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Abstract. A computable presentation of the linearly ordered set (ω,≤),
where ω is the set of natural numbers and ≤ is the natural order on ω, is
any linearly ordered set L = (ω,≤L) isomorphic to (ω,≤) such that ≤L is
a computable relation. Let X be subset of ω and XL be the image of X
in the linear order L under the isomorphism between (ω,≤) and L. The
degree spectrum of X is the set of all Turing degrees of XL as one runs
over all computable presentations of (ω,≤). In this paper we study the
degree spectra of subsets of ω.

1. Introduction

Our interest in this paper falls into part of a long term program in com-
putable model theory where we study the spectrum problem for relations on
various classes of models. Recall that a computable structure is one whose
domain and basic relations and predicates are uniformly computable. In par-
ticular, if the language (equivalently signature) of the structure is finite then
computability of the structure is simply equivalent to saying that its domain
and all of its basic relations and operations are computable. If A is a com-
putable structure isomorphic to B then we say that B is computably pre-
sentable and A is a computable presentation (or copy) of B. Note
that computable presentations of a given structure, by definition, are isomor-
phic structures but can exhibit different computability-theoretic behavior. To
capture this behavior the concept of the spectrum of a relation has been in-
troduced that we now explain.

Suppose that R is a relation on a computable structure A. We postulate
that R is closed under automorphisms of the structure A, that is, g(R) = R
for all automorphism g of A. If B is a computable structure isomorphic to A,
then we will let RB denote the image of R in B. The spectrum of R then is
defined as the set of all Turing (or perhaps other) degrees of RB as we run over
all computable B isomorphic to A. The spectrum of a relation describes the
algorithmic properties of the relation in different computable presentations
of the structure. The assumption that R is closed under automorphisms is
an important one. Indeed, think of R as a unary relation that singles out
integers in the linearly ordered set of rational numbers (Q,≤). This ordering
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has exactly one computable isomorphism type but the spectrum of R consists
of all possible Turing degrees.

Our understanding of possible degree spectra for distinguished relations on
various structures has had significant advances in recent years. We know that
for many relations the typical spectra we would expect to see would consist of
a single element or infinitely many. (See e.g. Harizanov [4, 5, 6], Hirschfeldt
[7], Goncharov [9], or Moses [13]) We have also made great strides in the
construction of models such as graphs, partial orderings, rings, groups, integral
domains, etc with many pathological spectra such as 2 element spectra. (See
e.g. Hirschfeldt [7], Hirschfeldt, Khoussainov, Shore and Slinko [10].)

In-spite of the advances mentioned in the study of degree spectra of re-
lations, our understanding of the spectra is much more limited for particular
structures and particular relations. For instance, whilst we know that there are
computable linear orderings L where the adjacency relation, Adj(L) = {(x, y) :
x is adjacent to y}, has either an infinite degree spectrum, or a spectrum con-
sisting of a single element from {0,0′}, (Downey and Moses [3]) or a princi-
pal filter computably enumerable Turing degrees (Downey [2]), or every com-
putably enumerable degree except 0, little else is known. Recall that 0 denoted
the computable Turing degree. It has recently been shown that the complete
degree 0′ is always a member of the spectrum of Adj(L) if the spectrum is
nontrivial (Downey, Lempp, and Wu [?]).

In this paper instead of investigating the spectra of specific relations (such
as Adj(L) in linear orders), we will study relations on the simplest ordering
one could imagine. Namely, we will investigate unary relations X on the stan-
dard ordering of the natural numbers (ω,≤). Note that the standard natural
ordering of the order of natural numbers is characterized by the fact that the
adjacency relation is computable. Indeed, any two computable presentations of
the order of natural numbers in which the adjacency relations are computable
must be computably isomorphic. The ordering (ω,≤) is well understood from
a computability-theoretic point of view. For example, the ordering is ∆0

2 sta-
ble in the sense that if (L,≤L) is a computable ordering isomorphic to (ω,≤)
then the isomorphism between (ω,≤) and is (L,≤L) in a ∆0

2-set.
Let X be a unary relation on (ω,≤). If (L,≤L) is a computable presentation

of (ω,≤) then the image of X in (L,≤L) can be thought simply as coding of
X in (L,≤L). We denote this image as XL. The reader might therefore think
very little can really happen. Our results indicate that even in such a simple
situation, and even for X that have simple descriptions in computability-
theoretic terms, we find interesting and unexpected behaviour. We single out
this notation:

If (L,≤L) is a computable presentation of (ω,≤)
then the image of X in (L,≤L) is denoted by XL.

Our paper starts by studying the situation where the unary relation X in
(ω,≤) is computably enumerable (c.e. for short). One of our results show that
the degree spectra of c.e. unary relations in (ω,≤) is closed upwards in the
Turing degrees. This informally tells us that coding is always possible:
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Theorem 1.1. For any infinite and coinfinite c.e. sets X and Y if X ≤T Y ,
then there is a computable presentation L of (ω,≤) so that Y ≡T XL. That
is, the degree spectra of c.e. unary relations represented in a standard copy of
(ω,≤) are all closed upwards in the Turing degrees.

As an immediate corollary we have the following.

Corollary 1.2. The degree spectrum of every infinite and co-infinite c.e. set
X possesses a Turing complete degree.

A natural question arises as to whether the spectrum of a c.e. unary relation
X contains all c.e. Turing degrees. To prove this, it would suffice to show that
the image of X in some computable presentation of (ω,≤) is computable. It
turns out that the situation here is rather surprising as stated in the following
result. For the result we mention that a degree a is low if a′ = 0′ wheer

Theorem 1.3. Let X be a non-computable c.e. set. The degree spectrum of
X possesses a low c.e. degree. In fact, there exists a computable presentation
L such that XL is a c.e. set, XL <T X, and XL is low.

Lowness of a degree does not guarantee that the degree is computable.
Hence, one would like to know a sufficient condition at which the degree spec-
trum of a relation contains the computable degree. This is answered in the
next theorem. For the theorem we recall a c.e. degree a is called high if a′ = 0′′.

Theorem 1.4. If X is a c.e. set whose Turing degree is not high, then the
degree spectrum of X contains the computable degree. In other words, there
exists a computable presentation (L,≤L) of (ω,≤) in which the copy of X is
a computable set.

We note that Hirschfeldt, R. Miller, and Podzorov independently proved a
version of this theorem for low2 sets X [8].

It turns out that high degrees are source of examples of c.e. sets X whose
degree spectra do not have the computable degree. The result below converses
Theorem 1.4 as follows:

Theorem 1.5. Every high c.e. degree contains a c.e. set X such that the
degree spectrum of X does not contain the computable degree.

In some sense the latter theorem is the best we could hope for degrees since
we can easily establish the following.

Theorem 1.6. Every c.e. m-degree contains a set X such that the degree
spectrum of X contains a computable set.

