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Preface

In this set of lecture notes, we present the weak Kolmogorov–Arnold–Moser
(KAM) theory and its connections to other research areas. The empha-
sis here is more on dynamics and dynamical methods, and less on partial
differential equations. This is the first draft that contains basic materials
on the subject. In this current form, the lecture notes should be used for
educational purposes only.

We list here the main contents covered in the book.

(1) The Legendre transform and its properties.

(2) Action functionals, existence and regularity of their minimizers.

(3) The weak KAM theorem via both dynamical system and PDE view-
points.

(4) Invariant measures and sets including Mather measures, Mather
sets, and Aubry sets.

(5) Aubry-Mather theory in two dimensions in the smooth setting.

(6) Aubry-Mather theory in the merely continuous setting.

(7) Optimal rate of convergence for periodic homogenization of Hamilton-
Jacobi equations in the convex setting.

(8) Large time behavior for Hamilton-Jacobi equations in the torus.

In the appendices, we give some basic points of circle homeomorphisms,
and the method of characteristics to solve Hamilton-Jacobi equations locally.

Some parts of the book are based on various topic courses that we have
taught at UW-Madison and UC Irvine. We would like to thank Son Tu,
who provided us the first draft of the lecture notes of a graduate dynamical

xi
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system course (Math 807) that Hung Tran taught in Spring 2021 at UW-
Madison. We thank Jianxing Du for nice remarks to clarify Theorem 1.14.

Our goal in the very long run is to turn this into a research monograph
on weak Kolmogorov–Arnold–Moser (KAM) theory and its connections to
other research areas. It is an ongoing process that will take us a long time
to finish.

Hung Tran was supported in part by NSF CAREER grant DMS-1843320,
a Simons Fellowship, and a Vilas Faculty Early-Career Investigator Award
(2022-2025) during the writing of this book. Yifeng Yu was partially sup-
ported by NSF grant 2000191 during the writing of this first draft.

Hung Vinh Tran, Yifeng Yu
Fall 2022



Chapter 1

The Legendre
transform

1.1. Legendre’s transform

Let H : Rn → R be a convex function. Our main goals in this chapter are to
study properties of H and its Legendre transform deeply. Generally speak-
ing, convexity is one-sided linearity. More precisely, H is the supremum of
all affine functions whose graphs stay below its graph; that is, there exists
an index set A such that, for p ∈ Rn,

H(p) = sup {vα · p+ cα : α ∈ A} ,

where {vα}α∈A ⊂ Rn, {cα}α∈A ⊂ R.

Definition 1.1 (Legendre’s transform). Assume H : Rn → R is convex and
superlinear, that is,

lim
|p|→∞

H(p)

|p|
= +∞.

Then, the Legendre transform of H, H∗ : Rn → R, is defined as

H∗(v) = sup
p∈Rn

(p · v −H(p)) for v ∈ Rn.

Example 1.2. If H(p) = 1
2 |p|

2 for p ∈ Rn, then H∗(v) = 1
2 |v|

2 for v ∈ Rn.

Remark 1.3. Typically, we say that H is the Hamiltonian, and L = H∗ is
the corresponding Lagrangian.

Let us now explain the geometric meaning of the Legendre transform.
Consider all hyperplanes touching the graph of H from below of the form
lv(p) = p ·v+ c. For each fixed vector v ∈ Rn, the corresponding hyperplane

1



2 1. The Legendre transform

Figure 1. Geometric meaning of the Legendre transform.

lv(p) = p · v + c touches H from below, which means that at the touching
point pv ∈ Rn, H(pv) = pv · v + c, and hence,

L(v) = H∗(v) = sup
p∈Rn

(
p · v −H(p)

)
= −c = −lv(0).

Definition 1.4 (Supporting hyperplanes). Assume H : Rn → R is convex
and superlinear. For each fixed vector v ∈ Rn, if the hyperplane lv(p) =
p · v + c touches H from below for a given c ∈ R, then we say that lv is a
supporting hyperplane of H.

As noted above, if lv is a supporting hyperplane of H, then

(1.1) L(v) = H∗(v) = −lv(0).

1.2. Basic properties of the Legendre transform

1.2.1. Basic properties. We proceed with some first basic properties of
the Legendre transform.

Lemma 1.5. Let L = H∗ be the Legendre transform of H. Then, L is
finite, convex, and superlinear.

It is worth noting that if H is not superlinear, then L is still defined, but
it could be infinite at some places. For example, if H(p) = |p| for p ∈ Rn,
then

L(v) = H∗(v) =

{
0 for |v| ≤ 1,

+∞ otherwise.

Proof of Lemma 1.5. Fix v ∈ Rn. Since H is superlinear in p, we have

p · v −H(p) = |p|
(
p · v
|p|

− H(p)

|p|

)
→ −∞ as |p| → ∞,
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which means that

L(v) = sup
p∈Rn

(
p · v −H(p)

)
= max

p∈Rn

(
p · v −H(p)

)
<∞.

Thus, L is finite. Besides, v 7→ L(v) is convex as it is a supremum of a
family of affine functions in v.

Now, we prove that L is superlinear in v. For v ̸= 0, choose p = s v
|v| ,

then for any s > 0, we have

L(v) = sup
p∈Rn

(
p · v −H(p)

)
≥
(
s
v

|v|

)
· v −H

(
s
v

|v|

)
≥ s|v| −max

|p|≤s
H(p).

Hence, for any fixed s > 0,

lim inf
|v|→∞

L(v)

|v|
≥ s− lim sup

|v|→∞

(
1

|v|
max
|p|≤s

H(p)

)
= s,

which yields that

lim
|v|→∞

L(v)

|v|
= +∞.

□

Let us now define subgradients of convex functions.

Definition 1.6 (Subgradients of convex functions). Assume H : Rn → R is
convex. Fix p0 ∈ Rn. The subgradient of H at p0 is defined as

∂H(p0) = {v ∈ Rn : H(p) ≥ H(p0) + v · (p− p0) for all p ∈ Rn}
= {v ∈ Rn : lv(p) = p · v +H(p0)− p0 · v

is a supporting hyperplane of H}.

We note that ∂H(p0) ̸= ∅, and if H is differentiable at p0, then

∂H(p0) = {DH(p0)}.

Lemma 1.7. If H is convex, then L∗ = (H∗)∗ = H.

Proof. It is clear that

L(v) = sup
p∈Rn

(
p · v −H(p)

)
≥ p · v −H(p) for any p ∈ Rn.

This implies

(1.2) H(p) + L(v) ≥ p · v for all p, q ∈ Rn.

In particular,

H(p) ≥ sup
v∈Rn

(p · v − L(v)) = L∗(p).
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Therefore, H ≥ L∗. Conversely, we have

L∗(p) = sup
v∈Rn

(
p · v − L(v)

)
= sup

v∈Rn

(
p · v − sup

r∈Rn

(
r · v −H(r)

))
= sup

v∈Rn
inf
r∈Rn

(
(p− r) · v +H(r)

)
.

Thus

L∗(p) ≥ inf
r∈R

(
H(r)− (r − p) · v

)
for all v ∈ Rn.

Pick v ∈ ∂H(p). By the definition of subgradients,

H(r)− (r − p) · v ≥ H(p) for all r ∈ Rn.

Therefore, L∗ ≥ H. The proof is complete. □

Remark 1.8. An important inequality arises from the proof of Lemma 1.7
is

H(p) + L(v) ≥ p · v for all p, v ∈ Rn.

This is often called the convex duality inequality or Fenchel’s inequality. It
is natural to ask when we have equality in the above. From the geometric
meaning of the Legendre transform and the definition of subgradients,

(1.3) H(p) + L(v) = p · v ⇐⇒ p ∈ ∂L(v) ⇐⇒ v ∈ ∂H(p).

Remark 1.9. We say that the Legendre transform is involutive in the set
of convex functions, that is, for H convex,

(H∗)∗ = H.

Moreover, it is clear from the definition of the Legendre transform that, for
H, G convex and H ≥ G,

H∗ ≤ G∗.

We say that the Legendre transform reverses the ordering in the set of convex
functions.

We now study the differentiability of convex functions and their Legendre
transforms.

Theorem 1.10. Assume that H is convex and differentiable. Then, H ∈
C1(Rn).

Proof. Assume {pk} → p0 ∈ Rn. We now show that DH(pk) → ξ0 =
DH(p0). There exists C > 0 such that |pk| ≤ C for all k ∈ N. As H is
convex,

H(pk + h) ≥ H(pk) +DH(pk) · h for all |h| ≤ 1.
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Thus, |DH(pk)| ≤ 2max|p|≤C+1 |H(p)| for all k ∈ N. By passing to a sub-
sequence if necessary, we may assume that DH(pk) → ξ0 for some ξ0 ∈ Rn.
For all p ∈ Rn,

H(p) ≥ H(pk) +DH(pk) · (p− pk).

Let k → ∞ to deduce that, for p ∈ Rn,

H(p) ≥ H(p0) + ξ0 · (p− p0),

which gives that ξ0 ∈ ∂H(p0). As H is differentiable, ξ0 = DH(p0), and
hence, DH(pk) → DH(p0). □

The above proof also implies the following lemma.

Lemma 1.11. Assume that H is convex. Then, the following properties
hold.

(i) (Boundedness of subgradients) For each R > 0, there exists CR > 0
such that

∂H(B(0, R)) ⊂ B(0, CR).

(ii) (Stability) If pk → p and vk ∈ ∂H(pk) such that vk → v, then
v ∈ ∂H(p).

1.2.2. Exercises.

Exercise 1. Assume that H : Rn → R is convex. Show that ∂H(p) ̸= ∅ for
each p ∈ Rn.

Exercise 2. IfH is not convex, then we can still defineH∗. In this situation,
how does H∗∗ = (H∗)∗ relate to H? Give one explicit example of H, and
compute H∗, H∗∗.

1.2.3. Strictly convex Hamiltonians.

Theorem 1.12. Assume that H is convex and superlinear. Then, the fol-
lowing are equivalent.

(i) H is strictly convex, that is, for p1 ̸= p2 and s ∈ (0, 1),

(1.4) H(sp1 + (1− s)p2) < sH(p1) + (1− s)H(p2).

(ii) ∂H(p1) ∩ ∂H(p2) = ∅ if p1 ̸= p2.

(iii) L = H∗ ∈ C1(Rn).

Proof. We first show that (i) implies (ii). If ξ ∈ ∂H(p1)∩ ∂H(p2) for some
p1 ̸= p2, then by definition of subgradients, we have{

H(sp1 + (1− s)p2) ≥ H(p1) + ξ · (p2 − p1)(1− s),

H(sp1 + (1− s)p2) ≥ H(p2) + ξ · (p1 − p2)s,
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for s ∈ (0, 1). Multiplying the first equation by s, the second equation by
(1− s) and adding them together, we obtain

H(sp1 + (1− s)p2) ≥ sH(p1) + (1− s)H(p2),

which contradicts (i).

Next, we prove that (ii) implies (iii). By Theorem 1.10, it suffices to
show that ∂L(v) is a singleton at any v ∈ Rn. Assume by contradiction that
for some v ∈ Rn, p1, p2 ∈ ∂L(v) for p1 ̸= p2. Then, in light of (1.3),

v ∈ ∂H(p1) ∩ ∂H(p2) = ∅,

which is absurd.

Finally, we show (iii) implies (i). Assume otherwise that H is not strictly
convex, that is,

H(s0p1 + (1− s0)p2) = s0H(p1) + (1− s0)H(p2).

for some s0 ∈ (0, 1) and p1 ̸= p2. Then, for all s ∈ (0, 1), there holds

H(sp1 + (1− s)p2) = sH(p1) + (1− s)H(p2).

Take v ∈ ∂H (ps) where ps = sp1+(1−s)p2 for s ∈ (0, 1). Then, for p ∈ Rn,
we have H(p)−H (ps) ≥ v · (p− ps), which gives that

H(p)−H(p1) ≥ H(ps)−H(p1) + v · (p− ps)

= (1− s)
(
H(p2)−H(p1)

)
+ v · (p− ps)

≥ (1− s)v · (p2 − p1) + v · (p− ps)

= v · (p− p1).

Therefore, v ∈ ∂H(p1), and similarly v ∈ ∂H(p2) as well. This implies
p1, p2 ∈ ∂L(v) = {DL(v)}, which is a contradiction. □

Theorem 1.13. Assume H ∈ Ck(Rn) with k ≥ 2. Assume further that H
is convex, superlinear, and is locally uniformly convex, i.e., D2H(p) > 0 for
all p ∈ Rn. Then,

• L ∈ Ck(Rn).

• DH : Rn → Rn is a Ck−1 diffeomorphism.

• DL(v) = (DH)−1(v), D2L(v) =
[
D2H(DL(v))

]−1
for v ∈ Rn.

• L(v) = v ·DL(v)−H(DL(v)) for v ∈ Rn.

Proof. As H is locally uniformly convex, it is strictly convex, and thus,
L ∈ C1 by Theorem 1.12. In the current setting, (1.3) becomes

p = DL(v) ⇐⇒ v = DH(p).

Thus, (DL)−1 : Rn → Rn is well-defined and (DL)−1 = DH, which is of
class Ck−1. Since D2H(p) > 0 for all p ∈ Rn, we use the inverse function
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theorem to deduce that DH : Rn → Rn is a local Ck−1 diffeomorphism.
Therefore, DL is also a local Ck−1 diffeomorphism, and L is of class Ck. By
definition, DH(DL(v)) = v for all v ∈ Rn, and hence,

D2H(DL(v)) ·D2L(v) = In.

Here, In is the identity matrix of size n. We conclude that

D2L(v) =
[
D2H(DL(v))

]−1
.

□

It is important to note that when H,L ∈ Ck(Rn) for some k ≥ 2, the
identity DL = (DH)−1 shows a key property of the duality between H and
L, and this also explains intuitively why H∗∗ = L∗ = H. In fact, in some
literature, the Legendre transform was defined by this key property.

1.3. Hamiltonians depending on positions

We consider Hamiltonians that depend also on positions, that is, H =
H(x, p) for (x, p) ∈ Rn × Rn. In this section, we always assume the fol-
lowing.

(1.5)

{
H ∈ C(Rn × Rn,R), p 7→ H(x, p) is convex for each x ∈ Rn,

lim|p|→∞

(
infx∈Rn

H(x,p)
|p|

)
= +∞.

The second condition in (1.5) is often called the uniform superlinearity of
the Hamiltonian. We define the Lagrangian as

(1.6) L(x, v) = H∗(x, v) = sup
p∈Rn

(
p · v −H(x, p)

)
for (x, v) ∈ Rn × Rn.

Theorem 1.14. Assume (1.5). Then, the following properties hold.

(i) L ∈ C(Rn ×Rn,R) and v 7→ L(x, v) is convex and superlinear in v
for each fixed x ∈ Rn.

(ii) L∗ = H∗∗ = H.

(iii) For each R > 0, there exists CR > 0 such that, for (x, v) ∈
B(0, R)×B(0, R),

L(x, v) = max
|p|≤CR

(
p · v −H(x, p)

)
.

