have

$$(low)^{\diamondsuit} = (high)^{\diamondsuit} = computable.$$

(For instance, $(high)^{\Diamond}$ = computable because there is a minimal pair of high ML-random sets.)

• So we will try somewhat smaller classes, replacing \leq_T by the stronger truth-table reducibility \leq_t .

Definition 26 (Mohrherr 1986). A set Z is superlow if $Z' \leq_{tt} \emptyset'$. Z is superhigh if $\emptyset'' \leq_{tt} Z'$.

A random set can be superlow (low basis theorem). It can also be superhigh but Turing incomplete (Kučera coding).

6.7 SJT is contained in the two diamond classes

- Superlow is a countable Σ_3^0 class. Superhigh is contained in a null Σ_3^0 class (Simpson).
- So via the Hirschfeldt/Miller cost function $c_{\mathcal{H}}$ introduced to prove Theorem 18 we already know there is a promptly set in each of the corresponding diamond classes.
- Now we make such a cost function benign.

Theorem 27 (Greenberg, Nies/ Nies). *Let* \mathcal{H} *be either superlowness or superhighness. Then* $SJT \subseteq \mathcal{H}^{\Diamond}$.

For the proofs they build appropriate benign cost functions.

The superlow case we have done already: Each superlow set is ω -c.e., and if Y is ω -c.e. then c_Y is clearly benign.

For superhigh, Nies builds a c.f. c_{Γ} for each tt-reduction Γ . It deals with the ML-random sets Y such that $\emptyset'' = \Gamma(Y')$.

6.8 Conversely, these diamond classes are contained in SJT

The converse inclusion holds as well. Putting all together, we have

Theorem 28 (Greenberg, Hirschfeldt, Nies). $SJT = (\omega - \text{c.e.})^{\diamondsuit} = \text{superlow}^{\diamondsuit} = \text{superhigh}^{\diamondsuit}$.

To prove the remaining inclusions we use a "golden run" construction with infinitely many levels.

6.9 Diagram: SJT means computed by many oracles

6.10 Corollaries to the characterizations of SJT

Often new characterizations give new views of the class. We obtain:

- a new proof of the Cholak, Downey and Greenberg result that *SJT* induces an ideal in the c.e. Turing degrees (because every diamond class does that).
- a cost function construction (hence, injury-free) of a promptly simple set in SJT via the Hirschfeldt/MIller cost function $c_{\mathcal{H}}$ where $\mathcal{H} = \omega$ -c.e., say. (Recall that if A obeys $c_{\mathcal{H}}$, then $A \in \mathcal{H}^{\Diamond} \subseteq SJT$.)

6.11 Open questions on classes between SJT and K-trivial

- No natural classes are currently known to lie properly between SJT and K-trivial
- A good candidate is $(AED)^{\diamondsuit}$. Here AED is the class of almost everywhere dominating sets Z of Dobrinen and Simpson: for almost all sets X, each function $f \leq_T X$ is dominated by a function $g \leq_T Z$. For the highness properties, there are proper implications

Turing-complete
$$\Rightarrow$$
 AED \Rightarrow superhigh.

- For the corresponding diamond classes, Greenberg and Nies proved that SJT is properly contained in (AED)[◊].
- However, (AED) $^{\Diamond}$ may coincide with K-trivial.
- This would imply that the classes *ML-coverable* and *ML-noncuppable* also coincide with *K*-trivial.

6.12 Classes of c.e. sets between SJT and K-trivial

(The dashed arrows may be coincidences.)

- A is ML-coverable if $A \leq_T Y$ for some ML-random $Y \not\geq_T \emptyset'$.
- A is ML-noncuppable if $\emptyset' \leq_T A \oplus Y$ for ML-random Y implies $\emptyset' \leq_T Y$.