Our remaining results are concerned with spectra of general X. It is not
too difficult to construct an X whose degree spectrum contains 0′′ only. This
result can be proved by using the ∆0

2-stability of (ω,≤), and a crude coding of
the set 0′′. However, the situation for ∆0

2-sets X i s much more subtle. Here
is one result:

Theorem 1.7. There is a ∆0
2 set X such that the degree spectrum of X is

{0′}.
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This theorem is just a special case of the following more general result. The
result is of interest it says that the Turing degree of any set that computes
the Halting problem can be realized as the degree spectrum of some unary
relation X. Formally:

Theorem 1.8. Suppose that for a set B ⊂ ω we have ∅′ ≤T B. Then there is
a set X whose degree spectrum is exactly {deg(B)}.

The next theorem, in certain respect, refines Theorem 1.3 for a particular
set and particular Turing degrees:

Theorem 1.9. There is a ∆0
2-set X such that images of X in all computable

presentations of (ω,≤) have low but non-computable degrees.

Our last result in this paper shows that for every infinite and co-infinite
subset X of ω, the degree spectrum of X can not be bounded by the com-
plete Turing degree. An interesting note here is that the unboundedness (by
the complete degree) of the degree spectrum is witnessed by two computable
linearly ordered sets for all infinite and co-infinite subset X. Formally, here is
the statement:

Theorem 1.10. There exist two computable presentations L1 and L2 of the
linear order (ω,≤) such that for all infinite and coinfinite X, we have ∅′ ≤T

X ⊕XL1 ⊕XL2.

2. Notation and Terminology

In this section we introduce a set of notations that will be used throughout
the paper. Assume that L = (ω,≤L) is a computable presentations of the
order of natural numbers (ω,≤).

Definition 2.1. For the linear order L = (ω,≤L) and for every x in the
domain of L define:

• Suc(L)(x) = y iff y >L x and for all y′ if y′ >L x then y′ ≥L y.
• Pre(L)(x) = y iff y <L x and for all y′ if y′ <L x then y′ ≤L y.
• Ord(L)(x) is, by definition, the number of elements y such that y <L x.
• Given a number z ∈ ω, we define the isomorphic copy of z in L to be
zL. Clearly, Ord(L)(zL) = z.
• Given a set X ⊆ ω, the isomorphic copy of X in L is denoted by XL.

It is clear again that XL = {xL|x ∈ X}.

Our other notation is standard and follows Soare [14]. For example ≤T

denotes the Turing reduction. For a basic referenceon the theory of computable
linearly ordered sets we refer the reader to Downey [2]. We now start proving
theorems stated in the introduction.

3. The Proof of Theorem 1.3

3.1. Basic strategies. Given a noncomputable c.e. set X, we will construct
a computable presentation L of (ω,≤) such that XL is a low c.e. set and
XL <T X. Naturally, we will build L in stages, keeping track of Xs. At each
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stage s we will add one or more elements to XL that is being built. The overall
requirements we must satisfy are the following:

Q : XL is c.e.

Ne : X 6= ΦXL
e

M : XL is low
P : XL ≤T X.

We will break down these tasks into more manageable sub-requirements
that are explained below.

Meeting requirement Q. Suppose that there exists an element x such that
X(x)[s+ 1] 6= XL(xL)[s+ 1]. Then there are two cases:

(1) X(x)[s+1] = 0. This case can occur through our efforts to meet other
obligations. Since we want XL to be c.e., in this case we insert a new
number between Pre(L)(xL) and xL.

(2) X(x)[s + 1] = 1. In this case we either insert a new number between
Pre(L)(xL) and xL or put xL into XL.

We say an element x is moved at stage s+1 ifOrd(L)(x)[s+1] 6= Ord(L)(x)[s].
Now it will suffice to prove that every element i ∈ ω has a final position in L
(i.e. moved only finitely often). Thus, we split the Q-requirement to infinitely
many subrequirements:

Qi : i ∈ L will stop moving eventually.

Meeting requirement Ne. To meet Ne we use classical Sacks technique of
preserving agreements. To satisfy Ne, we will monitor the length of agreement
ΦXL

e = X[s]. Thus, at stage s, we define:
ˆ̀
e[s] = min{n|X(n)[s] 6= ΦXL

e (n)[s]},

re[s] =
∑

m≤ˆ̀
e[s]

φXL
e (m)[s],

Re[s] =
∑
e′≤e

re[s].

At every stage s, we try to preserve ˆ̀
e,s by setting up the restraint Re[s].

That is, once we see the length of agreement exceed some value y at some
stage s, we will preserve XL on the use of this computation. In the usual way,
we argue that `(e, s) 6→ ∞, lets X be computable, which it is not.

Of course, the trouble is when a small element say x entered X (whose
current corresponding image xL[s] is below the use of some e-computation to
be preserved) at stage s+ 1. Now we have agreed by the restraint, we can not
put the element xL[s] into XL since xL[s] less than the restraint. However,
x has entered X[s], and hence it needs an image in L. The idea is to shift
the isomorphism. We replace xL[s] with a big number z. That is, we move
xL[s] by defining xL[s+ 1] = z and (x+ i)L[s+ 1] = (x+ i+ 1)L[s]. Were xL

moved infinitely often, then we would fail to satisfy Q since we are destroying
a requirement Qj for some j. A crucial point is if X is noncomputable then it
must be infinite and coinfinite. We will argue that this allows us to ensure that
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every number will stop moving. The reader should note that the introduction
of the new element z as the new image for the number entering X could
consequentially cause us to need to add a lot of new elements into L to allow
us to rearrange the isomorphism whilst preserving the Ne computations, with
a sort of “cascade” effect.

Meeting requirement M . Our argument is finite injury and so via the Ne

we will be able to argue post hoc that XL is automatically low.
Meeting requirement P . Once we prove that L is isomorphic to (ω,≤), we

can effectively in X decide XL. To decide x in XL or not, we just need search
a stage s at which X � (Ord(L)(x)[s] + 1) = X[s] � (Ord(L)(x)[s] + 1). Since
L is isomorphic to (ω,≤), there must exist such a stage. After this stage, x
will never be moved. So XL ≤T X.

There will be conflicts between satisfying requirements Q and N . To give
more intuition, we provide an idea of meeting and satisfying one requirement
Ne.

3.2. One N requirement. We will concentrate on a single N requirement,
say N0. During the construction, we use the concept of a crucial points se-
quence (c.p.s.) {zi}i≤m,m≤ω.

Definition 3.1. A crucial points sequence (c.p.s.) is a (finite or infinite)
sequence {zi}i≤m,m≤ω which has the following properties:

(1) {zi}i≤ω is a computable set.
(2) ∀i ≤ m(zi <L zi+1).
(3) ∀z ∈ ω∃i ≤ m(z ≤L zi).
(4) ∀i ≤ m∀z ≤ zi(z ≤L zi).

Item (3) assumes that the sequence is an infinite one.