(iv) If H is strictly convex in p, then DvL(x, v) exists and (x, v) 7→
DvL(x, v) is continuous.

Proof. The only new thing to prove in (i) is the continuity of L as other
points follow from Lemma 1.5. Assume (xk, vk) → (x0, v0) in Rn × Rn.
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There exists C > 0 such that |xk|+ |vk| ≤ C for all k ∈ N. For each k ∈ N,
we are able to find pk ∈ Rn with |pk| ≤ C such that

L(xk, vk) = pk · vk −H(xk, pk).

For k ∈ N, set

ω(k) = |H(x0, pk)−H(xk, pk)|+ C|vk − v0|.

It is clear that limk→∞ ω(k) = 0. By Fenchel’s inequality,

L(xk, vk) = pk · vk −H(xk, pk)

≤ pk · v0 −H(x0, pk) + ω(k) ≤ L(x0, v0) + ω(k).

Therefore

lim sup
k→∞

L(xk, vk) ≤ L(x0, v0).

For each p ∈ Rn and k ∈ N,

L(xk, vk) ≥ p · vk −H(xk, p),

which gives us that

lim inf
k→∞

L(xk, vk) ≥ p · v0 −H(x0, p) =⇒ lim inf
k→∞

L(xk, vk) ≥ L(x0, v0).

We obtain that L ∈ C(Rn × Rn,R).
For other parts, (ii) follows from Lemma 1.7, (iii) follows from Lemma

1.11, and (iv) is deduced from Theorem 1.12. □

Theorem 1.15. Assume (1.5). Assume further that H ∈ Ck(Rn ×Rn) for
k ≥ 2, and H is locally uniformly convex in p, i.e., D2

ppH(x, p) > 0 for all

(x, p) ∈ Rn × Rn. Then, L ∈ Ck(Rn × Rn) and, for each (x, v) ∈ Rn × Rn,
there exists a unique p(x, v) ∈ Rn such that

p(x, v) = DvL(x, v)

DxL(x, v) = −DxH(x, p(x, v))

D2
vvL(x, v) =

[
D2

ppH(x, p(x, v))
]−1

.

Also, p(x, v) = DvL(x, v) implies v = DpH(x, p(x, v)).

Proof. By Theorem 1.13, for each x ∈ Rn, v 7→ L(x, v) is of class Ck. The
relation

p = DvL(x, v) ⇐⇒ v = DpH(x, p)

defines a map L : Rn × Rn → Rn × Rn

L(x, v) = (x, p) = (x,DvL(x, v))

with its inverse H : Rn × Rn → Rn × Rn

H(x, p) = (x,DpH(x, p)).
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By the given assumptions and the inverse function theorem,H is a Ck−1(Rn×
Rn) diffeomorphism. Hence, L is also is a Ck−1(Rn × Rn) diffeomorphism,
and in particular,

(x, v) 7→ p(x, v) = DvL(x, v) ∈ Ck−1(Rn × Rn).

We need to show that (x, v) 7→ DxL(x, v) is Ck−1(Rn × Rn). From the
identity

L(x, v) = p(x, v) · v −H(x, p(x, v))

we deduce that x 7→ L(x, v) is C1 for each v ∈ Rn. Differentiating this
equality with respect to x to yield

DxL(x, v) = −DxH(x, p(x, v)) + v ·Dxp(x, v)−DpH(x, p(x, v)) ·Dxp(x, v)

= −DxH(x, p(x, v))

since v = DpH(x, p(x, v)). As DxH, p ∈ Ck−1(Rn × Rn), we get DxL ∈
Ck−1(Rn × Rn). Hence, L ∈ Ck(Rn × Rn). □

Definition 1.16. Define

H : Rn × Rn → Rn × Rn

(x, p) 7→ (x, v) = (x,DpH(x, p)),

and its inverse (dual)

L : Rn × Rn → Rn × Rn

(x, v) 7→ (x, p) = (x,DvL(x, v)).

Under the assumptions of Theorem 1.15, H,L are both local Ck−1 diffeo-
morphisms.

Remark 1.17. Sometimes, we assume more that L is bounded in Rn ×
B(0, R) for each R > 0 to get the boundedness of p(x, v) ∈ ∂vL(x, v) for
(x, v) ∈ Rn ×B(0, R). Indeed, as p(x, v) ∈ ∂vL(x, v),

L(x, v + h) ≥ L(x, v) + p(x, v) · h for all h ∈ Rn.

In particular,

|p(x, v)| = max
|h|≤1

p(x, v) · h ≤ |L(x, v)|+ |L(x, v + h)| ≤ 2 sup
Rn×B(0,R+1)

L.

Let us state this as a theorem.

Theorem 1.18. Assume (1.5) and H ∈ L∞ (Rn ×B(0, R)
)
for each R > 0.

Then, the following properties hold.

(i) L ∈ L∞ (Rn ×B(0, R)
)
for each R > 0, and L satisfies{

L ∈ C(Rn × Rn,R), v 7→ L(x, v) is convex for each x ∈ Rn,

lim|v|→∞

(
infx∈Rn

L(x,v)
|v|

)
= +∞.
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(ii) For each R > 0, there exists CR > 0 such that, for (x, v) ∈ Rn ×
B(0, R),

L(x, v) = max
|p|≤CR

(
p · v −H(x, p)

)
.

Proof. For R > 0, denote by

CH(R) = ∥H∥L∞(Rn×B(0,R)).

We first show that L ∈ L∞ (Rn ×B(0, R)
)
. Fix (x, v) ∈ Rn × B(0, R). By

definition of the Legendre transform,

L(x, v) = sup
p∈Rn

(p · v −H(x, p)) ≥ −H(x, 0) ≥ −CH(1).

Thanks to the uniform superlinearity ofH in (1.5), there exists C = C(H,R) >
1 such that

inf
x∈Rn

H(x, p)

|p|
> R+ CH(1) for |p| ≥ C,

which implies

H(x, p) > R|p|+ CH(1) for |p| ≥ C.

Therefore,

L(x, v) = sup
p∈Rn

(p · v −H(x, p)) ≤ sup
p∈Rn

(R|p| −H(x, p))

= sup
|p|≤C

(R|p| −H(x, p)) ≤ CR+ CH(C).

Thus, L ∈ L∞ (Rn ×B(0, R)
)
.

Next, we show that L is uniformly superlinear in v. For R > 0 and
v ̸= 0, by choosing p = R v

|v| , we see that

L(x, v) = sup
p∈Rn

(p · v −H(x, p)) ≥ R|v| − CH(R).

Hence,

lim inf
|v|→∞

(
inf

x∈Rn

L(x, v)

|v|

)
≥ lim inf

|v|→∞

R|v| − CH(R)

|v|
≥ R.

We let R→ ∞ to confirm that L is uniformly superlinear in v.

Claim (ii) follows from Remark 1.17. □

1.4. The Legendre transform and other transformations

We first study the Legendre transform under scalings and translations.

Lemma 1.19. Let H : Rn → R be a convex function. Let a > 0 and b ∈ R
be given numbers. Denote by G = aH + b. Then, for v ∈ Rn,

G∗(v) = aH∗
(v
a

)
− b.
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Proof. We compute, for v ∈ Rn,

G∗(v) = sup
p∈Rn

(p · v −G(p))

= sup
p∈Rn

(p · v − aH(p)− b)

= a sup
p∈Rn

(
p · v

a
−H(p)

)
− b = aH∗

(v
a

)
− b.

□

Lemma 1.20. Let H : Rn → R be a convex function. Let A be a symmetric,
invertible n × n matrix. Denote by G(p) = H(Ap) for p ∈ Rn. Then, for
v ∈ Rn,

G∗(v) = H∗ (A−1v
)
.

Proof. For v ∈ Rn,

G∗(v) = sup
p∈Rn

(p · v −G(p))

= sup
p∈Rn

(
Ap ·A−1v −H(Ap)

)
= H∗ (A−1v

)
.

□

Next, we consider the Legendre transform under infimal convolutions.

Definition 1.21 (Infimal convolutions). Let f, g : Rn → R be two given
functions. The infimal convolution f ∗inf g is defined as, for x ∈ Rn,

(f ∗inf g)(x) = inf{f(x− y) + g(y) : y ∈ Rn}.

Proposition 1.22. Let H,G : Rn → R be convex functions. Then, H ∗inf G
is convex, and

(H ∗inf G)∗ = H∗ +G∗.

Proof. We first show that H ∗inf G is convex. Indeed, for p1, p2, q1, q2 ∈ Rn,

H(p1 − q1) +G(q1) +H(p2 − q2) +G(q2)

≥ 2

(
H

(
p1 + p2

2
− q1 + q2

2

)
+G

(
q1 + q2

2

))
≥ 2(H ∗inf G)

(
p1 + p2

2

)
.

Take infimum over q1, q2 ∈ Rn in the above to yield

(H ∗inf G) (p1) + (H ∗inf G) (p2) ≥ 2(H ∗inf G)
(
p1 + p2

2

)
,

and hence, H ∗inf G is convex.
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Next, we compute, for v ∈ Rn,

(H ∗inf G)∗(v) = sup
p∈Rn

(
p · v − inf

q∈Rn
(H(p− q) +G(q))

)
= sup

p,q∈Rn
((p− q) · v −H(p− q) + q · v −G(q))

= H∗(v) +G∗(v).

□

1.5. References

(1) The content on the Legendre transform covered in this chapter is
quite classical. We also refer the readers to other books for similar
material [CS04, Eva10, Tra21].

(2) For a characterization of the Legendre transform, see Artstein-
Avidan and Milman [AAM09], which is covered in [Tra21, Appen-
dix C]. Basically, up to translations and a linear change of variables,
the Legendre transform is the unique transform that is involutive
and reverses the order in the set of convex functions.



Chapter 2

Action functionals and
their minimizers

In this chapter, we always consider a given Lagrangian L : Rn × Rn → R
that satisfies

(2.1)


L ∈ Ck(Rn × Rn) for some k ≥ 2,

D2
vvL(x, v) > 0 for all (x, v) ∈ Rn × Rn,

lim|v|→∞ infx∈Rn
L(x,v)
|v| = +∞.

From Theorem 1.15 and Definition 1.16, we have that

L : Rn × Rn → Rn × Rn

(x, v) 7→ (x, p) = (x,DvL(x, v)).(2.2)

is a local Ck−1 diffeomorphism thanks to (2.1). The inverse of L is H,

H : Rn × Rn → Rn × Rn

(x, p) 7→ (x, v) = (x,DpH(x, p)),

which is also a local Ck−1 diffeomorphism. Here, H is the Legendre trans-
form of L.

Our main object here is the action functional

I[γ] =

∫ b

a
L(γ(t), γ̇(t)) dt,

where a < b are two given real numbers, and γ : [a, b] → Rn is a given
curve belonging to certain admissible class A to be specified. The problem

13
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of interests is the following calculus of variation problem

min
γ∈A

I[γ] = min
γ∈A

∫ b

a
L(γ(t), γ̇(t)) dt.

There are various different ways to choose the admissible class A and we
will start with the most basic/classical one.

2.1. Minimizers and the Euler-Lagrange equations in the
class of continuous and piecewise C1 curves

We first give a definition of admissible class of continuous and piecewise C1

curves.

Definition 2.1 (Admissible class of continuous and piecewise C1 curves).
Let a < b be two given real numbers, and y, z ∈ Rn be two given vectors.
Denote by

A =
{
γ : [a, b] → Rn : γ(a) = y, γ(b) = z,

γ is a continuous, piecewise C1 curve
}
.

Definition 2.2 (Action of a curve). Let γ ∈ A. Then, the action of γ for
L is

I[γ] =

∫ b

a
L(γ(t), γ̇(t)) dt.

Definition 2.3 (Minimizers in A). We say that γ ∈ A is a minimizer of the
action for L in the admissible class A if

(2.3) I[γ] = min
η∈A

I[η].

2.1.1. Euler-Lagrange equations for minimizers.

Theorem 2.4. Assume (2.1). Let γ ∈ A ∩ C2([a, b],Rn) be a minimizer of
the action for L in the admissible class A. Then, γ satisfies

(2.4)
d

dt
(DvL(γ(t), γ̇(t))) = DxL(γ(t), γ̇(t)) for a ≤ t ≤ b.

Proof. The proof is quite classical via the variational method. Fix η :
[a, b] → Rn smooth such that η(a) = η(b) = 0. Then, for s ∈ Rn, γ+sη ∈ A.
Define i : R → R as

i(s) = I[γ + sη].

By a straightforward computation,

i′(s) =

∫ b

a
(DxL(γ + sη, γ̇ + sη̇) · η +DvL(γ + sη, γ̇ + sη̇) · η̇) dt
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Thanks to (6.5), i(0) = mins∈R i(s). In particular,

0 = i′(0) =

∫ b

a
(DxL(γ, γ̇) · η +DvL(γ, γ̇) · η̇) dt

=

∫ b

a

(
DxL(γ, γ̇)−

d

dt
(DvL(γ(t), γ̇(t)))

)
· η dt,

where we used integration by parts and η(a) = η(b) = 0 in the last equality.
Since the above holds true for all smooth η : [a, b] → Rn with η(a) = η(b) =
0, we imply that (2.4) holds.

□

Remark 2.5. As γ is C2, we are able to expand the Euler-Lagrange equa-
tions (2.4) out as

D2
xvL(γ, γ̇)γ̇ +D2

vvL(γ, γ̇)γ̈ = DxL(γ, γ̇),

which is equivalent to

γ̈ =
(
D2

vvL(γ, γ̇)
)−1 (

DxL(γ, γ̇)−D2
xvL(γ, γ̇)γ̇

)
on [a, b].

It is clear that we employ the C2 assumption of γ strongly in the proof
of Theorem 2.4 above to have the term d

dt (DvL(γ(t), γ̇(t))) defined in the
classical way to have the Euler-Lagrange equations. We now proceed to
show that we can relax this C2 regularity requirement, and requiring C1

regularity is enough.

Theorem 2.6. Assume (2.1). Let γ ∈ A ∩ C1([a, b],Rn) be a minimizer
of the action for L in the admissible class A. Then, γ ∈ C2, and in fact,
γ ∈ Ck.

Proof. Following the proof of Theorem 2.4, we have

0 = i′(0) =

∫ b

a
(DxL(γ, γ̇) · η +DvL(γ, γ̇) · η̇) dt.

As we only have γ ∈ C1, we integrate by parts in a different way to get∫ b

a

(
−
∫ t

a
DxL(γ, γ̇) ds+DvL(γ, γ̇)

)
· η̇ dt = 0.

As the above holds true for all η : [a, b] → Rn smooth with η(a) = η(b) = 0,
there exists a vector q ∈ Rn such that

(2.5) DvL(γ(t), γ̇(t)) = q +

∫ t

a
DxL(γ(s), γ̇(s)) ds for t ∈ [a, b].

