Lyapunov Exponents and Transport in 2D Flows

Jean-Luc Thiffeault

Department of Applied Physics and Applied Mathematics
Columbia University

http://w3fusion.ph.utexas.edu/~jeanluc/

18 November 1999

with Allen Boozer
Overview

We are interested in the advection-diffusion equation:

\[
\frac{\partial \phi}{\partial t} + \mathbf{v} \cdot \nabla \phi = \frac{1}{\rho} \nabla \cdot (\rho D \nabla \phi)
\]

where the Eulerian velocity field \(\mathbf{v}(\mathbf{x}, t) \) is some prescribed time-dependent flow, which may or may not be be chaotic. The quantity \(\phi \) represents the concentration of some passive scalar, \(\rho \) is the density, and \(D \) is the diffusion coefficient.

We assume that the Lagrangian dynamics are strongly chaotic \((\lambda L^2/D \gg 1)\).
Lagrangian Coordinates

The trajectory of a fluid element in Eulerian coordinates x satisfies

$$\frac{dx}{dt}(\xi, t) = v(x(\xi, t), t),$$

where ξ are Lagrangian coordinates which label fluid elements. The usual choice is to take as initial condition $x(\xi, t = 0) = \xi$, which says that fluid elements are labeled by their initial position.

$x = x(\xi, t)$ is thus the transformation from Lagrangian (ξ) to Eulerian (x) coordinates.

This transformation gets horrendously complicated as time evolves.
Lyapunov Exponents

The rate of exponential separation of neighbouring Lagrangian trajectories is measured by Lyapunov exponents

$$\lambda_\infty = \lim_{t \to \infty} \frac{1}{t} \ln \| (T_x v) w_0 \|,$$

where $T_x v$ is the tangent map of the velocity field (the matrix $\frac{\partial v}{\partial x}$) and w_0 is some constant vector.

Lyapunov exponents converge very slowly. So, for practical purposes we are always dealing with finite-time Lyapunov exponents.
The Idea

- Can we characterize the spatial and temporal evolution of finite-time Lyapunov exponents in a generic manner?
- Can we quantify the impact of these exponents on diffusion?

Tang and Boozer (1996) brought the tools of differential geometry to bear on this problem.

Results: a generic functional form for the time evolution of finite-time Lyapunov exponents, and a relation between their spatial dependence and the shape of the stable manifolds.
A little differential geometry ...

The Jacobian of the transformation from Lagrangian (ξ) to Eulerian (\mathbf{x}) coordinates

$$J^i_j \equiv \frac{\partial x^i}{\partial \xi^j}$$

The Jacobian tells us how tensors transform:

- **Covariant:**
 $$\tilde{V}_j = J^k_j \, V_k,$$

- **Contravariant:**
 $$\tilde{W}^i = J^i_k \, W^k.$$
Measuring distances

The distance between two infinitesimally separated points in Eulerian space is given by

\[ds^2 = d\mathbf{x} \cdot d\mathbf{x} = \delta_{ij} \, dx^i \, dx^j . \]

Therefore, in Lagrangian coordinates distances are given by

\[ds^2 = \delta_{ij} \left(\frac{dx^i}{d\xi^k} \right) \left(\frac{dx^j}{d\xi^\ell} \right) = (J^i_k \, \delta_{ij} \, J^j_\ell) \, d\xi^k \, d\xi^\ell . \]

The distance function now depends on the Lagrangian coordinate \(\xi \) through the Jacobian \(J \).
The Metric Tensor

The tensor δ_{ij} is a metric in the Eulerian (Euclidean) space. The tensor

$$g_{k\ell}(\mathbf{x}, t) \equiv \sum_i J^i_k \ J^i_\ell = (J^T J)_{k\ell}$$

is the same metric tensor but in the Lagrangian coordinate system. Since the metric tells us about the distance between two neighbouring Lagrangian trajectories, its eigenvalues are related to the finite-time Lyapunov exponents.
2-D Incompressible Flow

We will now restrict ourselves to a 2-D, incompressible velocity field \mathbf{v}. This means that

$$\det g = (\det J)^2 = 1.$$

Now, g is a positive-definite symmetric matrix, which implies that it has real positive eigenvalues, $\Lambda(\xi, t) \geq 1$ and $\Lambda^{-1}(\xi, t) \leq 1$, and orthonormal eigenvectors $\hat{e}(\xi, t)$ and $\hat{s}(\xi, t)$:

$$g_{k\ell}(\xi, t) = \Lambda e_k e_\ell + \Lambda^{-1} s_k s_\ell$$

The finite-time Lyapunov exponents are given by

$$\lambda(\xi, t) = \ln \Lambda(\xi, t) / 2t$$
Stable and Unstable Directions

At a fixed coordinate ξ:

