
COMPUTABILITY AND

THE SYMMETRIC DIFFERENCE OPERATOR

URI ANDREWS, PETER M. GERDES, STEFFEN LEMPP,
JOSEPH S. MILLER, AND NOAH D. SCHWEBER

Abstract. Combinatorial operations on sets are almost never well-defined on

Turing degrees, a fact so obvious that counterexamples are worth exhibiting.

The case we focus on is the symmetric difference operator; there are pairs of
(nonzero) degrees for which the symmetric-difference operation is well-defined.

Some examples can be extracted from the literature, for example, from the

existence of nonzero degrees with strong minimal covers. We focus on the case
of incomparable r.e. degrees for which the symmetric-difference operation is

well-defined.

1. Introduction

We generally take it for granted that combinatorial set operations and Turing com-
plexity come from different universes and have no relationship to each other. For
example, for any two Turing degrees a and b, there are sets A ∈ a and B ∈ b
so that A ∩ B is empty. This is, of course, expected. But as we will see, the
symmetric-difference operator is a natural set operation that is sometimes well-
defined on Turing degrees. That is, there are degrees a, b, and c such that if A ∈ a
and B ∈ b, then A∆ B ∈ c. If this is the case, we write a ∆ b = c. Note that for
any A ∈ a and B ∈ b, we have (A⊕ ∅) ∆ (∅ ⊕B) ∈ a ∨ b. Thus, the only possible
value for a ∆ b, if it exists, is a ∨ b.

To be clear, it is easy to construct examples of degrees that do not have a well-
defined symmetric-difference. For example, let X, Y , and Z be independent in the
sense that the join of any two fails to compute the third. Let A = X ⊕ Y ⊕ ∅ and
B = X⊕∅⊕Z. Then A and B are Turing incomparable and A∆B = ∅⊕Y ⊕Z 6≡T

A⊕B (in particular, A∆B �T X). Therefore, degT(A) ∆ degT(B) does not exist.

Indeed, it is fair to say that a ∆ b does not exist for most pairs of degrees a and
b. Specifically, if A ∈ a and B ∈ b are 1-generic or 1-random relative to each
other, then A∆B is Turing incomparable with both A and B, hence certainly not
equivalent to A⊕B.

So how do we know that there are (nonzero) degrees for which the symmetric-
difference is well-defined? For a quick example, consider b to be a strong minimal

Date: March 31, 2021.
2020 Mathematics Subject Classification. Primary 03D25.
Andrews was partially supported by NSF Grant DMS-1600228. Lempp’s research was par-

tially supported by AMS-Simons Foundation Collaboration Grant 626304. Miller was partially
supported by grant #358043 from the Simons Foundation. Schweber’s research was partially
supported by NSF postdoctoral grant DMS-1606455.

1

2 ANDREWS, GERDES, LEMPP, MILLER, AND SCHWEBER

cover of a. For any A ∈ a and B ∈ b, we have A ∆ B ≤T A ⊕ B ≡T B and
A ⊕ (A ∆ B) ≥T B. But the only degree ≤T b that joins a to b is b itself.
Therefore A∆B ∈ b, proving that a ∆ b exists.

The same argument works for any pair of degrees a < b such that no degree below b
joins a up to b. Slaman and Steel [SS89] and Cooper [Co89] independently showed
that there is a pair of recursively enumerable degrees a < b so that there is no
Turing degree c < b such that a ∨ c = b. Thus, there is a pair of comparable
recursively enumerable degrees with a ∆ b defined.

The examples above give us comparable pairs of degrees for which the symmetric-
difference is well-defined. To get an incomparable pair with this property, consider
the fact that the diamond lattice embeds as an initial segment of the Turing de-
grees [Sa63]. Let a and b be the incomparable degrees from such an embedding.
Then for any A ∈ a and B ∈ b, we know that A ∆ B ≤T A⊕ B and it cannot be
below either A or B; therefore A∆B ≡T A⊕B and a ∆ b is defined.

What about incomparable r.e. degrees? In this paper, we show that there are, in
fact, incomparable recursively enumerable degrees a and b so that a∆b is defined.
Furthermore, a and b can be chosen to be low and to form a minimal pair.

We then examine a degree-theoretic condition that is sufficient to imply that a∆b is
defined. This condition C states that the only degree c ≤ a∨b such that a∨c ≥ b
and b ∨ c ≥ a is a ∨ b. Note that if a and b satisfy condition C, then a ∆ b
is defined: for any A ∈ a and B ∈ b, the degree of A ∆ B joins each of a and
b above the other. We strengthen our construction to show that there is a pair
of incomparable recursively enumerable degrees a and b that satisfy condition C.
Furthermore, this pair can be made low and a minimal pair.

Note that the examples we gave above, such as strong minimal covers, all satisfy
condition C. This leads us to ask if condition C is necessary to ensure the existence
of a ∆ b. We show that it is not, even for the r.e. degrees: we construct a pair of
incomparable recursively enumerable degrees a and b such that a ∆ b is defined
yet they fail to satisfy condition C.

2. Notational Conventions

We adopt relatively standard notational conventions similar to those found in
Odifreddi [Od99]. For clarity, we list some of our conventions below.

• We denote the use of Φi,s(X; y) by u [Φi,s(X; y)], where this is at least 1 plus
the maximum number whose membership in X is queried in Φi,s(X; y) and
taken to satisfy y < u [Φi,s(X; y)] = u [Φi(X; y)] < s if Φi,s(X; y)↓, and ∞
otherwise. Adopting the standard convention that if Φi,s(X; y)↓ then y < s
makes it clear there is no tension between left and right sides of the above
inequality.

• Given partial functions ξ and η, we write ξ ≺ η (η extends ξ) to indicate
that dom(η) ⊇ dom(ξ) and η agrees with ξ on dom(ξ). We write ξ 6 | η to
indicate there is a common extension of ξ, and η and ξ | η when there is
not.

COMPUTABILITY AND THE SYMMETRIC DIFFERENCE OPERATOR 3

• If ξ and η are partial functions on proper initial segments of ω, we write

ξ ̂ η to denote the function formed by concatenating ξ with η. We denote
the partial function ξ with ξ(0) = x0, ξ(1) = x1, . . . , ξ(n) = xn and no
other values by 〈x0, x1, . . . , xn〉, and the empty function by 〈〉.

• We identify sets with their characteristic function and, by abuse of notation,
identify X�n with the function in 2n that agrees with the characteristic
function of X�n.

• When building X via a stagewise approximation, any changes made at
stage s are reflected in Xs+1 but not in Xs.

3. Incomparable R.E. sets with the Symmetric Difference Property

The examples we gave in the introduction left open the case of incomparable r.e.
degrees. We now construct such a pair a,b for which a ∆ b is well-defined. ask
whether or not this same phenomenon can occur in the diametrically opposite
setting of the r.e. degrees. To this end, we prove the following

Theorem 1. There are (Turing) incomparable r.e. sets A and B such that for

any Â and B̂ with Â ≡T A and B̂ ≡T B, we have Â∆ B̂ ≡T A⊕B.

We first adopt the following

Notation 3.1.

X̂i,s(z) =

{
↑ if (∃y < z)X̂i,s(y)↑
Φi,s(Xs; z) otherwise

X̂i(z) = lim
s→∞

X̂i,s(z)

Using this notation, we note that it is sufficient to build r.e. sets A and B satisfying
the following requirements:

Φe(A) 6= B,PA
e :

Φe(B) 6= A, andPB
e :

Φi(Âi) = A ∧ Φj(B̂j) = B =⇒ Γi,j(Âi ∆ B̂j) = A⊕B.Ri,j :

Note that we may safely assume that the functionals from the hatted sets to the
unhatted sets are the same as those from the unhatted sets to the hatted sets by
assuming that 0 /∈ A,B and noting that it is sufficient to prove the theorem if the

requirements are satisfied for all Âi, B̂j with 0 ∈ Âi, B̂j .