As γ ∈ C1, we use (2.5) to deduce that

(2.6) t 7→ DvL(γ(t), γ̇(t)) is in C1.
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Recall that L is a local Ck−1 diffeomorphism by (2.2), and H ∈ Ck−1 is its
inverse, and

(2.7) H (γ(t), DvL(γ(t), γ̇(t))) = (γ(t), γ̇(t)) for t ∈ [a, b].

We combine (2.6) and (2.7) to yield t 7→ (γ(t), γ̇(t)) is C1, which means that
γ ∈ C2.

By induction, we deduce further that t 7→ (γ(t), γ̇(t)) is Ck−1, which
implies that γ ∈ Ck. The proof is complete. □

We next show that the C1 regularity assumption can be weakened to the
piecewise C1 regularity assumption, which is exactly the regularity condition
we put on our admissible class A.

Theorem 2.7. Assume (2.1). Let γ ∈ A be a minimizer of the action for
L in the admissible class A. Then, γ ∈ Ck.

Proof. We can find a = a0 < a1 < . . . < am = b such that γ is C1

on [ai, ai+1] for 0 ≤ i ≤ m − 1. By the assumption, γ is a minimizer of
the action for L on [ai, ai+1] for 0 ≤ i ≤ m − 1. Thanks to Theorem 2.6,
γ ∈ Ck([ai, ai+1]) for 0 ≤ i ≤ m−1. Moreover, γ satisfies the Euler-Lagrange
equations (2.4) on [ai, ai+1] for 0 ≤ i ≤ m− 1.

By the calculus of variations method in the proof of Theorem 2.4, we
have, for all η : [a, b] → Rn smooth with η(a) = η(b) = 0,

0 = i′(0) =

∫ b

a
(DxL(γ, γ̇) · η +DvL(γ, γ̇) · η̇) dt.

It is rather natural to split the above integral on [a, b] to integrals on [ai, ai+1]
for 0 ≤ i ≤ m− 1. Indeed,

0 =

∫ b

a
(DxL(γ, γ̇) · η +DvL(γ, γ̇) · η̇) dt

=
m−1∑
i=0

∫ ai+1

ai

(DxL(γ, γ̇) · η +DvL(γ, γ̇) · η̇) dt

=

m−1∑
i=0

∫ ai+1

ai

(
DxL(γ, γ̇)−

d

dt
(DvL(γ, γ̇))

)
· η dt

+
m−1∑
i=0

(
DvL(γ(ai+1), γ̇(a

−
i+1)) · η(ai+1)−DvL(γ(ai), γ̇(a

+
i )) · η(ai)

)
=

m−1∑
i=1

(
DvL(γ(ai), γ̇(a

−
i ))−DvL(γ(ai), γ̇(a

+
i ))
)
· η(ai).
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We used the fact that γ satisfies the Euler-Lagrange equations (2.4) on
[ai, ai+1] for 0 ≤ i ≤ m− 1, and η(a) = η(b) = 0 in the last equality above.
As η(ai) can be chosen arbitrarily for 1 ≤ i ≤ m− 1, we yield

DvL(γ(ai), γ̇(a
−
i )) = DvL(γ(ai), γ̇(a

+
i )),

which gives that γ̇(a−i ) = γ̇(a+i ). Thus, γ ∈ C1([a, b]). Applying Theorem

2.6 once more, we conclude that γ ∈ Ck([a, b]). □

2.1.2. Extremal curves.

Definition 2.8 (Extremal curves in A). We say that γ ∈ A is an extremal
curve of the action for L in the admissible class A if we have, for all smooth
η : [a, b] → Rn with η(a) = η(b) = 0,

(2.8)
d

ds
I[γ + sη]

∣∣∣
s=0

= 0.

It is clear that Theorem 2.7 holds for extremal curves as well. We state
this result here for clarity and for usage later.

Theorem 2.9. Assume (2.1). Let γ ∈ A be an extremal curve of the action
for L in the admissible class A. Then, γ ∈ Ck.

2.2. Connections between Lagrangian and Hamiltonian
viewpoints

In this section, we always assume (2.1). We have shown in Theorems 2.7
and 2.9 that if γ is an extremal curve or a minimizer of the action for L and
γ is continuous and piecewise C1, then γ ∈ Ck([a, b]), and γ satisfies the
Euler-Lagrange equations

(2.9)
d

dt
(DvL(γ(t), γ̇(t))) = DxL(γ(t), γ̇(t)) for a ≤ t ≤ b.

2.2.1. Hamiltonian system. We provide connection between this view-
point and the Hamiltonian dynamics. Denote by, for t ∈ [a, b],

(2.10)

{
X(t) = γ(t),

P (t) = DvL(γ(t), γ̇(t)).

By the Legendre transform,

L(γ(t), γ̇(t)) +H(γ(t), DvL(γ(t), γ̇(t))) = γ̇(t) ·DvL(γ(t), γ̇(t)),

which means that{
L(γ(t), γ̇(t)) +H(X(t), P (t)) = γ̇(t) · P (t),
γ̇(t) = DpH(X(t), P (t)).
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We use the above and (2.9) to yield, for t ∈ [a, b],{
Ẋ(t) = γ̇(t) = DpH(X(t), P (t)),

Ṗ (t) = d
dt (DvL(γ(t), γ̇(t))) = DxL(γ(t), γ̇(t)) = −DxH(X(t), P (t)).

Therefore, (X(t), P (t)) satisfies the following Hamiltonian system, for t ∈
[a, b],

(2.11)

{
Ẋ(t) = DpH(X(t), P (t)),

Ṗ (t) = −DxH(X(t), P (t)).

Remark 2.10. In terms of our notations on dynamics of a given particle in
Lagrangian and Hamiltonian viewpoints, we have the following.

• We typically use γ(t) in Lagrangian framework and X(t) in Hamil-
tonian framework to represent the position of this particle at time
t ∈ R. The variable x stands for the position variable.

• The corresponding velocity at time t is γ̇(t) in Lagrangian frame-
work. And the velocity variable is v.

• The generalized momentum of this particle at time t is P (t) with
the relation P (t) = DvL(γ(t), γ̇(t)). The variable p represents for
the momentum variable correspondingly.

Let us now consider the classical mechanics setting where we normalize
this particle to be of unit mass, that is, m = 1. Then,

H(x, p) =
1

2
|p|2 + V (x) and L(x, v) =

1

2
|v|2 − V (x),

where V is the potential energy. In this situation,

P (t) = DvL(γ(t), γ̇(t)) = γ̇(t) = mγ̇(t),

which is precisely the classical momentum of the particle at time t.

Lemma 2.11. Let (X(t), P (t)) be a solution to (2.11) for t ∈ [a, b]. Then,
t 7→ H(X(t), P (t)) is constant on [a, b].

Proof. We calculate that

d

dt
(H(X(t), P (t))) = DxH(X(t), P (t)) · Ẋ(t) +DpH(X(t), P (t)) · Ṗ (t)

= [DxH ·DpH +DpH · (−DxH)] (X(t), P (t)) = 0.

Hence, t 7→ H(X(t), P (t)) is constant on [a, b].

□
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Remark 2.12. The Hamiltonian H stands for total energy, and it is rather
natural that the total energy is conserved along the Hamiltonian flow. For
given (X(a), P (a)), we then see that

H(X(t), P (t)) = H(X(a), P (a)) ≤ C for all t ∈ [a, b].

By the superlinearity of H in p, we yield

|P (t)| ≤ C for all t ∈ [a, b].

Recall that L(γ(t), γ̇(t)) +H(X(t), P (t)) = γ̇(t) · P (t), which together with
the inequality above implies

L(γ(t), γ̇(t)) ≤ C + C|γ̇(t)| for all t ∈ [a, b].

We employ the superlinearity of L in v to deduce

|γ̇(t)| ≤ C =⇒ |γ(t)| ≤ C for all t ∈ [a, b].

Thus,

(2.12) |X(t)|+ |P (t)| ≤ C for all t ∈ [a, b].

AsDxH,DpH ∈ Lip (B(0, C)×B(0, C)), we see that the Hamiltonian system
(2.11) is wellposed.

2.2.2. Poisson’s bracket.

Definition 2.13 (Poisson’s bracket). For f, g ∈ C1(Rn×Rn), we define the
Poisson bracket {f, g} as

{f, g}(x, p) = Dxf(x, p) ·Dpg(x, p)−Dpf(x, p) ·Dxg(x, p).

We record in the following some basic properties of the Poisson bracket.

Proposition 2.14 (Basic properties of the Poisson bracket). Let f, g, h ∈
C2(Rn × Rn) and a, b ∈ R. The following properties hold.

(i) Anticommutativity

{f, g} = −{g, f}.

(ii) Bilinearity

{af + bg, h} = a{f, h}+ b{g, h}.

(iii) Leibniz’s rule

{fg, h} = f{g, h}+ g{f, h}.

(iv) Jacobi’s identity

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0.

We have further the following lemma.
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Lemma 2.15. Let ϕ ∈ C1(Rn×Rn). Let (X(t), P (t)) be a solution to (2.11)
for t ∈ [a, b]. Then,

d

dt
(ϕ(X(t), P (t))) = {ϕ,H}(X(t), P (t)).

In particular, if {ϕ,H} = 0, then t 7→ ϕ(X(t), P (t)) is constant on [a, b].

Proof. We compute

d

dt
(ϕ(X(t), P (t))) = Dxϕ(X(t), P (t)) · Ẋ(t) +Dpϕ(X(t), P (t)) · Ṗ (t)

= [Dxϕ ·DpH +Dpϕ · (−DxH)] (X(t), P (t)) = {ϕ,H}(X(t), P (t)).

The proof is complete. □

2.2.3. Lagrangian and Hamiltonian flows.

Definition 2.16 (Lagrangian and Hamiltonian flows). The Lagrangian flow
ϕLt : Rn × Rn → Rn × Rn for t ∈ R is defined as{

ϕLt (x, v) = (γ(t), γ̇(t)),

(γ(0), γ̇(0)) = (x, v),

where γ satisfies the Euler-Lagrange equations (2.9) in R.
The Hamiltonian flow ϕHt : Rn × Rn → Rn × Rn for t ∈ R is defined as{

ϕLt (x, p) = (X(t), P (t)),

(X(0), P (0)) = (x, p),

where (X,P ) solves the Hamiltonian system (2.11) in R.

By using the local Ck−1 diffeomorphism (x, v) 7→ L(x, v) = (x, p) =
(x,DvL(x, v)), we have an important identity that

(2.13) L ◦ ϕLt ◦ L−1 = ϕHt .

This identity allows us to go back and forth between the Lagrangian flow
and the Hamiltonian flow naturally.

2.3. Minimizers in the class of absolutely continuous curves

The space of continuous and piecewise C1 curves with fixed endpoints is not
compact (under a reasonable topology), and thus, it is more convenient to
consider a bigger admissible class of curves, in which we have compactness.
This is important for us to construct minimizers via a direct method in
calculus of variations later.
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2.3.1. Absolutely continuous curves.

Definition 2.17 (Absolutely continuous curves). Let γ ∈ C([a, b],Rn). We
say that γ is absolutely continuous if for each ε > 0 there exists δ > 0 such
that, if {(ai, bi)}i∈N is a disjoint family of intervals in (a, b), then∑

i∈N
|bi − ai| < δ =⇒

∑
i∈N

|γ(bi)− γ(ai)| < ε.

We have the following theorem on characterization of absolutely contin-
uous curves, which is quite standard.

Theorem 2.18 (Characterization of absolutely continuous curves). Let
γ ∈ C([a, b],Rn). Then, γ is absolutely continuous if and only if all of
the following hold

(i) γ̇ exists a.e. in (a, b);

(ii) γ̇ is Lebesgue integrable on (a, b);

(iii) γ(t)− γ(a) =
∫ t
a γ̇(s) ds for each t ∈ [a, b].

Definition 2.19 (Spaces of absolutely continuous curves). Let a < b be two
given real numbers. Denote by

AC([a, b],Rn) = {γ ∈ C([a, b],Rn) : γ is absolutely continuous} .

The space AC([a, b],Rn) of absolutely continuous curves enjoy the fol-
lowing compactness (tightness) property.

Theorem 2.20. Let {γk}k∈N ⊂ AC([a, b],Rn). Suppose that {γ̇k}k∈N is
uniformly integrable on [a, b], that is for each ε > 0, there is δ > 0 such that
if E ⊂ [a, b] is a Borel measurable set with measure |E| < δ, then

(2.14) sup
k∈N

∫
E
|γ̇k(s)| ds < ε.

If there exists t0 ∈ [a, b] such that {γk(t0)} is bounded, then there exist
a subsequence {γkj} of {γk}, and γ ∈ AC([a, b],Rn) such that γkj → γ

uniformly on [a, b] and γ̇kj ⇀ γ̇ weakly in L1([a, b]), that is

lim
j→∞

∫ b

a
γ̇kj (s) · ϕ(s) ds =

∫ b

a
γ̇(s) · ϕ(s) ds

for all ϕ ∈ L∞([a, b],Rn).

Proof. We split the proof into several steps for clarity.

Step 1. We first show that {γk} is bounded and equi-continuous on [a, b].
By the hypothesis, for each ε > 0, there exists δ = δ(ε) > 0 such that, for
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|t1 − t2| < δ(ε), we have

(2.15) |γk(t1)− γk(t2)| ≤
∣∣∣∣∫ t2

t1

γ̇k(s) ds

∣∣∣∣ < ε

for all k ∈ N. Thus, {γk} is equi-continuous on [a, b].

On the other hand, as {γk(t0)} is bounded, there exists C > 0 such that
|γk(t0)| ≤ C for all k ∈ N. By using (2.15) repeatedly, we imply that, for all
k ∈ N and t ∈ [a, b],

|γk(t)| ≤ |γk(t0)|+
(
b− a

δ(1)
+ 1

)
=⇒ ∥γk∥L∞([a,b]) ≤ C.

By the Arzelà-Ascoli theorem, there exists a subsequence {γkj} of {γk} such
that γkj → γ uniformly on [a, b]. By abusing of notations, we write γk → γ
uniformly on [a, b].

Step 2. We now prove that γ is absolutely continuous. Fix ε > 0. Let
{(ai, bi)}i∈N be a sequence of disjoint open intervals with

∑
i∈N(bi − ai) <

δ(ε). Then, the tightness condition gives us that, for all k ∈ N,∑
i∈N

|γk(bi)− γk(ai)| ≤
∑
i∈N

∫ bi

ai

|γ̇k(s)| ds < ε.

Let k → ∞ to deduce that γ ∈ AC([a, b],Rn).

