
138 Chapter 4. Wave Equation

One-dimensional wave equation. If the only body force per unit mass
is gravity, then Q(x, t) = -g in (4.2.7). In many such situations, this force is small
(relative to the tensile force pog << jTo82u/8x20 and can be neglected. Alterna-
tively, gravity sags the string, and we can calculate the vibrations with respect to
the sagged equilibrium position. In either way we are often led to investigate (4.2.7)
in the case in which Q(x, t) = 0,
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where c2 = Tolpo(x). Equation (4.2.9) is called the one-dimensional wave equa-
tion. The notation c2 is introduced because To/po(x) has the dimensions of velocity
squared. We will show that c is a very important velocity. For a uniform string, c
is constant.

EXERCISES 4.2

4.2.1. (a) Using Equation (4.2.7), compute the sagged equilibrium position uE(x)
if Q(x, t) = -g. The boundary conditions are u(O) = 0 and u(L) = 0.

(b) Show that v(x, t) = u(x, t) - uE(x) satisfies (4.2.9).

4.2.2. Show that c2 has the dimensions of velocity squared.

4.2.3. Consider a particle whose x-coordinate (in horizontal equilibrium) is des-
ignated by a. If its vertical and horizontal displacements are u and v,
respectively, determine its position x and y. Then show that
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4.2.4. Derive equations for horizontal and vertical displacements without ignor-
ing v. Assume that the string is perfectly flexible and that the tension is
determined by an experimental law.

4.2.5. Derive the partial differential equation for a vibrating string in the simplest
possible manner. You may assume the string has constant mass density
po, you may assume the tension To is constant, and you may assume small
displacements (with small slopes).