3.1. Intuition. We satisfy Ri,j by enumerating axioms of the form Γi,j(σ;x) = y,

where σ ∈ 2<ω, to define the functional Γi,j . Such an enumeration represents the
commitment that if Z � σ then Γi,j(Z;x) = y. Since A⊕B is r.e., we may presume
that anytime x enters As ⊕Bs, we enumerate the axiom Γi,j(∅;x) = 1, so we may
focus our attention on axioms of the form Γi,j(Z;x) = 0. (Technically, this may
result in contradictory definitions since there may be previous axioms with output 0;
so once x ∈ As ⊕ Bs, we really only define Γi,j(Z;x) = 0 when Z disagrees with
the uses of previously enumerated contradictory axioms.)

4 ANDREWS, GERDES, LEMPP, MILLER, AND SCHWEBER

Note that if we only had to worry about Âi,s (e.g., if B̂j were computable), it would

be enough to simply copy the computation given by Φi,s(Âi,s;x), i.e., to enumerate

Γi,j(Âi,s ∆ B̂j ;x) = B(x), whenever we see Φi,s(Âi,s;x)↓= 0. If x later enters As,

then either Âi,s must change below the use of the computation Φi,s(Âi,s;x)↓= 0,
or else Ri,j is trivially satisfied.

However, since B̂j is not computable, we face the risk that x later enters As, forcing

some x̂ to enter (or exit) Âi,s′ , but the change in Âi,s′ ∆ B̂j,s′ is later canceled out

when some y enters Bt, causing x̂ to enter (or exit) B̂j,t′ and leaving Âi,s−1∆B̂j,s−1
equal to Âi,t′ ∆ B̂j,t′ on the initial segment used to define Γi,j(Âi ∆ B̂j ;x), despite
the entry of x into A.

Naively, we might hope to simply react to the entry of x̂ into Âi by restraining any
element y from entering Bs that is not above the use of Φj,s(Bs; x̂), so x̂ cannot also

enter B̂j . However, the construction must be allowed to proceed even if Φj(B; x̂)↑,
so we cannot prevent x̂ from entering one or both of Âi and B̂j while it appears

that Φj(B̂j) 6= B or Φi(Âi) 6= A. We can, however, refrain from enumerating any

axioms involving x̂ until it once again appears that Φj(B̂j) = B and Φi(Âi) = A,

so we know whether or not x̂ enters B̂j before enumerating the axiom using the

entry of x̂ into Âi to predict if x enters A.

A further difficulty arises from such an approach. We might repeatedly enumerate
elements xk into A in response to very-low priority requirements, each time restrain-

ing B to prevent x̂k from entering B̂j and thus prevent a high-priority requirement
from every enumerating an element into B. To this end, we choose possible wit-
nesses xk for lower-priority requirements so that if xk′ is enumerated into A or B

after xk with k′ < k then the enumeration of xk′ must produce changes in B̂j or

Âi smaller than the least change produced by xk. Note that we need only ensure
that higher-priority requirements remain free to act after the lower-priority require-
ments as we may allow the higher-priority requirements to injure the lower-priority
requirements.

The net effect of this strategy is to space out candidates for enumeration into A or B
so far, from the point of view of Ri,j , that the least element entering A or B (after

any stage) changes Âi or B̂j below any change allowed by B̂j or Âi, respectively.

3.2. Overview. The construction proceeds as a standard tree argument with Ri,j
(if on the true path) responsible for meeting Ri,j , and PXe responsible for meet-

ing PX
e . We assign the module Ri,j to α if |α| = 3〈〈i, j〉〉, the module PAe to α if

|α| = 3e+ 1 and PBe if |α| = 3e+ 2.

During the construction, each node β will receive an infinite increasing stream of
potential witnesses (balls) from its parent, allowing nodes to control what their
descendants may enumerate. We adopt the following conventions regarding the
motion of balls on our tree during the construction and remind the reader of and/or
augment the standard conventions for a priority tree construction.

Notation 3.2.

COMPUTABILITY AND THE SYMMETRIC DIFFERENCE OPERATOR 5

• T is the tree of strategies (regarded as a subtree of (ω<ω,≺)), and θ, ξ, η, ν
are nodes (elements of ω<ω) in the tree. We denote the immediate prede-
cessor (parent) of θ on the tree by θ−, the root node by 〈〉, and the height
of a node ξ by |ξ| = |{ν | ν ≺ ξ ∧ ν 6= ξ}|. The outcomes of ξ are those

integers x such that ξ ̂ 〈x〉 ∈ T .

• We write ξ <L ν for the relation ξ is left of ν, and ξ ≺L ν for the relation ξ
is left of or extended by ν). By an abuse of notation, we also write x <L y
to indicate that outcome x of ξ is left of outcome y of ξ.

• fs ∈ T is the stagewise approximation to the true path f ∈ [T] with f(n) =
lim infs→∞ fs�(n+ 1) relative to the ordering <L.

• If s = 0 or fs <L θ, we say θ is (re)initialized at s.

• sα (the s-th α stage) is the number of times α has been visited prior to
stage s since it was last initialized. to be the number of times that α has
been visited prior to s. More formally, sα = |{t | ft � α ∧ s0 < t < s}|,
where s0 is the greatest stage less than s at which α is initialized.

• The n-th ball received by β (since it was last initialized) from β− is de-

noted xβn, and we let xβ−1 = −1. Note that we ensure xβn is monotonically
increasing in n.

• If β is initialized, all balls located at β are removed from the tree.

• At the start of stage s > 0, we place ball s at the root, at which point
it is passed down to descendant nodes until it occupies some node or is
permanently discarded from the tree. We assume every time the node β
is visited, it receives a ball from β− larger than any previous ball it has
received, i.e., nodes are not allowed to reorder the balls before passing them
along.

• We diverge slightly from common usage and ensure that ft is always the
least node β � ft such that either tβ = 0 (i,.e., β has not been visited
since it was last initialized) or the module at β chooses not to visit any
outcome. To ensure that f ∈ [T], we ensure that (∃∞s) (fs � β) implies
(∃∞s) (∃β+ � β) (fs � β+).

As discussed above, our construction will need to ensure that if xβn′ is enumerated
into A or B, then higher-priority requirements still remain free to enumerate some
xβn with n < n′. However, we cannot necessarily ensure the reverse, i.e., if xβn is

enumerated into A or B, we remain free to also use some already considered xβn′ .
To ensure that after the entry of xβn into A or B we can select new witnesses for
lower-priority requirements, we maintain the following ordering condition.

Condition 3.1. If x is placed into either A or B at stage s, then any y > x placed
on the tree before stage s is removed from the tree by the end of stage s.

As balls arrive at nodes in a monotonically increasing fashion, this condition is
equivalent to demanding that the m-th ball xβm received by β cannot be placed

6 ANDREWS, GERDES, LEMPP, MILLER, AND SCHWEBER

into A or B after the n-th ball xβn if m > n and the m-th ball was already defined
when the n-th ball was placed.

We will also maintain a version of the standard condition for tree arguments ensur-
ing that only descendant nodes can potentially inflict injury.

Condition 3.2. Suppose that α ≺ β or β <L α, and that α enumerates x into
either A or B at stage s. Then either x > sβ , or β is initialized before being visited
again.

Provided that a node β only examines sβ steps of any computation, the module
at β can assume that the only nodes which may have disrupted previously observed
computations are descendants of β.

3.3. PXe . We now describe the behavior of the module PXe when assigned to node α
on the assumption that α is active at stage s. Here we let X denote either A or B,
and we let Y denote the other, i.e., if X = A then Y = B and vice versa.

The module PXe has two outcomes pw ∈ Xq<Lpw /∈ Xq. We describe the behavior
of this module by considering the following cases.

Case sα = 0: This is the first time this node is being executed since it was last
initialized. Set w = xα0 claiming the first ball passed from α− as a potential
witness and select outcome pw /∈ Xq (which will not be visited at this stage).
Take no other action.

Case sα > 0: We consider the following subcases.

Case w ∈ Xs: Set the outcome to pw ∈ Xq and pass any balls received at

this stage to α ̂ pw ∈ Xq.
Case w /∈ Xs: We consider the following subcases.

Case Φe,sα(Ys;w) 6= Xs(w): Set the outcome to pw /∈ Xq and pass any

balls received at this stage to α ̂ pw /∈ Xq.