Step 3. Finally, we show γ̇k ⇀ γ̇ weakly in L1([a, b]). To obtain that

(2.16) lim
k→∞

∫ b

a
γ̇k(s)ϕ(s) ds =

∫ b

a
γ̇(s)ϕ(s) ds

for ϕ ∈ L∞([a, b],Rn), we approximate ϕ by simple functions from [a, b] to
Rn. First of all, any open set U in (a, b) can be written as a disjoint union
of countably many open sub-intervals {(ai, bi)}i∈N. For ε > 0, choose m ∈ N
large enough such that E = U\

⋃m
i=1(ai, bi) has |E| < δ(ε). Then,

sup
k∈N

∣∣∣∣∣
∫
U
γ̇k(s) ds−

m∑
i=1

∫ bi

ai

γ̇k(s) ds

∣∣∣∣∣ < ε.(2.17)

Besides,

lim
k→∞

m∑
i=1

∫ bi

ai

γ̇k(s) ds = lim
k→∞

m∑
i=1

(
γk(bi)− γk(ai)

)
=

m∑
i=1

(
γ(bi)− γ(ai)

)
=

m∑
i=1

∫ bi

ai

γ̇(s) ds.
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Using this and taking the limit as k → ∞ in (2.17) to obtain

m∑
i=1

∫ bi

ai

γ̇(s) ds− ε ≤ lim inf
k→∞

∫
U
γ̇k(s) ds

≤ lim sup
k→∞

∫
U
γ̇k(s) ds ≤

m∑
i=1

∫ bi

ai

γ̇(s) ds+ ε.

Taking ε→ 0 (and hence m→ ∞), we deduce

lim
k→∞

∫
U
γ̇k(s) ds =

∫
U
γ̇(s) ds.(2.18)

By approximations, (2.18) holds for all Borel measurable sets A ⊂ [a, b].
and again by further approximations, (2.16) follows. □

2.3.2. Existence of absolutely continuous minimizers. We define a
new admissible class as, for fixed y, z ∈ Rn,

Aac = {γ ∈ AC([a, b],Rn) : γ(a) = y, γ(b) = z} .

The general framework to obtain existence of minimizers by the direct method
in calculus of variations goes like the following.

(1) We first show that I is bounded from below, that is, there exists a
constant C > 0 such that

I[γ] ≥ −C for all γ ∈ Aac.

This is usually obtained by the superlinearity of L.

(2) We then take a minimizing sequence {γk} ⊂ Aac for I, that is,

lim
k→∞

I[γk] = inf
Aac

I[·],

We use the compactness result (Theorem 2.20) to imply that, upon
passing to a subsequence if necessary, γk → γ uniformly on [a, b]
and γ̇k ⇀ γ̇ weakly in L1([a, b],Rn).

(3) Finally, we show that I[·] is weakly lower semicontinuous, and in
particular,

I[γ] ≤ lim inf
k→∞

I[γk],

which yields that I[γ] = minAac I[·].

Here is the main result in this section.

Theorem 2.21. Assume (2.1). Then, there exists γ ∈ Aac such that

I[γ] = min
Aac

I[·].
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Proof. We first show that I is bounded from below. From the superlinearity
of L in v, for each θ > 0 there exist Cθ > 0 such that

(2.19) L(x, v) ≥ θ|v| − Cθ for all (x, v) ∈ Rn × Rn.

In particular, for θ = 1, we have

I[γ] =

∫ b

a
L(γ(t), γ̇(t)) dt ≥ −(b− a)C1 for all γ ∈ Aac.

Thus, infAac I[·] is finite, and there exists a sequence {γk} ⊂ Aac such that

lim
k→∞

I[γk] = inf
Aac

I[·],

We may assume also that I[γk] ≤ C for all k ∈ N for some C > 0.

We next show that {γk} satisfies the tightness condition (2.14). Fix
ε > 0. Let E ⊂ [a, b] be a Borel measurable set with measure |E| < δ with
δ > 0 to be chosen. Then,∫

E
L(γk(s), γ̇k(s)) ds = I[γk]−

∫
[a,b]\E

L(γk(s), γ̇k(s)) ds

≤ C + |[a, b] \ E|C1 ≤ C + (b− a)C1 ≤ C.

We use (2.19) in the above inequality to yield∫
E
|γ̇k(s)|ds ≤

C

θ
+
Cθ|E|
θ

≤ C

θ
+
Cθδ

θ
for all k ∈ N.

Fix θ > 1 sufficiently large so that C/θ < ε/2. Then, choose δ > 0 suffi-
ciently small so that Cθδ/θ < ε/2 to imply (2.14).

We apply Theorem 2.20 to get the existence of γ ∈ Aac such that, up to
passing to a subsequence if needed, γk → γ uniformly on [a, b], and γ̇k ⇀ γ̇
weakly in L1([a, b],Rn). We also have that, for some C > 0 and all k ∈ N,

∥γk∥L∞([a,b]) + ∥γ∥L∞([a,b]) ≤ C.

We now show that

(2.20) I[γ] ≤ lim inf
k→∞

I[γk].

To do this, we need the following lemma, whose proof is given later.

Lemma 2.22. Fix C,K > 0 and ε > 0. There exists δ > 0 such that, if
v ∈ B(0,K), and x, y ∈ B(0, C) with |x− y| < δ, then

L(y, w) ≥ L(x, v) +DvL(x, v) · (w − v)− ε for all w ∈ Rn.

We use the above lemma to prove (2.20). For each λ > 0, denote by

Uλ = {t ∈ [a, b] : |γ̇(t)| ≤ λ}.
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As λ→ ∞, Uλ → [a, b] up to a set of zero Lebesgue measure. In Uλ, for each
ε > 0, there exists δ > 0 so that, for |v| ≤ λ, x, y ∈ B(0, C) with |x− y| < δ,

L(y, w) ≥ L(x, v) +DvL(x, v) · (w − v)− ε for all w ∈ Rn.

Pick k ∈ N large enough to have ∥γk − γ∥L∞([a,b]) < δ. Then, for s ∈ Uλ,

L(γk(s), γ̇k(s)) ≥ L(γ(s), γ̇(s)) +DvL(γ(s), γ̇(s)) · (γ̇k − γ̇)(s)− ε.

We compute that, for k ≫ 1,

I[γk] =

∫
Uλ

L(γk(s), γ̇k(s)) ds+

∫
[a,b]\Uλ

L(γk(s), γ̇k(s)) ds

≥
∫
Uλ

L(γ(s), γ̇(s)) ds+

∫ b

a
1Uλ

(s)DvL(γ(s), γ̇(s)) · (γ̇k − γ̇)(s) ds

− ε|Uλ| − C1 |[a, b] \ Uλ| .

Let k → ∞, λ → ∞, and ε → 0 in this order to get (2.20). We conclude
that

I[γ] = min
Aac

I[·].

□

Let us now prove Lemma 2.22.

Proof of Lemma 2.22. By the assumptions, there exists C > 0 such that

∥L∥L∞(B(0,C)×B(0,K)) + ∥DvL∥L∞(B(0,C)×B(0,K)) ≤ C.

Thus, for |x| ≤ C and |v| ≤ K,

L(x, v) +DvL(x, v) · (w − v)− ε ≤ C + C|w − v| ≤ C(1 + |w|).

As L(y, w) is superlinear in w, there exists C1 > 0 such that, for |w| ≥ C1,

L(y, w) ≥ C(2 + |w|) ≥ L(x, v) +DvL(x, v) · (w − v)− ε.

Hence, the needed inequality holds automatically if |w| ≥ C1. We then
only need to consider the case |w| ≤ C1. As L is uniformly continuous
on B(0, C) × B(0, C1), there exists δ > 0 such that, for |w| ≤ C1 and
x, y ∈ B(0, C) with |x− y| < δ,

|L(y, w)− L(x,w)| ≤ ε.

Thus, for |w| ≤ C1 and x, y ∈ B(0, C) with |x− y| < δ,

L(y, w) ≥ L(x,w)− ε ≥ L(x,w) +DvL(x, v) · (w − v)− ε.

The proof is complete.

□
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2.3.3. Regularity of absolutely continuous minimizers. It turns out
that absolutely continuous minimizers are also Ck.

Theorem 2.23. Assume (2.1). Let γ ∈ Aac be a minimizer of the action
for L in the admissible class Aac. Then, γ ∈ Ck.

The proof of this theorem is rather complicated and involved. An im-
portant ingredient in the proof that we use is the method of characteristics
to give local existence of solutions to Hamilton–Jacobi equations. We need
the following important lemma.

Lemma 2.24. Let π : Rn×Rn → Rn be the projection map with π(x, v) = v
for all (x, v) ∈ Rn × Rn. Let ϕLt be the Lagrangian flow. Fix C > 0. Then,
there exists δ1 > 0 such that

(2.21) π ◦ ϕLs ({x} ×B(0, 2C)) ⊃ B(x,C|s|) for all |s| ≤ δ1.

Proof. For (x, v), recall that ϕLt (x, v) is the Lagrangian flow at time t. We
write

ϕLt (x, v) =

(
γ(t, x, v),

∂γ

∂t
(t, x, v)

)
= (γ(t), γ̇(t)).

Of course, (γ(0, x, v), ∂γ∂t (0, x, v)) = (x, v). Let

Γ(t, x, v) =
γ(t, x, v)− γ(0, x, v)

t
=

∫ 1

0

∂γ

∂t
(st, x, v) ds.

Then,

∂Γ

∂t
(t, x, v) =

∫ 1

0

∂2γ

∂t2
(st, x, v)s ds,

∂Γ

∂v
(t, x, v) =

∫ 1

0

∂2γ

∂v∂t
(st, x, v) ds.

Let Γ̃ : R×B(0, 2C) → R× Rn be such that

Γ̃(t, v) = (t,Γ(t, x, v)).

We see that

D(t,v)Γ̃(0, v) =

(
1 0

∂Γ
∂t (0, x, v) In

)
.

As detD(t,v)Γ̃(0, v) = 1, we use the inverse mapping theorem to deduce that,
for each v ∈ B(0, 3C/2), there exist δv > 0, rv, lv ∈ (0, C/2), and an open
set Ov such that

Γ̃ : (−δv, δv)×B(v, rv) → Ov

is a C1 diffeomorphism, and (−δv, δv)×B(v, lv) ⊂ Ov.
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As {B(v, lv)}v∈B(0,3C/2) is an open cover ofB(0, C), we can find v1, . . . , vk ∈
B(0, 3C/2) such that

B(0, C) ⊂
k⋃

i=1

B(vi, lvi).

Let δ1 = min1≤i≤k δvi . Then,

Γ̃

(
(−δ1, δ1)×

k⋃
i=1

B(vi, rvi)

)
⊃ (−δ1, δ1)×B(0, C),

which implies (2.21).

□

Proof of Theorem 2.23. We divide the proof into several steps.

Step 1. As L is superlinear, we have L(x, v) ≥ |v| − C1 for all (x, v) ∈
Rn × Rn (see (2.19)). In particular,∫ b

a
|γ̇(s)| ds ≤

∫ b

a
L(γ(s), γ̇(s)) ds+ C1(b− a) ≤ C.

We use the above and the fact that γ̇ exists almost everywhere in (a, b) to
yield the existence of t0 ∈ (a, b) such that γ̇(t0) exists and |γ̇(t0)| ≤ C/2
for some C > 0. By using the definition of differentiability of γ at t0, there
exists δ > 0 sufficiently small such that

(2.22) |γ(t)− γ(t0)| ≤ C|t− t0| for t ∈ (t0 − δ, t0 + δ).

Without loss of generality, we assume t0 = 0.

Step 2. Write γ(0) = x0. By (2.21), there exists δ1 > 0 such that

(2.23) π ◦ ϕLs ({x0} ×B(0, 2C)) ⊃ B(x0, C|s|) for all |s| ≤ δ1.

We can choose δ1 < δ.

Step 3. For each v ∈ B(0, 2C), let p = DvL(x0, v). Choose ψv ∈ C2(Rn)
such that ∥ψv∥C2(Rn) ≤ 4(C+1), Dψv(x0) = p, and supp (ψv) ⊂ B(0, R) for
some R > 0 sufficiently large independent of v.

By the method of characteristics and finite speed of propagations, we
have a local wellposedness for the following Hamilton–Jacobi equation

(2.24)

{
uvt +H(x,Duv) = 0 in Rn × (−δ2, δ2),
uv(x, 0) = ψv(x) on Rn,

where δ2 ∈ (0, δ1) is a small positive number independent of v, and

uv ∈ C2(B(0, 2R)× (−δ2, δ2)).
It is important to note that we only need to have local solvability of the
solution uv via the method of characteristics.
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Let (X(t), P (t)) be the corresponding Hamiltonian system with

(X(0), P (0)) = (x0, Dψv(x0)) = (x0, p).

Step 4. In light of (2.22) and (2.23), there exists v ∈ B(0, 2C) such that

γ(δ2) = π ◦ ϕLδ2(x0, v).

Pick any η ∈ AC([0, δ2],Rn) with η(0) = γ(0) = x0 and η(δ2) = γ(δ2).
Then,

uv(η(δ2), δ2)− uv(x0, 0)

=

∫ δ2

0
[Duv(η(s), s) · η̇(s) + uvt (η(s), s)] ds

≤
∫ δ2

0
[H(η(s), Duv(η(s), s)) + L(η(s), η̇(s)) + uvt (η(s), s)] ds

≤
∫ δ2

0
L(η(s), η̇(s)) ds.

Thus,

(2.25) uv(η(δ2), δ2)− uv(x0, 0) ≤
∫ δ2

0
L(η(s), η̇(s)) ds.

Step 5. On the other hand, write

α(s) = π ◦ ϕLs (x0, v) for s ∈ [0, δ2].

Then, for s ∈ [0, δ2],

(2.26) α̇(s) = Ẋ(s) = DpH(α(s), Duv(α(s), s)).

From (2.25) and (2.26), we see that the inequality in (2.25) becomes an
equality if and only if η = α. Therefore, α is the unique minimizer of the
action of L on [0, δ2], which means that γ = α on [0, δ2].

Thus, γ is Ck in (0, δ2). It is then easily seen that γ ∈ Ck and γ solves
the Euler-Lagrange equations{

d
dt (DvL(γ(t), γ̇(t))) = DxL(γ(t), γ̇(t)) for t ∈ [a, b],

γ(0) = x, γ̇(0) = v.

□
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2.4. References

(1) The content in this chapter is classical. We refer the readers to
Cannarsa and Sinestrari [CS04], and Fathi [Fat] for similar mate-
rials.

(2) For the method of characteristics for Hamilton–Jacobi equations,
see Appendix C. See also Evans [Eva10, Chapter 3].





Chapter 3

Hamilton–Jacobi
equations on a torus

In this chapter, we always consider a given Hamiltonian H : Rn × Rn → R
that satisfies

(3.1)


H ∈ C(Rn × Rn),

y 7→ H(y, p) is Zn-periodic,

lim|p|→∞miny∈Rn H(y, p) = +∞.

Here, y 7→ H(y, p) is Zn-periodic means that, for (y, p) ∈ Rn × Rn and
k ∈ Zn,

H(y, p) = H(y + k, p).

Let Tn = Rn/Zn be the usual flat n-dimensional torus. Then, we can think
of H ∈ C(Tn×Rn). The third condition in (3.1) is often called the coercivity
condition.

3.1. Cell problems

For each fixed p ∈ Rn, the cell problem of interests is

(3.2) H(y, p+Dv(y)) = c in Tn.

Here, we search for a pair of unknowns (v, c) ∈ C(Tn) × R, where v solves
(3.2) in the viscosity sense. The equation (3.2) is also called ergodic problem
or corrector problem in the literature, and it plays the essential role in many
different fields. In fact, it is the main object of this book as we will see later.

