Redundancy of information: Lowering effective dimension

Jun Le Goh
joint with Joseph Miller, Mariya Soskova, Linda Westrick

University of Wisconsin-Madison

Logic Colloquium 2021
Summary

We study the interaction between effective Hausdorff dimension

\[
\dim(X) = \lim_{n \to \infty} \inf \frac{K(X | n)}{n} \in [0, 1]
\]

and Besicovitch pseudo-distance

\[
d(X, Y) = \lim_{n \to \infty} \sup \frac{|(X | n) \Delta (Y | n)|}{n} \in [0, 1]
\]

of binary sequences. Specifically, fix \(t < s \) in \([0, 1]\).

- Given \(X \) with \(\dim(X) = t \), how close to \(X \) can we find \(Y \) with \(\dim(Y) = s \)?

- Given \(Y \) with \(\dim(Y) = s \), how close to \(Y \) can we find \(X \) with \(\dim(X) = t \)?

This line of inquiry was initiated by Greenberg, Miller, Shen, Westrick (henceforth GrMShW). We continue their work.
The Kolmogorov complexity $K(\sigma)$ of a finite binary string σ is the length of the shortest description of σ, where descriptions are given by a fixed universal Turing machine.

We are concerned with the asymptotics of $\frac{K(\sigma)}{|\sigma|}$ (where σ is an initial segment of some $X \in 2^\omega$), so it does not matter which universal Turing machine we fix.

Nor does it matter whether we use plain Kolmogorov complexity or prefix-free Kolmogorov complexity.
The entropy function $H : [0, 1] \rightarrow [0, 1]$

Given a string σ of length n, here is a way to describe it:

1. specify the number of 1s and 0s in σ (say pn and $(1 - p)n$ respectively); and

2. specify σ among the strings of length n with pn many 1s.

(1) can be done with $O(\log n)$ bits.

(2) can be done with $H(p)n$ bits, where

$$H(p) = -p \log(p) - (1 - p) \log(1 - p)$$

is the entropy function.
Effective Hausdorff dimension of sequences

Definition (Lutz; Mayordomo)
The (effective Hausdorff) dimension of a sequence $X \in 2^\omega$ is

$$\dim(X) = \lim_{n \to \infty} \inf \frac{K(X \upharpoonright n)}{n} \in [0, 1].$$

Observations:

▶ Computable sequences have dimension 0.
▶ Martin-Löf random sequences have dimension 1.
▶ Flipping every bit in a sequence does not change its dimension.
Upper density and dimension

If a sequence X has upper density p, i.e.,

$$\limsup_{n \to \infty} \frac{|\{i < n : X(i) = 1\}|}{n} = p,$$

then we can bound the dimension of X in terms of p:

Proposition

A sequence with upper density p has dimension $\leq H(p)$.

Corollary

If a sequence has dimension s, then its upper density is at least $H^{-1}(s)$. (We use the branch $H^{-1} : [0, 1] \to [0, 1/2]$.)
Hamming distance and Besicovitch pseudo-distance

The Hamming distance $\Delta(\sigma, \tau)$ between strings $\sigma, \tau \in 2^n$ is the number of bits where they differ.

Definition
The (Besicovitch pseudo-)distance between sequences $X, Y \in 2^\omega$ is

$$d(X, Y) = \limsup_{n \to \infty} \frac{\Delta(X \upharpoonright n, Y \upharpoonright n)}{n} \in [0, 1].$$

Observations:
- The distance between X and $00 \cdots$ is the upper density of X.
- If we modify X on a set of positions of upper density 0, then the result Y satisfies $d(X, Y) = 0$.
Distance versus dimension

Proposition (GrMShW)
If \(\dim(X) = t \) and \(\dim(Y) = s \), then \(|s - t| \leq H(d(X, Y)) \).

In particular:
1. The previous proposition is the special case where \(Y \) is 00···.
2. If \(d(X, Y) = 0 \), then \(X \) and \(Y \) have the same dimension.

Proof idea: We can describe an initial segment of \(X \) by describing
the corresponding initial segment of \(Y \), as well as their differences.
This shows that
\[
t \leq s + H(d(X, Y)).
\]
Distance versus dimension

Proposition (GrMShW)
If \(\dim(X) = t \) and \(\dim(Y) = s \), then \(|s - t| \leq H(d(X, Y)) \), i.e.,

\[
d(X, Y) \geq H^{-1}(|s - t|).
\]

Motivating Question
Is this the best possible bound?

