EXERCISES 7.10

- 7.10.1. Solve the initial value problem for the wave equation $\frac{\partial^2 u}{\partial t^2} = c^2 \nabla^2 u$ inside a sphere of radius *a* subject to the boundary condition $u(a, \theta, \phi, t) = 0$ and the initial conditions
 - (a) $u(\rho, \theta, \phi, 0) = F(\rho, \theta, \phi)$ and $\frac{\partial u}{\partial t}(\rho, \theta, \phi, 0) = 0$
 - (b) $u(\rho, \theta, \phi, 0) = 0$ and $\frac{\partial u}{\partial t}(\rho, \theta, \phi, 0) = G(\rho, \theta, \phi)$
 - (c) $u(\rho, \theta, \phi, 0) = F(\rho, \phi)$ and $\frac{\partial u}{\partial t}(\rho, \theta, \phi, 0) = 0$
 - (d) $u(\rho, \theta, \phi, 0) = 0$ and $\frac{\partial u}{\partial t}(\rho, \theta, \phi, 0) = G(\rho, \phi)$
 - (e) $u(\rho, \theta, \phi, 0) = F(\rho, \phi) \cos 3\theta$ and $\frac{\partial u}{\partial t}(\rho, \theta, \phi, 0) = 0$
 - (f) $u(\rho, \theta, \phi, 0) = F(\rho) \sin 2\theta$ and $\frac{\partial u}{\partial t}(\rho, \theta, \phi, 0) = 0$
 - (g) $u(\rho, \theta, \phi, 0) = F(\rho)$ and $\frac{\partial u}{\partial t}(\rho, \theta, \phi, 0) = 0$
 - (h) $u(\rho, \theta, \phi, 0) = 0$ and $\frac{\partial u}{\partial t}(\rho, \theta, \phi, 0) = G(\rho)$
- 7.10.2. Solve the initial value problem for the heat equation $\frac{\partial u}{\partial t} = k\nabla^2 u$ inside a sphere of radius a subject to the boundary condition $u(a, \theta, \phi, t) = 0$ and the initial conditions
 - (a) $u(\rho, \theta, \phi, 0) = F(\rho, \theta, \phi)$
 - (b) $u(\rho, \theta, \phi, 0) = F(\rho, \phi)$
 - (c) $u(\rho, \theta, \phi, 0) = F(\rho, \phi) \cos \theta$
 - (d) $u(\rho, \theta, \phi, 0) = F(\rho)$
- 7.10.3. Solve the initial value problem for the heat equation $\frac{\partial u}{\partial t} = k\nabla^2 u$ inside a sphere of radius *a* subject to the boundary condition $\frac{\partial u}{\partial \rho}(a, \theta, \phi, t) = 0$ and the initial conditions
 - (a) $u(\rho, \theta, \phi, 0) = F(\rho, \theta, \phi)$
 - (b) $u(\rho, \theta, \phi, 0) = F(\rho, \phi)$
 - (c) $u(\rho, \theta, \phi, 0) = F(\rho, \phi) \sin 3\theta$
 - (d) $u(\rho, \theta, \phi, 0) = F(\rho)$
- 7.10.4. Using the one-dimensional Rayleigh quotient, show that $\mu \ge 0$ (if $m \ge 0$) as defined by (7.10.11). Under what conditions does $\mu = 0$?
- 7.10.5. Using the one-dimensional Rayleigh quotient, show that $\mu \ge 0$ (if $m \ge 0$) as defined by (7.10.13). Under what conditions does $\mu = 0$?
- 7.10.6. Using the one-dimensional Rayleigh quotient, show that $\lambda \ge 0$ (if $n \ge 0$) as defined by (7.10.6) with the boundary condition f(a) = 0. Can $\lambda = 0$?
- 7.10.7. Using the three-dimensional Rayleigh quotient, show that $\lambda \ge 0$ as defined by (7.10.11) with $u(a, \theta, \phi, t) = 0$. Can $\lambda = 0$?

7.10.8. Differential equations related to Bessel's differential equation. Use this to show that

$$x^{2}\frac{d^{2}f}{dx^{2}} + x(1-2a-2bx)\frac{df}{dx} + [a^{2}-p^{2}+(2a-1)bx+(d^{2}+b^{2})x^{2}]f = 0 \quad (7.10.37)$$

has solutions $x^a e^{bx} Z_p(dx)$, where $Z_p(x)$ satisfies Bessel's differential equation (7.7.25). By comparing (7.10.21) and (7.10.37), we have $a = -\frac{1}{2}, b = 0, \frac{1}{4} - p^2 = -n(n+1)$, and $d^2 = \lambda$. We find that $p = (n + \frac{1}{2})$.

- 7.10.9. Solve Laplace's equation inside a sphere $\rho < a$ subject to the following boundary conditions on the sphere:
 - (a) $u(a, \theta, \phi) = F(\phi) \cos 4\theta$
 - (b) $u(a, \theta, \phi) = F(\phi)$
 - (c) $\frac{\partial u}{\partial \rho}(a,\theta,\phi) = F(\phi)\cos 4\theta$
 - (d) $\frac{\partial u}{\partial \rho}(a,\theta,\phi) = F(\phi)$ with $\int_0^{\pi} F(\phi) \sin \phi \, d\phi = 0$
 - (e) $\frac{\partial u}{\partial \rho}(a,\theta,\phi) = F(\theta,\phi)$ with $\int_0^{\pi} \int_0^{2\pi} F(\theta,\phi) \sin \phi \, d\theta \, d\phi = 0$
- 7.10.10. Solve Laplace's equation outside a sphere $\rho > a$ subject to the potential given on the sphere:
 - (a) $u(a, \theta, \phi) = F(\theta, \phi)$
 - (b) $u(a, \theta, \phi) = F(\phi)$, with cylindrical (azimuthal) symmetry
 - (c) $u(a, \theta, \phi) = V$ in the upper hemisphere, -V in the lower hemisphere (do not simplify; do not evaluate definite integrals)
- 7.10.11. Solve Laplace's equation inside a sector of a sphere $\rho < a$ with $0 < \theta < \frac{\pi}{2}$ subject to $u(\rho, 0, \phi) = 0$ and $u(\rho, \frac{\pi}{2}, \phi) = 0$ and the potential given on the sphere: $u(a, \theta, \phi) = F(\theta, \phi)$.
- 7.10.12. Solve Laplace's equation inside a hemisphere $\rho > a$ with z > 0 subject to u = 0 at z = 0 and the potential given on the hemisphere: $u(a, \theta, \phi) = F(\theta, \phi)$ [Hint: Use symmetry and solve a different problem, a sphere with the antisymmetric potential on the lower hemisphere.]
- 7.10.13. Show that Rodrigues' formula agrees with the given Legendre polynomials for n = 0, n = 1, and n = 2.
- 7.10.14. Show that Rodrigues' formula satisfies the differential equation for Legendre polynomials.
- 7.10.15. Derive (7.10.36) using (7.10.35), (7.10.18), and (7.10.25).