Use l'Hôpital's rule to evaluate

\[\lim_{x \to 0} \frac{1 + x - \sqrt{1 + 2x}}{x^2} \]

ANSWER

\[
\lim_{x \to 0} \frac{1 + x - \sqrt{1 + 2x}}{x^2} = \frac{1 - 1}{0} = \frac{0}{0}
\]

L.H. \[= \lim_{x \to 0} \frac{1 - \frac{1}{\sqrt{1 + 2x}}}{2x} = \frac{0}{0}\]

L.H. \[= \lim_{x \to 0} \frac{\frac{1}{2} (1 + 2x)^{-3/2} \cdot 2}{2}
\]

\[= \lim_{x \to 0} \frac{(1 + 2x)^{-3/2}}{2}
\]

\[= \frac{(1 + 2 \cdot 0)^{-3/2}}{2}
\]

\[= \frac{1}{2}\]
QUESTION 2

Use calculus and optimization to find the maximum area of a rectangle that can be contained inside a circle of radius 1. Justify that the value you find is a maximum.

ANSWER

Let \(x \) be the length of the rectangle, and \(y \) be the height.

The diagonal is a diameter of the circle so
\[
x^2 + y^2 = 2^2
\]
\[
x = \pm \sqrt{4-y^2}
\]
\[
x = +\sqrt{4-y^2}
\]
(because \(x \geq 0 \))

\[
A = xy = y\sqrt{4-y^2}
\]

\[
A' = \sqrt{4-y^2} + \frac{-y^2}{\sqrt{4-y^2}}
\]
\[
= \frac{4-2y^2}{\sqrt{4-y^2}}
\]

Critical Points:
\[
A' = 0 \text{ when } 4-2y^2 = 0
\]
\[
y = \pm \sqrt{2}
\]
\[
y = +\sqrt{2}
\]

\[A' \text{ undefined at } y=0\]
\[
y = 2
\]

(over)
2 cont)

\[A(0) = 0 \]
\[A(2) = 0 \]
\[A(\sqrt{2}) = 2 \]

\(A(y) \) is continuous, so by the Extreme Value Theorem, \(A(\sqrt{2}) = 2 \) is the global maximum.
QUESTION 3

For the function

\[y = f(x) = \sqrt{4 - x^2} \]

(a) What is the domain of \(f(x) \)? Is \(f(x) \) even, odd, or neither? Find the intercepts of \(y = f(x) \). [10 points]

(b) Find and simplify the first and second derivatives of \(f(x) \). [10 points]

(c) Find the critical points of \(f(x) \). Where is the function increasing/decreasing? [8 points]

(d) If it applies, use the second derivative test to determine if the critical points are local max/mins. Which ones are also global extrema, if any? [4 points]

(e) Where is \(f(x) \) concave up/down? Are there any inflection points? If so, find them. [8 points]

(f) Use all the above information to sketch the graph of \(y = f(x) \). [10 points]

ANSWER

(a) Domain: \(4 - x^2 \geq 0 \)
 \[(2-x)(2+x) \geq 0 \]
 \([-2, 2]\)

y-int.: Set \(x = 0 \)
\[y = \sqrt{4} = 2 \]

f(-x) = \sqrt{4 - (-x)^2} = \sqrt{4 - x^2} = f(x)

Even

x-int.: Set \(y = 0 \)
\[0 = \sqrt{4 - x^2} \]
\[0 = 4 - x^2 \]
\[0 = (2-x)(2+x) \]
\[x = 2 \quad x = -2 \]

(continue on the next page if you need more space)
(b) \[y' = \frac{-x}{\sqrt{4-x^2}} \]

\[y'' = \frac{-\sqrt{4-x^2} + x \cdot \frac{-x}{\sqrt{4-x^2}}}{4-x^2} = \frac{- (4-x^2) - x^2}{\sqrt{4-x^2} \cdot 4-x^2} \]

\[= -\frac{4}{(4-x^2)^{3/2}} \]

(c) \[y' = 0 \text{ when } x = 0 \]

\[y' \text{ undefined at } x = \pm 2 \]

Critical Points:
\[x = -2, 0, 2 \]

Increasing \([-2, 0]\)

Decreasing \([0, 2]\)

(continue on the next page if you need more space)
(d) \[f''(-2) = \text{DNE} \Rightarrow 2^{\text{nd}} \text{ derivative test does not apply} \]
\[f''(2) = \text{DNE} \]
\[f'''(0) = -\frac{1}{2} \leq \text{local max} \]
Global max at \(x = 0 \) because of increasing/
Global min at \(x = \pm 2 \) decreasing information

(e) \(y'' = 0 \) never
\(y'' \) undefined at \(x = \pm 2 \)

Concave Down on \([-2, 2]\)

No points of inflection.

(f) \[y = \sqrt{4-x^2} \]

\[y \]
\[x \]

Page 6 of 6