Lecture 4: Stirring by swimming organisms, part 2a

Jean-Luc Thiffeaul切
Department of Mathematics, University of Wisconsin - Madison, 480 Lincoln Dr., Madison, WI 53706, USA

(Dated: 2 June 2016)

In the previous lecture we found the expression for the pdf of displacements due to swimming organisms:

$$
\begin{equation*}
p_{n}(x, t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \exp \left(-n \Gamma_{d}(k, t)\right) \mathrm{e}^{-\mathrm{i} k x} \mathrm{~d} k \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\Gamma_{d}(k, t):=\int_{V} \gamma_{d}(k \Delta(\boldsymbol{\eta}, t)) \mathrm{d} V_{\boldsymbol{\eta}} . \tag{2}
\end{equation*}
$$

Consider the case special when $\Delta(\boldsymbol{r}, t)$ vanishes outside a specified 'swept volume' $V_{\text {swept }}(t)$. Then

$$
\begin{aligned}
\Gamma_{d}(k, t) & =\int_{V_{\text {swept }}} \gamma_{d}(k \Delta(\boldsymbol{\eta}, t)) \mathrm{d} V_{\boldsymbol{\eta}} \\
& =V_{\text {swept }}-\int_{V_{\text {swept }}}\left(1-\gamma_{d}(k \Delta(\boldsymbol{\eta}, t))\right) \mathrm{d} V_{\boldsymbol{\eta}} \\
& =V_{\text {swept }}\left(1-\mathcal{W}_{d}(k, t)\right)
\end{aligned}
$$

where

$$
\begin{equation*}
\mathcal{W}_{d}(k, t):=\frac{1}{V_{\text {swept }}} \int_{V_{\text {swept }}}\left(1-\gamma_{d}(k \Delta(\boldsymbol{\eta}, t))\right) \mathrm{d} V_{\boldsymbol{\eta}} \tag{3}
\end{equation*}
$$

Define $\phi_{\text {swept }}:=n V_{\text {swept }}$; then we can Taylor expand the exponential in (1) to obtain

$$
\begin{equation*}
p_{n}(x, t)=\sum_{m=0}^{\infty} \frac{\phi_{\text {swept }}^{m}}{m!} \mathrm{e}^{-\phi_{\text {swept }}} \frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathcal{W}_{d}^{m}(k, t) \mathrm{e}^{-\mathrm{i} k x} \mathrm{~d} k \tag{4}
\end{equation*}
$$

The factor $\phi_{\text {swept }}^{m} \mathrm{e}^{-\phi_{\text {swept }}} / m$! is a Poisson distribution for the number of 'interactions' m the number of times a particle has been affected by a swimmer. The other factor in the sum is a probability density,

$$
\begin{equation*}
p_{(m)}(x):=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathcal{W}_{d}^{m}(k, t) \mathrm{e}^{-\mathrm{i} k x} \mathrm{~d} k, \tag{5}
\end{equation*}
$$

for the distribution of displacements given that a particle has interacted with a swimmer m times (see also [1]).

[^0]

FIG. 1. The 'log model' for the displacement function of a cylinder of unit radius moving in an inviscid fluid. The solid line is the true displacement function, as computed by Maxwell [2] and Darwin [3]. The dashed line is the asymptotic form $C \log (\ell / \rho)$, with $\ell=8 / \mathrm{e}^{2} \simeq 1.08268$. The simplified 'log model' consists of using only the logarithmic asymptotic form for $\rho<\ell$, and zero otherwise.

Let us apply (4) to a specific example. A model for cylinders and spheres of radius ℓ traveling along the z axis in an inviscid fluid [4, 5] is the log model,

$$
\Delta(\rho, z, t)=\left\{\begin{array}{ll}
\Delta(\rho), & \text { if } 0 \leq z \leq U t, \tag{6}\\
0, & \text { otherwise },
\end{array} \quad \Delta(\rho):=C \log ^{+}(\ell / \rho)\right.
$$

where ρ is the perpendicular distance to the swimming direction and $\log ^{+} x:=\ln \max (x, 1)$. The logarithmic form comes from the stagnation points on the surface of the swimmer, which dominate transport in this inviscid limit. The constant C is set by the linear structure of the stagnation points [4.6, and usually scales with the size of the organism (not with time t, for long enough times). For example, $C=1$ for a cylinder of unit radius moving through inviscid fluid [4, 6]. For spheres in the same type of fluid, $C=\frac{4}{3}$ [4]. This model is also appropriate for a spherical 'treadmiller' swimmer in viscous flow. The function (6) is compared to the exact drift function for a cylinder in Fig. 1.