Case Φe,sα(Ys;w)↓= Xs(w): Note that this only occurs if Xs(w) = 0
since we hold w out of X as long as α remains on the tree. In this
case, we enumerate w into X, change the outcome to pw ∈ Xq, and

pass any balls received at this stage to α ̂ pw ∈ Xq.
3.4. Ri,j. We now describe the behavior of theRi,j when assigned to node α, where
|α| = 3〈〈i, j〉〉. This module has two outcomes, pΓq <L p6=q. The left outcome

corresponds to a guess that Φi(Â
α) = A ∧ Φj(B̂

α) = B, requiring us to build a

functional Γα(Âα ∆ B̂α) =∗ A⊕B, where

Âαs (z) =

{
↑ if (∃y < z)Âαs (y)↑ ,
Φi,sα(As; z) otherwise.

and likewise for B with i replaced by j. The right outcome corresponds to a guess

that Ri,j is trivially satisfied as Φi(Â
α) 6= A∨Φj(B̂

α) 6= B. Note that whenever α
is initialized, we abandon our construction of Γα and start from scratch. We will
define Γi,j to be Γα for whatever α is on the true path and implements Ri,j .

COMPUTABILITY AND THE SYMMETRIC DIFFERENCE OPERATOR 7

To describe the behavior of Ri,j , we adopt the following notation.

(3.1) eX =

{
i if X = A

j if X = B

Using the convention that the use of a nonconvergent computation is taken to be∞,
as is the use of a functional evaluated at ∞, we now define:

yαs = xβsβ−1 where β = α ̂ 〈pΓq〉
l̂Xα (s) = max

{
x | [∀y < x]

(
ΦeX ,sα(X̂α

s ;x) = Xs(x)
)}

l̂α(s) = min{̂lAα (s), l̂Bα (s)}

uXα (x, s) = max
z<x

u
[
ΦeX ,sα(X̂α

s ; z)
]

uα(x, s) = max{uAα (x, s), uBα (x, s)}
ûXα (x, s) = max

z<x
u [ΦeX ,sα(Xs; z)]

ûα(x, s) = max{ûAα (x, s), ûBα (x, s)}
r̂Xα (s) = uXα (yαs + 1, s)

r̂α(s) = max{̂rAα (s), r̂Bα (s)}
rα(s) = ûα(̂rα(s), s)

(3.2)

Note that yαs is the last ball passed along to the outcome Γ (or equals −1 if no

such ball has yet been passed) and that l̂α(s) measures the (minimum of) the

lengths of agreement of Φi(Â
α
s) with A and of Φj(B̂

α
s) with B. The functions

uα(x, s) and ûα(x, s) capture the uses of the computations of the unhatted sets
from the hatted sets, and of the hatted sets from the unhatted sets, respectively.
The value r̂α(s) gives a bound (when we have agreement past yαs) on the hatted use

of (A(yαs) and B(yαs). Thus, whenever l̂α(s) > yαs , the computations of As and Bs
up through yαs from their hatted counterparts are preserved as long as neither As
or Bs are changed below rα(s). The strategy for Ri,j is to ensure that the next ball

that could enter A or B is above rα(s). Thus, should yαs enter A, then Âαs must

change on r̂α(s), while B̂αs is preserved unmodified on r̂α(s) (or vice versa with B).

Suppose that α is active at stage s and thus receives ball xαsα . We consider the
following cases (but don’t presume all cases are necessarily inhabited).

Case sα = 0: Discard xα0 from the tree and end execution. This is the first time α
has been visited since last being initialized, so we need not specify an outcome.

Case sα = 1: Set the outcome to pΓq and pass xα1 along to α ̂ 〈pΓq〉.
Case sα > 1: Execution is broken up into the following subcases:

Case xαsα ≤ rα(s) ∨ l̂α(s) ≤ yαs : Select outcome p6=q and pass xαsα to this
outcome.

Case xαsα > rα(s) ∧ l̂α(s) > yαs : In this case, it appears that Φi(Â
α) = A

and Φj(B̂
α) = B, forcing us to build Γα, so we must perform all of the

following actions:

8 ANDREWS, GERDES, LEMPP, MILLER, AND SCHWEBER

(1) Set the outcome to pΓq and pass xαsα along to α ̂ 〈pΓq〉.
(2) For any x ∈ As ⊕Bs, enumerate the axiom Γα(〈〉;x) = 1.

(3) For any ball x that has been removed from the tree without being
enumerated into A (or B), enumerate the axiom Γα(〈〉; 2x) = 0 (or
Γα(〈〉; 2x + 1) = 0, respectively). (Recall here that 2x ∈ A ⊕ B iff
x ∈ A, and 2x+ 1 ∈ A⊕B iff x ∈ B.)

(4) If the ball yαs remains on the tree at the end of this stage for k = 0, 1

enumerate the axiom Γα(Âαs �r̂α(s) ∆B̂αs �r̂α(s) ; 2x+k) = 0 Note that

r̂α(s) < rα(s) <∞ (remember that we assume y < u [Φi(X; y)].

3.5. Verification. We begin by verifying that the conditions mentioned above are
satisfied.

Lemma 3.1. Condition 3.1 is satisfied.

Proof. Given that nodes pass on balls in ascending order and only to their active
outcome, it follows that if x and y are located at α and β, respectively, and α<L β,
then x < y. The remainder of the claim follows from the fact that nodes of the
form PXe only hold on to the least ball they see and move to their (previously
unvisited) leftmost outcome when enumerating that element. �

Lemma 3.2. Condition 3.2 is satisfied.

Proof. Suppose that α enumerates an element x into A or B at stage s.

If α ≺ β, then (absent initialization) the outcome of α permanently shifts to the left
of any outcomes visited previously (since last initialization). Any β � α is either
initialized at s or satisfies sβ = 0 < x (and 0 is never used by any node).

If β<Lα, then let t < s be the last stage before s at which β was visited (or 0 if there
is no such stage). As α is initialized at t, if follows that x ≥ t + 1 > t ≥ tβ = sβ ,
where the last equality holds as β is not visited in (t, s]. �

We are now in a position to argue that should Ri,j not be trivially satisfied, then
we take the left outcome of module Ri,j .

Lemma 3.3. Suppose α ≺ f implements Ri,j, Φi(Â
α) = A, and Φj(B̂

α) = B.

Then α ̂ 〈pΓq〉 ≺ f .

Proof. Suppose not, and let s0 be the last stage at which α ̂ 〈pΓq〉 is visited.

Choose s large enough so that l̂α(s) > yαs0+1 , l = ûα(uα(yαs0+1, s), s) is finite,

A�l = As�l, and Bs�l = B�l. Note that our assumption that Φi(Â
α) = A and

Φj(B̂
α) = B ensures such l and s exist.

Now let s′ > s be a stage at which α is visited and receives a ball xαs′α > l.

Since α ̂ 〈pΓq〉 is not visited subsequent to s0, it follows that yαs0+1 = yαs′ . Hence

COMPUTABILITY AND THE SYMMETRIC DIFFERENCE OPERATOR 9

l̂α(s′) > yαs′ and xαs′α > l = ûα(uα(yαs′ , s), s) = rα(s′). By construction, we have

fs′ � α ̂ 〈pΓq〉, a contradiction. �

Lemma 3.4. Suppose that α implements Ri,j and α+ = α ̂ 〈pΓq〉 is visited at

stage s. If w ≤ rα(s) enters A or B at stage t ≥ s, then w = xα
+

m for some m < sα,
provided α has not been initialized during [s, t].

Note that we will usually invoke this to show that if no xα
+

m with m < sα has been
enumerated into A or B, then the construction respects the constraint rα(s).

Proof. By hypothesis, α is not initialized on [s, t]. Thus, no node θ <L α can
enumerate any w ≤ rα(s). As rα(s) ≤ sα, by Condition 3.2, only nodes β � α can
enumerate such w. At stage s, no balls occupy any node to the right of α+, and if w
is placed on the tree after stage s, then (by the conditions required to visit outcome
pΓq) w > xαsα > rα(s). Thus, the only candidates for such w must already occupy

a node θ � α+. Thus, w = xα
+

m for m < sα, proving the claim. �

Lemma 3.5. Suppose that α implements Ri,j. Then for X = A,B and s < t ≤ ∞:

(1) If Xs�rα(s) = Xt�rα(s), then X̂α
s �r̂α(s) = X̂α

t �r̂α(s). Furthermore, r̂α(s) ≤
r̂α(t).