The stable and unstable manifolds $\hat{e}(\xi, t)$ and $\hat{s}(\xi, t)$ converge exponentially to their asymptotic values $\hat{e}_\infty(\xi)$ and $\hat{s}_\infty(\xi)$, whereas Lyapunov exponents converge logarithmically.
Model System

Oscillating convection rolls: $\mathbf{v} = (-\partial_y \psi, \partial_x \psi)$, with

$$
\psi(x, t) = Ak^{-1}(\sin kx \sin \pi y + \epsilon \cos \omega t \cos kx \cos \pi y)
$$
\hat{s}_∞ field for oscillating rolls with $A = k = \epsilon = \omega = 1$, with two typical portions of the stable manifold in red and blue.
The Advection-diffusion Equation

Under the coordinate change to Lagrangian variables the diffusion term becomes

\[\nabla \cdot (D \nabla \phi) = \frac{\partial}{\partial x^i} (D \delta^{ij} \frac{\partial \phi}{\partial x^j}) = \frac{\partial}{\partial \xi^i} (D g^{ij} \frac{\partial \phi}{\partial \xi^j}). \]

In Lagrangian coordinates the diffusivity becomes \(D g^{ij} \): it is no longer isotropic.

The advection-diffusion equation is thus just the diffusion equation,

\[\frac{\partial \phi}{\partial t} = \frac{\partial}{\partial \xi^i} (D g^{ij} \frac{\partial \phi}{\partial \xi^j}), \]

because by construction the advection term drops out.
Diffusion along \hat{s}_∞ and \hat{e}_∞

The diffusion coefficients along the \hat{s}_∞ and \hat{e}_∞ lines are

$$D^{ss} = s_\infty^i (Dg^{ij}) s_\infty^j = D \exp(2\lambda t),$$

$$D^{ee} = e_\infty^i (Dg^{ij}) e_\infty^j = D \exp(-2\lambda t).$$

We see that D^{ee} goes to zero exponentially quickly, while D^{ss} grows exponentially.

Hence, essentially all the diffusion occurs along the \hat{s}_∞-line.
Spatial Dependence of $\lambda(\xi, t)$

Differential geometry tells us if a metric describes a flat space, then its Riemann curvature tensor must vanish in every coordinate system.

After some tedious algebra, we find this implies that the quantity

$$\hat{s}_\infty \cdot \nabla_0 \lambda(\xi, t) t + \nabla_0 \cdot \hat{s}_\infty$$

converges to 0 exponentially. Hence, it can be shown that the finite-time Lyapunov exponents must have the form

$$\lambda(\xi, t) = \frac{\tilde{\lambda}(\xi)}{t} + \frac{f(\xi, t)}{\sqrt{t}} + \lambda_\infty,$$

where $\hat{s}_\infty \cdot \nabla_0 f = 0$ (the $1/\sqrt{t}$ factor comes from known results on the variance of the exponents).
Example:

\[\langle \lambda \rangle = 0.305/t + 0.175/\sqrt{t} + 0.117 \]

Dotted: Numerical
Solid: \[0.305/t + 0.175/\sqrt{t} + 0.117 \]

Allows us to determine \(\lambda_\infty = 0.117 \) rapidly and accurately.
Convergence on the \hat{s}_∞-line

$$\nabla_0 \cdot \hat{s}_\infty + (\hat{s}_\infty \cdot \nabla_0) \lambda t$$ evaluated on an \hat{s}_∞-line.

τ is the distance along the red \hat{s}_∞-line on page 12.

Green: $-\nabla_0 \cdot \hat{s}_\infty$

Red: $(\hat{s}_\infty \cdot \nabla_0) \lambda t$.
Curvature and Lyapunov Exponents

Finite-time Lyapunov exponent $\lambda(\xi(\tau), t)$ has local minima near high-curvature $\kappa \equiv (\mathbf{s}_\infty \cdot \nabla_0)\mathbf{s}_\infty$ regions of \mathbf{s}_∞-line.
Conclusions

- Diffusion occurs overwhelmingly along the stable direction.
- The spatial dependence of Lyapunov exponents along \hat{s} lines is contained in the smooth function $\tilde{\lambda}(\xi)$, which decays as $1/t$.
- The notoriously slow convergence of Lyapunov exponents is embodied in the nonsmooth function $f(\xi, t)$, which is \textit{constant} on \hat{s} lines and decays as $1/\sqrt{t}$.
- Relationship between $\hat{s}_\infty(\xi), \kappa \equiv (\hat{s}_\infty \cdot \nabla_0)\hat{s}_\infty$, and $\tilde{\lambda}(\xi)$.
- Sharp bends in the \hat{s} line lead to locally small finite-time Lyapunov exponents (diffusion is hindered).
- Tested directly on oscillating-rolls flow.