Lecture 3: Transport equation (example)

\[\frac{\partial u}{\partial t} + c(x) \frac{\partial u}{\partial x} = 0 \]
\[\frac{dx}{dt} = c(x) \]

\[\beta(x) = \int \frac{dx}{c(x)} = t + k \]

\[u(t, x) = \int_0^\beta \beta^{-1} (\beta(x) - t) \]

Example:

\[\frac{\partial u}{\partial t} + \frac{1}{x^2 + 1} \frac{\partial u}{\partial x} = 0 \]

\[\frac{dx}{dt} = \frac{1}{x^2 + 1} \Rightarrow \beta(x) = \int (x^2 + 1) dx \]
\[= \frac{1}{3} x^3 + k = t + k \]

Parts of the wave speed up they slow down after they pass \(x = 0 \).
example: \(u_t + (x^2 - 1) u_x = 0 \)

Characteristics: \(\frac{dx}{dt} = x^2 - 1 = c(x) \)

\[
\beta(x) = \int \frac{dx}{x^2 - 1} = \frac{1}{2} \log \left| \frac{x-1}{x+1} \right| = t + \chi
\]

\(x(t) = \frac{1 + e^{2t}}{1 - e^{2t}} \) \(t > 0 \)

Choose: \(x(t) \to 0 \) as \(t \to 0 \)

\(c(x_+) = 0 \)

\(c(x_-) = 0 \)

NOT prescribed by initial data!
\[x < -1: \quad (\text{actually} \quad |x| > 1) \]

\[\beta(x) = \frac{1}{2} \log \left(\frac{x-1}{x+1} \right) = t + h \]

\[\frac{1-x}{1+x} = e^{2(t+h)} \]

\[\beta^{-1}(t+h) = \chi(t) = \frac{1}{2} \frac{e^{2(t+h)} + 1}{e^{2(t+h)} - 1}, \quad x < -1 \]

The char. for \(\text{data} \to \infty \) as \(t \to 0^+ \) has \(h = 0 \).

With \(u(0, x) = e^{-x^2} = f(x) \)

\[u(t, x) = \int \beta^{-1}(\beta(x) - t) \]

\[= \int \frac{x-1 + (x+1)e^{2t}}{1-x + (x+1)e^{2t}} \]

\[= \int \frac{x+1 + (x-1)e^{-2t}}{x+1 - (x-1)e^{-2t}} \]

\[\text{crunch against} \sim \text{goes to } \infty \]

\[\text{not prescribed by initial data} \]
Converges non-uniformly to a step function:

\[u(t,x) \rightarrow s(x) = \begin{cases} f(1), & x \geq -1 \\ 0, & x < -1 \end{cases} \]

For \(c(x) \) continuously differentiable:

- Unique char. through each \((t,x) \in \mathbb{R}^2\)

- Cannot cross

- \(t = \beta(x) \) char. \(\Rightarrow \) \(t = \beta(x) + h \) also a char.

- Each non-horizontal char. is graph of strictly monotone function. Never reverses direction

- As \(t \) increases, either \(x(t) \stackrel{(t \rightarrow \infty)}{\rightarrow} x \ast \) with \(c(x \ast) = 0 \) or \(x(t) \rightarrow \pm \infty \).