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1 Introduction

An observer at rest has his own definition of a vacuum: it is the state in which he sees no
particles. An accelerated observer also has his own vacuum, using the same definition.
We will show that these two vacuums are not the same, so that an accelerated observer
actually sees particles in the inertial observer’s vacuum. In other words, “vacuum”
is a relative concept that depends on the observer. We will show this for the case of
a massless scalar field, but the argument can be generalized. We will then examine
experimental evidence for this effect.

2 Theory

Define the coordinates ū and v̄ by

ū = t − x, (1)

v̄ = t + x. (2)

Figure 1 shows what lines of constant ū and v̄ look like. The line element ds2 is then
written

ds2 = dt2 − dx2 = dū dv̄. (3)

We make the following coordinate transformation:

t = a−1eaξ sinh aη, (4)

x = a−1eaξ cosh aη, (5)
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Figure 1: Rindler coordinatization of Minkowski space. In R and L, time coordi-
nates η = constant are straight lines through the origin, space coordinates ξ =constant
are hyperbolae (corresponding to the world lines of uniformly accelerated observers)
with null asymptotes ū = 0, v̄ = 0, which act as event horizons. The four regions R,
L, F, and P must be covered by separate coordinate patches. Rindler coordinates are
non-analytic across ū = 0 and v̄ = 0.
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where a =constant > 0 and −∞ < (η, ξ) < ∞. Inverting the transformation:

ū = −a−1e−au (6)

v̄ = a−1eav, (7)

where u = η − ξ, v = η + ξ. The line element (3) becomes

ds2 = e2aξdu dv = e2aξ(dη2 − dξ2). (8)

The coordinates (η, ξ) cover only a quadrant of Minkowski space. Lines of constant η
are straight while lines of constant ξ are hyperbolae

x2 − t2 = a−2e2aξ = constant.

Lines of constant ξ are thus the world lines of uniformly accelerated observers with
acceleration α−1 given by

α−1 = ae−aξ.

Notice that the acceleration is proportional to e−aξ. The system (η, ξ) is known as the
Rindler coordinate system, and the portion x > |t| of Minkowski space is called the
Rindler wedge.

A second Rindler wedge x < −|t| may be obtained by reflecting the first in the t
and then the x axis. This is achieved by changing the signs of the right-hand sides of
the transformation equations (4)–(7). We label the left- and right-hand wedges by L
and R respectively.

The null rays act as event horizons for Rindler observers: an observer in R cannot
see events in L and vice versa. L and R thus represent two causally disjoint universes.
We mark also the remaining future (F) and past (P) regions on Figure 1. Events in
both P and F can be connected by null rays to both L and R.

Now consider the quantization of a massless scalar field φ in two-dimensional Min-
kowski spacetime. The wave equation

2φ ≡
(

∂2

∂t2
− ∂2

∂x2

)

φ ≡ ∂2φ

∂ū∂v̄
= 0 (9)

has the standard orthonormal mode solutions

ūk = (4πω)−1/2eikx−iωt, (10)

where ω = |k| > 0 and −∞ < k < ∞. The modes with k > 0 consist of right-moving
waves

(4πω)−1/2e−iωū (11)

along the rays ū = constant, while for k < 0 one has left-moving waves along v̄ =
constant:

(4πω)−1/2e−iωv̄. (12)
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Since the modes (10) form a complete set, we can expand the field φ as

φ =
∞
∑

k=−∞

(

akūk + a†
kū

∗
k

)

. (13)

The operator ak is the annihilation operator for mode k, while a†
k is the corresponding

creation operator. The Minkowski vacuum state |0M〉 is then defined by

ak|0M〉 = 0. (14)

Now we wish to solve the wave equation (9) in the Rindler coordinates (η, ξ),

2φ = e−2aξ

(

∂2

∂η2
− ∂2

∂ξ2

)

φ = e−2aξ ∂2φ

∂u∂v
= 0. (15)

This has the same form as (9), so the mode solutions are

uk = (4πω)−1/2eikξ ± iωη, (16)

with ω defined as in (10). The upper sign in (16) applies in region L, the lower in region
R. The presence of the sign change is due to the fact that a right moving wave in R
moves towards increasing values of ξ, while in L it moves towards decreasing values
of ξ.

Define

Ruk =

{

(4πω)−1/2eikξ−iωη, in R;
0, in L,

(17)

Luk =

{

(4πω)−1/2eikξ+iωη, in L;
0, in R.

(18)

The set (17) is complete in region R, while (18) is complete in L, but neither set is
separately complete on all of Minkowski space. However, both sets together are so
complete, as the modes (17) and (18) can be analytically continued into regions F and
P (a becomes imaginary in (4)–(7)). Thus these Rindler modes are every bit as good
as the Minkowski space basis (10).

We can thus expand the field as

φ =
∞
∑

k=−∞

(

b
(1)
k

Luk + b
(1)†
k

Lu∗
k + b

(2)
k

Ruk + b
(2)†
k

Ru∗
k

)

, (19)

yielding two alternative vacuum states, the Minkowski vacuum (14) and the Rindler
vacuum |0R〉 defined by

b
(1)
k |0R〉 = b

(2)
k |0R〉 = 0. (20)

These vacuum states are not equivalent as the Rindler modes are not analytic at the
origin: because of the sign change in the exponent in (16) at ū = v̄ = 0, the functions
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Ruk do not go over smoothly to Luk as one passes from R to L. In contrast, the
Minkowski modes (11) and (12) are analytic and bounded in the entire lower half of
the complex ū (or v̄) planes. This analiticity property remains true of any pure positive
frequency function, i.e. any linear superposition of these positive frequency Minkowski
modes. Hence the Rindler modes cannot be a linear superposition of pure positive
frequency Minkowski modes, but must also contain negative frequencies.

In other words, the b
(1,2)
k are a linear combination of both ak’s and a†

k’s, which means

that to the accelerated observer b
(1,2)
k |0M〉 6= 0. The discussion of the actual relation

between the bk’s and the ak’s is rather involved, so we shall only state the final result
for the expectation value of the number operator for the Rindler observer (see Birrell
and Davies [1] for a full derivation):

〈0M |b(1,2)†
k b

(1,2)
k |0M〉 =

(

e2πωα − 1
)−1

. (21)

This is the Planck spectrum for radiation at temperature T = (2πkBα)−1.

3 Experimental Tests

We showed in the previous Section that a uniformly accelerated (Rindler) observer
experiences a heat bath coming from the Minkowski vacuum, and that heat bath is
characterized by the temperature

kBT = 1/2πα, (22)

where α−1 is the acceleration of the observer.
This idea can be tested by measuring the transverse momenta of particles created in

high-energy hadronic collisions. [8, 9] The differential cross-sections of such collisions,
as a function of the transverse momentum, are fitted to a “thermal” distribution

dσ

d(p2
T )

= e−
√

p2

T
−m2/kBT (23)

The uncertainty principle and dimensional analysis can be used to predict the average
temperature

〈kBT 〉 ≈ 110 − 130 MeV. (24)

These results are of the order of magnitude of experiments.
The effect may also be detectable for electrons in storage rings (very large transverse

acceleration) and would manifest itself as a residual depolarization. [10]
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