(2) If X̂α
s �r̂α(s) = X̂α

t �r̂α(s) and α ̂ 〈pΓq〉 is visited at stage s, then we have
Xs�yαs+1 = Xt�yαs+1.

Proof. (1) Note that the claim is trivially satisfied if rα(s) =∞, so we may assume
otherwise. The claim now follows immediately from unpacking the definitions. The
“Furthermore” clause follows from the fact that yαs ≤ yαt and that the claim just
established ensures that uα(yαs + 1, s) = uα(yαs + 1, t) ≤ uα(yαt + 1, t).

(2) This follows by similarly unpacking the definition of r̂α(s), provided r̂α(s) <∞.

This is guaranteed by the fact that α ̂ 〈pΓq〉 is visited at stage s, so l̂α(s) > yαs . �

Lemma 3.6. Suppose that α implements Ri,j and α+ = α ̂ 〈pΓq〉 ≺ f . Then

Γα(Âα ∆ B̂α) =∗ A⊕B.

Proof. We first show that for almost every z, we enumerate an axiom that commits

us to Γα(Âα ∆ B̂α; z) = (A⊕B)(z).

If x is eventually removed from T (including by being enumerated into either A

or B), then α+ is visited after this occurs, so we commit to Γα(Âα ∆ B̂α; 2x) =

(A⊕B)(2x) and Γα(Âα ∆ B̂α; 2x+ 1) = (A⊕B)(2x+ 1).

If x is not eventually removed from T, then x eventually settles at some node γ.
Only finitely many balls settle at nodes where γ <L α

+ or γ ≺ α+, and if α+ <L γ
then x is eventually removed from the tree. Thus, to establish the above claim, we
need only show that if x permanently settles at some γ � α+, then we enumerate

axioms committing us to Γα(Âα ∆ B̂α; 2x) = Γα(Âα ∆ B̂α; 2x+ 1) = 0.

10 ANDREWS, GERDES, LEMPP, MILLER, AND SCHWEBER

If x settles at γ � α+, then x is passed to α+ at some stage s. As α+ ≺ f , at some

later stage s′, we visit α+ and enumerate the axioms Γα(Âαs′�l ∆B̂
α
s′�l ; 2x) = 0 and

Γα(Âαs′�l ∆B̂
α
s′�l ; 2x+ 1) = 0, where l = uα(x, s′).

Note that as x remains on T permanently, α cannot be initialized after s and, by

Condition 3.1 applied to x = xα
+

sα , no xα
+

m with m < sα can leave the tree. Thus,
as s′α − 1 = sα, Lemma 3.4 applied to stage s′ lets us conclude for X = A,B
that Xs′�rα(s′) = X�rα(s′). Therefore, by Lemma 3.5 applied to both A,B, we have

Âαs′�l ∆B̂
α
s′�l = Âα�l ∆B̂α�l, establishing that for almost every z, we enumerate an

appropriate axiom.

To finish the proof, we must also verify that Γα is well-defined, i.e., all axioms

compatible with Âα ∆ B̂α specifying a value for Γα(Âα ∆ B̂α; z) give the same
value. Since a ball’s disposition is final once it is removed from the tree, it is
enough to show that axioms enumerated about balls while they are on the tree are
rendered inapplicable if those balls later enter A or B.

Assume that x = yαs and that at stage s, x remains on the tree and we visit α+ and

enumerate axioms making the commitments Γα(Âαs �r̂α(s) ∆B̂αs �r̂α(s) ; 2x) = 0 and

Γα(Âαs �r̂α(s) ∆B̂αs �r̂α(s) ; 2x+1) = 0, where r̂α(s) = uα(yαs +1, s). As this is the only
scenario in which we enumerate axioms about x before seeing its final disposition,

it is enough to show that if x later enters A or B, then Âαs �r̂α(s) ∆B̂αs �r̂α(s) 6=
Âα�r̂α(s) ∆B̂α�r̂α(s). Note that we may assume that α is not initialized after stage s
since that resets Γα and discards the axioms.

Let y be the least element enumerated into either A or B at some stage ty > s.
Without loss of generality, we may assume that y is enumerated into A. As y ≤
x < rα(s), by Lemma 3.4, we know that y = xα

+

tα−1 for some stage t ≤ s at which

α+ was visited. By Lemma 3.1, no xα
+

n with n ≤ tα− 1 is enumerated into A or B
in the interval [t, ty). By the minimality of y and fact that it is not enumerated
into B, we may extend this to [t,∞) in the case of B. By Lemma 3.4, we can infer
that Bt�rα(t) = Bs�rα(t) = B and At�rα(t) = As�rα(t). Moreover, Lemma 3.5 gives

us that B̂αt �r̂α(t) = B̂αs �r̂α(t) = B̂α, Âαt �r̂α(t) = Âαs �r̂α(t), and r̂α(t) ≤ r̂α(s).

Since we visit α+ at stage t, we must have l̂α(t) > y. Thus Φi,tα(Âαt ; y)↓= 0.

Let t′ > ty be the least stage at which we visit α+. Hence l̂α(t′) > y, ensuring

Φi,t′α(Âαt′ ; y)↓= 1. Since u
[
Φi,tα(Âαt ; y)

]
< r̂α(t) and u

[
Φi,t′α(Âαt′ ; y)

]
< r̂α(t′), if

l = min{̂rα(t), r̂α(t′)}, then Âαt′�l 6= Âαt �l = Âαs �l.

Now, by Lemma 3.4, if w ≤ rα(t′) and w enters A after stage t′, then w = xα
+

m for
some m < t′α. However, if m < tα − 1, then w would be less than y, contradicting
the minimality of y, and, by Lemma 3.1, we know that, if tα − 1 ≤ m < t′α, then

xα
+

m has already been removed from the tree. Therefore, At′�rα(t′) = A�rα(t′) and

by Lemma 3.5, we can infer Âαt′�r̂α(t′) = Âα�r̂α(t′).

Putting these results together, we have Âαs �l 6= Âαt′�l = Âα�l but B̂αs �l = B̂α�l. This
gives us the desired change in only one side of the symmetric difference, letting us

conclude that Âαs �l ∆B̂
α
s 6= Âα�l ∆B̂α. Finally, as l ≤ r̂α(t) ≤ r̂α(s), this suffices to

COMPUTABILITY AND THE SYMMETRIC DIFFERENCE OPERATOR 11

show that the axioms enumerated at stage s for Γα are not applicable to Âα ∆ B̂α,
completing the proof. �

We are now in a position to prove the theorem claimed above:

Theorem 1. There are (Turing) incomparable r.e. sets A and B such that for

any Â and B̂ with Â ≡T A and B̂ ≡T B, we have Â∆ B̂ ≡T A⊕B.

Proof. We first note that if α ≺ f and α implements PXe , then we satisfy PX
e .

Suppose s0 is the last stage at which α is initialized and (without loss of generality)

X = A. The claim is clearly true if α ̂ 〈pw /∈ Aq〉 is along the true path, since
then, for all stages s > s0 at which α is active, Φe,sα(Ys;w) 6= Xs(w), and thus
Φe(Y ;w) 6= X(w). So suppose that at some stage s > s0, α is active and we see
Φe,sα(Ys;w)↓= Xs(w) = 0. At this stage, we enumerate w into X and remove
all balls currently at nodes γ � α from the tree. As in a standard priority tree
argument, if any node γ ≺ α enumerated some element y < sα into Y at some
stage t ≥ s, then α would be initialized at t, contrary to assumption. As all balls b
placed on the tree at stage s or later satisfy b ≥ s > sα and no node to the left of α
is visited after stage s, it follows that Ys�sα = Y �sα . Thus, Φe(Y ;w) 6= X(w).

To verify that Ri,j is satisfied, we find α ≺ f implementing Ri,j . By Lemma 3.3,

if α ̂ 〈p6=q〉 ≺ f , then either Φi(B̂j) 6= B or Φi(Âi) 6= A, trivially satisfying Ri,j .

