Mihaela Ifrim

Publications

- 1. Long time solutions for 1D cubic dispersive equations, Part II: the focusing case M. Ifrim, D. Tataru, arXiv, (18 pages), submitted 2022
- 2. Global solutions for 1D cubic defocusing dispersive equations: Part I, M. Ifrim, D. Tataru, preprint at arXiv, (37 pages), 2022
- 3. Testing by wave packets and modified scattering in nonlinear dispersive pde’s, M. Ifrim, D. Tataru, preprint at arXiv, (37 pages), 2022
- 4. The time-like minimal surface equation in Minkowski space: low regularity solutions, A. Ai, M. Ifrim, and D. Tataru, preprint at arXiv, (119 pages), 2021
- 5. The Benjamin-Ono approximation for 2D gravity water waves with constant vorticity, M. Ifrim, J. Rowan, D. Tataru, L. Wan, Ars Inveniendi Analytica, e-print at arXiv, (31 pages), 2021
- 6. No pure capillary solitary waves exist in 2D finite depth, M. Ifrim, B. Pineau, D. Tataru, and M. Taylor, SIAM J. Math. Anal., Vol. 54, No. 4, pp. 4452 - 4464, e-print at arXiv, (13 pages), 2021
- 7. Two dimensional gravity waves at low regularity II: Global solutions, A. Ai, M. Ifrim, D. Tataru, accepted in Annales IHP, e-print at arXiv, (58 pages), 2021
- 8. Local well-posedness for quasilinear problems: a primer, M. Ifrim and D. Tataru, accepted in Bull. of the Amer. Math. Soc., e-print at arXiv, (19 pages), 2022
- 9. The relativistic Euler equations with a physical vacuum boundary: Hadamard local well- posedness, rough solutions, and continuation criterion, M. Disconzi, M. Ifrim, and D. Tataru, accepted in Arch. Ration. Mech. Anal., e-print at arXiv, (48 pages), 2021
- 10. The compressible Euler equations in a physical vacuum: a comprehensive Eulerian approach, M. Ifrim and D. Tataru, preprint at arXiv, (79 pages), 2020
- 11. Almost global well-posedness for quasilinear strongly coupled wave-Klein-Gordon systems in two space dimensions, M. Ifrim, A. Stingo, preprint at arXiv, (52 pages), 2019
- 12. Two dimensional gravity waves at low regularity I: Energy estimates, A. Ai, M. Ifrim, D. Tataru, preprint at arXiv, (61 pages), 2019
- 13. A Morawetz inequality for gravity-capillary water waves at low Bond number, T. Alazard, M. Ifrim, D. Tataru, Water Waves, preprint at arXiv,(33 pages), 2019
- 14. Dispersive decay of small data solutions for the KdV equation, M. Ifrim, H. Koch, D. Tataru, accepted in Annales Scientifiques de l’Ecole Normale Superieure, e-print at arXiv, (39 pages), 2020
- 15. The NLS approximation for two dimensional deep gravity waves, M. Ifrim, D. Tataru, Sci. China Math, 62, no 6, 1101-1120, e-print at arXiv, (23 pages), 2019.
- 16. No solitary waves in 2-d gravity and capillary waves in deep water, M. Ifrim, D. Tataru, Nonlinearity, 33, no. 10, 5457–5476, e-print at arXiv, 2020.
- 17. A Morawetz inequality for water waves, T. Alazard, M. Ifrim, D. Tataru, accepted in Amer. J. Math, e-print at arXiv, (71 pages), 2021
- 18. Well-posedness and dispersive decay of small data solutions for the Benjamin-Ono equation, M. Ifrim and D. Tataru, Annales scientifiques de l’ENS 4 (52), no 2, 297-335, 2019, e-print available at arXiv, (36 pages).
- 19. Finite depth gravity water waves in holomorphic coordinates, B. Harrop-Griffiths, M. Ifrim, and D. Tataru, Ann. PDE, 3, (82 pages), e-print available at arXiv, published in 2017.
- 20. Two dimensional gravity water waves with constant vorticity: I. Cubic lifespan, M. Ifrim and D. Tataru, (64 pages), Analysis & PDE, e-print available at arXiv, published in 2019.
- 21. The lifespan of small data solutions to the KP-I, B. Harrop-Griffiths, M. Ifrim, and D. Tataru, Int. Math. Res. Not., no. 1, 1-28, e-print available at arXiv, published in 2017.
- 22. The lifespan of small data solutions in two dimensional capillary water waves, M. Ifrim and D. Tataru, Arch. Ration. Mech. Anal., 225, no. 3, 1279-1346, e-print available at arXiv, published in 2017.
- 23. Two dimensional water waves in holomorphic coordinates II: global solutions, M. Ifrim and D. Tataru, Bull. Soc. Math. France, 144, no. 2, 369-394, e-print available at arXiv, published in 2016.
- 24. Global bounds for the cubic nonlinear Schrodinger equation (NLS) in one space dimension, M. Ifrim and D. Tataru, Nonlinearity, 28, no. 8, 2661-2675, e-print available at arXiv, published in 2015.
- 25. Two dimensional water waves in holomorphic coordinates, J. K. Hunter, M. Ifrim, and D. Tataru, Comm. Math. Phys., 346, no. 2, 483-552, e-print available at arXiv, published in 2016.
- 26. Long time Solutions for a Burgers-Hilbert Equation via a Modified Energy Method, J. K. Hunter, M. Ifrim, D. Tataru, D. T. Wang, Proceedings of the AMS, Vol. 143(8), pp. 3407-3412, e-print available at arXiv, published in 2015.
- 27. Enhanced lifespan of smooth solutions of a Burgers-Hilbert equation, J. K. Hunter, M. Ifrim, SIAM Journal on Mathematical Analysis, Vol 44(3), pp. 1279-2235, e-print available at arXiv, published in 2012.
- 28. J. K. Hunter, M. Ifrim, A quasilinear Schrodinger equation, large amplitude inertial oscillations in a rotating shallow fluid, IMA Journal of Applied Mathematics, Vol. 78(4), pp. 762-776, published in 2013.

Proceedings, Reports and Expositions

- 1. Two dimensional water waves in holomorphic coordinates, Oberwolfach Reports, Vol 41 (2013), pp 2344 - 2346.
- 2. Well-posedness and dispersive decay of small data solutions for the Benjamin-Ono equation, Oberwolfach Reports (Nonlinear Evolution Equations: Analysis and Numerics, 2019 - Oberwolfach report).
- 3. Long time dynamics for two dimensional water waves, Oberwolfach Reports (Mathematical Theory of Water Waves, 2019 - Oberwolfach report).
- 4. Morawetz inequalities for water waves, Thomas Alazard, Mihaela Ifrim and Daniel Tataru, (13 pages), Proceedings Volume of Conference on Mathematics of Wave Phenomena, Karlsruhe, Germany, 2018