Clearly, if there is some number z moved infinitely often, then there must
be a number z′ in the c.p.s. moved infinitely often (just pick up a number
z′ > z in the c.p.s.). We denote the set {z|zi <L z ≤L zi+1} by (zi, zi+1]≤L .

Choose a stage s after which N0 does not receive attention. Then ∀t ≥
s(R(0, t) = R(0, s) = R). Suppose R > 0.

Suppose there is a number moved infinitely often for the sake of N0. Then
there must be a least number y moved infinitely often. The point is that
y ≤ R since the only numbers that N0 moves are below the restraint. For more
details, see Lemma 3.4. So there must a zi in the c.p.s. so that y ∈ (zi, zi+1]≤L .

Define Mov = {z|z moved infinitely often} and M(y) = Mov∩ (zi, zi+1]≤L .
Then ∀z ∈Mov(z > zi). Select a number y′ ∈M(y) so that for all z ∈M(y),
y′ ≤L z. Then y′ is the least number ≤ R moved infinitely often. We will
show that this does not happen. Select a stage t ≥ s so that for all numbers
z with z <L y′ and z < R are not moved after stage t. Then at any stage
t′ > t, the only action to move y′ is inserting a big number between y′ and
Pre(L)(y′)[t′]. Using the fact the X is infinite, we will argue that we will not
move y′ infinitely often by Subsection 3.1 Case (1) (that is because of new
numbers entering X causing y′’s movement.). Without loss of generality, at
every stage t′ > t, for every z = Ord(L)(y′)[t′], z ∈ X. So X includes the
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set {z|z > Ord(L)(y′)[t]} and so is a cofinite set. This contradicts with the
assumption that X is noncomputable and so coinfinite. Therefore, we will
stop moving y′ eventually.

We will see that XL ≤T X since we can decide whether any number in the
c.p.s. will be moved with the help of X.

3.3. The Construction. We only distribute the priority ordering to N re-
quirements by setting Ne < Ne+1 for all e. For Q, there is a dynamic priority
ordering during the construction. At every stage s, we will construct a lin-
ear order L[s], a finite c.p.s. set CPS[s] = {zi} and restraint function re[s].
Eventually, CPS = ∪sCPS[s].

At stage −1, define the c.p.s. set CPS[−1] = {0} and XL[−1] = ∅. Define
re[−1] = −1 and ˆ̀

e[−1] = −1, for every e ≥ 0 .
At stage s+ 1, we define a block set by induction on e.
• BL0[s+ 1] = {zi|zi ∈ CPS[s] and zi−1 < R0[s]},
• BLe+1[s+ 1] = {zi|zi /∈ BLe[s+ 1], zi ∈ CPS[s] and zi−1 < Re+1[s]}.

Now we have two steps. The first step is devoted to satisfying the require-
ments, and the second step constructs the c.p.s

Step 1. Suppose X[s + 1] 6= XL[s]. Select the least number x so that
X(x)[s+ 1] 6= XL(xL)[s]. There are two cases.

Case (1). X(x)[s + 1] = 0. Pick up the least number y which has not yet
been ed in the construction. Set Pre(L)(xL)[s] <L y <L xL[s]. Speed up the
enumeration of X so that there is a number z > x with z ∈ X[s+ 1].

Case (2). X(x)[s + 1] 6= 0. Suppose xL[s] ∈ (zi, zi+1]≤L [s] and zi+1 ∈
BLe[s + 1] for some e. If xL[s] > Re[s] then we put xL[s] into XL[s + 1]. If
s+ 1 has not been used in the construction, then put s+ 1 into the ordering
<L above all current members of the ordering.

Step 2. We construct CPS by induction on substep i. First, let CPS[s +
1][0] = CPS[s]. Suppose y = max{z|z ∈ CPS[s][i]}. Search the ≤L-least
number z > y so that ∀z′ < z(z′ <L z). Define CPS[s+ 1][i+ 1] = CPS[s+
1][i] ∪ {z}. Finally, set CPS[s+ 1] = ∪iCPS[s+ 1][i].

This finishes the construction.

3.4. Verification.

Lemma 3.2. CPS is a c.p.s.

Proof. (1) CPS is a computable set. To decide x ∈ CPS or not. Select a
stage s > x, then every number ≤ x has been included L. So x ∈ CPS
iff x ∈ CPS[s].

The following facts are easy to see.
(2) ∀i(zi < zi+1).
(3) ∀z ∈ ω∃i ∈ ω(z ≤L zi). At any stage s > z, the ≤L [s] largest number

must be in CPS[s] and so z is L-less than it.
(4) ∀z ≤ zi(z ≤L zi).

�
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Note we do not claim that CPS is an infinite set although it is. We prove
Lemmas 3.3 and 3.4 by simultaneous induction on e.

Lemma 3.3. Ne+1 is satisfied and limsRe+1[s] <∞.

Proof. Select a stage s0 so that every requirement higher than Ne has been
satisfied. Then, by induction (see lemma 3.4), there exists a stage s1 ≥ s0 so
that for all stages t ≥ s, BLe[s] = BLe[t] and ∀zi+1 ∈ BLe[s]((zi, zi+1]≤L [s] =
(zi, zi+1]≤L [t])). So there is a stage s2 ≥ s1 so that we will never put any
number in those blocks into XL. Thus, by the construction, the computation
in Ne+1 will be preserved once set up. That means ∀s, t(s > t ≥ s2 ⇒ Re+1,s ≥
Re+1,t and ˆ̀

e+1[s] ≥ ˆ̀
e+1[t]). Now, by a standard priority argument, Ne+1 is

satisfied and limsRe+1[s] <∞, lets X be computable. �

Lemma 3.4. There exists a stage s so that for all stage t ≥ s, BLe+1[s] =
BLe+1[t] and ∀zi+1 ∈ BLe+1[s]((zi, zi+1]≤L [s] = (zi, zi+1]≤L [t])).

Proof. By lemma 3.3, there is a stage s0 so that ∀t > s0(Re+1[s] = Re+1[t] =
Re+1). So, we claim that, ∀t > s0(BLe+1[s0 + 1] = BLe+1[t]).

Suppose that this does not hold. Select

zi+1 = min{zi+1|zi+1 ∈ BLe+1 and lim
s
|(zi, zi+1]≤L [s]| =∞}.

Note zi+1 is also ≤L-minimal in BLe+1 since zi ≤ zi+1 iff zi ≤L zi+1. De-
fine Mov(e + 1) = {x|Ord(L)(x) = ∞} and M(zi+1, e + 1) = Mov(e + 1) ∩
(zi, zi+1]≤L . Choose y′ ∈ M(zi+1, e + 1) so that for every z ∈ M(zi+1, e + 1),
y′ ≤L z. Actually, y′ ≤ Re+1. To prove this, we prove the following claim:

Claim 3.5. ∀x∃y(x ∈Mov(e+1)⇒ (y ∈Mov(e+1), y ≤ Re+1 and y ≤L x)).

