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EXERCISES 7.10

7.10.1. Solve the initial value problem for the wave equationew = c2V2u inside a
sphere of radius a subject to the boundary condition u(a, 0, O, t) = 0 and
the initial conditions

(a) u(p, 0, 0, 0) = F(p, 0, 0) and Ou (p, 0, 0, 0) = 0

(b) u(p, 0, 0, 0) = 0 and g (p, 0, 0, 0) = G(p, 0, 0)

(c) u(p, 0, 0, 0) = F(p, 0) and Ou (p, 0, 0, 0) = 0

(d) u(p, 0, -0, 0) = 0 and j (p, 0, 0, 0) = G(p, 4,)
(e) u(p, 0, 4,, 0) = F(p, 0) cos 30 and (p, 0, 0, 0) = 0

(f) u(p, 0, 0, 0) = F(p) sin 20 and (p, 0, 0, 0) = 0

(g) u(p, 0, 0, 0) = F(p) and g (p, 0, 0, 0) = 0

(h) u(p, 0, 0, 0) = 0 and (p, 0, 0, 0) = G(p)

7.10.2. Solve the initial value problem for the heat equation = k02u inside a
sphere of radius a subject to the boundary condition u(a, 0, 0, t) = 0 and
the initial conditions

(a) u(p, 0, 0, 0) = F(p, 0, 0)
(b) u(p, 0, ¢, 0) = F(p, 0)
(c) u(p, 0, ¢, 0) = F(p, 0) cos 0

(d) u(p, 0, 0, 0) = F(p)

7.10.3. Solve the initial value problem for the heat equationen = kV2u inside a
sphere of radius a subject to the boundary condition (a, 8, , t) = 0 and
the initial conditions

(a) u(p, 0, 4', 0) = F(p, 0,.0)

(b) u(p, 0, 4, 0) = F(p, 0)
(c) u(p, 0, 4', 0) = F(p, 0) sin 30

(d) u(p, 0, 0) = F(p)

7.10.4. Using the one-dimensional Rayleigh quotient, show that p > 0 (if m > 0)
as defined by (7.10.11). Under what conditions does p = 0?

7.10.5. Using the one-dimensional Rayleigh quotient, show that p > 0 (if m > 0)
as defined by (7.10.13). Under what conditions does p = 0?

7.10.6. Using the one-dimensional Rayleigh quotient, show that A > 0 (if n > 0) as
defined by (7.10.6) with the boundary condition f (a) = 0. Can A = 0?

7.10.7. Using the three-dimensional Rayleigh quotient, show that A > 0 as defined
by (7.10.11) with u(a, 0, 0, t) = 0. Can A = 0?
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7.10.8. Differential equations related to Bessel's differential equation. Use this to
show that

x2dxz+x(1-2a-2bx)d +[a2-p2+(2a-l)bx+(d2+b2)x2]f = 0 (7.10.37)

has solutions x°e"Zp(dx), where Zp(x) satisfies Bessel's differential equa-
tion (7.7.25). By comparing (7.10.21) and (7.10.37), we have a = -a,b =
0,1- p2=-n(n+1), andd2=A. We find that p=(n+2).

7.10.9. Solve Laplace's equation inside a sphere p < a subject to the following
boundary conditions on the sphere:

(a) u(a, 0, 0) = F(O) cos 48

(b) u(a, 0, 0) = F(q)
(c) (a, 0, 0) = F(et) cos 40

(d)
WP-

(a, 0, 0) = F(O) with for F(i) sin ¢ d¢ = 0

(e) (a,9,) =F(0,46) with fo fo " F(0, cb) sin q5 d9 d, = 0

7.10.10. Solve Laplace's equation outside a sphere p > a subject to the potential
given on the sphere:

(a) u(a, 9, 0) = F(0, 0)
(b) u(a, 0, = F(q), with cylindrical (azimuthal) symmetry
(c) u(a, 0, = V in the upper hemisphere, -V in the lower hemisphere

(do not simplify; do not evaluate definite integrals)

7.10.11. Solve Laplace's equation inside a sector of a sphere p < a with 0 < 0 < 2
subject to u(p, 0, ¢) = 0 and u(p, 2, q5) = 0 and the potential given on the
sphere: u(a, 0, 0) = F(0, 0).

7.10.12. Solve Laplace's equation inside a hemisphere p > a with z > 0 subject
to u = 0 at z = 0 and the potential given on the hemisphere: u(a, 0, ¢) =
F(9, 4)) [Hint: Use symmetry and solve a different problem, a sphere with
the antisymmetric potential on the lower hemisphere.]

7.10.13. Show that Rodrigues' formula agrees with the given Legendre polynomials
for n = 0, n = 1, and n = 2.

7.10.14. Show that Rodrigues' formula satisfies the differential equation for Legen-
dre polynomials.

7.10.15. Derive (7.10.36) using (7.10.35), (7.10.18), and (7.10.25).


