EXERCISES 5.5

5.5.1. A Sturm-Liouville eigenvalue problem is called self-adjoint if

$$p\left(u\frac{dv}{dx}-v\frac{du}{dx}\right)\Big|_{a}^{b}=0$$

since then $\int_a^b [uL(v) - vL(u)] dx = 0$ for any two functions u and v satisfying the boundary conditions. Show that the following yield self-adjoint problems.

- (a) $\phi(0) = 0$ and $\phi(L) = 0$
- (b) $\frac{d\phi}{dr}(0) = 0$ and $\phi(L) = 0$
- (c) $\frac{d\phi}{dr}(0) h\phi(0) = 0$ and $\frac{d\phi}{dr}(L) = 0$
- (d) $\phi(a) = \phi(b)$ and $p(a)\frac{d\phi}{dx}(a) = p(b)\frac{d\phi}{dx}(b)$
- (e) $\phi(a) = \phi(b)$ and $\frac{d\phi}{dx}(a) = \frac{d\phi}{dx}(b)$ [self-adjoint only if p(a) = p(b)]
- (f) $\phi(L) = 0$ and [in the situation in which p(0) = 0] $\phi(0)$ bounded and $\lim_{x\to 0} p(x) \frac{d\phi}{dx} = 0$
- *(g) Under what conditions is the following self-adjoint (if p is constant)?

$$\phi(L) + \alpha \phi(0) + \beta \frac{d\phi}{dx}(0) = 0$$
$$\frac{d\phi}{dx}(L) + \gamma \phi(0) + \delta \frac{d\phi}{dx}(0) = 0$$

5.5.2. Prove that the eigenfunctions corresponding to different eigenvalues (of the following eigenvalue problem) are orthogonal:

$$\frac{d}{dx}\left[p(x)\frac{d\phi}{dx}\right] + q(x)\phi + \lambda\sigma(x)\phi = 0$$

with the boundary conditions

$$\phi(1) = 0$$

 $\phi(2) - 2\frac{d\phi}{dx}(2) = 0.$

What is the weighting function?

5.5.3. Consider the eigenvalue problem $L(\phi) = -\lambda \sigma(x)\phi$, subject to a given set of homogeneous boundary conditions. Suppose that

$$\int_a^b \left[uL(v) - vL(u) \right] \ dx = 0$$

for all functions u and v satisfying the same set of boundary conditions. Prove that eigenfunctions corresponding to different eigenvalues are orthogonal (with what weight?).

- 5.5.4. Give an example of an eigenvalue problem with more than one eigenfunction corresponding to an eigenvalue.
- 5.5.5. Consider

$$L=\frac{d^2}{dx^2}+6\frac{d}{dx}+9.$$

- (a) Show that $L(e^{rx}) = (r+3)^2 e^{rx}$.
- (b) Use part (a) to obtain solutions of L(y) = 0 (a second-order constant-coefficient differential equation).
- (c) If z depends on x and a parameter r, show that

$$\frac{\partial}{\partial r}L(z)=L\left(\frac{\partial z}{\partial r}\right).$$

- (d) Using part (c), evaluate $L(\partial z/\partial r)$ if $z = e^{rx}$.
- (e) Obtain a second solution of L(y) = 0, using part (d).
- 5.5.6. Prove that if x is a root of a sixth-order polynomial with real coefficients, then \overline{x} is also a root.
- 5.5.7. For

$$L = \frac{d}{dx} \left(p \frac{d}{dx} \right) + q$$

with p and q real, carefully show that

$$\overline{L(\phi)} = L(\overline{\phi}).$$

5.5.8. Consider a fourth-order linear differential operator,

$$L=\frac{d^4}{dx^4}$$

- (a) Show that uL(v) vL(u) is an exact differential.
- (b) Evaluate $\int_0^1 [uL(v) vL(u)] dx$ in terms of the boundary data for any functions u and v.
- (c) Show that $\int_0^1 [uL(v) vL(u)] dx = 0$ if u and v are any two functions satisfying the boundary conditions

$$\begin{array}{rcl} \phi(0) &=& 0 & \phi(1) &=& 0 \\ \frac{d\phi}{dx}(0) &=& 0 & \frac{d^2\phi}{dx^2}(1) &=& 0 \end{array}$$

(d) Give another example of boundary conditions such that

$$\int_0^1 \left[uL(v) - vL(u) \right] \ dx = 0.$$

(e) For the eigenvalue problem [using the boundary conditions in part (c)]

$$\frac{d^4\phi}{dx^4} + \lambda e^x \phi = 0,$$

show that the eigenfunctions corresponding to different eigenvalues are orthogonal. What is the weighting function?

