Topological detection of Lagrangian coherent structures

Jean-Luc Thiffeault1 Michael Allshouse2

1Department of Mathematics
University of Wisconsin – Madison

2Department of Mechanical Engineering
MIT

SIAM Conference on Applications of Dynamical Systems
Snowbird, Utah, 22 May 2011
Sparse trajectories and material loops

How do we efficiently detect trajectories that ‘bunch’ together?

[movie 1]
Growth of loops enclosing trajectories

For 3 trajectories, look at the growth of curves:

We use the braid generator notation: σ_i means the clockwise interchange of the ith and $(i + 1)$th trajectory. (Inverses are counterclockwise.)

The motion above is denoted $\sigma_1 \sigma_2^{-1}$.
The rate of growth $h = \log \lambda$ is called the topological entropy.

But how do we find the rate of growth of curves for motions on the disk?

For 3 trajectories it’s easy: the entropy for $\sigma_1 \sigma_2^{-1}$ is $h = \log \varphi^2$, where φ is the Golden Ratio!

For more trajectories, use Moussafir iterative technique (2006).

Iterating a loop

It is well-known that the entropy can be obtained by applying the trajectories to a closed curve (loop) repeatedly, and measuring the growth of the length of the loop (Bowen, 1978).

The problem is twofold:

1. Need to keep track of the loop, since its length is growing exponentially;

2. Need a simple way of transforming the loop according to the trajectories.

However, simple closed curves are easy objects to manipulate in 2D. Since they cannot self-intersect, we can describe them topologically with very few numbers.
Solution to problem 1: Loop coordinates

What saves us is that a closed loop can be uniquely reconstructed from the number of intersections with a set of curves. For instance, the crossing numbers count intersections with vertical lines:
Dynnikov coordinates

Now take the difference of crossing numbers:

\[a_i = \frac{1}{2} (\mu_{2i} - \mu_{2i-1}) , \]
\[b_i = \frac{1}{2} (\nu_i - \nu_{i+1}) \]

for \(i = 1, \ldots, n - 2 \).

The vector of length \(2n - 4 \),

\[\mathbf{u} = (a_1, \ldots, a_{n-2}, b_1, \ldots, b_{n-2}) \]

is called the Dynnikov coordinates of a loop.

There is a one-to-one correspondence between closed loops and these coordinates: you can’t do it with fewer than \(2n - 4 \) numbers.
Solution to problem 2: Action on coordinates

Moving the points according to a braid generator changes some crossing numbers:

There is an explicit formula for the change in the coordinates!
Action on loop coordinates

The update rules for σ_i acting on a loop with coordinates (a, b) can be written

\[
\begin{align*}
a'_{i-1} &= a_{i-1} - b^+_{i-1} - (b^+_i + c_{i-1})^+ , \\
b'_{i-1} &= b_i + c^-_{i-1} , \\
a'_i &= a_i - b^-_i - (b^-_{i-1} - c_{i-1})^- , \\
b'_i &= b_{i-1} - c^-_{i-1} ,
\end{align*}
\]

where

\[
f^+ := \max(f, 0), \quad f^- := \min(f, 0).
\]

\[
c_{i-1} := a_{i-1} - a_i - b^+_i + b^-_{i-1}.
\]

This is called a piecewise-linear action.

Easy to code up (see for example Thiffeault (2010)).
For a specific set of trajectories, say as given by the braid \(\sigma_3^{-1} \sigma_2^{-1} \sigma_3^{-1} \sigma_2 \sigma_1 \), we can easily see the exponential growth of \(L \) and thus measure the entropy:
m is the number of times the braid acted on the initial loop.
Lagrangian Coherent Structures

- There is a lot more information in the braid than just entropy;
- For instance: imagine there is an isolated region in the flow that does not interact with the rest, bounded by Lagrangian coherent structures (LCS);
- Identify LCS and invariant regions from particle trajectory data by searching for curves that grow slowly or not at all.
- For now: regions are not ‘leaky.’
Sample system: Modified Duffing oscillator

\[\dot{x} = y + \alpha \cos \omega t, \]
\[\dot{y} = x(1 - x^2) + \gamma \cos \omega t - \delta y, \]

+ rotation to further hide two regions. \(\alpha = .1, \gamma = .14, \delta = .08, \omega = 1. \)
Growth of loops

Coding of loops

LCS

Conclusions

References

Growth of a vast number of loops

Left: semilog plot; Right: linear plot of slow-growing loops.

Clearly two types of loops!
What do the slowest-growing loops look like?

[(c) appears because the coordinates also encode ‘multiloops.’]
Computational complexity

Here’s the bad news:

• There are an infinite number of loops to consider.
• But we don’t really expect hyper-convoluted initial loops (nor do we care so much about those).
• Even if we limit ourselves to loops with Dynnikov coordinates between -1 and 1, this is still 3^{2n-4} loops.
• This is too many... can only treat about 10–11 trajectories using this direct method.
An improved method: Pair-loops

The biggest problem is that we only look at whether a loop grows or not. But there is a lot more information to be found in how a loop entangles the trajectories as it evolves.

Consider loops that enclose only two trajectories at once. More involved analysis, but scales much better with n.
Improvement

Run times in seconds:

<table>
<thead>
<tr>
<th># of trajectories</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>direct method</td>
<td>0.46</td>
<td>0.70</td>
<td>6.0</td>
<td>53</td>
<td>462</td>
<td>3445</td>
<td>N/A</td>
</tr>
<tr>
<td>pair-loop method</td>
<td>9.5</td>
<td>11.6</td>
<td>12.3</td>
<td>13</td>
<td>15</td>
<td>20</td>
<td>128</td>
</tr>
</tbody>
</table>

Bottleneck for the pair-loop method is finding the non-growing loops. (Should scale as n^2 for large enough n.)

The downside is that the pair-loop method is much more complicated. But in the end it accomplishes the same thing.
A physical example: Rod stirring device
Conclusions

• Having trajectories undergo ‘braiding’ motion guarantees a minimal amount of entropy (stretching of material lines);
• This idea can also be used on fluid particles to estimate entropy;
• Need a way to compute entropy fast: loop coordinates;
• There is a lot more information in this braid: extract it! (Lagrangian coherent structures);
• Is this useful? We need good physical problems to try it on!
• See Thiffeault (2005, 2010) and soon preprint by Allshouse & Thiffeault.
This work was supported by the Division of Mathematical Sciences of the US National Science Foundation, under grant DMS-0806821.
References