The main theorem of this section is the following.

31
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Theorem 3.1. Assume (3.1). Fix p ∈ Rn. Then, there exists a unique
constant c ∈ R such that the cell problem (3.2) has a viscosity solution
v ∈ C(Tn).

Proof. For each λ > 0, consider the following approximated equation

(3.3) λvλ +H(y, p+Dvλ) = 0 in Rn.

Set C0 = maxy∈Tn |H(y, p)|. It is clear that −C0/λ is a subsolution to (3.3),
and C0/λ is a supersolution to (3.3). Then, by the wellposedness of viscosity
solutions to static Hamilton–Jacobi equations (see [Tra21, Chapter 1]), (3.3)
has a unique solution vλ ∈ C(Rn), and

(3.4) −C0

λ
≤ vλ ≤ C0

λ
.

By the Zn-periodicity of H in y, we see that vλ(· + k) is also a solution
to (3.3) for each k ∈ Zn. Then, the uniqueness of solutions to (3.3) yields
that vλ = vλ(· + k) for each k ∈ Zn. Thus, vλ is Zn-periodic, or we write
vλ ∈ C(Tn). By the bound (3.4) and the coercivity of H,

(3.5) H(y, p+Dvλ) ≤ C0 =⇒ ∥Dvλ∥L∞(Tn) ≤ C.

Combining (3.4) and (3.5), we deduce that there exists C > 0 independent
of λ > 0 such that

(3.6) λ∥vλ∥L∞(Tn) + ∥Dvλ∥L∞(Tn) ≤ C.

Let wλ(y) = vλ(y)− vλ(0) for y ∈ Tn. Then, thanks to (3.6),

∥wλ∥L∞(Tn) + ∥Dwλ∥L∞(Tn) ≤
√
n∥Dvλ∥L∞(Tn) + ∥Dvλ∥L∞(Tn) ≤ C.

By Arzelà-Ascoli’s theorem, there exists a sequence {λj} → 0 such that{
wλj → v uniformly on Tn,

λjv
λj → −c uniformly on Tn,

for some v ∈ Lip (Tn) and c ∈ R. Besides, in light of (3.3), wλj solves

λjw
λj +H(y, p+Dwλj ) = −λjvλj (0) in Tn.

Let j → ∞ and use the stability result for viscosity solutions to deduce

H(y, p+Dv) = c in Tn.

We have thus obtained the existence of a pair (v, c) ∈ C(Tn)×R solving the
above, which is exactly (3.2).

It remains to show that c is unique. Assume otherwise that there exist
two pairs (v1, c1), (v2, c2) ∈ C(Tn) × R solving (3.2) with c1 < c2. We pick
δ > 0 sufficiently small so that, in the viscosity sense,

δv1 +H(y, p+Dv1) ≤
c1 + c2

2
≤ δv2 +H(y, p+Dv2) in Tn.
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By the comparison principle for the above equation, we yield that v1 ≤ v2.
The same logic gives v1 + C ≤ v2 for any constant C > 0, which is absurd.
Hence, we must have that c is unique. □

Definition 3.2 (Effective Hamiltonian). Assume (3.1). For p ∈ Rn, let
c ∈ R be the unique constant such that the cell problem (3.2) has a viscosity
solution v ∈ C(Tn). Denote by H(p) = c.

We say that H is the effective Hamiltonian corresponding to H.

The cell problem (3.2) now can be written as

(3.7) H(y, p+Dv(y)) = H(p) in Tn.

In the literature, we also say that H(p) is the additive eigenvalue of (3.7).
It is rather clear to see that H(p) is defined in a very implicit way, and it
is not easy at all to read off information of H. In fact, understanding fine
properties of the effective Hamiltonian is a central goal in both PDE and
weak KAM theory.

Remark 3.3. AlthoughH(p) is uniquely defined, viscosity solutions to (3.7)
are not unique. Clearly, if v is a solution, then v + C is also a solution for
any C ∈ R. We will see later that there could be many more other solutions,
and we will characterize solutions in terms of uniqueness sets.

Whenever needed, we write v(y) = v(y, p) or v(y) = vp(y) to demon-
strate clearly the dependence of v on p.

The following lemma is quite straightforward.

Lemma 3.4. Assume (3.1). Then,

min
y∈Tn

H(y, p) ≤ H(p) ≤ max
y∈Tn

H(y, p).

In particular, H is coercive.

Proof. We only need to prove the first inequality as the second one follows
in a similar manner. Pick x1 ∈ Tn such that v(x1) = maxTn v. Then, the
constant function ϕ ≡ v(x1) touches v from above at x1, and by the viscosity
subsolution test,

H(x1, p+Dϕ(x1)) = H(x1, p) ≤ H(p) =⇒ min
y∈Tn

H(y, p) ≤ H(p).

□

We next show that H is continuous.

Lemma 3.5. Assume (3.1). Then, H is continuous.
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Proof. Let {pk} be a sequence in Rn convergence to p. There exists C > 0
such that |pk| ≤ C for all k ∈ N. Let vk be a solution to the cell problem
with respect to pk such that vk(0) = 0 after adding a constant if needed. Of
course, vk solves

(3.8) H(y, pk +Dvk(y)) = H(pk) in Tn.

By the coercivity of H, and the points that |pk| ≤ C, vk(0) = 0, we get that

∥vk∥L∞(Tn) + ∥Dvk∥L∞(Tn) ≤ C.

By the Arzelà-Ascoli theorem and by passing to a subsequence if needed,
we may assume that vk → v uniformly on Tn for some v ∈ Lip (Tn), and
H(pk) → c for some c ∈ R. By the usual stability result for viscosity
solutions, we see that v solves

H(y, p+Dv(y)) = c in Tn.

Thus, H(p) = c, and we conclude that H is continuous. □

Qualitatively, we have that H is continuous and coercive. It is however
very hard to study finer properties of H in this very general setting. For
example, it is not clear at all what are the relations between the level sets
of H and H.

3.2. Large time averages

In this section, we show that the effective Hamiltonian can be obtained via
large time averages of solutions to Cauchy problem.

Theorem 3.6. Assume (3.1). Fix p ∈ Rn. Let u be the viscosity solution
to

(3.9)

{
ut +H(y, p+Du) = 0 in Tn × (0,∞),

u(y, 0) = 0 on Tn.

Then,

lim
t→∞

u(y, t)

t
= −H(p).

In fact, ∣∣∣∣u(y, t)t
+H(p)

∣∣∣∣ ≤ C

t
for all (y, t) ∈ Tn × (0,∞),

where C = C(p) > 0 is a constant.

Proof. Let v be a solution to the cell problem (3.7) such that v(0) = 0.
Then, by coercivity of H,

∥v∥L∞(Tn) ≤
√
n∥Dv∥L∞(Tn) ≤ C,
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for some C = C(p) > 0. Denote by

φ±(y, t) = v(y)± ∥v∥L∞(Tn) −H(p)t for all (y, t) ∈ Tn × [0,∞).

It is clear that φ−(y, 0) ≤ 0 ≤ φ+(y, 0) for y ∈ Tn, and φ± are both solutions
to

ut +H(y, p+Du) = 0 in Tn × (0,∞).

Thus, φ− and φ+ are a viscosity subsolution and a viscosity supersolution
to (3.9), respectively. By the comparison principle for (3.9),

φ− ≤ u ≤ φ+ =⇒
∣∣∣∣u(y, t)t

+H(p)

∣∣∣∣ ≤ 2∥v∥L∞(Tn)

t
≤ C

t
.

□

Remark 3.7. In various situations, we actually have explicitly the depen-
dence of C = C(p) on p in the above theorem once we know the growth
condition of H. For example, assume that there exists C0 > 0 such that

1

2
|p|2 − C0 ≤ H(y, p) ≤ 1

2
|p|2 + C0 for all (y, p) ∈ Tn × Rn.

Then, by Lemma 3.4, H also enjoys the above bounds. Let v be a solution
to the cell problem (3.7) such that v(0) = 0. We have

1

2
|p+Dv|2 − C0 ≤

1

2
|p|2 + C0 =⇒ |p+Dv| ≤ |p|+ 4C0.

Thus,

|Dv| ≤ 2|p|+ 4C0 =⇒ C(p) = 4
√
n(|p|+ 2C0).

3.3. Effective Hamiltonians in the convex setting

We now impose more conditions on H. Throughout this section, we assume
that

(3.10) p 7→ H(y, p) is convex for each y ∈ Tn.

Theorem 3.8. Assume (3.1) and (3.12). Then, for each p ∈ Rn,

H(p) = inf
ϕ∈C1(Tn)

max
y∈Tn

H(y, p+Dϕ(y)).

Proof. Fix p ∈ Rn. For each ϕ ∈ C1(Tn), denote by

cϕ = max
y∈Tn

H(y, p+Dϕ(y)).

By repeating the proof of the uniqueness of H(p) (the last part of the proof
of Theorem 3.1), we deduce that cϕ ≥ H(p). Hence,

inf
ϕ∈C1(Tn)

max
y∈Tn

H(y, p+Dϕ(y)) = inf
ϕ∈C1(Tn)

cϕ ≥ H(p).
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We now prove the reverse inequality. Let v be a solution to the cell problem
(3.7). Then, v ∈ Lip (Tn), and v satisfies

(3.11) H(y, p+Dv(y)) ≤ H(p) for a.e. y ∈ Tn.

We now use convolutions with standard mollifiers to smooth v up. Take η
to be a standard mollifier, that is,

η ∈ C∞
c (Rn, [0,∞)), supp(η) ⊂ B(0, 1),

∫
Rn

η(x) dx = 1.

For ε > 0, denote by ηε(x) = ε−nη
(
x
ε

)
for all x ∈ Rn. For x ∈ Rn, denote

by

vε(x) = (ηε ⋆ v) (x) =

∫
Rn

ηε(x− y)v(y) dy =

∫
B(x,ε)

ηε(x− y)v(y) dy.

Then vε ∈ C∞(Rn), vε is Zn-periodic, and vε → v locally uniformly as
ε→ 0. Let

ω(ε) = max
{
|H(x, q)−H(y, q)| : x ∈ Tn, y ∈ B(x, ε), H(x, q) ≤ H(p)

}
.

Of course, limε→0 ω(ε) = 0. We use (3.11), the above, and Jensen’s inequal-
ity to yield that

H(p) ≥
∫
B(x,ε)

ηε(x− y)H(y, p+Dv(y)) dy

≥
∫
B(x,ε)

ηε(x− y)H(x, p+Dv(y)) dy − ω(ε)

≥ H

(
x, p+

∫
B(x,ε)

ηε(x− y)Dv(y) dy

)
− ω(ε)

≥ H(x,Dvε(x))− ω(ε).

Thus, vε satisfies

H(x,Dvε(x)) ≤ H(p) + ω(ε) for all x ∈ Tn.

Let ε→ 0 to conclude. □

By using the inf-max formula, we have rather immediately the following
result.

Theorem 3.9. Assume (3.1) and (3.12). Then, H is convex.
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Proof. Fix p1, p2 ∈ Rn. For each ϕ ∈ C1(Tn),

max
y∈Tn

H

(
y,
p1 + p2

2
+Dϕ(y)

)
≤ 1

2

(
max
y∈Tn

H(y, p1 +Dϕ(y)) + max
y∈Tn

H(y, p2 +Dϕ(y))

)
≤ 1

2

(
H(p1) +H(p2)

)
.

Take infimum over ϕ ∈ C1(Tn) to conclude. □

3.4. Backward characteristics in the convex setting

In this section, we assume

(3.12)


H ∈ Ck(Tn × Rn) for some k ≥ 2,

D2
ppH(y, p) > 0 for all (y, p) ∈ Tn × Rn,

lim|p|→∞miny∈Tn
H(y,p)

|p| = +∞.

Let v be a solution to the cell problem (3.7), that is, v solves

H(y, p+Dv(y)) = H(p) in Tn.

Then, u(y, t) = p · y + v(y)−H(p)t is the unique viscosity solution to

(3.13)

{
ut +H(y,Du) = 0 in Rn × (0,∞),

u(y, 0) = p · y + v(y) on Rn.

We now use the optimal control formula for u to get the backward charac-
teristics for v.

Theorem 3.10. Assume (3.12). For p ∈ Rn, let v be a solution to the cell
problem (3.7). Then, for each x ∈ Rn, there exists a Ck curve ξ : (−∞, 0] →
Rn such that ξ(0) = x, and for all t2 ≤ t1 ≤ 0,

p · ξ(t1) + v(ξ(t1))− p · ξ(t2)− v(ξ(t2)) =

∫ t1

t2

(
L(ξ(s), ξ̇(s)) +H(p)

)
ds.

Moreover,

∥ξ̇∥L∞((−∞,0]) ≤ C

for some C = C(|p|) > 0.

Proof. As noted above, u(y, t) = p · y+ v(y)−H(p)t is the unique viscosity
solution to (3.13). We construct ξ on [−m,−m+1] iteratively for m ∈ N as
follows.
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We are given that ξ(0) = x. For m ∈ N, by the optimal control formula,

u(ξ(−m+ 1), 1) = inf
{∫ 1

0
L(γ(s), γ̇(s)) ds+ u(γ(0), 0) :

γ ∈ AC([0, 1],Rn), γ(1) = ξ(−m+ 1)
}
.

Write

I[γ] =

∫ 1

0
L(γ(s), γ̇(s)) ds.

Pick θ > |p|+ 1. As L is superlinear in v, there exists Cθ > 0 such that

L(y, v) ≥ θ|v| − Cθ for all (y, v) ∈ Rn × Rn.

Hence, for each γ ∈ AC([0, 1],Rn) with γ(1) = ξ(−m+ 1) fixed,

I[γ] + u(γ(0), 0) =

∫ 1

0
L(γ(s), γ̇(s)) ds+ u(γ(0), 0)

≥
∫ 1

0
(θ|γ̇(s)| − Cθ) ds+ p · γ(0) + v(γ(0))

≥ θ|γ(1)− γ(0)|+ p · γ(0) + v(γ(0))− Cθ

≥ (θ − |p|)|γ(0)| − C ≥ |γ(0)| − C.

Thus, we can find R > 0 sufficiently large such that

inf {I[γ] + u(γ(0), 0) : γ ∈ AC([0, 1]), γ(1) = ξ(−m+ 1)}
= inf {I[γ] + u(γ(0), 0) : γ ∈ AC([0, 1]), γ(1) = ξ(−m+ 1), |γ(0)| ≤ R} .

For each y ∈ B(0, R), let

Q(y) = inf {I[γ] : γ ∈ AC([0, 1]), γ(1) = ξ(−m+ 1), γ(0) = y} .

By Theorems 2.21 and 2.23, there exists γy ∈ Ck([0, 1]) with γy(1) = ξ(−m+
1), γy(0) = y such that

Q(y) = I[γy].