If instead, α+ ≺ f , then Lemma 3.6 guarantees that we build a functional Γα
such that Γα(Âi ∆ B̂j) =∗ A ⊕ B. Patching Γα in finitely many places gives us a
functional Γi,j witnessing the satisfaction of Ri,j . �

Corollary 1.1. Theorem 1 can be strengthened to make the degrees of A and B a
minimal pair.

Proof. The finitary actions of the modules PAe and PBe pose no threat to the usual
minimal pair strategy of continually extending the mutual length of the computa-
tion of some set C from A and B while alternatingly offering A or B the chance to
interfere with the computations from C but never both at the same time. �

Corollary 1.2. Theorem 1 and even Corollary 1.1 can be strengthened to make
the degrees of A and B low.

Proof. Despite the uneasy fit between priority trees and lowness requirements, we
can achieve this simply by adding modules NX

e for X = A,B, implementing the
usual strategy of freezing the existing computation when they observe Φe,s(Xs; e)↓.
This is accomplished via the simple expedient of selecting the right outcome as long
as Φe,s(Xs; e)↑ and moving to the left outcome when they observe Φe,s(Xs; e)↓.

This is complicated by the priority tree which, in the general case, might allow
the module NX

e located at α to observe Φe,s(Xs; e)↓ infinitely often only for the
approximation to the true path to pass to the left of α and injure this computation.

12 ANDREWS, GERDES, LEMPP, MILLER, AND SCHWEBER

However, we can replace the incompatibility requirements given above with the
even simpler requirements.

A 6= WePA
e :

B 6= WePB
e :

Using these requirements, we may allow the node β implementing PXe to retain
a memory of whether or not they have acted, even through initialization. With
this modification, once β has enumerated w into X, it never again, even after
initialization, holds a ball and always selects outcome pw ∈ Xq.

Since some priority tree constructions of minimal pairs ([So87]) allow ω-branching
nodes, we must take some care in placing our modules on the tree so that only
boundedly many nodes β′ implementing PXi for some i occur below some β imple-
menting NX

e . Together, this ensures that we only see Φe,s(Xs; e) converge finitely
many times before permanently preserving this computation. This is enough to
make A and B low.

Specifically, we can assign nodes as follows to satisfy the criterion given above.
Given β, let

ν(β) = Σn<|β| max{0, β(n)− 1},
where

[∀α]
(
α ̂ 〈n〉<L α ̂ 〈m〉 ⇐⇒ n < m

)
.

If ν(β) > 2e∨|β| > 2e then assign NX
i to β for the least i ≤ e with NX

i not assigned
to β′ ≺ β (trying X = A first and then X = B) and assign the remaining modules
in the normal order at those nodes not occupied by a module of the form NX

e . This
ensures that for each e, there is a finite set of β′ such that β′ implements a module
of the form PXi and β′ isn’t above some β implementing NX

i . �

4. A Stronger Condition

The property that drew our attention to the symmetric difference is that if C =
A0 ∆B0 with A0 ≡T A and B0 ≡T B then A⊕ C ≥T B and B ⊕ C ≥T A. Thus,
a natural question is whether we can extend the result above to all such C.

Theorem 2. There are (Turing) incomparable r.e. sets A and B such that for any
C ≤T A⊕B with A⊕ C ≥T B and B ⊕ C ≥T A, we have C ≡T A⊕B.

Our approach to this theorem is essentially the same as above except that we replace
the requirement Ri,j by the following requirement (for all C ⊂ ω) :

Φi(A⊕ C) = B ∧ Φj(B ⊕ C) = A ∧ Φk(A⊕B) = CSi,j,k:

=⇒ Γi,j,k(C) = A⊕B
We adopt the same assignment of nodes to modules as before but assign Si,j,k to

the node α with |α| = 3〈〈i, j, k〉〉 instead of the module Ri,j with |α| = 3〈〈i, j〉〉.

As before we will ensure that our potential witnesses are spaced out so that if xk
enters A or B then it must result in some change in C below the least change caused
by some xk′ with k′ > k. Like Ri,j the module tasked with satisfying Si,j,k will
delay changing to outcome pΓq until we have seen enough convergence to ensure

COMPUTABILITY AND THE SYMMETRIC DIFFERENCE OPERATOR 13

the desired ordering property. Note that we can continue to supply elements to
the outcome p 6=q since, when we see sufficient agreement to guarantee the ordering
property, all balls passed to the right are removed from the tree.

We only define our functionals Γα when we visit the outcome pΓq where, thanks
to the ordering property, we can be sure that (absent injury) the commitments we
make at some node α trying to meet Si,j,k are consistent.

4.1. Module Si,j,k. We now formally describe the action of Si,j,k when assigned to

node α (so that |α| = 3〈〈i, j, k〉〉). As in our description of Ri,j in Section 3.4, this
module has two outcomes pΓq <L p6=q. The left outcome corresponds to a guess
that there is some set C = Φk(A⊕B) satisfying Φi(A⊕C) = B and Φj(B⊕C) = A,
requiring us to build a functional Γi,j,k(C) = A⊕B. The right outcome corresponds
to a guess that Si,j,k is trivially satisfied either because Φk(A ⊕ B) is partial,

Φi(A⊕ C) 6= B or Φj(B ⊕ C) 6= A. The basic operation of this module will mimic
that described in Section 3.4 for Ri,j ; however, we must redefine several of the
functions used in that argument and include the rest for completeness.

Cαs (y) =

{
↑ if ∃(x < y) (Cαs (x)↑) ,

Φk,sα(As ⊕Bs; y) otherwise,

X̂α
s (z) =

↑ if (∃y < z)X̂α

s (y)↑ ,
Φi,sα(Xs; z) otherwise, if X = A,

Φj,sα(Xs; z) otherwise, if X = B,

yαs = xβsβ−1 where β = α ̂ 〈pΓq〉,
l̂α(s) = max{x | [∀y < x] (Φi,sα(Aαs ⊕ Cαs ;x) = Bs(x) ∧

Φj,sα(Bαs ⊕ Cαs ;x) = As(x))},

uα(x, s) = max

{⌊
u [Φi,sα(Aαs ⊕ Cαs ; z)]

2

⌋
,

⌊
u [Φj,sα(Bαs ⊕ Cαs ; z)]

2

⌋}
+ 1,

ûα(x, s) = max
z<x

⌊
u [Φk,sα(As ⊕Bs; z)]

2

⌋
+ 1,

r̂α(s) = uα(yαs + 1, s),

rα(s) = max{ûα(̂rα(s), s), r̂α(s)}.

Note that these definitions have been modified so that the same basic relationship
as in Section 3.4 is maintained. As before yαs represents the last ball that was

passed to the left. If l̂α(s) > yαs and yαs is placed into As but no other balls below
rα(s) are placed into Bs, then a change in Cs below r̂α(s) must be observed, or the
requirement will be trivially satisfied.

Suppose that α is active at stage s and thus receives ball xαsα . We consider the
following cases:

Case sα = 0: Discard xα0 from the tree and end execution. This is the first time α
has been visited since last being initialized, so we need not specify an outcome.

Case sα = 1: Set the outcome to pΓq and pass xα1 along to α ̂ 〈pΓq〉.
Case sα > 1: Execution is broken up into the following subcases:

14 ANDREWS, GERDES, LEMPP, MILLER, AND SCHWEBER

Case xαsα ≤ rα(s) ∨ l̂α(s) ≤ yαs : Select outcome p 6=q and pass xαsα to this
outcome.

Case xαsα > rα(s) ∧ l̂α(s) > yαs : Then it appears that Φi(A⊕Cα) = B and
Φj(B ⊕ Cα) = A, forcing us to build Γα, so we must perform all of the
following actions:

(1) Set the outcome to pΓq and pass xαsα along to α ̂ 〈pΓq〉.
(2) For any x ∈ As ⊕Bs, enumerate the axiom Γα(〈〉;x) = 1.

(3) For any ball x that has been removed from the tree without being
enumerated into A (or B), enumerate the axiom Γi,j(〈〉; 2x) = 0 (or
Γα(〈〉; 2x+ 1) = 0, respectively). Recall that 2x ∈ A⊕B iff x ∈ A,
and 2x+ 1 ∈ A⊕B iff x ∈ B.