In a weak sense, yes:

Proposition (GrMShW)
For every \(t < s \), there are \(X \) and \(Y \) with \(\dim(X) = t \), \(\dim(Y) = s \), and \(d(X, Y) \leq H^{-1}(s - t) \) (hence \(d(X, Y) = H^{-1}(s - t) \)).

However, it is not the case that for every \(X \) of dimension \(t \), there is some \(Y \) of dimension \(s \) such that \(d(X, Y) \leq H^{-1}(s - t) \).
Increasing dimension (from t to s)

Observation (GrMShW)

Suppose $0 < t < s$. There is some X of dimension t such that for every Y of dimension s, $d(X, Y) > H^{-1}(s - t)$.

To see this, fix X with dimension t and density $H^{-1}(t)$. For every Y with dimension s, the density of Y is at least $H^{-1}(s)$, so

$$d(X, Y) \geq H^{-1}(s) - H^{-1}(t) > H^{-1}(s - t).$$
Increasing dimension (from t to s)

Observation (GrMShW)

Fix X with dimension t and density $H^{-1}(t)$. For every Y with dimension s, the density of Y is at least $H^{-1}(s)$, so

$$d(X, Y) \geq H^{-1}(s) - H^{-1}(t).$$

The above is the worst that could happen when trying to increase the dimension of a given sequence X:

Theorem (GrMShW)

Suppose $t < s$. For every X of dimension t, there is some Y of dimension s such that $d(X, Y) \leq H^{-1}(s) - H^{-1}(t)$.
Lowering dimension (from s to t)

Given Y of dimension s, how close to Y can we find some X of dimension t?

$H^{-1}(s - t)$ is the closest that we can hope for, but this is not always attainable.

An issue arises if the information in Y is stored redundantly (so it is harder to erase).
Lowering dimension (from s to t): Redundancy in Y

(GrMShW) Take Y to be $Z \oplus Z$, where Z is a random.

Imagine you’re trying to flip bits of Y in order to obtain an X of lower dimension.

In order for you to succeed, it must be hard to recover Y from X.

X can detect (for free) its inconsistencies, i.e., the i such that $X(2i) \neq X(2i + 1)$. It is relatively cheap to fix all inconsistencies. Example:

\[
\begin{align*}
X & \quad 0000110100101101 \cdots \\
\text{Extra info} & \quad 001 \cdots \\
\tilde{X} & \quad 0000110000001111 \cdots
\end{align*}
\]

If, in addition to the above, we specify the set of i such that $X(2i) = X(2i + 1) \neq Z(i)$, then we can recover all of Y.
Lowering dimension (from s to t)

Theorem (GrMShW)
For each Y of dimension s and each $t < s$, there is some X of dimension t with $d(X, Y) \leq H^{-1}(1 - t)$.

This was proved using the corresponding result for strings:

Proposition (GrMShW)
For each $\sigma \in 2^n$ and $t \in [0, 1]$, there is some $\tau \in 2^n$ such that

\[
\frac{K(\tau)}{n} \leq t + O(\log n/n)
\]

\[
\frac{\Delta(\sigma, \tau)}{n} \leq H^{-1}(1 - t).
\]

If $s = 1$, the above theorem yields an optimal result.
Lowering dimension (from $s < 1$ to t): Another strategy

If $s < 1$, there is another strategy for finding a nearby X of dimension t.

The previous theorem was proved by applying the previous proposition to each interval in Y to obtain X. Instead:

- We leave some intervals in Y unchanged, and
- apply the previous proposition to the other intervals to obtain strings of dimension $< t$.

If t is sufficiently close to s, then this strategy is better.
Lowering dimension (from s to t)

Theorem (GoMSoW)

For each Y of dimension s and each $t < s$, there is some X of dimension t such that

$$d(X, Y) \leq \begin{cases} H^{-1}(1 - t) & \text{if } t \leq 1 - H(2^{s-1}) \\ \frac{s-t}{-\log(2^{1-s} - 1)} & \text{otherwise} \end{cases}.$$

Observations:

1. For $s = 1$, this specializes to the previous theorem of GrMShW.

2. The above piecewise function is continuous, and even differentiable.

Corollary (GoMSoW)

For each Y of dimension s and every $\epsilon > 0$, there is some $t < s$ and some X of dimension t such that $d(X, Y) \leq \epsilon$.