Proof. If not, then there is a number x ∈ M(zi+1, e + 1) so that for every y
with y ∈Mov(e+ 1) and y ≤ Re+1, x <L y. Select a stage s1 ≥ s0 so that for
every stage t ≥ s1 and every number z with z <L x and z ≤ R, Ord(L)(z)[t] =
Ord(L)(z)[s1]. It follows, that after stage s1, substep (2.1) in the construction
will never apply to any number L-less than x. Define M̂(x)[s1] = {z|z ∈
(zi, zi+1]≤L [s1] ∩XL[t] and z ≤L x}. We enumerate M̂(x)[s1] = {xi}i≤n with
xi <L xi+1 for every i < n. W.l.o.g, suppose ∀i(xi > R(e+ 1)). Now, for any
number xi, we move it only in the Construction, Case(1). Suppose we move x0

at some stage s2 ≥ s1, then by the construction, x0 is the L-least number so
that X(Ord(x0))[s2] 6= XL(x0)[s2 − 1]. Note we will never move any number
L-before x0 by the construction after stage s2 since we only apply subcase(2.1)
to them. Then by speeding up the enumeration of X, there must be a stage
s3 ≥ s2 so that X(Ord(x0))[s3] = 1 = XL(x0)[s3 − 1]. By the construction,
we will never move x0 after this stage. By induction on i, all of the numbers
in M̂(x)[s1] will stop moving. A contradiction. �

There are only finitely many numbers less than Re+1, so we just need to
select the ≤L-least number y′ from the set {x|x ≤ Re+1}. Select a stage
s1 ≥ s0 so that for every stage t ≥ s1 and every number z with z <L y′ and
z ≤ R, Ord(L)(z)[t] = Ord(L)(z)[s1]. By the same reason as in the claim
3.5, we also can select a stage s2 ≥ s1 so that we never apply Case (1) at
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step 1 in the construction to any number L-before y′. So by the construction
at step 1, we move y′ at a stage t ≥ s1 only if Ord(L)(y′)[t] ∈ Xt. If there
are infinitely many such stages, then {z|z ≥ Ord(L)(y′)[s1]} ⊆ X. But X is
noncomputable, so coinfinite. A contradiction. �

So |CPS| =∞.

Lemma 3.6. The built linear order L is isomorphic to (ω,≤) and and XL =
∪sXL[s].

Proof. By lemma 3.4, every x will stop moving eventually. It means that for
every x, Ord(L)(x) <∞. So L has order type 〈ω,≤〉 and XL = ∪sXL[s]. �

Lemma 3.7. XL ≤T X.

Proof. For any x, there must be a stage s and a number y with y = Ord(L)(x)[s]
so that {Ord(L)(z)[s]|z ≤L x and z ∈ XL[s]} = X � (y + 1) = {z|z ≤
y and z ∈ X}. By the construction, y = Ord(L)(x)[s] = Ord(L)(x). So
x ∈ XL[s] iff x ∈ XL. �

Lemma 3.8. XL is a low set.

Proof. It is not hard, by induction on e, to prove that we can effectively in 0′

find a stage se so that ∀t ≥ se(ˆ̀
g(e)[se] = ˆ̀

g(e)[t]).
By s−m− n theorem, there is a computable function g so that

ΦXL

g(e)(x) =
{
X(0) : ΦXL

e (e) ↓ and x = 0,
↑ : otherwise.

Then ΦXL
e (e) ↓ iff lims

ˆ̀
g(e)[s] > 0. Now we just need to find a stage sg(e)

so that ∀t ≥ se(ˆ̀
g(e)[se] = ˆ̀

g(e)[t]. So lims
ˆ̀
g(e)[s] > 0 iff ˆ̀

g(e)[se] > 0. Thus
X ′L =T ∅′. �

4. The Proof of Theorem 1.1

4.1. The main idea. The main idea of the proof is somewhat similar to the
proof of Theorem 1.3. The property “infinite and coinfinite ” is the crucial
point again.

Given an infinite and coinfinite c.e. set X, we try to code set Y into the
even numbers column of XL. That is x ∈ Y iff 2x ∈ XL.

We start by defining the order ≤L by declaring the order ≤L on even num-
bers x and y is consistent with the natural order. That is if x and y are
even numbers then x ≤ y implies x ≤L y. Then the construction inserts odd
numbers into the order.

We ensure that at any even stages s, if x ∈ Y [s], we put 2x into XL[s].
At odd stages s, suppose there is a number x so that X(x)[s] 6= XL(xL)[s] at
some stage s, then we handle three cases:

• Case 1: X(x)[s] = 0. Select the least (odd) number y has not been
placed in the ordering, define the order Pre(L)(xL)[s] <L y <L xL[s].
• Case 2: X(x)[s] = 1 and xL[s] is odd. Put xL[s] into XL[s].
• Case 3: X(x)[s] = 1 and xL[s] is even. Select the least (odd) number
y has not been put into the ordering, put it into XL[s] and define the
order Pre(L)(xL)[s] <L y <L xL[s].
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As in the proof of theorem 1.3, we can stop moving xL[s] in the first case
by speeding up the enumeration of X since X is infinite. In the second case
nothing is moved. In the third case, xL[s] is moved. But X is coinfinite, so
this happens at most finitely often.

In addition, XL ≤T X ⊕ Y will be true since, given an x, we can effectively
in X ⊕ Y decide whether x in XL. Let’s turn to the formal proof.

4.2. Construction. At stage −1. For all even numbers x, y, declare x <L y iff
x < y. Set XL[−1] = ∅. We say that every even number has been enumerated
into the ordering.

At even stage 2s, wait (speeding up the enumeration of Y if necessary) for
a number x ∈ Y [2s]− Y [2s− 1]. Put 2x into XL[2s].

At odd stage 2s+ 1, check whether there is a number x so that X(x)[2s] 6=
XL(xL)[2s]. If so, pick up the least one, say x. There are three cases:

(1) X(x)[2s] = 0. Select the least (odd) number y has not been enu-
merated into the ordering, define the order Pre(L)(xL)[2s] <L y <L

xL[2s]. Thus, y has been enumerated into the ordering. Speed up
the enumeration of X so that there is a number z > xL[2s] and
X2s+1(z) = 1.

(2) X(x)[2s] = 1 and xL[s] is odd. Put xL[s] into XL[2s+ 1].
(3) X(x)[2s] = 1 and xL[s] is even. Select the least (odd) number y that

has not been enumerated into the ordering, put it into XL[2s+ 1] and
define the order Pre(L)(xL)[2s] <L y <L xL[2s]. Thus, y has been
enumerated into the ordering.

This finishes the construction.

4.3. Verification.

Lemma 4.1. Every number is moved finitely often.