(4) If the ball yαs remains on the tree at the end of this stage, enumerate
the axioms Γα(Cαs �r̂α(s) ; 2x) = 0 and Γα(Cαs �r̂α(s) ; 2x+1) = 0. Note

that r̂α(s) < rα(s) <∞.

4.2. Verification. The proof of Theorem 2 merely repeats the argument given in
the proof of Theorem 1, but with the definitions from Section 4.1 used in place of
those from Section 3.4.

We even note that both corollaries can be strengthened in exactly the same manner
to yield the following results.

Corollary 2.1. Theorem 2 can be strengthened to make the degrees of A and B a
minimal pair.

Corollary 2.2. Theorem 2 and even Corollary 2.1 can be strengthened to make
the degrees of A and B low.

5. A Stronger Condition?

The similarity of the proofs that we used in the preceding sections—indeed, a
similarity so strong that we omitted the bulk of the second proof—naturally raises

the question of whether the condition that if Â ≡T A and B̂ ≡T B then Â∆ B̂ ≡T

A⊕B actually guarantees that every C ≤T A⊕B with A⊕C ≥T B and B⊕C ≥T A
also satisfies C ≡T A ⊕ B. We now demonstrate that this is not the case, even in
the r.e. degrees.

Theorem 3. There are r.e. sets A, B and C with A |T B and C ≤T A⊕ B such

that for any Â and B̂ with Â ≡T A and B̂ ≡T B, we have Â ∆ B̂ ≡T A ⊕ B;
however, we also have A⊕ C ≥T B and B ⊕ C ≥T A but C �T A⊕B.

We prove this theorem by building A, B and C along with explicit computations
Ξ(A⊕B) = C, Υ1(A⊕C) = B, and Υ2(B ⊕C) = A, while satisfying the require-
ments from Section 3 along with a new requirement Qi, ensuring that C does not

COMPUTABILITY AND THE SYMMETRIC DIFFERENCE OPERATOR 15

compute A⊕B.

Φe(A) 6= BPA
e :

Φe(B) 6= APB
e :

Φi(Âi) = A ∧ Φj(B̂j) = B =⇒ Γi,j(Âi ∆ B̂j) = A⊕BRi,j :

Φi(C) 6= A×BQi:

As above, each requirement has an associated module responsible for meeting it,
and we assign modules to nodes based on the height of the node on the tree.
In particular, if |β| = 4i + 3, then β implements Qi; if |β| = 4〈〈i, j〉〉, then β
implements Ri,j ; if |β| = 4e+ 1, then β implements PAe ; and if |β| = 4e+ 2, then β

implements PBe .

The basic approach here will be to take advantage of the fact that the requirements
for Theorem 1 look at computations from A and B in isolation, while those for
Theorem 2 look at a computation from A ⊕ B. Thus, given some ball x0 for
potential enumeration into A or B, we seek to meet Ri,j while permitting both A

and B to change without changing C. We first wait to observe As compute Â on

a sufficiently long initial segment to freeze u
[
Φi(Â;x0)

]
and enumerate a small

element into B and thereby C, pushing up the use of both Υ1(As ⊕ Cs;x0) and
Υ2(Bs ⊕ Cs;x0) above that of the frozen initial segment of A. By repeating this
trick (alternating between A and B), we become free to pick some x1 above the
region of A and B that we must freeze to meet Ri,j , but below the A- and B-uses of
Υ1(As⊕Cs;x0) and Υ2(Bs⊕Cs;x0). This allows us to enumerate x0 into A and x1
into B without changing C, opening up the opportunity for a diagonalization. This
approach of enumerating x0 into A and x1 into B makes it easier to formulate the
requirement Qi as a condition about the ability of C to compute A×B than directly
as a condition about computing A⊕B, though it obviously entails the latter.

As in Section 3, we build A and B as recursively enumerable sets and let C contain
all balls enumerated into either A or B by the modules PXe and Ri,j . We will

ensure that if β implements either Ri,j or PXe and β is visited at stage s, then C
can determine if the left outcome of β is visited after stage s and, in turn, the motion
of balls through these nodes. We will also ensure that if a node β implementing Qi
is visited infinitely often, then either A or B can determine if the left outcome of β
is ever visited and thus the final disposition of the balls occupying β. Inductively,
this will ensure that A⊕C and B ⊕C can determine the eventual fate of any ball,
ensuring A ⊕ C ≡T B ⊕ C ≡T A ⊕ B. By the strategy outlined in the previous
paragraph, we may allow enumerations of pairs ai into A and bi into B by Qi
without changing C, thus allowing Qi to be met.

The operation of PXe remains unchanged, except only that balls enumerated into
either A or B are also enumerated into C. However, the operation of Ri,j requires
some adjustment.

5.1. Module Ri,j. Given α with |α| = 4〈〈i, j〉〉, we implement Ri,j at α. This
module has the same two outcomes pΓq<L p6=q as it did in Section 3.4, and we will
make use of the same functions defined in Equation (3.2), which we will augment

16 ANDREWS, GERDES, LEMPP, MILLER, AND SCHWEBER

by the following definition:

(5.1) rXα (s) = ûXα (̂rα(s), s)

Suppose that α is active at stage s and thus receives ball xαsα . The basic operation
of the module remains the same as in Section 3.4, with one main difference. Rather
than working jointly to find sufficiently long regions of A and B to freeze, we
alternate between A and B so that we may enumerate elements into the other set
to convey our progress.

We first ensure that we pass at least one element to outcome p6=q at each round

and then wait until we see a computation from Âαs , correctly predicting As up
through yαs , and freeze the computation while enumerating an element into B to
flag this progress.

We now wait until we see a computation from B̂αs , correctly predicting Bs up

through yαs , and for B̂αs to be defined on the initial segment Âα used for its com-
putation. We enumerate an element into A (above the frozen computations) and

freeze a sufficiently long segment of B (i.e., up to rBα (s)) to preserve B̂αs on both
uses (i.e., up to r̂α(s)). Note that rBα (s) is infinite until all necessary computations
converge.

Finally, we switch back to A and wait until Âαs is defined on the initial segment

used by B̂αs to compute B up through yαs . At this point, we enumerate an element
into B (larger than the use of the B-computations being preserved) and preserve
both A and B on a sufficiently long initial segment, rα(s). We then visit outcome
pΓq and pass a ball larger than rα(s) to the nodes below it.

Ultimately, this process ensures that the balls passed along to α ̂ 〈pΓq〉 have the
same properties as they did in Theorem 1, while allowing C (since all balls enumer-

ated into A or B by Ri,j enter C) to determine whether α ̂ 〈pΓq〉 is ever visited
again if α is visited again.

We now describe the behavior of this module more precisely by breaking up its
operation into several states, A0, B0, A1, A ∗0 , B∗0 , A ∗1 and G and use the notation
that s ∈ I to indicate that at the start of stage s, the module is in state I. We further
simplify the description of the module’s operation by naming common actions that
will be taken by the module. Note that the informal description above captures the
real content of the action of this module, but the additional complexity is required
to ensure that we do not retain later balls while enumerating earlier balls into A
or B, thereby violating Condition 3.1.

Action I: Select no outcome, discard xαsα from the tree, visit no descendant nodes
and initialize all nodes extending p 6=q.

Action F : Select outcome p6=q and pass xαsα to this outcome.

Note that we can think of Action I as one step towards the infinitary outcome pΓq,
and Action F as the action that is performed if we believe the finitary outcome to
be true.

Case sα = 0: Remove xα0 from the tree and end execution. This is the first time α
has been visited since last being initialized, so we need not specify an outcome.

COMPUTABILITY AND THE SYMMETRIC DIFFERENCE OPERATOR 17

Case sα = 1: Set the outcome to pΓq and pass xα1 along to α ̂ 〈pΓq〉. Enter
state A ∗0 .

Case s ∈X ∗
i : Set w = xαsα and hold for future use. Take action I and enter

state Xi.

Case s ∈ A0: If α was not in state A0 last time it was visited, then take action F .

Otherwise, check if xαsα > rAα (s) and l̂Aα (s) > yαs . If so, then take action I,
enumerate w into B and enter state B∗0 . Otherwise, take action F .

Case s ∈ B0: Check if xαsα > rBα (s) and l̂Bα (s) > yαs . If so, then take action I,
enumerate w into A and enter state A ∗1 . Otherwise, take action F .