Moreover, the proof of Theorem 2.21 also gives us that Q is lower semi-
continuous. Therefore, there exist z ∈ B(0, R) and η ∈ Ck([0, 1]) with
η(1) = ξ(−m+ 1), η(0) = z such that

u(ξ(−m+ 1), 1)

= inf {I[γ] + u(γ(0), 0) : γ ∈ AC([0, 1]), γ(1) = ξ(−m+ 1), |γ(0)| ≤ R}
= inf {Q(y) + p · y + v(y) : |y| ≤ R}
= Q(z) + p · z + v(z) = I[η] + p · z + v(z).

Denote

ξ(−k + s) = η(s) for s ∈ [0, 1].
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By this iterative way, we obtained that ξ is defined on (−∞, 0] with ξ(0) = x.
Furthermore, by the Dynamic Programming Principle, for t ∈ (0, 1),

u(ξ(−m+ 1), 1) = inf
{∫ 1

t
L(γ(s), γ̇(s)) ds+ u(γ(t), t) :

γ ∈ AC([t, 1],Rn), γ(1) = ξ(−m+ 1)
}

=

∫ −m+1

−m+t
L(ξ(s), ξ̇(s)) ds+ u(ξ(−m+ t), t).

Thus, by using the definition of u that u(y, t) = p · y + v(y) − H(p)t, we
imply that, for all t2 ≤ t1 ≤ 0,

p · ξ(t1) + v(ξ(t1))− p · ξ(t2)− v(ξ(t2)) =

∫ t1

t2

(
L(ξ(s), ξ̇(s)) +H(p)

)
ds,

and ξ ∈ Ck((−∞, 0]).

Finally, by the fact that u is differentiable along backward characteris-
tics, we obtain that v is differentiable on ξ(s) for s ∈ (−∞, 0), and

ξ̇(s) = DpH(ξ(s), p+Dv(ξ(s))).

Therefore,

∥ξ̇∥L∞((−∞,0]) ≤ C

for some C = C(|p|) > 0. The proof is complete. □

Remark 3.11. By approximations, we see that backward characteristics
exist under a weaker condition than (3.12). Indeed, we only need to assume

(3.14)


H ∈ C(Tn × Rn),

p 7→ H(y, p) is convex for each y ∈ Tn,

lim|p|→∞miny∈Tn
H(y,p)

|p| = +∞

to have existence of Lipschitz backward characteristics. Of course, under
(3.14), we would not have the Ck regularity of these curves.

Definition 3.12 (Backward characteristics). Assume either (3.12) or (3.14).
For each x ∈ Rn, let ξ : (−∞, 0] → Rn be a Lipschitz curve such that
ξ(0) = x, and for all t2 ≤ t1 ≤ 0,

p · ξ(t1) + v(ξ(t1))− p · ξ(t2)− v(ξ(t2)) =

∫ t1

t2

(
L(ξ(s), ξ̇(s)) +H(p)

)
ds.

We say that ξ is a backward characteristic of v emanating from x.

Let us also give the definition of global characteristics here.
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Definition 3.13 (Global characteristics). Assume either (3.12) or (3.14).
If ξ : R → Rn is a Lipschitz curve satisfying that, for all t2 ≤ t1,

p · ξ(t1) + v(ξ(t1))− p · ξ(t2)− v(ξ(t2)) =

∫ t1

t2

(
L(ξ(s), ξ̇(s)) +H(p)

)
ds,

then we say that ξ is a global characteristic of v.

On the other hand, for arbitrary Lipschitz curves, we always have the
following one-sided control.

Lemma 3.14. Assume (3.12). For p ∈ Rn, let v be a Lipschitz viscosity
subsolution to the cell problem (3.7). Let γ : (−∞, 0] → Rn be an arbitrary
Lipschitz curve. Then, for every T > 0,∫ 0

−T

(
L(γ(t), γ̇(t)) +H(p)

)
dt ≥ p · γ(0) + v(γ(0))− p · γ(−T )− v(γ(−T )).

If everything is smooth, then this result is not hard to prove. Here is a
quick proof:∫ 0

−T

(
L(γ(t), γ̇(t)) +H(p)

)
dt

=

∫ 0

−T
(L(γ(t), γ̇(t)) +H(γ(t), p+Dv(γ(t))) dt

≥
∫ 0

−T
γ̇(t) · (p+Dv(γ(t))) dt = p · γ(0) + v(γ(0))− p · γ(−T )− v(γ(−T )).

As v is only Lipschitz in general, the above computation is only heuristic.
To overcome this difficulty, we perform a convolution trick to smooth v up.

Proof of Lemma 3.14. Take η to be the standard mollifier, that is,

η ∈ C∞
c (Rn, [0,∞)), supp(η) ⊂ B(0, 1),

∫
Rn

η(x) dx = 1.

For ε > 0, denote by ηε(x) = ε−nη
(
x
ε

)
for all x ∈ Rn. Set, for x ∈ Rn,

vε(x) = (ηε ⋆ v) (x) =

∫
Rn

ηε(x− y)v(y) dy =

∫
B(x,ε)

ηε(x− y)v(y) dy.

Then vε ∈ C∞(Tn), and vε → v uniformly in Tn as ε → 0. As H ∈
C2(Tn×Rn), by repeating the proof of Theorem 3.8, we infer that vε satisfies

H(y, p+Dvε(y)) ≤ H(p) + Cε in Tn.
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We now perform a similar computation as the heuristic one above∫ 0

−T

(
L(γ(t), γ̇(t)) +H(p)

)
dt

≥
∫ 0

−T
(L(γ(t), γ̇(t)) +H(γ(t), p+Dvε(γ(t)))− Cε) dt

≥ − CTε+

∫ 0

−T
γ̇(t) · (p+Dvε(γ(t))) dt

= − CTε+ p · (γ(0)− γ(−T )) + vε(γ(0))− vε(γ(−T )).

Let ε→ 0 in the above to conclude. □

3.5. Rotation vectors

Theorem 3.15. Assume (3.12). Fix x, p ∈ Rn. Let v ∈ Lip (Tn) be a
solution to (3.7). Let ξ be a backward characteristic of v emanating from x.
Then, there exist a subsequence {tk} → −∞ and a vector q ∈ D−H(p) such
that

lim
k→∞

ξ(tk)

tk
= q ∈ D−H(p) = ∂H(p).

We say that q is a rotation vector corresponding to the backward character-
istic ξ.

Proof. For each p ∈ Rn, we write vp to denote a solution to (3.7).

As ξ is a backward characteristic of v = vp emanating from x, for every
t < 0,

p · (ξ(0)− ξ(t)) + vp(ξ(0))− vp(ξ(t)) =

∫ 0

t

(
L(ξ(s), ξ̇(s)) +H(p)

)
ds.

On the other hand, for any p̃ ∈ Rn, let vp̃ ∈ Lip (Tn) be a solution to the
corresponding cell problem (3.7) with p = p̃ such that minTn vp̃ = 0. We use
Lemma 3.14 to get one-sided control

p̃ · (ξ(0)− ξ(t)) + vp̃(ξ(0))− vp̃(ξ(t)) ≤
∫ 0

t

(
L(ξ(s), ξ̇(s)) +H(p̃)

)
ds.

Thus, for p̃ ∈ B(p, 1),

(3.15) H(p̃)−H(p) ≥ (p̃− p) · ξ(t)− ξ(0)

t
− C

|t|
.

Besides, the fact that ∥ξ̇∥L∞((−∞,0]) ≤ C = C(|p|) implies∣∣∣∣ξ(t)− ξ(0)

t

∣∣∣∣ ≤ C for all t < 0.
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Therefore, there exists a sequence {tk} → −∞ such that ξ(tk)
tk

→ q ∈ Rn as

k → ∞ with |q| ≤ C. Plug this into (3.15) to yield

H(p̃)−H(p) ≥ (p̃− p) · q for all p̃ ∈ B(p, 1),

which gives that q ∈ ∂H(p).

□

It is unclear whether for different subsequences of {tk}, we have different
rotation vectors in the limit in case that H is not differentiable at p.

3.6. The weak KAM theorem via PDE viewpoint

The following result is often known as the weak KAM theorem in the liter-
ature. It is the combination of Theorems 3.1 and 3.10.

Theorem 3.16. Assume (3.12). Fix p ∈ Rn. Then, there exists a Lipschitz
viscosity solution v ∈ Lip (Tn) of the cell problem (3.7). Moreover, for each
x ∈ Rn, there exists a Ck curve ξ : (−∞, 0] → Rn such that ξ(0) = x,

∥ξ̇∥L∞((−∞,0]) ≤ C for some C = C(|p|) > 0, and for all t2 ≤ t1 ≤ 0,

p · ξ(t1) + v(ξ(t1))− p · ξ(t2)− v(ξ(t2)) =

∫ t1

t2

(
L(ξ(s), ξ̇(s)) +H(p)

)
ds.

3.7. References

(1) The cell problems were first studied by Lions, Papanicolaou, Varad-
han [LPV].

(2) For the weak KAM theorem via dynamical viewpoint, see Fathi
[Fat].

(3) For further analysis of viscosity of Hamilton–Jacobi equations, see
Evans [Eva10, Chapter 10], Tran [Tra21].



Chapter 4

The weak KAM
theorem via dynamical
system viewpoint

In this chapter, we always consider a given Hamiltonian H : Tn × Rn → R
that satisfies

(4.1)


H ∈ Ck(Tn × Rn) for some k ≥ 2,

D2
ppH(y, p) > 0 for all (y, p) ∈ Tn × Rn,

lim|p|→∞miny∈Tn
H(y,p)

|p| = +∞.

Let L be the corresponding Lagrangian (the Legendre transform of H).
Then, L satisfies

(4.2)


L ∈ Ck(Tn × Rn),

D2
vvL(y, v) > 0 for all (y, v) ∈ Tn × Rn,

lim|v|→∞miny∈Tn
L(y,v)
|v| = +∞.

The main object in this chapter is the cell problem at p = 0, that is,

(4.3) H(y,Dv(y)) = H(0) = c in Tn.

Here, c = H(0) ∈ R is the unique constant so that (4.3) has a viscosity
solution as discussed in the previous chapter. Sometimes, c = H(0) is also
called the ergodic constant in the literature. Nevertheless, let us ignore this
point for now and deal with (4.3) directly first. We will explain further the
significance of this PDE as we proceed.

43
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4.1. Cell problems and Hamiltonian dynamics

Theorem 4.1. Assume (4.1). Assume that (4.3) admits a solution v ∈
C2(Tn). For each x0 ∈ Tn, let p0 = Dv(x0), and we look at the usual
Hamiltonian system

(4.4)


Ẋ(t) = DpH(X(t), P (t)),

Ṗ (t) = −DxH(X(t), P (t)),

X(0) = x0, P (0) = p0.

Then,

P (t) = Dv(X(t)) for all t ∈ R.

Proof. Here, all vectors are written as column vectors. Consider (X̃, P̃ )
such that

(4.5)

{
˙̃X(t) = DpH(X̃(t), Dv(X̃(t))),

X(0) = x0,

and P̃ (t) = Dv(X̃(t)) for all t ∈ R. We aim at showing that

(X̃, P̃ ) = (X,P ).

To do so, we first calculate that

(4.6) ˙̃P (t) = D2v(X̃(t)) ˙̃X(t) = D2v(X̃(t))DpH(X̃(t), Dv(X̃(t))).

Besides, we have

H(x,Dv(x)) = c in Tn.

Differentiate this with respect to x to deduce that

(4.7) DxH(x,Dv(x)) +D2v(x)DpH(x,Dv(x)) = 0.

Combine (4.6) and (4.7) to get that

˙̃P (t) = −DxH(X̃(t), Dv(X̃(t))) = −DxH(X̃(t), P̃ (t)).

Thus, (X̃, P̃ ) solves (4.4), and hence by the uniqueness of solutions to (4.4),

we conclude that (X̃, P̃ ) = (X,P ). □

By using the above theorem, we immediately arrive at the following
result.

Theorem 4.2. Assume (4.1). Assume that (4.3) admits a solution v ∈
C2(Tn). Then, for (x0, p0) = (x0, Dv(x0)) for some given x0 ∈ Tn, we have

ϕHt (x0, p0) = (X(t), P (t)) = (X(t), Du(X(t))) for all t ∈ R.

In particular, the graph

Γ = {(x,Du(x)) : x ∈ Tn} ⊂ Tn × Rn
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is invariant under the Hamiltonian flow ϕHt . Here, by invariance, we mean

ϕHt (Γ) ⊂ Γ for all t ∈ R.

Remark 4.3. Some important comments for the above two theorems are
in order.

First, the assumption that v ∈ C2(Tn) is very restrictive in general. We
will see that this cannot hold true in many cases.

Second, one interesting point from the above proof is that if for some
reasons that we know v, then in order to solve the Hamiltonian system with
2n unknowns, we only need to consider (4.5) with n unknowns, which makes
the task simpler.

Finally, for the Hamiltonian system (4.4), we have already shown that
t 7→ H(X(t), P (t)) is constant. Therefore, it is natural to consider (4.3)
with the fixed energy level c = H(0) ∈ R as the Hamiltonian flow keeps the
energy conserved anyway. This is one of the reasons why it is rather natural
to study cell problems.

As noted by the first point in the above remark, it is more natural to
consider solutions to the cell problem (4.3) with lower regularity. We now
focus on the situation where (4.3) has C1 solutions.

Proposition 4.4. Assume (4.1). Let v ∈ C1(Tn) be a given function. Then,
the following claims are equivalent.

(i) H(x,Dv) ≤ c in Tn for a given constant c ∈ R.
(ii) For every curve γ ∈ AC([a, b],Tn) for a < b, we have

v(γ(b))− v(γ(a)) ≤
∫ b

a
(L(γ(s), γ̇(s)) + c) ds.

We note that a part of this proposition is a weaker version of Lemma
3.14 in the previous chapter.

Proof. We first show “(i) ⇒ (ii)”. By the fundamental theorem of calculus
and Fenchel’s inequality,

v(γ(b))− v(γ(a)) =

∫ b

a
Dv(γ(s)) · γ̇(s) ds

≤
∫ b

a
(H(γ(s), Dv(γ(s)) + L(γ(s), γ̇(s))) ds

≤
∫ b

a
(L(γ(s), γ̇(s)) + c) ds.
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We next prove “(ii) ⇒ (i)”. Fix x ∈ Tn and a direction v ∈ Rn. For
t > 0 small, consider

γ(s) = x+ sv for 0 ≤ s ≤ t.

We have, in light of (ii),

v(x+ tv)− v(x) = v(γ(t))− v(γ(0))

≤
∫ t

0
(L(γ(s), γ̇(s)) + c) ds =

∫ t

0
(L(x+ sv, v) + c) ds.

Divide both sides of this by t and let t→ 0 to imply

Dv(x) · v ≤ L(x, v) + c.

Thus,
H(x,Dv(x)) = sup

v∈Rn
(Dv(x) · v − L(x, v)) ≤ c.

□

In the second part of the above proof, we used a general idea to go
from the action functional and Dynamic Programming Principle to PDE.
We next give a definition of dominated functions in which differentiability
is not required.