Proof. It suffices to prove that every even number is moved finitely often. If
not, pick up the least such even number, say x. Select a stage s0 so that Y [s0] �
x+1 = Y � x+1 and no even numbers less than xmoved after that. At stage s0,
define M = {z | ∃y(z = yL[s0] and x−2 <L yL[s0] ≤L x and XL(yl)[s0] = 1)}.
Since M is finite, suppose M = {z0 <L z1 <L .... <L zn}. We prove, by
induction on i, that every zi ∈M will stop moving.

Indeed, the element z0 will stop moving since no number z <L z0 will move
after stage s0 by the construction. But we move z0 only when case(1) is appli-
cable. However, by the construction, case (1) will be applied to z0 only finitely
often since we speed up the enumeration of X. Once X(Ord(L)(z0))[s] = 1 =
XL(z0)[s] at some stage s then z0 will stop moving forever since case(1) and
case(3) can not be applied to any number L-less than z0. Select the last stage
s1 at which z0 moved. Note no number can be inserted between z0 and x
before stage s1 since we always select the L-least number to do at any stage.

Select the least stage si+1 so that no zj (j ≤ i) moved after that. And, by
the induction, no number can be inserted between zi and x before stage si+1.
Now we can replace z0 with zi+1 in the proof of above to prove zi+1 will stop
moving eventually.



DEGREE SPECTRA OF UNARY RELATIONS ON 〈ω,≤〉 11

So, if Y (x) = 1 then x ∈M . Thus x will stop moving eventually. Otherwise,
select the least stage t ≥ s0 so that no number z ∈M moved after that. Note,
by the same reason as above, no number can be inserted between zn and x
before stage t. Actually at stage t, we have the following: ∀z(zi <L z ≤L

x =⇒ XL(z)[t] = 0). This is because some numbers L-less than zn always
require attention before stage t, and hence we have no time to put anything
L-between zn and x into XL. So, if X(Ord(L)(x))[t] = 0, then x will never
be moved. Otherwise, we keep on x moving until a stage t′ ≥ t so that
X(Ord(L)(x)) = X(Ord(L)(x))[t′] = 0. But X is coinfinite, there must be
such a stage. After stage t′, x will stop moving.

�

Lemma 4.2. The linear order L constructed is isomorphic to (ω,≤). In
addition, XL = ∪sXL[s].

Proof. By Lemma 4.1, every number will stop moving. So L is isomorphic to
(ω,≤L) and XL = ∪sXL[s]. �

Lemma 4.3. Y ≤T XL

Proof. By Lemma 4.2, XL = ∪sXL[s]. So by the construction, x ∈ Y iff
2x ∈ XL. �

Lemma 4.4. XL ≤T X ⊕ Y .

Proof. Take an x. If x is even then x ∈ XL iff x
2 ∈ Y . If x is odd then select

an even number y >L x and a stage s so that Y � (x+ 1) = Y [s] � (x+ 1). By
Lemma 4.2, there is a stage t ≥ s and a number y′ = Ord(L)(yL)[t] so that
∀z ≤ y′(z ∈ X[t] iff zL ∈ XL[t]). So after stage t, y will never been moved. So
x ∈ XL iff Ord(L)(xL)[t] ∈ X. �

5. The Proof of Theorem 1.4

For the proof we use Martin’s characterization of the high degrees. Say
that f dominates g if f(n) ≥ g(n) for all but finitely many n. In [12] Martin
proved that X is high (X ′ ≥T ∅′′) iff there is an f ≤T X that dominates all
computable functions. Therefore, if X is not high, then for any f ≤T X there
is a computable function g such that (∃∞n) g(n) > f(n).

If X is computable then the theorem is clearly true. So, we assume that X
is not computable. Hence there are infinitely many bit alternations in X.

Construction. Given a nondecreasing computable function g, which we will
choose later, we construct a computable linear order L. During the construc-
tion we also declare values of XL Since we want XL to be computable, we
must continuously adjust L to ensure that values of XL, once declared, remain
correct. These adjustments could easily prevent L from being isomorphic to
〈ω,≤〉. This is the purpose of g; we will choose it so that, infinitely often,
X[g(s)] has stabilized on a sufficiently large initial segment to ensure that all
values of XL that have been declared by the end of stage s+1 are permanently
correct without the need of further adjustment to L.

Stage 0. Let L = ∅.
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Stage s+1. Assume that the values of XL have been declared on L[s].
Let y be the ≤L-largest element of L[s]. For some m ≤L y, it may be
the case that X(Ord(L)(m))[g(s)] 6= XL(m)[s]. These values are currently
wrong. Check if there are at least |L[s]| = Ord(L)(y)[s] + 1 bit alternations in
X[g(s)]. If so, then it is certainly possible to add elements to L to ensure that
X(Ord(L)(m))[g(s)] = XL(m)[s+1] for all m ∈ L[s]. Do so, as conservatively
as possible. Also add an x ≥L y. Declare XL(m)[s+1] = X(Ord(L)(m))[g(s)]
for all new m ≤L x.

Remark. If the initial segment of X[g(s)] with |L[s]| bit alternations has
stabilized, then we will never again add elements to L less than y. So all
numbers in L[s] have stopped moving by the end of stage s+1. If this happens
infinitely often, then L ∼= 〈ω,≤〉 and XL is computable (all declarations that
were ever made are correct).

Defining g. It remains to define the computable function g. First, we define
an X-computable function f as follows. To define f(s), consider all possibil-
ities for L[s] over all choices of g(0), . . . , g(s − 1). Note that there are only
finitely many possibilities because, for any i < s, once g(i) is large enough that
X[g(i)] has stabilized on an initial segment with |L[i]| alternations, then no
larger value of g(i) would change the resulting L[i + 1]. Furthermore, X can
enumerate all such possibilities because it can detect when sufficient initial
segments have stabilized. Let n be the maximum value of |L[s]| over all pos-
sibilities and define f(s) so that X[f(s)] has stabilized on an initial segment
with at least n bit alternations (and making sure that f is monotone). Then
f is an X-computable function.

Because X is not high, there is a computable g, which we used for the
construction, such that (∃∞n) g(n) > f(n). Hence by the definition of f and
the remark above, L is isomrphic to (ω,≤) and XL is computable. This is the
end of the proof.

6. The Proof of Theorem 1.5

Let {〈Le,We, Ve〉 : e ∈ ω} be uniformly effective list, where Le, e ∈ ω, is a
list of computably enumerable subsets of the rational numbers (hence will be
a listing of all computable linear orderings), and (We, Ve), e ∈ ω, is a list of all
c.e. pairs of disjoint sets of rational numbers. We need to construct X ⊆ ω
such that if Le is isomorphic to 〈ω,≤〉, then XLe is not computable. In the
construction we must meet requirements of the following form:

Qe : If Le
∼= ω,≤ then XLe is not listed by We.