For a drift function of the form (6), the function $\Gamma_{d}(k, t)$ defined in (2) becomes

$$
\begin{aligned}
\Gamma_{d}(k, t) & =\int_{V} \gamma_{d}(k \Delta(\boldsymbol{\eta}, t)) \mathrm{d} V_{\boldsymbol{\eta}} \\
& =\int_{0}^{U t} \int_{0}^{\infty} \gamma_{d}(k \Delta(\rho)) \alpha_{d} \rho^{d-2} \mathrm{~d} \rho \mathrm{~d} z \\
& =\alpha_{d} U t \int_{0}^{\infty} \gamma_{d}(k \Delta(\rho)) \rho^{d-2} \mathrm{~d} \rho .
\end{aligned}
$$

Assuming a monotonic relationship between ρ and $\Delta(\rho)$, with $\Delta(0)=\infty$ and $\Delta(\infty)=0$,
we change integration variable from ρ to Δ :

$$
\begin{equation*}
\Gamma_{d}(k, t)=\alpha_{d} U t \int_{0}^{\infty} \gamma_{d}(k \Delta) \rho^{d-2}(\Delta)\left|\rho^{\prime}(\Delta)\right| \mathrm{d} \rho \tag{7}
\end{equation*}
$$

We can write $\rho=\ell \mathrm{e}^{-\Delta / C}$, with $\left|\rho^{\prime}(\Delta)\right|=(\ell / C) \mathrm{e}^{-\Delta / C}$. Then

$$
\begin{equation*}
\mathcal{W}_{d}(k, t)=\frac{d-1}{C} \int_{0}^{\infty}\left(1-\gamma_{d}(k \Delta)\right) \mathrm{e}^{-(d-1) \Delta / C} \mathrm{~d} \rho \tag{8}
\end{equation*}
$$

where we used $V_{\text {swept }}=\alpha_{d-1} \ell^{d-1} U t$ and $\alpha_{d} / \alpha_{d-1}=d-1$. We can carry out the integrals explicitly to obtain

$$
\mathcal{W}_{d}(k)= \begin{cases}\left(1+(C k)^{2}\right)^{-1 / 2}, & \text { (cylinders) } \tag{9}\\ (C k / 2)^{-1} \arctan (C k / 2), & \text { (spheres) }\end{cases}
$$

This is independent of t, even for short times (though the model is not valid for short times).
Furthermore, for $d=2$ we can also explicitly obtain the convolutions that arise in (5) to find

$$
\begin{equation*}
p_{(m)}(x)=\frac{1}{C \sqrt{\pi} \Gamma(m / 2)}(|x| / 2 C)^{(m-1) / 2} K_{(m-1) / 2}(|x| / C), \tag{10}
\end{equation*}
$$

the full distribution,

$$
\begin{equation*}
p_{n}(x, t)=\mathrm{e}^{-\phi_{\text {swept }}}\left(\delta(x)+\sum_{m=1}^{\infty} \frac{\phi_{\mathrm{swept}}^{m}}{m!} \frac{1}{C \sqrt{\pi} \Gamma(m / 2)}(|x| / 2 C)^{(m-1) / 2} K_{(m-1) / 2}(|x| / C)\right) \tag{11}
\end{equation*}
$$

where $K_{\alpha}(x)$ are modified Bessel functions of the second kind, and $\Gamma(x)$ is the Gamma function (not to be confused with $\Gamma(k, t)$ above). Equation (11) is a very good approximation to the distribution of displacements due to inviscid cylinders. Unfortunately no exact form is known for spheres: we must numerically evaluate (1) given (9), or use asymptotic methods (see [7]).