Definition 4.5 (Dominated functions). Let u ∈ C(Tn) and c ∈ R. We say
that u is dominated by L + c on Tn, which we denote by u ≺ L + c, if for
each continuous piecewise C1 curve γ : [a, b] → Tn, we have

u(γ(b))− u(γ(a)) ≤
∫ b

a
(L(γ(s), γ̇(s)) + c) ds.

We also define
Dc(Tn) = {u ∈ C(Tn) : u ≺ L+ c} .

Remark 4.6. In the above definition, by usual approximations, continuous
piecewise C1 curves can be replaced by C∞ curves or absolutely continuous
curves.

Our next important goal is to show that in the case that v ∈ C1(Tn) is
a solution to (4.3), then we still have that its graph is invariant under the
Hamiltonian flow. This will be done in the next section.

4.2. Invariance under the Hamiltonian and Lagrangian flows

We recall the following points from Theorem 1.15 and Definition 1.16. The
map

L : Tn × Rn → Tn × Rn

(x, v) 7→ (x, p) = (x,DvL(x, v)).(4.8)
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is a local Ck−1 diffeomorphism thanks to (4.1). The inverse of L is H,

H : Tn × Rn → Tn × Rn

(x, p) 7→ (x, v) = (x,DpH(x, p)),

which is also a local Ck−1 diffeomorphism. In particular, for u ∈ C1(Tn),

(x,Du(x)) = L(x,DpH(x,Du(x))).

We also have that

ϕLt = L−1 ◦ ϕHt ◦ L.

By using the above identities, the following proposition is straightforward.

Proposition 4.7. For u ∈ C1(Tn), denote by

Γ = {(x,Du(x)) : x ∈ Tn}, Γ̃ = {(x,DpH(x,Du(x))) : x ∈ Tn}.

Then, Γ is invariant under ϕHt if and only if Γ̃ is invariant under ϕLt .

Here is the main result of this section.

Theorem 4.8. Assume (4.1). Assume that (4.3) admits a solution u ∈
C1(Tn). Then, the graph

Γ = {(x,Du(x)) : x ∈ Tn} ⊂ Tn × Rn

is invariant under the Hamiltonian flow ϕHt .

To prove this theorem, we need the following preparatory lemma.

Lemma 4.9. Assume (4.1). Assume that (4.3) admits a solution u ∈
C1(Tn). Let γ : [a, b] → Tn be a solution to

γ̇(s) = DpH(γ(s), Du(γ(s))) for s ∈ (a, b).

Then,

u(γ(b))− u(γ(a)) =

∫ b

a
(L(γ(s), γ̇(s)) + c) ds.

In particular, γ is a minimizer of

(4.9) min
η∈AC([a,b])

η(a)=γ(a), η(b)=γ(b)

I[η],

and γ ∈ Ck([a, b]).
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Proof. By the ODE for γ and the properties of the Legendre transform, for
s ∈ (a, b),

L(γ(s), γ̇(s)) + c

= L(γ(s), DpH(γ(s), Du(γ(s))) +H(γ(s), Du(γ(s)))

= DpH(γ(s), Du(γ(s))) ·Du(γ(s))

= γ̇(s) ·Du(γ(s)) = d

ds
(u(γ(s))).

We thus get

u(γ(b))− u(γ(a)) =

∫ b

a
(L(γ(s), γ̇(s)) + c) ds.

Thanks to Proposition 4.4, γ is a minimizer of (4.9). We then use the regu-
larity theory to yield γ satisfies the corresponding Euler-Lagrange equations
and γ ∈ Ck([a, b]). □

Proof of Theorem 4.8. By Proposition 4.7, we only need to show that Γ̃
is invariant under ϕLt . For

(x0, v0) = (x0, DpH(x0, Du(x0))) = (γ(0), γ̇(0)) ∈ Γ̃,

let γ : R → Tn be a solution to

γ̇(s) = DpH(γ(s), Du(γ(s))) for s ∈ R.

We use Lemma 4.9 above to yield γ satisfies the corresponding Euler-Lagrange
equations and γ ∈ Ck(R). Therefore, for t ∈ R,

ϕLt (x0, v0) = (γ(t), γ̇(t)) = (γ(t), DpH(γ(t), Du(γ(t)))) ∈ Γ̃.

The proof is then complete as ϕLt (Γ̃) ⊂ Γ̃. □

Remark 4.10. It is important noting that the existence of γ solving the
ODE

γ̇(s) = DpH(γ(s), Du(γ(s))) for s ∈ R
follows from Peano’s theorem. Since we only have u ∈ C1(Tn), the vector
field x 7→ DpH(x,Du(x)) is only continuous, and thus, no uniqueness of γ
is guaranteed.

The above proofs lead us naturally to the following definition of cali-
brated curves.

Definition 4.11 (Calibrated curves). Let I ⊂ R be an interval and u ∈
C(Tn). We say that a continuous, piecewise C1 curve γ : I → Tn is (u, L, c)-
calibrated if for every t, t′ ∈ I with t < t′, we have

u(γ(t′))− u(γ(t)) =

∫ t′

t
(L(γ(s), γ̇(s)) + c) ds.
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It is clear from the above definition that if γ : I → Tn is (u, L, c)-
calibrated, then γ|I′ is also (u, L, c)-calibrated for any subinterval I ′ ⊂ I.

We have already proved the following result, but it is convenient to
record it here for later usage.

Theorem 4.12. Assume (4.1). Let u ∈ C(Tn) and c ∈ R be such that
u ≺ L+ c. Let I ⊂ R be an interval, and γ : I → Tn be a (u, L, c)-calibrated
curve. Then, γ ∈ Ck(I).

Proof. Without loss of generality, assume I = [a, b]. As γ is (u, L, c)-
calibrated, we have

u(γ(b))− u(γ(a)) =

∫ b

a
(L(γ(s), γ̇(s)) + c) ds.

For every other η ∈ AC([a, b],Tn) with η(a) = γ(a), η(b) = γ(b), by the
definition of u ≺ L+ c,

u(η(b))− u(η(a)) ≤
∫ b

a
(L(η(s), η̇(s)) + c) ds.

Thus, γ is a minimizer of

min
η∈AC([a,b])

η(a)=γ(a), η(b)=γ(b)

I[η],

and hence, γ ∈ Ck(I). □

We have the following characterization of C1 solutions to the cell problem
(4.3).

Proposition 4.13. Assume (4.1). Let u ∈ C1(Tn) and c ∈ R. The follow-
ing claims are equivalent.

(i) u is a solution to H(x,Du) = c in Tn.

(ii) u ≺ L+ c, and for each x ∈ Tn, we can find ε > 0, and a C1 curve
γ : [−ε, ε] → Tn which is (u, L, c)-calibrated with γ(0) = x.

(iii) u ≺ L+ c, and for each x ∈ Tn, we can find ε > 0, and a C1 curve
γ : [0, ε] → Tn which is (u, L, c)-calibrated with γ(0) = x.

(iv) u ≺ L+ c, and for each x ∈ Tn, we can find ε > 0, and a C1 curve
γ : [−ε, 0] → Tn which is (u, L, c)-calibrated with γ(0) = x.

Proof. We first prove “(i) ⇒ (ii)”. We already proved u ≺ L+ c in Propo-
sition 4.4. As Du(x) is continuous, DpH(x,Du(x)) is a continuous vector
field. By Peano’s theorem, we have short time existence for the following
ODE: {

γ̇(t) = DpH(γ(t), Du(γ(t))) t ∈ [−ε, ε],
γ(0) = x
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for a small ε > 0. Then, γ is (u, L, c)-calibrated thanks to Lemma 4.9.

It is obvious that “(ii) ⇒ (iii)” and “(ii) ⇒ (iv)”. To finish off the proof,
it is enough to show that “(iv) ⇒ (i)”. By Proposition 4.4, H(x,Du) ≤ c in
Tn. We only need to show that

(4.10) H(x,Du) ≥ c in Tn.

Fix x ∈ Tn. By the statement of (iv), there exists a C1 curve γ : [−ε, 0] → Tn

which is (u, L, c)-calibrated with γ(0) = x for some ε > 0. That is, for
t ∈ (0, ε),

u(γ(0))− u(γ(−t)) =
∫ 0

−t
(L(γ(s), γ̇(s)) + c) ds.

Divide both sides by t and let t→ 0 to get

Du(x) · γ̇(0) = L(x, γ̇(0)) + c.

Thus,

H(x,Du(x)) ≥ Du(x) · γ̇(0)− L(x, γ̇(0)) ≥ c,

which confirms (4.10). The proof is complete. □

4.3. Weak KAM solutions

4.3.1. Definition of weak KAM solutions. We first give definitions of
weak KAM solutions of negative or positive type.

Definition 4.14 (weak KAM solutions of negative type). Assume (4.1).
We say that u ∈ C(Tn) is a weak KAM solution of negative type if

• u ≺ L+ c for some given c ∈ R;
• for x ∈ Tn, we can find a (u, L, c)-calibrated C1 curve γ : (−∞, 0] →
Tn such that γ(0) = x.

Let S− be the set of all weak KAM solutions of negative type. An element
in S− is typically denoted as u−.

Definition 4.15 (weak KAM solutions of positive type). Assume (4.1). We
say that u ∈ C(Tn) is a weak KAM solution of positive type if

• u ≺ L+ c for some given c ∈ R;
• for x ∈ Tn, we can find a (u, L, c)-calibrated C1 curve γ : [0,∞) →
Tn such that γ(0) = x.

Let S+ be the set of all weak KAM solutions of negative type. An element
in S+ is typically denoted as u+.

Remark 4.16. Some important comments concerning the two definitions
above in comparison with Proposition 4.13 are in order.
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(i) In the two new definitions, we only require that u ∈ C(Tn). We
do not ask for any differentiability of u, and this is in accordance
with the philosophy of viscosity solutions. As a matter of fact, we
will see that they are the same, and they represent different facets
of the cell problem.

(ii) For the negative and positive type weak KAM solutions, we require
the calibrated curves defined on (−∞, 0] and [0,∞), respectively.
This is a bit different from the intervals [−ε, 0] and [0, ε] as in
Proposition 4.13.

4.3.2. Characterization of Dc(Tn). Let us now analyze more aboutDc(Tn)
for given c ∈ R. Recall that

Dc(Tn) = {u ∈ C(Tn) : u ≺ L+ c}.

Lemma 4.17. Assume (4.1). Fix c ∈ R. The following claims hold.

(i) If u ∈ Dc(Tn), then so is u+ C for any C ∈ R.
(ii) Dc(Tn) is a closed convex subset of C(Tn).

(iii) For u ∈ Dc(Tn), we have u ∈ Lip (Tn).

Proof. Item (i) is obvious.

Let us prove (ii). The closedness of Dc(Tn) is straightforward from its
definition. We thus only need to show that it is convex in C(Tn). Take
u, v ∈ Dc(Tn). Then, for γ ∈ AC([a, b],Tn),

u(γ(b))− u(γ(a)) ≤
∫ b

a
(L(γ, γ̇) + c) ds,

v(γ(b))− v(γ(a)) ≤
∫ b

a
(L(γ, γ̇) + c) ds.

Then, for w = ru+ (1− r)v for r ∈ [0, 1] given, it is clear that

w(γ(b))− w(γ(a)) ≤
∫ b

a
(L(γ, γ̇) + c) ds

Hence, w = ru+ (1− r)v ∈ Dc(Tn).

We now prove (iii). We connect any two distinct points y, z ∈ Tn by a
line segment of unit speed

γ(s) = y + s
z − y

|z − y|
for 0 ≤ s ≤ |z − y|.
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By definition,

u(z)− u(y) = u(γ(|z − y|))− u(γ(0))

≤
∫ |z−y|

0

(
L

(
y + s

z − y

|z − y|
,
z − y

|z − y|

)
+ c

)
ds

≤

(
max

Tn×B(0,1)
L+ c

)
|z − y| ≤ C|z − y|.

By a symmetric argument, we conclude the proof. □

By the Arzelà-Ascoli theorem, we immediately deduce the following
corollary.

Corollary 4.18. Assume (4.1). Fix c ∈ R and x0 ∈ Tn. Then, the set
{u− u(x0) : u ∈ Dc(Tn)} is compact in C(Tn).

Let us now find a full characterization of Dc(Tn).

Lemma 4.19. Assume (4.1). Fix c ∈ R. Let u ∈ Dc(Tn). Then, u is
Lipschitz and is differentiable almost everywhere in Tn, and at points of
differentiability of u,

H(x,Du(x)) ≤ c for a.e. x ∈ Tn.

Proof. Thanks to Lemma 4.17(iii), u is Lipschitz. By Rademacher’s theo-
rem, u is differentiable almost everywhere in Tn. Pick x ∈ Tn to be a point
of differentiability of u. Fix v ∈ Rn and for t > 0 small, denote by

γ(s) = x+ sv for 0 ≤ s ≤ t.

Then,

u(x+ tv)− u(x) = u(γ(t))− u(γ(0)) ≤
∫ t

0
(L(γ, γ̇) + c) ds.

Divide both sides by t and let t→ 0 to yield that

Du(x) · v ≤ L(x, v) + c.

Hence,

H(x,Du(x)) = sup
v∈Rn

(Du(x) · v − L(x, v)) ≤ c.

□

We show that the converse of Lemma 4.19 also holds.

Lemma 4.20. Assume (4.1). Fix c ∈ R. Let u ∈ Lip (Tn) be such that

H(x,Du(x)) ≤ c for a.e. x ∈ Tn.

Then, u ∈ Dc(Tn).
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Proof. Take η to be the standard mollifier, that is,

η ∈ C∞
c (Rn, [0,∞)), supp(η) ⊂ B(0, 1),

∫
Rn

η(x) dx = 1.

For ε > 0, denote by ηε(x) = ε−nη
(
x
ε

)
for all x ∈ Rn. Set, for x ∈ Rn,

uε(x) = (ηε ⋆ u) (x) =

∫
Rn

ηε(x− y)u(y) dy =

∫
B(x,ε)

ηε(x− y)u(y) dy.

Then uε ∈ C∞(Tn), and uε → u uniformly in Tn as ε → 0. As H ∈
C2(Tn × Rn), by repeating the proof of Theorem 3.8, we infer that

H(y,Duε(y)) ≤ c+ Cε in Tn.

Then, for γ ∈ AC([a, b],Tn),∫ b

a
(L(γ(t), γ̇(t)) + c) dt

≥
∫ b

a
(L(γ(t), γ̇(t)) +H(γ(t), Duε(γ(t)))− Cε) dt

≥ − C(b− a)ε+

∫ b

a
γ̇(t) ·Duε(γ(t)) dt

= − C(b− a)ε+ uε(γ(b))− uε(γ(a)).

Let ε→ 0 in the above to conclude. □

By combining Lemmas 4.19 and 4.20, we have a clear characterization
of Dc(Tn) as follows.

Theorem 4.21 (Characterization of Dc(Tn)). Assume (4.1). Fix c ∈ R.
Then,

Dc(Tn) = {u ∈ Lip (Tn) : H(x,Du) ≤ c a.e. in Tn} .