We will have a “master” list of numbers {xi : i ∈ ω} that we enumerate
into X. As we will see below, other numbers may also be enumerated into
X. These numbers will be sufficiently far apart for the following to work. For
example, we choose xi to be f(i) for a reasonably fast growing computable
function f . We may add numbers into the intervals (0, x0) or (xi, xi+1). This
will be done in the reverse order: e.g., we would add xi+1-1 first. We allow
only Q0 to enumerate a number into X below x0, only Q1 and Q0 to do this
below x1, etc.
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For a fixed e, say e = 0, the construction waits till we see a stage s0
where the pair (We, Ve)[s0] says that the initial segment of Le[s0] agrees with
the first x0 many elements of (ω,≤). That is, we have y ∈ We[s0] with
{z : z <Le y} ⊂ Ve[s0], and all the rational numbers with Gödel numbers ≤ y
are enumerated into either We or Ve at this stage. Thus, it appears that y is
the image of x0. Here we say that x0 is realized for Q0. (The construction for
Qe will begin with xe in place of x0.)

We now enumerate some p0 < x0 into Xs0+1. The point is that the opponent
cannot enumerate any of the current numbers {z : z <Le y} into XLe since
they are already in Ve, and XLe is supposedly a subset of We. Thus, the
opponent has to enumerate a new rational number as a potential image of x0.
We conclude that if Le is isomorphic to (ω,≤), and XLe ⊆ We, then y is left
of the image of x0 in Le.

The next action is that Qe = Q0 would like to move y right of the image
of x1. We wait till we see the initial segment of (ω,≤)[s1] up to some x1 look
the same as the initial segment of Le of length x1 at stage s1 > s0, and this
fact is apparently confirmed by We and Ve at stage s1. That is, if there are
n elements of Xs1 less than or equal to x1 then there are exactly the same
number (and in the same positions) of elements of Le[s1] all of which are in
We and the others are in Ve, and the disjoint union We t Ve computes the
appropriate initial segment the natural numbers so that no rational numbers
with small Gödel numbers can be enumerated into Le after stage s1. Since y
has already been declared to be in We, we can also ask that y be the apparent
image of something in X[s1]. Now one of the following situations will occur
for which we describe appropriate actions:

(i) y is already right of the image of x1 in Le at stage s1.
Action: Do nothing, but move on to Qe processing x2.

(ii) y is the apparent image of something in X[s1] � x1.
Remark: If Qe was the only requirement around, that number

would be x1, but other requirements (such as Q1) might have already
put numbers below x1 into X[s].

Action: Put into Xs1+1 the minimum number of new elements in
(x0, x1) needed to move y to the right of the image of x1. Thus if
(x0, x1] already had k elements in it in X, then we would need to put
the greatest k elements not yet in X[s1] into Xs1+1. (In the actual case
of x1, since only Q1 could have acted, this number would be either 1
or 2.)

Now the construction proceeds inductively. The goal is for Qe to drive some
y = y(e) to the right of all the potential images of xi and hence if Qe acts for
all xi it is not possible for Le to be isomorphic to 〈ω,≤, X〉 and have witnesses
to the computable copy of X in Le being WetVe = ω. That is because Le will
have an element y(e) with infinitely many points left of it, so its order type is
not ω.

Note that in the interval (xi, xi+1) since only Qj for j ≤ i will be allowed
to enumerate elements into X, it is enough to have the distance between xi

and xi+1 be at least
∑

j≤i(j + 1).
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We now outline the construction above with high permitting. Given a
high c.e. set A, we construct a procedure Γ and X meeting the requirements
above with ΓA = X. We assume by Martin’s Theorem that A is enumeration
dominant so that for any total computable function g, the principal function
of A dominates g. (That is, if As = {as

i : i ∈ ω} then if pA(i) = µs[as
i = ai],

pA(i) > g(i) for almost all i.)
For a single requirement Q0, say, the idea is to try to meet Q0 as above but

by using infinitely many potential yn
0 as y’s. We then argue that for some n,

we meet Q0 via yn
0 = yn, say. For the sake of Q0 we will build an auxiliary

computable function g = g0.
Initially, we will set γ(i) = as

i for the procedure below, but this changes in
the construction. If we reset γ(i) = as+1

k [s+1] at some stage s, then we would
reset γ(j + i) = ak+j [s+ 1] for all j.

We begin as above. For Q0 we wait till x0 is realized, and then define
g(0) = s0. We would like to put x0-1 into X-Xs0 to move y = y0 right of
the current image of x0. To do this we need a permission from A on γ(0)[s0].
Thus, the definition of g challenges the domination of A.

The action at x0 is resolved if at some stage t0 > s0 A permits γ(0). Reso-
lution will allow us to continue the construction. However, whilst we await a
resolution at x0, we start a new strategy based on the belief that no resolution
ever occurs at x0. Thus, we wait for a stage u1 where till we see the initial
segment of 〈ω,≤〉[u1] up to some x1 look the same as the initial segment of Le

of length x1 at stage u1 > s0, and this fact is apparently confirmed by We and
Ve at stage u1. That is if there are n elements of Xs1 less than or equal to x1

then there are exactly the same number (and in the same positions) elements
of Le[u1] all of which are in We and the others are in Ve, and We t Ve com-
putes the appropriate initial segment the natural numbers so that no rational
numbers with small Gödel numbers can be enumerated into Le after stage u1.
Now we take the apparent image of x1, y1, and attempt the construction to
satisfy Q0 using y1 in the place of y0.

Thus, we now define g(1) = u1, and await an A permission on γ(1)[u1]. We
remark that all strategies for Q0 will be using the same computable g. We
continue as above inductively, starting strategies at various xi using yi.

Say, at some stage si we get a permisssion on some γ(i). Then in the interval
(xi−1, xi) we put the necessary number of elements into X to move yi right of
the apparent image of xi. Next, we will make the use of ΓA(i+k)[si+1] bigger.
That is, we find a large fresh number d and set γ(i + k, si + 1) = ap+i+k,si+1

for all k > 1. The action is not that all lower priority strategies for Q0

are initialized at this stage. This entails that a strategy pursuing xj on the
assumption that the i-strategy is stuck is now initialized forever, and we would
only pursue m-strategies for Q0 using m ≤ i and m ≥ si. The point of
“kicking” the uses for γ(i + 1, si + 1) is the following. What the i-strategy
for Q0 would like to move yi right of the image of xi+1. For this it needs a
permission from A. We would like to argue that if we ever fail then A is not
dominant. But some other strategy migh have already defined g(i+ 1). Now,
A might have fulfilled its commitment for dominating g(i + 1) and may not
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actually care to change again, after we are ready to move yi again. Since we
have kicked the i+ 1-use to a place that we have not as yet defined g, we can
allow that i-strategy to assert control of g(p + i + 1). That is, we next wait
for L0 to give us an apparent isomorphism for Le up to xi+1 again, but now
at that stage s2 we will define g(p + i + 1) to try to pursue the i-strategy.
Of course, the other i′-strategies for i′ < i might act before this, initializing
(forever) the i-strategy, but there is some i which is immortal. Notice that g is
total if we fail to meet Q0 and would not be dominated by pA, a contradiction.
Also X ≤T A by permitting on γ.

