Stirring by squirmers

Jean-Luc Thiffeault1 Steve Childress2 Zhi George Lin3

1Department of Mathematics
University of Wisconsin – Madison

2Institute for Mathematics and its Applications
University of Minnesota – Twin Cities

3Courant Institute of Mathematical Sciences
New York University

APS – Division of Fluid Dynamics Meeting
Long Beach, CA, 21 November 2010
A ‘gas’ of swimmers

[movie 1] 100 cylinders, box size = 1000
Displacement by a moving body

Suggests mechanism for stirring by swimming organisms. (Katija & Dabiri, 2009; Thiffeault & Childress, 2010)
A sequence of kicks

Inspired by Einstein’s theory of diffusion (Einstein, 1905): a test particle initially at $x(0) = 0$ undergoes N encounters with an axially-symmetric swimming body:

$$x(t) = \sum_{k=1}^{N} \Delta_L(a_k, b_k) \hat{r}_k$$

$\Delta_L(a, b)$ is the displacement, a_k, b_k are impact parameters, and \hat{r}_k is a direction vector.

($a > 0$, but b can have either sign.)
Effective diffusivity

Putting this together,

\[\langle |x|^2 \rangle = \frac{2 U n t}{L} \int \Delta_L^2(a, b) \, da \, db = 4 \kappa t, \quad 2D \]

\[\langle |x|^2 \rangle = \frac{2\pi U n t}{L} \int \Delta_L^2(a, b) a \, da \, db = 6 \kappa t, \quad 3D \]

which defines the effective diffusivity \(\kappa \).

Valid for low number density is low \((nL^d \ll 1) \).

(Lin, Thiffeault & Childress, JFM, in press)
Considerable literature on transport due to microorganisms: Wu & Libchaber (2000); Hernandez-Ortiz et al. (2006); Saintillian & Shelley (2007); Underhill et al. (2008); Ishikawa (2009); Leptos et al. (2009)

Lighthill (1952), Blake (1971), and more recently Ishikawa et al. (2006) have considered squirmers:

- Sphere in Stokes flow;
- Steady velocity specified at surface, to mimic cilia;
- Steady swimming condition imposed (no net force on fluid).
3D axisymmetric streamfunction for a typical squirmer, in cylindrical coordinates (ρ, z):

$$\psi = -\frac{1}{2} \rho^2 + \frac{1}{2r^3} \rho^2 + \frac{3\beta}{4r^3} \rho^2 z \left(\frac{1}{r^2} - 1 \right)$$

where $r = \sqrt{\rho^2 + z^2}$, $U = 1$, radius of squirmer = 1.

β is the amplitude of the stresslet (distinguishes pushers/pullers).

We will use $\beta = 5$ for most of the remainder.
Squirmer displacements $a^2 \Delta_L^2(a, b)$
Squirmers: Transport
Squirmers: Trajectories

The two peaks in the displacement plot come from ‘incomplete’ trajectories:

For long path length, the effective diffusivity is independent of the swimming path length, and yet the dominant contribution arises from the finiteness of the path (uncorrelated turning directions).
• Variance exhibits similar short-time anomalous scaling as in Wu & Libchaber (2000);
• PDF matches experiments of Leptos et al. (2009). In our case, exponential tails are due to sticking at the stagnation points on the squirmer’s body.
This work was supported by the Division of Mathematical Sciences of the US National Science Foundation, under grants DMS-0806821 (J-LT) and DMS-0507615 (SC). ZGL is supported by NSF through the Institute for Mathematics and Applications.
References