Case s ∈ A1: Check if xαsα > rα(s) and l̂α(s) > yαs . If so, then take action I,
enumerate w into B and enter state G . Otherwise, take action F .

Case s ∈ G : In this case, we enter state A ∗0 and perform all the actions from the
final case in Section 3.4, i.e., select outcome pΓq, pass xαsα down to the child
node for that outcome, and enumerate the appropriate axioms for Γα.

Note that if the nodes extending outcome p6=q are initialized infinitely many times,
then we visit pΓq infinitely often. Moreover, if α is visited infinitely often, then we
visit a descendant of α infinitely often. Thus, the basic structure of the priority
tree argument remains intact (we can regard the stages where we initialize the
nodes extending p6=q as visiting another outcome between pΓq and p6=q which does
nothing).

5.2. Module Qi. Given α with |α| = 4i+ 3, we implement Qi at α. This module
has two outcomes, pw ∈ A×Bq <L pw /∈ A×Bq. Suppose we visit α at stage s.
Then this module proceeds as follows.

Case sα = 0: Let a = xα0 and hold this ball for later use. Specify no outcome
and execute no descendant nodes.

Case sα = 1: Let b = xα1 , and hold this ball for later use. Also let w = 〈〈a, b〉〉.
Specify no outcome and execute no descendant nodes.

Case sα > 1 ∧ w ∈ As ×Bs : Specify outcome pw ∈ A×Bq and pass xαs along
to that outcome.

Case sα > 1 ∧ w /∈ As ×Bs : Consider the following subcases.

Case Φi,sα(Cs; 2a)↑ or Φi,sα(Cs; 2a)↓= 1: Specify outcome pw /∈ A×Bq
and pass xαs along to that outcome.

Case Φi,sα(Cs; 2a)↓= 0: Place a, b into A,B, respectively, and set the out-
come to pw ∈ A×Bq.

5.3. Verification. We first check that the conditions we specified in Section 3.2
are still maintained.

Condition 3.1. If x is placed into either A or B at stage s, then any y > x placed
on the tree before stage s is removed from the tree by the end of stage s.

Lemma 5.1. Condition 3.1 is maintained in this construction.

18 ANDREWS, GERDES, LEMPP, MILLER, AND SCHWEBER

Proof. Assume, for a contradiction, that α is the ≺L-least node to violate the
condition. That is, α holds on to some ball w at some stage s0, and either

(1) w remains on the tree after stage s1 while some β enumerates some w− < w
into A or B, or

(2) w is enumerated into A or B at s1 while w+ > w remains on the tree at
some node β.

If α <L β, then any w− enumerated by β would be greater than w, and if α � fs1 ,
then β is initialized and cannot retain any w+ > w. Thus α≮L β. If β<Lα, then β
would violate the minimality condition on α. Thus we may assume, by minimality
of α, that α ≺ β.

Suppose that α implements either Qi or PXe . Since neither module passes any balls
to descendants before stage s0 (i.e., before reserving any balls it will use), no β � α
receives any ball w− < w and thus cannot satisfy case 1 above. Furthermore, as
both modules Qi and PXe visit a previously unvisited left outcome at any stage at
which they enumerate a ball into A or B, the action of the tree removes w+ > w
at nodes β � α from the tree.

Thus α must implement Ri,j . Note that Ri,j only visits outcome p6=q while holding
a ball and thus in the interval [s0, s1]. As the nodes below the outcome p6=q are
initialized at stage s0, any ball enumerated into A or B by any β � α in the
interval [s0, s1] must be larger than w. Thus, we must fall under case 2 above, and
thus (for w to be enumerated into A or B), the nodes below the outcome p 6=q are
initialized at stage s1. Hence, no ball w+ > w remains at a node β � α after w is
enumerated.

As α must implement one of the modules Qi, PXe or Ri,j , this establishes the
desired contradiction. �

We must also show that our second condition still holds.

Condition 3.2. Suppose that α ≺ β or β <L α, and that α enumerates x into
either A or B at stage s. Then either x > sβ , or β is initialized before being visited
again.

Lemma 5.2. Condition 3.2 is satisfied.

Proof. The argument given in Lemma 3.2 remains valid regarding the case where
β <L α, and when α ≺ β, its reasoning still applies when α implements PXe and,
indeed, also applies when α implements Qi. However, we must supplement this
argument by also considering the new case whereRi,j enumerates an element into A
or B.

Assume α ≺ β, α implements Ri,j , and at some stage s, α enumerates w into A

or B. If β � α ̂ 〈p6=q〉, then β is initialized at s, satisfying the condition. Thus,

assume β � α ̂ 〈pΓq〉.
For some earlier stage s0 < s, w is received by α. As balls are received in order,
and 0 is not used, at most w − 1 balls can have been passed to outcome pΓq by

COMPUTABILITY AND THE SYMMETRIC DIFFERENCE OPERATOR 19

stage s0. As nodes are only executed at stages at which they receive a ball, it
follows that (s0)β ≤ w − 1 < w. Finally, as outcome pΓq is not visited during
[s0, s1], it follows that sβ = (s0)β < w. �

We now verify that the same restraint on balls passed to the left outcome of Ri,j
is obeyed. Note that elements which Ri,j enumerates into A or B pose no danger
themselves as they, like balls extending the outcome p 6=q, have always been removed
from the tree by the time the next ball is passed to the outcome pΓq.

Lemma 5.3. Suppose α implements Ri,j and x is passed to outcome pΓq at stage s.

Then l̂α(s) > yαs and x > rα(s) (where these are the same functions as in Sec-
tion 3.4).

Proof. The fact that rα(s) is the same function as in the previous argument is
obvious from the definitions. The main claim is trivial if sα = 1, so we may assume
that at stage s, Ri,j is in state G and enumerates x = xαsα . Thus, at the last stage

t < s at which α was active, the module was in state A1 and satisfied l̂α(t) > yαt
and xαtα > rα(t).

Note that l̂α(s) > yαt = yαs and rα(s) = rα(t), provided no elements enter A or B
below rAα (t) and rBα (t), respectively.

As the element w enumerated by Ri,j at stage t satisfies w > rBα (t), enumerating
this element into B violates neither condition. By Condition 3.2, we need only worry
about elements enumerated by some β � α. As the outcome pΓq remains unvisited
in [t, s), we need only concern ourselves with the nodes extending outcome p6=q.
However, all such nodes were initialized at stage t, and as xαtα > rα(t), it follows

that any ball b enumerated by such a node satisfies b > rα(t) = max{rBα (t), rAα (t)}.

Thus, l̂α(s) > yαt = yαs , and as

x = xαsα > xαtα > rα(t) = rα(s),

the claim is proved. �

This is enough to show that when Ri,j visits its left outcome, it still demonstrates
the same behavior. However, to finish the proof that Ri,j is satisfied, we must
demonstrate that the modifications to the operation of Ri,j do not prevent the left
outcome from being taken when Ri,j is not trivially satisfied. That is, we must
reprove Lemma 3.3 in this new context.

Lemma 5.4. Suppose α ≺ f implements Ri,j, Φi(Â
α) = A and Φj(B̂

α) = B.

Then α ̂ 〈pΓq〉 ≺ f .

Proof. Suppose not, and let s0 be the last stage at which α ̂ 〈pΓq〉 is visited. If
there is some later stage at which α is in state G , then the claim is proven. Now,
obviously, α cannot occupy the starred states indefinitely, so it is enough to show
that for each of the states A0,B0,A1, we eventually leave them. So suppose that
for all stages s1 > s0, α remains in one of these three states.

20 ANDREWS, GERDES, LEMPP, MILLER, AND SCHWEBER

By the assumptions made in the lemma, we can assume that there is some stage

s > s1 large enough so that l̂α(s) > yαs0+1, l = ûα(uα(yαs0+1, s), s) is finite, A�l =

As�l, and Bs�l = B�l. Since s0 is the last stage at which α ̂ 〈pΓq〉 is visited, it
follows that for any s′ > s0, yαs′ = yαs0+1, and thus l = rα(s′). It also follows that

l̂α(s′), l̂Xα (s′) > yαs′ .

