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In the previous lecture we found the expression for the pdf of displacements due to
swimming organisms:

pn(x, t) =
1

2π

∫ ∞
−∞

exp (−nΓd(k, t)) e−ikx dk, (1)

where

Γd(k, t) :=

∫
V

γd(k∆(η, t)) dVη . (2)

Consider the case special when ∆(r, t) vanishes outside a specified ‘swept volume’ Vswept(t).
Then

Γd(k, t) =

∫
Vswept

γd(k∆(η, t)) dVη

= Vswept −
∫
Vswept

(1− γd(k∆(η, t))) dVη

= Vswept (1−Wd(k, t))

where

Wd(k, t) :=
1

Vswept

∫
Vswept

(1− γd(k∆(η, t))) dVη . (3)

Define φswept := nVswept; then we can Taylor expand the exponential in (1) to obtain

pn(x, t) =
∞∑
m=0

φmswept

m!
e−φswept

1

2π

∫ ∞
−∞
Wm

d (k, t) e−ikx dk. (4)

The factor φmswept e−φswept/m! is a Poisson distribution for the number of ‘interactions’ m —
the number of times a particle has been affected by a swimmer. The other factor in the sum
is a probability density,

p(m)(x) :=
1

2π

∫ ∞
−∞
Wm

d (k, t) e−ikx dk, (5)

for the distribution of displacements given that a particle has interacted with a swimmer m
times (see also [1]).
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FIG. 1. The ‘log model’ for the displacement function of a cylinder of unit radius moving in

an inviscid fluid. The solid line is the true displacement function, as computed by Maxwell [2]

and Darwin [3]. The dashed line is the asymptotic form C log(`/ρ), with ` = 8/e2 ' 1.08268. The

simplified ‘log model’ consists of using only the logarithmic asymptotic form for ρ < `, and zero

otherwise.

Let us apply (4) to a specific example. A model for cylinders and spheres of radius `
traveling along the z axis in an inviscid fluid [4, 5] is the log model,

∆(ρ, z, t) =

{
∆(ρ), if 0 ≤ z ≤ Ut,

0, otherwise,
∆(ρ) := C log+(`/ρ) (6)

where ρ is the perpendicular distance to the swimming direction and log+ x := ln max(x, 1).
The logarithmic form comes from the stagnation points on the surface of the swimmer, which
dominate transport in this inviscid limit. The constant C is set by the linear structure of the
stagnation points [4–6], and usually scales with the size of the organism (not with time t, for
long enough times). For example, C = 1 for a cylinder of unit radius moving through inviscid
fluid [4, 6]. For spheres in the same type of fluid, C = 4

3
[4]. This model is also appropriate

for a spherical ‘treadmiller’ swimmer in viscous flow. The function (6) is compared to the
exact drift function for a cylinder in Fig. 1.

For a drift function of the form (6), the function Γd(k, t) defined in (2) becomes

Γd(k, t) =

∫
V

γd(k∆(η, t)) dVη

=

∫ Ut

0

∫ ∞
0

γd(k∆(ρ))αdρ
d−2 dρ dz

= αdUt

∫ ∞
0

γd(k∆(ρ)) ρd−2 dρ .

Assuming a monotonic relationship between ρ and ∆(ρ), with ∆(0) = ∞ and ∆(∞) = 0,
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we change integration variable from ρ to ∆:

Γd(k, t) = αdUt

∫ ∞
0

γd(k∆) ρd−2(∆) |ρ′(∆)| dρ . (7)

We can write ρ = ` e−∆/C , with |ρ′(∆)| = (`/C) e−∆/C . Then

Wd(k, t) =
d− 1

C

∫ ∞
0

(1− γd(k∆)) e−(d−1)∆/C dρ . (8)

where we used Vswept = αd−1`
d−1Ut and αd/αd−1 = d − 1. We can carry out the integrals

explicitly to obtain

Wd(k) =

{
(1 + (Ck)2)−1/2, (cylinders);

(Ck/2)−1 arctan(Ck/2), (spheres).
(9)

This is independent of t, even for short times (though the model is not valid for short times).
Furthermore, for d = 2 we can also explicitly obtain the convolutions that arise in (5) to

find

p(m)(x) =
1

C
√
π Γ(m/2)

(|x|/2C)(m−1)/2K(m−1)/2(|x|/C), (10)

the full distribution,

pn(x, t) = e−φswept

(
δ(x) +

∞∑
m=1

φmswept

m!

1

C
√
π Γ(m/2)

(|x|/2C)(m−1)/2K(m−1)/2(|x|/C)

)
,

(11)
where Kα(x) are modified Bessel functions of the second kind, and Γ(x) is the Gamma
function (not to be confused with Γ(k, t) above). Equation (11) is a very good approximation
to the distribution of displacements due to inviscid cylinders. Unfortunately no exact form
is known for spheres: we must numerically evaluate (1) given (9), or use asymptotic methods
(see [7]).

The log model is more appropriate for swimmers in an inviscid fluid. To compare the
theory to the experiments of Leptos et al. we need a swimmer in a viscous environment,
as appropriate for microswimmers. We use a model swimmer of the squirmer type [10–14],
with axisymmetric streamfunction [5]

Ψsf(ρ, z) = 1
2
ρ2 U

{
−1 +

`3

(ρ2 + z2)3/2
+ 3

2

β`2z

(ρ2 + z2)3/2

(
`2

ρ2 + z2
− 1

)}
(12)

in a frame moving at speed U . Here z is the swimming direction and ρ is the distance
from the z axis. To mimic C. reinhardtii, we use ` = 5µm and U = 100µm/s. We take
also β = 0.5 for the relative stresslet strength, which gives a swimmer of the puller type, just
like C. reinhardtii. The contour lines of the axisymmetric streamfunction (12) are depicted
in Fig. 3. The parameter β is the only one that was fitted to give good agreement.

The numerical results are plotted into Fig. 4(a) and compared to the data of Fig. 2(a) of
Leptos et al. [8]. The agreement is excellent: we adjusted only one parameter, β = 0.5. All
the other physical quantities were gleaned from Leptos et al. What is most remarkable about
the agreement in Fig. 4(a) is that it was obtained using a model swimmer, the spherical
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FIG. 2. For the log model: the exact pdf p(m)(x) from (10) for different values of m (solid line)

and C = 1, as well as the large-deviation (dashed line) and Gaussian (dotted line) approximations.

U

FIG. 3. Contour lines for the axisymmetric streamfunction of a squirmer of the form (12),

with β = 0.5. This swimmer is of the puller type, as for C. reinhardtii.

squirmer, which is not expected to be such a good model for C. reinhardtii. The real
organisms are strongly time-dependent, for instance, and do not move in a perfect straight
line. Nevertheless the model captures very well the pdf of displacements. New work with
my student Peter Mueller uses a more realistic model for C. reinhardtii, involving a no-slip
sphere for the body and a point force for the flagellum. We observe a lifting of the tails
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FIG. 4. (a) The pdf of particle displacements after a time t = 0.12 s, for several values of the

volume fraction φ. The data is from Leptos et al. [8], and the figure should be compared to their

Fig. 2(a). (b) Same as (a) but on a wider scale, also showing the form suggested by Eckhardt and

Zammert [9] (dashed lines).

which matches the data better.
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