Lecture 24: Boundary layer theory (cont'd)

A quick note about convergence.

Consider
\[I(x) = x e^x \int_0^\infty \frac{e^{-t}}{t^x} \, dt, \quad x > 0 \]

Let's try to approximate \(I(x) \), for large \(x \).

Repeated integration by parts gives
\[
I(x) = \sum_{n=0}^{N-1} \frac{(-1)^n}{n!} + \frac{(-1)^N}{N!} x e^x \int_0^\infty \frac{e^{-t}}{t^{N+1}} \, dt
\]
\[= S_N(x) + \mathcal{E}(x,N) \]

Now note that ratio test gives \(\left| \frac{(n+1)^{th \ term}}{n^{th \ term}} \right| = \frac{n}{n+1} \)
for \(S_N(x) \), so for fixed \(x \) diverges for all \(x \)!

So throw out \(S_N(x) \)? No!

Observe that \(\mathcal{E}(x,N) > 0 \), \(N \) even,
\[\leq 0, \quad N \text{ odd} \]
\[I(x) = S_N(x) + |E(x, N)|, \quad N \text{ even} \]

\[= S_N(x) - |E(x, N+1)| \]

So

\[S_N(x) \leq I(x) \leq S_{N+1}(x), \quad N \text{ even} \]

Hold on here: this says that I can approximate \(S(x) \) by partial sums of \(S_N \), even though \(S_N \) diverges as \(N \to \infty \)!

The optimal approximation is the one that minimizes \(E(x, N) \). This error gets smaller as \(x \) gets larger. This gives meaning to

\[I(x) \approx 1 - \frac{1}{x^c} \]

It means the approximation holds for \(x \) small enough, but adding more terms doesn't necessarily improve the approximation (unless \(x \) is made smaller).

Thus, typically divergent series are useful for approximations.

Example: \[I(100) \approx 0.99019 \]

\[1 - \frac{1}{100} = 0.99 \]
Back to boundary layers

Let's familiarize the concepts better.

Consider: $\varepsilon y'' + (1+\varepsilon)y' + y = 0$, \(y(0) = 0 \), \(y(1) = 1 \)

Exact solution: \(y = \frac{e^{-x} - e^{-1/\varepsilon}}{e^{-1} - e^{-1/\varepsilon}} \)

There is a boundary layer of width ε.

Outer limit: \(y_{\text{outer}}(x) = \lim_{\varepsilon \to 0^+} y(x) = e^{1-x} \)

This works at fixed x.

Directly in the equation: \(y_{\text{outer}}' + y_{\text{outer}} = 0 \), \(y_{\text{outer}}(1) = 1 \)

For the inner solution take $\varepsilon \to 0$, but for x value always inside the boundary layer.

\(y_{\text{inner}}(x) = Y_{\text{inner}}(X) = \lim_{\varepsilon \to 0^+} y(\varepsilon X) = e^{-e^{1-X}} \)

where $x = \varepsilon X$

\[\text{thickens of layer} \]"
Directly from equation, rewrite in besss $Y(X) = y(\epsilon x)$:

\[
\frac{1}{\epsilon^2} \frac{d^2 Y}{dX^2} + \left(1 + \frac{1}{\epsilon} \right) \frac{dY}{dX} + Y = 0
\]

Take $\epsilon \to 0^+$, with X fixed:

\[
\frac{d^2 Y_{in}}{dX^2} + \frac{dY_{in}}{dX} = 0, \quad Y_{in}(0) = 0
\]

$Y_{in} = e^{-x}$ satisfies this.

Note that $\lim_{x \to 0} y_{out}(x) = \lim_{X \to \infty} Y_{in}(X) = e$

In general, the limit is not a number, but some function.

Go to higher order:

\[
y_{out}(x) \sim \sum_{n=0}^{\infty} y_n(x) \epsilon^n, \quad \epsilon \to 0^+\]

\[\uparrow\]

formal asymptotic series

$y_0(1) = 1, \quad y_n(1) = 0, \quad n > 0$.

First find $y_{out}(x)$ perturbatively.
\[y_0' + y_0 = 0 \quad , \quad y_0(1) = 1 \]
\[y_n' + y_n = -y_{n-1}' - y_{n-1} \quad , \quad y_n(1) = 0 \quad , \quad n \geq 0 \]

Solution is: \(y_0 = e^{1-x} \), \(y_n = 0 \), \(n \geq 0 \).

So in this case the leading-order approximation from before is correct to all orders in \(\varepsilon \).

\(|y_{n+1} - y_n| \sim O(\varepsilon^n) \) for all \(n \).

Now for the inner solution:

\[Y_{in}(X) \sim \sum_{n=0}^{\infty} \varepsilon^n Y_n(X), \quad \varepsilon = 0^+ \]

with \(Y_n(0) = 0 \), \(\forall n \).

\[Y_0'' + Y_0' = 0 \]
\[Y_n'' + Y_n' = -Y_{n-1}' - Y_{n-1} \]

\[Y_0(X) = A_0 (1 - e^{-X}) \]
\[Y_n(X) = \int_0^X (A_n e^{-z} - Y_{n-1}(z)) \, dz, \quad n \geq 0 \]

The \(A_n \) are undetermined constants.
Matching: substitute $x = \varepsilon X$ into y_{out}:

$$y_{\text{out}}(\varepsilon X) = e^{1-\varepsilon X} = e \left[1 - \varepsilon X + \frac{\varepsilon^2 X^2}{2!} - \frac{\varepsilon^3 X^3}{3!} + \ldots \right]$$

$$Y_0(X) = A_0 \text{ as } X \to \infty$$

So $A_0 = e$, to match with $y_{\text{out}}(x)$.

$$Y_1(X) = (A_1 + A_0)(1-e^{-X}) - eX$$

$$= A_1 + A_0 - eX \quad \text{as } X \to \infty$$

$$= -eX \quad \text{from matching with } y_{\text{out}} \text{ to order } \varepsilon,$$

So $A_1 = -A_0 = -e$.

etc... Get eventually

$$Y_n(X) = e \sum_{n=0}^{\infty} \varepsilon^n (-1)^n \frac{X^n}{n!} - e^{1-X}$$

Uniformly valid solution:

$$= e^{1-X} - e^{-e^{1-X/\varepsilon}}$$

$$y_{\text{unif}} = y_{\text{in}} + y_{\text{out}} - y_{\text{match}}$$

$$= (e^{1-X} - e^{-X/\varepsilon}) + (e^{1-X}) - (e^{1-X})$$

$$= e \left[e^{-X} - e^{-X/\varepsilon} \right]$$

Not the same as exact solution!

To all orders in ε
\[\frac{y_{\text{exact}}}{y_{\text{uni}}} = \left(\frac{e^{-x} - e^{-x/\epsilon}}{e^{-1} - e^{-1/\epsilon}} \right) \frac{e^{-1}}{e^{-x} - e^{-x/\epsilon}} \]

\[= \left(1 - e^{1-\epsilon} \right)^{-1} \]

\[\sim 1 + e^{1-\epsilon} \]

Correction is "beyond all orders"