The log model is more appropriate for swimmers in an inviscid fluid. To compare the theory to the experiments of Leptos et al. we need a swimmer in a viscous environment, as appropriate for microswimmers. We use a model swimmer of the squirmer type [10-14], with axisymmetric streamfunction [5]

$$
\begin{equation*}
\Psi_{\mathrm{sf}}(\rho, z)=\frac{1}{2} \rho^{2} U\left\{-1+\frac{\ell^{3}}{\left(\rho^{2}+z^{2}\right)^{3 / 2}}+\frac{3}{2} \frac{\beta \ell^{2} z}{\left(\rho^{2}+z^{2}\right)^{3 / 2}}\left(\frac{\ell^{2}}{\rho^{2}+z^{2}}-1\right)\right\} \tag{12}
\end{equation*}
$$

in a frame moving at speed U. Here z is the swimming direction and ρ is the distance from the z axis. To mimic C. reinhardtii, we use $\ell=5 \mu \mathrm{~m}$ and $U=100 \mu \mathrm{~m} / \mathrm{s}$. We take also $\beta=0.5$ for the relative stresslet strength, which gives a swimmer of the puller type, just like C. reinhardtii. The contour lines of the axisymmetric streamfunction (12) are depicted in Fig. 3. The parameter β is the only one that was fitted to give good agreement.

The numerical results are plotted into Fig. 4(a) and compared to the data of Fig. 2(a) of Leptos et al. [8. The agreement is excellent: we adjusted only one parameter, $\beta=0.5$. All the other physical quantities were gleaned from Leptos et al. What is most remarkable about the agreement in Fig. 4(a) is that it was obtained using a model swimmer, the spherical

FIG. 2. For the \log model: the exact pdf $p_{(m)}(x)$ from (10) for different values of m (solid line) and $C=1$, as well as the large-deviation (dashed line) and Gaussian (dotted line) approximations.

FIG. 3. Contour lines for the axisymmetric streamfunction of a squirmer of the form (12), with $\beta=0.5$. This swimmer is of the puller type, as for C. reinhardtii.
squirmer, which is not expected to be such a good model for C. reinhardtii. The real organisms are strongly time-dependent, for instance, and do not move in a perfect straight line. Nevertheless the model captures very well the pdf of displacements. New work with my student Peter Mueller uses a more realistic model for C. reinhardtii, involving a no-slip sphere for the body and a point force for the flagellum. We observe a lifting of the tails

FIG. 4. (a) The pdf of particle displacements after a time $t=0.12 \mathrm{~s}$, for several values of the volume fraction ϕ. The data is from Leptos et al. [8], and the figure should be compared to their Fig. 2(a). (b) Same as (a) but on a wider scale, also showing the form suggested by Eckhardt and Zammert [9] (dashed lines).
which matches the data better.
[1] J.-L. Thiffeault, "Short-time distribution of particle displacements due to swimming microorganisms," (2014), arXiv:1408.4781v1.
[2] J. C. Maxwell, Proc. London Math. Soc. s1-3, 82 (1869).
[3] C. G. Darwin, Proc. Camb. Phil. Soc. 49, 342 (1953).
[4] J.-L. Thiffeault and S. Childress, Phys. Lett. A 374, 3487 (2010), arXiv:0911.5511.
[5] Z. Lin, J.-L. Thiffeault, and S. Childress, J. Fluid Mech. 669, 167 (2011), http://arxiv.org/abs/1007.1740.
[6] J.-L. Thiffeault, in Proceedings of the 2010 Summer Program in Geophysical Fluid Dynamics, edited by N. J. Balmforth (Woods Hole Oceanographic Institution, Woods Hole, MA, 2010) http://www.whoi.edu/main//gfd/proceedings-volumes/2010.
[7] J.-L. Thiffeault, Phys. Rev. E 92, 023023 (2015).
[8] K. C. Leptos, J. S. Guasto, J. P. Gollub, A. I. Pesci, and R. E. Goldstein, Phys. Rev. Lett. 103, 198103 (2009).
[9] B. Eckhardt and S. Zammert, Eur. Phys. J. E 35, 96 (2012).
[10] M. J. Lighthill, Comm. Pure Appl. Math. 5, 109 (1952).
[11] J. R. Blake, J. Fluid Mech. 46, 199 (1971).
[12] T. Ishikawa, M. P. Simmonds, and T. J. Pedley, J. Fluid Mech. 568, 119 (2006).
[13] T. Ishikawa and T. J. Pedley, J. Fluid Mech. 588, 437 (2007).
[14] K. Drescher, K. C. Leptos, I. Tuval, T. Ishikawa, T. J. Pedley, and R. E. Goldstein, Phys. Rev. Lett. 102, 168101 (2009).

[^0]: ${ }^{\text {a }}$ Lectures at the Summer Program on Dynamics of Complex Systems, International Centre for Theoretical Sciences, Bangalore.
 \dagger jeanluc@math.wisc.edu