Notice also that, even for a single Q0, we would need the intervals (xi, xi+1)
to be larger, since differing Q0 strategies can enumerate elements into these
intervals for their own yi’s.

Now we consider the combination of the requirements. Consider Q1. The
outcomes for the procedure above have order type ω+ 1, namely 0, 1, 2, . . . , f ,
where f denotes that Q0 fails to have infinitely many stages where Le can be
considered as isomorphic to (ω,≤, Q) with witness W0 t V0, and the others
denote the least n where the n-strategy acts infinitely, and hence succeeds.

In a standard way, each outcome has its own version of Q1. Qf
1 guessing f

will simply work on xi which are untouched by Q0. Qn
1 guessing n will “know”

that n is the correct outcome, and builds its versions of g1, gn
1 at stages when n

looks correct. There are little interactions between the requirements to ensure
that γ(i, s) has a limit; this also happens in a standard way. The remaining
details are a typical tree of strategies argument, and provide little insight but
detail.

7. The Proof of Theorem 1.6

This is a short proof. Given a c.e. set X ⊆ ω we construct a set Y m-
equivalent to X such that Y has a computable copy in a computable copy
of (ω,≤). The idea is simple. We define a “very spread out and smeared”
version of X, so that no point can be pushed to infinity. Thus break the
natural numbers into long intervals Ik for k ∈ N, and interval Ik is has coing
locations for j ≤ k as follows. The coding location for k is the first element,
then there are large (ever increasing) gaps with coding locations for j < k in
increasing order, and with large gaps between them. Let c(j, k) denote the
coding location for j in interval k.

We will build Y in the primary copy of (ω,≤) using only the coding loca-
tions. We declare that j ∈ X iff c(j, k) ∈ Y for all j. Then clearly Y ≡m X

The computable copy of Y we build is made by the least effort strategy.
Namely, we will have an ordering ≤A at stage s, and an isomorphism from
〈ω,≤, Y 〉[s] to A = 〈ω,≤A, YA〉[s]. If some element j enters Ys+1−Ys, putting
coding markers into all intervals Ik for k ≥ j, then we add new elements from
N − dom(As). to regain the isomorphism, moving the image of each point as
little as possible (at worst to the stage s image of the least point in Ys above
it). Clearly the copy of Y in A must be computable if it exists. By induction,
no point in A which is the image of a point in Ik can ever be moved out of
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the image of A � (min{p : p ∈ Ik+2}− 1), and so the isomorphism exists. This
ends the proof.

8. The Proof of Theorem 1.8

For the proof of the theorem we need a series of lemmas. The first lemma
is an easy exercise:

Lemma 8.1. Let XL be a copy of X ⊆ ω in a computable linear order L
isomorphic to (ω,≤). Then XL ≤T X ⊕∅′ and X ≤T XL⊕∅′. Particulary, if
both XL and X compute ∅′, then X ≡T XL. �

Consider the modulus function of the halting problem K: f(n) = µ(s)(Ks �
n = K � n). Define a set S = {f(n)|n ∈ N}. The next lemma is again easy.

Lemma 8.2. Given a set X = {x1 < x2 < ... < xn < ...} which satisfies the
following property:

∃m∀n ≥ m(an ≥ f(n)).
Then X ≥T K.

Note if X has the property in Lemma 8.2, then every infinite subset of X
has the property too. The proof of the next lemma is more involved.

Lemma 8.3. There is a ∆0
2-set X so that each copy XL of X in computable

presentation L of (ω,≤) has the property in Lemma 8.2.

Proof. We construct a ∆0
2-set X which has the property in Lemma 8.2. Fix

an effective enumeration of computable linear orderings Le = (ω,≤Le). Par-
ticularly, define L0 = (ω,≤).

To decide xe, we look at {Li}i≤e. This number needs to be one so that
number x >

∑
i<e xi chosen so that xLi > f(e) for each i ≤ e. The problem

is that we cannot actually decide what aLi from ∅′, since Le might not even
be isomorphic to L. But we can ∅′-effectively find a number a for which
xLi > f(e) for each i ≤ e.

This is done using a recursive procedure as follows. For a fixed i and f(e)
we can definitely ∅′ decide if it is i-bad (for f(e)). That is, xLi ≤ f(e). Namely
for a fixed x we can run the enumeration of Li and (using ∅′) discover that s
is a stage where xLi [s] = xLi and xLi ≤ f(e). We claim that this is a basis for
finding an x which is i-good. Take some x, run the enumeration of Li until we
discover that either x is i-bad, in which case we pick a new x and try again
with this x, or we get a certification that xLi [s] = xLi and xLi > f(e), or we
reach a stage s where for all y ≤ f(e),

(i) either y = bLi [s] = bLi 6= xLi , or
(ii) xLi <Li y. (That is y has moved beyond xLi .)

Then we can see that x is i-good since xLi cannot be i-bad. Since there are
only at most f(e) many i-bad elements for each i, we can run the procedures
above for each i ≤ e together and hence find an element x which is i-good for
f(e) for all i ≤ e. (Alternatively we could find ef(e) + 1 many numbers which
are 1-good for f(e), of these at least (e− 1)f(e) + 1 must be 2-good for f(e),
etc.)
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This allows us to define xe and we put this into A.
If L is isomorphic to (ω,≤) and is the e-th linear ordering, (xe)L ≥ f(e) for

each e by the construction. Rearrange XL so that XL = {b1 < b2 < ...bn < ...}.
There is a bijection g : ω → ω so that be = (xg(e))L. Take the first i ≤ e so
that g(i) ≥ e. Note there must be such an i.

Now we prove, by induction on j, that bi+j ≥ f(i + j). For j = 0, bi =
(xg(i))L ≥ f(g(i)) ≥ f(e) ≥ f(i). For j > 0, bi+j = (xg(i+j))L. If g(i + j) ≥
i + j, then bi+j = (xg(i+j))L ≥ (xi+j)L ≥ f(i + j). Otherwise, there must be
some k < i+ j for which g(k) ≥ i+ j. Then bi+j > bk = (xg(k))L ≥ f(g(k)) ≥
f(i+ j). �

Lemma 8.4. For each set B ≥T ∅′, there is a set X ≡T B so that for each
copy XL of X, XL ≡T B.

Proof. Take a ∆0
2 set C = {c1 < c2 < ... < cn...} as in Lemma 8.3. Define

X = {cn|n ∈ B}. Then each copy XL of X satisfies the property in Lemma
8.2 and so computes ∅′. Hence XL computes CL for each L. Particulary X
computes C and so computes B. Obviously B computes X. So, B ≡T X. By
Lemma 8.1, each XL ≡T X ≡T B. �

These lemmas prove the theorem.

