1. Let \(A \in \mathbb{C}^{m \times m} \) be arbitrary. The set of all Rayleigh quotients of \(A \), corresponding to all nonzero vectors \(x \in \mathbb{C}^m \), is known as the field of values or the numerical range of \(A \), a subset of the complex plane denoted by \(W(A) \).

(a) Show that \(W(A) \) contains the convex hull of the eigenvalues of \(A \).

(b) Show that if \(A \) is normal, then \(W(A) \) is equal to the convex hull of the eigenvalues of \(A \).

2. Let \(A \) be an \(n \times n \) tridiagonal matrix with \(a_{i,i+1} = a_{i+1,i} = -1 \) and \(a_{ii} = 3 \), and let \(b \in \mathbb{R}^n \). For which values of the parameter \(\omega \) does the iteration
\[
x_{k+1} = x_k + \omega (b - Ax_k), \quad k = 0, 1, 2, \ldots
\] converge to a solution of \(Ax = b \) for any starting value \(x_0 \in \mathbb{R}^n \)? Test your result on a computer for \(n = 5 \) and comment on your findings.

3. Consider the real system of linear equations \(Ax = b \), where \(A \) is nonsingular and satisfies \((x, Ax) > 0 \) for all real \(x \neq 0 \), where \((x, y) = x^T y \) is the Euclidean inner product.

(a) Show that \((x, Ax) = (x, Mx) \) for all real \(x \), where \(M = (A + A^T)/2 \) is the symmetric part of \(A \).

(b) Prove that \((x, Ax)/\|x\| \geq \lambda_{\text{min}}(M) > 0 \), where \(\lambda_{\text{min}}(M) \) is the smallest eigenvalue of \(M \).

(c) Consider the iterative sequence \(x_{n+1} = x_n + \alpha_n r_n \), where \(r_n = b - Ax_n \) is the residual, and \(\alpha_n \) is chosen to minimize \(\|r_{n+1}\|_2 \) as a function of \(\alpha_n \). Prove that
\[
\frac{\|r_{n+1}\|_2}{\|r_n\|_2} \leq \left(1 - \frac{\lambda_{\text{min}}(M)^2}{\lambda_{\text{max}}(A^T A)} \right)^{1/2}.
\]

4. Let \(A \) be the 100 \(\times \) 100 tridiagonal symmetric matrix with 1, 2, ..., 100 on the diagonal and 1 on the sub- and super- diagonals, and set \(b = (1, 1, \ldots, 1)^T \). Write a program that takes 100 steps of the conjugate gradient algorithm, and separately a program that takes 100 steps of the steepest descent algorithm, to approximately solve \(Ax = b \). Produce a plot with four curves: the computed residual norms \(\|r_n\|_2 \) and the actual residual norms \(\|b - Ax_n\|_2 \) for CG, the residual norms \(\|r_n\|_2 \) for steepest descent, and the estimate \(2(\sqrt{\kappa} - 1)^n/(\sqrt{\kappa} + 1)^n \). Comment on your results.

5. Prove that if \(w \) is continuous on \([0, 1] \), and
\[
\int_0^1 wv \, dx = 0 \quad \forall v \in V, \quad (3)
\]
\[
V = \{ v \in C[0, 1], v_x \text{ piecewise continuous}, v(0) = v(1) = 0 \}, \quad (4)
\]
then \(w(x) = 0 \) for \(x \in [0, 1] \).