optimizing transport in heat exchangers
a probabilistic approach

Jean-Luc Thiffeault
Department of Mathematics
University of Wisconsin – Madison

with Florence Marcotte, William R. Young, Charles R. Doering

APS–DFD Meeting, Boston, MA
22 November 2015

Supported by NSF grant CMMI-1233935
Advection and diffusion of heat in a bounded region Ω, with Dirichlet boundary conditions:

$$\partial_t \theta + u \cdot \nabla \theta = D \Delta \theta, \quad u \cdot \hat{n} |_{\partial \Omega} = 0, \quad \theta |_{\partial \Omega} = 0,$$

with $\nabla \cdot u = 0$ and $\theta(x, t) \geq 0$.

Write $\langle \cdot \rangle$ for an integral over Ω. The rate of heat loss is equal to the flux through the boundary $\partial \Omega$:

$$\partial_t \langle \theta \rangle = D \int_{\partial \Omega} \nabla \theta \cdot \hat{n} \, dS =: -F[\theta] \leq 0.$$ \[\text{Goal: find velocity fields } u \text{ that maximize the heat flux.}\]

Note that * is not so good for this, since velocity does not appear.
related problem: mean exit time

Take steady velocity $u(x)$. The mean exit time $\tau(x)$ of a Brownian particle initially at x satisfies

$$-u \cdot \nabla \tau = D \Delta \tau + 1, \quad \tau|_{\partial \Omega} = 0,$$

This is a steady advection–diffusion equation with velocity $-u$ and source 1.

Intuitively, a small integrated exit time $\langle \tau \rangle = \|\tau\|_1$ implies that the velocity is good at taking heat out of the system.

The exit time equation is much nicer than the equation for the concentration: it is steady, and it applies for any initial concentration $\theta_0(x)$.

Recall that $\langle \cdot \rangle$ is an integral over space, and take $\langle \theta_0 \rangle = 1$. The quantity

$$
\int_0^\infty \langle \theta \rangle \, dt
$$

is a cooling time. Smaller is better for transport.

We have the rigorous bounds

$$
\int_0^\infty \langle \theta \rangle \, dt \leq \|\tau\|_\infty \quad \int_0^\infty \langle \theta \rangle \, dt \leq \|\tau\|_1 \|\theta_0\|_\infty.
$$

Thus, decreasing a norm like $\|\tau\|_1$ or $\|\tau\|_\infty$ will typically decrease the cooling time, as expected.
optimization problem

Advection–diffusion operator and its adjoint:

\[\mathcal{L} := u \cdot \nabla - D \Delta, \quad \mathcal{L}^\dagger = -u \cdot \nabla - D \Delta. \]

Minimize \(\langle \tau \rangle \) over steady \(u(x) \) with fixed total kinetic energy \(E \).

The functional to optimize:

\[\mathcal{F}[\tau, u, \vartheta, \mu, p] = \langle \tau \rangle - \langle \vartheta (\mathcal{L}^\dagger \tau - 1) \rangle + \frac{1}{2} \mu (\|u\|_2^2 - 2E) - \langle p \nabla \cdot u \rangle \]

Here \(\vartheta, \mu, p \) are Lagrange multipliers.
Simple system: 2D disk. Think of the cross-section of a pipe.

For small energy E, exact solution in terms of Bessel functions $J_m(\rho_n)$, where ρ_n are zeros.

Pick the solution with largest transport: $m = 2, n = 1$:
asymptotics: large E case

Numerical solution with **bvp5c** (Shampine, 2000), using a continuation method.

Asymptotics at large E, fixed m: $\langle \tau \rangle \sim m^{-2/3} E^{-1/3}$.
asymptotics: large E case (cont’d)

Optimal m at fixed energy E:

![Graph showing the optimal m at fixed energy E. The graph plots E on the x-axis and $\frac{\Lambda}{\nu}$ on the y-axis, with different lines representing various m values. The graph highlights the case $m = 32$.](image)
Penalty on large m: the "stagnation zone"
structure of the solution for large E
Transport in heat exchangers has a very different character than ‘freely-decaying’ problem.

Using the probabilistic mean exit time formulation simplifies the problem. (Idea came from Iyer et al. 2010.)

Optimal solutions for u are reminiscent of Dean flow.

Optimal exit time at fixed flow energy shows increasing number of “cells” as energy increased.

This is a pathology of fixing E. In future work we will fix viscous dissipation, which penalizes small structures.

Generalizations: use different norms, spatial weight...