9. The Proof of Theorem 1.9

For the proof we need to construct a ∆0
2-set X so that for each e the set Xe

is low. Thus we need to meet the requirements:

Ne,i : If Le
∼= L then ∃∞sΦXe,s

i (i) ↓→ ΦXe
i (i) ↓,

where L is the structure (ω,≤, X) that we are building. Additionally, we
must ensure that X has no computable copy. Thus we also need to meet the
requirements:

Pe,i : If Le
∼= L then Xe 6= ϕi.

We meet Pe,i in the standard way. In Le we pick a witness x = x(e, i).
We wait for a stage s where ϕi(x) ↓. At such a stage we commit to putting
x ∈ Xe, or keep x out of Xe to make sure that Xe(x) 6= ϕi(x). Let ys denote
the element of L corresponding to x at stage s.

For simplicity lets suppose that ϕi(x) = 0. Then this commitment will ask
that we put ys ∈ Xs. We say that Pe,i asserts control of ys. At a later stage
t it might be that yt 6= ys since a new element has entered Le <Le-below x.
At this stage t, Pe,i releases control of ys and asserts control of yt, by putting
it into Xt. Note that once Pe,i releases control of ys if will never again assert
control of ys. If Le

∼= L then lims ys exists and we will succeed in meeting Pe,i.
The only thing that we ensure is that the witnesses are chosen <Le mono-

tonically. Thus, for i < j, if we choose x for Pe,i then we can only choose
some x′ for x <Le x

′ as a follower for Pe,j . This can be done in case Le
∼= L.

If Le 6∼= L it might be possible that only finitely many followers might be
chosen for requirements of the form Pe,d. The reason for this is the following.
If Le 6∼= L, because some n ∈ Le has infinitely many <Le predcessors, then
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should we happen to choose some x where ys changes infinitely many times,
then almost all of the y′s will also be driven to infinity. This means that there
effect on X will be “transitory.”

Now we turn to the method of meeting the Ne,i. At some stage s, we might
see ΦXe,s

i (i). Then we would pursue the usual method of lowness. That is Ne,i

would assert control of u(e, i, s) = Xe,s � ϕXe,s

i (i). It would ask that this set
be preserved forever, and thus we would win.

Again this would entail looking at the pre-image of u(e, i, s) in L and asking
that they not change their status with respect to X. This will mean that there
is a set of numbers z(e, i, s) which correspond to the use u(e, i, s) in Ls whose
membership pattern is determined by ΦXe,s

i (i). At stage s control will be
asserted with priority Ne,i, upon ΦXe,s

i (i) For a single Ne,i if Le
∼= L, these

pre-images will eventually settle down, and we will succeed in meeting Ne,i,
with finite effect. In the case that Le 6∼= L, it might be possible that some
≤Le-least member z of z(e, i, s) → ∞. Then a finite number of L will be
preserved at almost all stages, but the overall eeffect of Ne,i will be that those
numbers ≤Le above z below u(e, i, s) will have only transitory effect on X.

Now we need to consider the overall effect of the interactions of the require-
ments. The first effect is that various higher priority Pf,j will be able to injure
some Ne,i. As outlined above some Pf,j will be able to assert control over
some y = ys in L, to ask that it enter (or leave) Xe,s. All is sweet unless y
corresponds to some pull back of an element in the use u(e, i, s).

Now the plan is to allow Pf,j to injure Ne,i if it has higher priority by
simply letting it do what it wants. If it injures Ne,i then we would need to
find a new Le configuration for Ne,i to preserve, with its own priority. Whilst
we are doing this we will remember this desirable Ne,i configuration. It may
be that this injury by Pf,j might be f, j-transitory, in that ys → ∞, since
Lf 6∼= L.. Once ys clears the L-zone corresponding to the u(e, i, s) elements,
then we would be free to return to that configuration. Note that, thereafter,
unless Le itself changes the region of L that it needs to control to preserve
the u(e, i, s)-computation, Pf,j will have no further efect on Ne,i. Thus in this
case, provided that Le

∼= L, if the action of Pf,j is infinitary, it basically has
only finite effect on Ne,i.

On the other hand, it might well be possible that Pf,j might be concerned
with some Lf

∼= L and hence the position of ys might settle down, and might
have a permament injury to Ne,i. This case is handled in the obvious way.
When Ne,i was injured by Pf,g as above, then we would look for a new com-

putation involving Φ
Xe,s′
i (i) for some s′ > s to preserve. In the situation that

Pf,g settles down, the next configuration would be one that could really be
preserved with priority e, i.

Similar comments pertain to Nq,r of higher priority than Ne,i which again
might have their own demands as to the look of X in the region that Ne,i

wishes to control. Again we note that either this effect is permamant and we
would meet Ne,i after this injury, or we would be able to resurrect the u(e, i, s)
computations once the Nq,r demands have permamantly cleared the use.
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Clearly, arguing by priorities, we would not allow a lower priority Pg,d to
injure some Ne,i. If the relevant x had a ys which would be in some crit-
ical region corresponding to Ne,i then we would regard this as a (possibly)
temporary injury to Pg,d. and we would be able to meet Pg,d with another
follower. The same considerations hold for Nr,s of lower priority. Really there
is guessing going on here, since for any fixed r we could know the outcome of
the Le for e < r, but if Lr

∼= L then all injuries are finite, and hence we will
be able to argue that all the requirements are met. The remaining details are
straightforward.

10. The Proof of Theorem 1.10

For the proof of the theorem we need to exhibit two computable presenta-
tions L1 and L2 of (ω,≤). The definitions of L1 and L2 are quite simple. For
L1, first let L1 be the even numbers under the usual ordering. If n goes into
∅′, put the least remaining odd number immediately before 2n. For L2, again
let L2 be the even numbers under the usual ordering. But now if n goes into
∅′, put the least remaining odd number immediately after 2n.

Assume that X is infinite and coinfinite. To a large extent, the blocks of bits
in X are reflected in XL1 � 2ω. The only exception is when X has an isolated
bit at position x and xL1 is odd. But if xL1 is odd, then (x + 1)L1 = xL2 is
even. So XL1(xL2) = XL1((x + 1)L1) = X(x + 1) 6= X(x) = XL2(xL2) and
thus we can detect the missing block by looking for a discrepancy between
XL1 � 2ω and XL2 � 2ω.

Once we have located the missing blocks of bits, it is straightforward to
compute ∅′. To determine if n ∈ ∅′, find an even m > 2n such that either
XL1(m) 6= XL1(m − 2) or there is a “missing block” before m. Run the
construction of L1 until a stage s such that XL1 [s] � m+ 1 agrees on the even
bits with XL1 � m+1 and every missing block has been accounted for. In other
words, if we determined that there is a missing block in XL1 � 2ω right before
2t ≤ m, then the immediate predecessor of 2t in L1[s] must be odd. Once such
a stage s has been reached, no number ≤ n can enter ∅′ because otherwise
we would exceed the number of bit alternations—missing and apparent—in
XL1 � 2ω before position m. Therefore, n ∈ ∅′ iff n ∈ ∅′s. We have proved the
theorem.
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