Let t > s be a stage at which ft � α with xαtα > l = rα(t). By choosing t large
enough, since α ≺ f , we may also assume that for some t0 ∈ (s, t), we have ft0 � α.
We consider the following cases:

Case t ∈ A0: As t > t0 > s1 and ft0 � α, it follows that α was in state A0 last

time it was visited. As xαtα > rα(t) = ûAα (̂rAα (t), t) and l̂Aα (t) ≥ l̂α(t) > yαt it
follows that α changes to a new state at stage t.

Case t ∈ B0: As xαtα > rα(t) ≥ rBα (t) and l̂Bα (t) ≥ l̂α(t) > yαs , it follows that α
changes to a new state at stage t.

Case t ∈ A1: As xαtα > rα(t) and l̂α(t) > yαt , it follows that α changes to a new
state at stage t.

Thus, eventually, at some stage, α enters state G and visits outcome α ̂ 〈pΓq〉,
giving us the required contradiction. �

To verify that the set C produced has the property that C⊕A ≥T B and C⊕B ≥T

A, we now demonstrate that C has sufficient information to determine what pairs
of balls are used by the modules of the form Qi.

Lemma 5.5. There is a C-computable function ζ(x) such that if there is some
stage s and node α implementing Qi, and α has reserved either the ordered pair
〈〈x, y〉〉 or 〈〈y, x〉〉, then ζ(x) = y. If no such stage exists, then ζ(x) = 0 (i.e., x is
an unused ball).

Proof. We compute ζ(x) as follows (setting ζ(0) = 0). We wait until stage x,
at which point x is placed onto the tree and is either held by some node α or
discarded from the tree. If x is discarded or α does not implement some module
of the form Qi, then output 0. If α implements Qi and already holds some ball y,
then output y.

So suppose α implements Qi but that x is the first ball to be received by α for
use. If we ever see a stage s at which a second ball y is received by α, then we
output y. If we see a stage s > x at which α is initialized or for some node β, all
of the following hold, then we output 0:

(1) α � β ̂ 〈pΓq〉,
(2) at stage s, β ≺ fs is in one of the states A0,B0,A1, and

(3) at stage s, β is holding w for enumeration into either A or B and w /∈ C.

Clearly, if the three conditions above are met, then β never again visits outcome
pΓq (and thus α never receives a second ball), since in each of those states, w is
enumerated into A or B (and thus C) before moving on to another state. We now

COMPUTABILITY AND THE SYMMETRIC DIFFERENCE OPERATOR 21

must prove that eventually α is initialized, we see a stage at which the above three
conditions hold, or α receives a second ball.

Suppose that we do not eventually see α receive a second ball. Then, since nodes
receive balls each time they are visited, there is some γ � α that is the ≺-least
ancestor of α not visited infinitely often. Clearly, if γ− implements Qi or PXe , then
this can only happen if γ extends the right outcome of γ− and at some stage s, γ−

visits the left outcome, initializing α.

Thus, γ− implements module Ri,j . Now if γ extends outcome p 6=q, then we are

guaranteed that γ is visited infinitely often. If γ− eventually settles permanently
into one of the states A0,B0,A1, then this ensures (from that point on) that the
outcome p6=q is visited every time γ− is visited. Otherwise, infinitely often, γ−

enters state A0 despite not having been in that state on the last visit and thus
visits outcome p6=q.

So we may suppose that γ extends outcome pΓq of γ−. Now if γ− infinitely often
entered state G , then γ would be visited infinitely often. Thus there must be some
stage s > x at which γ− ≺ fs is in one of the states A0,B0,A1, and, for all s′ > s,
continues to occupy that state. However, in that case, the ball w which γ− is holding
is never enumerated into C, so the conditions are satisfied with β = γ−. �

We also demonstrate that C cannot compute A⊕B:

Lemma 5.6. C �T A⊕B

Proof. Suppose that Φi(C) = A ⊕ B, and let α ≺ f implement Qi. Let s be large
enough so that α is never again initialized and that Φi,sα(C; 2a) = A(a), where a
is the first ball reserved by α.

If a /∈ A, then, by construction, at the first stage after s at which α was visited, a
would have been enumerated into A. Thus a ∈ A, and as balls are not reused, there
was some stage t after the last initialization of α at which α acted to enumerate
(a, b) into A×B. At stage t, we had Φi,tα(Ct; 2a) = 0, and by Condition 3.2, only
a node β � α could disrupt this computation. However, at stage t, all such nodes β
that have ever been visited are initialized, ensuring that Ct�tα = C�tα . �

We are now finally in a position to prove the main theorem for this section.

Theorem 3. There are r.e. sets A, B and C with A |T B and C ≤T A⊕ B such

that for any Â and B̂ with Â ≡T A and B̂ ≡T B, we have Â ∆ B̂ ≡T A ⊕ B;
however, we also have A⊕ C ≥T B and B ⊕ C ≥T A but C �T A⊕B.

Proof. Lemmas 5.3 and 5.4, along with Conditions 3.1 and 3.2, demonstrate that
the construction given in this section has all the same properties used in the proof

of Theorem 1. The remainder of the proof, that if Â ≡T A and B̂ ≡T B, then

Â∆ B̂ ≡T A⊕B, is not interestingly different from that given in Section 3.5.

By Lemma 5.6, we have C �T A ⊕ B. We now demonstrate that C ⊕ A ≥T B
and C ⊕B ≥ A. As the two arguments are symmetric, it is enough to demonstrate
C ⊕A ≥T B.

22 ANDREWS, GERDES, LEMPP, MILLER, AND SCHWEBER

Given C and A, we determine if x ∈ B as follows. First, we check if x ∈ C but
x /∈ A. If so, we conclude that x ∈ B. Otherwise, compute y = ζ(x). Now conclude
that x ∈ B iff y 6= 0 and y ∈ A.

To verify that this computation is correct, we note that if x does not end up held by
some node α implementing Qi, then x ∈ B iff x ∈ C. If x is held by some node α,
then x /∈ C, and x is only in B if α also holds some other ball y and enumerates
the pair (y, x) into A×B, i.e., if ζ(x) > 0 and ζ(x) ∈ A.

This completes the verification. �

References

[Co89] Cooper, S. Barry. The strong anticupping property for recursively enumerable degrees.

Journal of Symbolic Logic 54 (1989), 527–539. 1

[Sa63] Sacks, Gerald E. Degrees of unsolvability. Princeton University Press, Princeton, N.J.,
1963. ix+174 pp. 1

[SS89] Slaman, Theodore A. and Steel, John R. Complementation in the Turing degrees. J. Sym-

bolic Logic 54 (1989), 160–176. 1
[Od99] Odifreddi, Piergiorgio. Classical recursion theory. Vol. II. Studies in Logic and the Foun-

dations of Mathematics, 143. North-Holland Publishing Co., Amsterdam, 1999. 2

[So87] Soare, Robert I. Recursively Enumerable Sets and Degrees. Perspectives in Mathematical
Logic, Omega Series. Springer–Verlag, Heidelberg, 1987. 3.5

Email address, Andrews: andrews@math.wisc.edu

Email address, Gerdes: gerdes@invariant.org

Email address, Lempp: lempp@math.wisc.edu

Email address, Miller: jmiller@math.wisc.edu

Email address, Schweber: schweber@berkeley.edu

(Andrews, Lempp, Miller, Schweber) Department of Mathematics, University of Wisconsin,

Madison, WI 53706-1325, USA

(Gerdes) Department of Mathematics and Statistics, Mathematics and Science Center,
Room 368, Oakland University, 146 Library Drive, Rochester, MI 48309-4479, USA

andrews@math.wisc.edu
gerdes@invariant.org
lempp@math.wisc.edu
jmiller@math.wisc.edu
schweber@berkeley.edu

	1. Introduction
	2. Notational Conventions
	3. Incomparable R.E. sets with the Symmetric Difference Property
	3.1. Intuition
	3.2. Overview
	3.3. P^X_e
	3.4. R_ij
	3.5. Verification

	4. A Stronger Condition
	4.1. Module S_ijk
	4.2. Verification

	5. A Stronger Condition?
	5.1. Module R_ij
	5.2. Module Q_i
	5.3. Verification

	References