*5.5.9. For the eigenvalue problem

$$\frac{d^4\phi}{dx^4} + \lambda e^x \phi = 0$$

subject to the boundary conditions

$$\begin{array}{rcl} \phi(0) &=& 0 & \phi(1) &=& 0 \\ \frac{d\phi}{dx}(0) &=& 0 & \frac{d^2\phi}{dx^2}(1) &=& 0 \end{array}$$

show that the eigenvalues are less than or equal to zero ($\lambda \leq 0$). (Don't worry; in a physical context that is exactly what is expected.) Is $\lambda = 0$ an eigenvalue?

- 5.5.10. (a) Show that (5.5.22) yields (5.5.23) if at least one of the boundary conditions is of the regular Sturm-Liouville type.
 - (b) Do part (a) if one boundary condition is of the singular type.
- 5.5.11. *(a) Suppose that

$$L = p(x)\frac{d^2}{dx^2} + r(x)\frac{d}{dx} + q(x).$$

Consider

$$\int_a^b v L(u) \ dx$$

By repeated integration by parts, determine the adjoint operator L^* such that

$$\int_a^b [uL^*(v) - vL(u)] \ dx = H(x) \bigg|_a^b.$$

What is H(x)? Under what conditions does $L = L^*$, the self-adjoint case? [Hint: Show that

$$L^* = p \frac{d^2}{dx^2} + \left(2\frac{dp}{dx} - r\right) \frac{d}{dx} + \left(\frac{d^2p}{dx^2} - \frac{dr}{dx} + q\right)\right].$$

(b) If

$$u(0)=0 \qquad ext{and} \qquad rac{du}{dx}(L)+u(L)=0,$$

what boundary conditions should v(x) satisfy for $H(x)|_0^L = 0$, called the adjoint boundary conditions?

- 5.5.12. Consider nonself-adjoint operators as in Exercise 5.5.11. The eigenvalues λ may be complex as well as their corresponding eigenfunctions ϕ .
 - (a) Show that if λ is a complex eigenvalue with corresponding eigenfunction ϕ , then the complex conjugate $\overline{\lambda}$ is also an eigenvalue with eigenfunction $\overline{\phi}$.
 - (b) The eigenvalues of the adjoint L^* may be different from the eigenvalues of L. Using the result of Exercise 5.5.11, show that the eigenfunctions of $L(\phi) + \lambda \sigma \phi = 0$ are orthogonal with weight σ (in a complex sense) to eigenfunctions of $L^*(\psi) + \nu \sigma \psi = 0$ if the eigenvalues are different. Assume that ψ satisfies adjoint boundary conditions. You should also use part (a).
- 5.5.13. Using the result of Exercise 5.5.11, prove the following part of the Fredholm alternative (for operators that are not necessarily self-adjoint): A solution of L(u) = f(x) subject to homogeneous boundary conditions may exist only if f(x) is orthogonal to all solutions of the homogeneous adjoint problem.
- 5.5.14. If L is the following first-order linear differential operator

$$L=p(x)\frac{d}{dx},$$

then determine the adjoint operator L^* such that

$$\int_a^b [uL^*(v) - vL(u)] \ dx = B(x) \bigg|_a^b.$$

What is B(x)? [Hint: Consider $\int_a^b vL(u) dx$ and integrate by parts.]

Appendix to 5.5: Matrix Eigenvalue Problem and Orthogonality of Eigenvectors

The matrix eigenvalue problem

$$Ax = \lambda x, \qquad (5.5.26)$$

where A is an $n \times n$ real matrix (with entries a_{ij}) and x is an *n*-dimensional column vector (with components x_i), has many properties similar to those of the Sturm-Liouville eigenvalue problem.

Eigenvalues and eigenvectors. For all values of λ , x = 0 is a "trivial" solution of the homogeneous linear system (5.5.26). We ask, for what values of λ are there nontrivial solutions? In general, (5.5.26) can be rewritten as

$$(\boldsymbol{A} - \lambda \boldsymbol{I})\boldsymbol{x} = \boldsymbol{0}, \qquad (5.5.27)$$

where I is the identity matrix. According to the theory of linear equations (elementary linear algebra), a nontrivial solution exists only if

$$\det[\boldsymbol{A} - \lambda \boldsymbol{I}] = 0. \tag{5.5.28}$$