4.3.3. Mañé’s critical value. We now define Mañé’s critical value. We
will see later that this is exactly the same as the effective Hamiltonian (or
ergodic constant) at 0.

Definition 4.22 (Mañé’s critical value). Assume (4.1). Define Mañé’s crit-
ical value as

c[0] = inf {c ∈ R : there exists u ∈ Lip (Tn) s.t. H(x,Du) ≤ c a.e. in Tn} .

Equivalently,

c[0] = inf
u∈Lip (Tn)

ess sup
x∈Tn

H(x,Du(x)).

Of course, by Theorem 4.21, we can also write

c[0] = inf {c ∈ R : there exists u ∈ C(Tn) s.t. u ∈ Dc(Tn)} .
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Lemma 4.23. Assume (4.1). Let c[0] be Mañé’s critical value. Then,

min
(x,p)∈Tn×Rn

H(x, p) ≤ c[0] ≤ max
x∈Tn

H(x, 0).

Proof. On the one hand, for φ ≡ 0, we have

H(x,Dφ(x)) = H(x, 0) ≤ max
x∈Tn

H(x, 0),

which gives c[0] ≤ maxx∈Tn H(x, 0).

On the other hand, for any u ∈ Lip (Tn) such that H(x,Du) ≤ c a.e. in
Tn, we see that

min
(x,p)∈Tn×Rn

H(x, p) ≤ H(x,Du(x)) ≤ c for a.e. x ∈ Tn,

which finishes the proof. □

Theorem 4.24. Assume (4.1). Let c[0] be Mañé’s critical value. Then,
there exists u ∈ Lip (Tn) such that u ≺ L+ c[0], or in other words,

H(x,Du(x)) ≤ c[0] a.e. in Tn.

Proof. By the definition of c[0], we can find {ck} ⊂ R, {uk} ⊂ Lip (Tn)
such that limk→∞ ck = c[0], and uk ≺ L+ ck. For k ∈ N, denote by

ũk(x) = uk(x)− uk(0) for x ∈ Tn.

Then, by the coercivity of H in p, there exists C > 0 independent of k such
that

∥ũk∥L∞(Tn) + ∥Dũk∥L∞(Tn) ≤ (
√
n+ 1)∥Dũk∥L∞(Tn) ≤ C.

By the Arzelà-Ascoli theorem, there exists a subsequence {ũkj} of {ũk} such
that ũkj → u ∈ C(Tn) uniformly on Tn. It is immediate that ∥Du∥L∞(Tn) ≤
C, and thus, u ∈ Lip (Tn).

We finally show that u ≺ L+ c[0] by using the usual stability idea. For
γ ∈ AC([a, b],Tn),

ukj (γ(b))− ukj (γ(a)) ≤
∫ b

a
(L(γ, γ̇) + ck) ds,

which is equivalent to

ũkj (γ(b))− ũkj (γ(a)) ≤
∫ b

a
(L(γ, γ̇) + ck) ds.

Let j → ∞ to conclude. □

We present the inf-max representation formula for c[0] (exactly the same
to that of H(0) in Theorem 3.8), which gives immediately that c[0] = H(0).
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Theorem 4.25. Assume (4.1). Let c[0] be Mañé’s critical value. Then,

c[0] = inf
ϕ∈C1(Tn)

max
y∈Tn

H(y,Dϕ(y)).

Proof. For each ϕ ∈ C1(Tn), denote by

cϕ = max
y∈Tn

H(y,Dϕ(y)).

By the definition of c[0],

inf
ϕ∈C1(Tn)

max
y∈Tn

H(y,Dϕ(y)) = inf
ϕ∈C1(Tn)

cϕ ≥ c[0].

We now prove the reverse inequality. Thanks to Theorem 4.24, there exists
u ∈ Lip (Tn) such that

(4.11) H(y,Du(y)) ≤ c[0] for a.e. y ∈ Tn.

We now use convolutions with standard mollifiers to smooth u up. Take η
to be a standard mollifier, that is,

η ∈ C∞
c (Rn, [0,∞)), supp(η) ⊂ B(0, 1),

∫
Rn

η(x) dx = 1.

For ε > 0, denote by ηε(x) = ε−nη
(
x
ε

)
for all x ∈ Rn. For x ∈ Rn, denote

by

uε(x) = (ηε ⋆ u) (x) =

∫
Rn

ηε(x− y)u(y) dy =

∫
B(x,ε)

ηε(x− y)u(y) dy.

Then uε ∈ C∞(Rn), uε is Zn-periodic, and uε → u locally uniformly as
ε→ 0. By repeating the proof of Theorem 3.8, we imply that

H(y,Duε(y)) ≤ c[0] + Cε in Tn.

Let ε→ 0 and use the definition of c[0] to conclude. □

To finish off, we have some stability results for calibrated curves.

Proposition 4.26. Assume (4.1). Let c ∈ R and u ∈ C(Tn). The following
claims hold.

(i) If I =
⋃

k∈N Ik and {Ik} is a sequence of nested intervals in R such
that I1 ⊂ I2 ⊂ . . ., and γ : I → Tn is such that γ|Ik is (u, L, c)-
calibrated for all k ∈ N, then γ is (u, L, c)-calibrated on I.

(ii) Let {γk}k∈N ⊂ AC([a, b],Tn) be such that γk → γ in C1 topology. If
γk is (u, L, c)-calibrated for all k ∈ N, then γ is (u, L, c)-calibrated.
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4.3.4. Correspondence between c[0] and calibrated curves. We have
the following simple but important correspondence between c[0] and cali-
brated curves.

Theorem 4.27. Assume (4.1). Let c ∈ R and u ∈ C(Tn) be such that
u ≺ L+ c. Let γ : I → Tn be (u, L, c)-calibrated where I ⊂ R is an interval.
If I is of infinite length, then c = c[0].

Proof. Surely, c ≥ c[0].

Assume by contradiction that c > c[0] and I is of infinite length. Pick
u0 ∈ C(Tn) such that u0 ≺ L+ c[0] in light of Theorem 4.24. For [a, b] ⊂ I,
we have

u(γ(b))− u(γ(a)) =

∫ b

a
L(γ, γ̇) ds+ c(b− a),

u0(γ(b))− u0(γ(a)) ≤
∫ b

a
L(γ, γ̇) ds+ c0(b− a).

Combine these two relations to yield

(c− c0)(b− a) ≤ [u(γ(b))− u(γ(a))]− [u0(γ(b))− u0(γ(a))]

≤
√
n
(
∥Du∥L∞(Tn) + ∥Du0∥L∞(Tn)

)
≤ C.

As I is of infinite length, we let b− a→ ∞ to deduce a contradiction. □

Corollary 4.28. Assume (4.1). To have negative or positive type weak
KAM solutions, we must have c = c[0].

We proceed to study further relations between u ≺ L+ c and calibrated
curves.

Theorem 4.29. Assume (4.1). Let c ∈ R and u ∈ C(Tn) be such that
u ≺ L + c. Let γ : [a, b] → Tn be a (u, L, c)-calibrated curve. Then, the
following properties hold.

(i) If u is differentiable at γ(t) for t ∈ [a, b], then

(4.12)

{
Du(γ(t)) = DvL(γ(t), γ̇(t)),

H(γ(t), Du(γ(t))) = c.

(ii) u is differentiable at γ(t) for t ∈ (a, b).

Proof. Let us first prove (i). Assume t < b. In case t = b, we use t′ < t in
the following argument.

Take t′ ∈ (t, b). By the hypothesis,

u(γ(t′))− u(γ(t)) =

∫ t′

t
(L(γ, γ̇) + c) ds.
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Divide both sides by t′ − t and let t′ → t to imply

Du(γ(t)) · γ̇(t) = L(γ(t), γ̇(t)) + c,

which gives further that

H(γ(t), Du(γ(t))) ≥ Du(γ(t)) · γ̇(t)− L(γ(t), γ̇(t)) ≥ c.

On the other hand, as u ≺ L+ c, and u is differentiable at γ(t),

H(γ(t), Du(γ(t))) ≤ c.

We deduce that equality in the above must happen, and therefore,{
Du(γ(t)) = DvL(γ(t), γ̇(t)),

H(γ(t), Du(γ(t))) = c.

We now prove (ii). Let x = γ(t) for t ∈ (a, b) fixed. For each y ∈ Tn,
denote by

γy(s) = γ(s) +
s− a

t− a
(y − x) for a ≤ s ≤ t.

Then, γy(a) = γ(a), and γy(t) = y. As u ≺ L+ c, we have

u(γy(t))− u(γy(a)) ≤
∫ t

a
(L(γy, γ̇y) + c) ds,

which gives

u(y) ≤
∫ t

a
(L(γy, γ̇y) + c) ds+ u(γ(a)).

Define, for y ∈ Tn,

ψ+(y) =

∫ t

a
(L(γy, γ̇y) + c) ds+ u(γ(a))

=

∫ t

a

(
L

(
γ(s) +

s− a

t− a
(y − x), γ̇(s) +

y − x

t− a

)
+ c

)
ds+ u(γ(a)).

Clearly, ψ+ ∈ Ck, ψ+ ≥ u, and ψ+(x) = u(x). Geometrically, ψ+ is a Ck

function that touches u from above at x.

We now design in a similar way a Ck function that touches u from below
at x. For each y ∈ Tn, set

ηy(s) = γ(s) +
b− s

b− t
(y − x) for t ≤ s ≤ b.

Then, ηy(t) = y, and ηy(b) = γ(b). As u ≺ L+ c, we deduce

u(ηy(b))− u(ηy(t)) ≤
∫ b

t
(L(ηy, η̇y) + c) ds,

which yields

u(y) ≥ −
∫ b

t
(L(ηy, η̇y) + c) ds+ u(γ(b)).
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Set, for y ∈ Tn,

ψ−(y) = −
∫ b

t
(L(ηy, η̇y) + c) ds+ u(γ(b))

= −
∫ b

t

(
L

(
γ(s) +

b− s

b− t
(y − x), γ̇(s)− y − x

b− t

)
+ c

)
ds+ u(γ(b)).

Then, ψ− ∈ Ck, ψ− ≤ u, and ψ−(x) = u(x), which means that ψ− is a
Ck function that touches u from below at x. Hence, ψ− touches ψ+ from
below at x too. Thus, Dψ+(x) = Dψ−(x). By using the definition of
differentiability, we see that u is also differentiable at x, and

Du(x) = Dψ+(x) = Dψ−(x).

□

Remark 4.30. The method in the proof above for (ii) is rather important
and natural, which is essentially like the variational method. Basically, we
use the two family of variations {γy}y∈Tn of γ|[a,t] and {ηy}y∈Tn of γ|[t,b] to
read off information. To get the desired result, we need to have variations
from both sides, and it is therefore very important that t ∈ (a, b).

The differentiability of u might fail at the endpoints γ(a) and γ(b) of
the given calibrated curve in general.

4.3.5. Minimal actions for a given time.

Definition 4.31. For given x, y ∈ Tn and t > 0, denote by

(4.13) ht(x, y) = inf
γ∈AC([0,t],Tn)
γ(0)=x,γ(t)=y

∫ t

0
L(γ(s), γ̇(s)) ds.

Basically, ht(x, y) is the minimal cost it takes to travel from x to y in a given
fixed amount of time t corresponding to the given Lagrangian L.

We have been dealing with ht(x, y) all the time up to now, and it is
important to summarize things and make them more systematically in this
subsection.

Proposition 4.32 (Important properties of ht). Assume (4.1). We have
the following properties of ht.

(i) For x, y ∈ Tn and t > 0,

ht(x, y) ≥ t min
(x,v)∈Tn×Rn

L(x, v).

(ii) For x, y ∈ Tn and t, t′ > 0,

ht+t′(x, y) = inf
z∈Tn

(ht(x, z) + ht′(z, y)) .
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x

z

ht(x, z)

y

ht′(z, y)

Figure 1. Dynamic Programming Principle for ht+t′(x, y)

(iii) For u ∈ C(Tn) and c ∈ R such that u ≺ L+ c, then

u(y)− u(x) ≤ ht(x, y) + ct for all x, y ∈ Tn, t > 0.

(iv) For x, y ∈ Tn and t > 0, there exists an extremal curve γ ∈
Ck([0, t]) with γ(0) = x, γ(t) = y such that

ht(x, y) =

∫ t

0
L(γ(s), γ̇(s)) ds.

Proof. It is straightforward to have item (i). Thanks to Theorems 2.21
and 2.23, we obtain item (iv). For item (iii), we note that for any γ ∈
AC([0, t],Tn) with γ(0) = x, γ(t) = y,

u(y)− u(x) ≤
∫ t

0
L(γ, γ̇) ds+ ct.

Take infimum over all such admissible γ to conclude.

Let us now prove (ii), which is basically the Dynamic Programming
Principle for ht. Firstly, for any γ ∈ AC([0, t + t′]),Tn) with γ(0) = x,
γ(t+ t′) = y, we have∫ t+t′

0
L(γ, γ̇) ds =

∫ t

0
L(γ, γ̇) ds+

∫ t+t′

t
L(γ, γ̇) ds

≥ ht(x, γ(t)) + ht′(γ(t), y)

≥ inf
z∈Tn

(ht(x, z) + ht′(z, y)) .

Take infimum over all admissible γ to yield

ht+t′(x, y) ≥ inf
z∈Tn

(ht(x, z) + ht′(z, y)) .

Secondly, for any α ∈ AC([0, t],Tn) with α(0) = x, α(t) = z, and β ∈
AC([0, t′],Tn) with β(0) = z, β(t′) = y, we define

γ(s) =

{
α(s) for 0 ≤ s ≤ t,

β(s− t) for t ≤ s ≤ t+ t′.
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Then, γ ∈ AC([0, t+ t′]),Tn) with γ(0) = x, γ(t+ t′) = y. We see that

ht+t′(x, y) ≤
∫ t+t′

0
L(γ, γ̇) ds =

∫ t

0
L(α, α̇) ds+

∫ t′

0
L(β, β̇) ds.

Take infimum over all possible choices of α and β respectively to conclude.
□

Let us analyze more about ht(x, y).

Lemma 4.33. Assume (4.1). For each t > 0, there exists C = C(t) > 0
such that

ht(x, y) ≤ C(t) for all x, y ∈ Tn.

Besides, for each σ > 0, there exists K = K(σ) > 0 such that, if t ≥ σ, then
for every minimizer γ of ht(x, y) for x, y ∈ Tn,

(4.14) |γ̇(s)| ≤ K(σ) for all s ∈ [0, t].

Proof. Consider a constant speed line segment connecting x and y

η(s) = x+ s
y − x

t
for 0 ≤ s ≤ t.

Then, it is clear that

ht(x, y) ≤
∫ t

0
L(η(s), η̇(s)) ds ≤ t max

x∈Tn

|v|≤t−1√n

|L(x, v)|.

We thus can choose

C = C(t) = t max
x∈Tn

|v|≤t−1√n

|L(x, v)|.

Let us now prove the second part of the lemma. Let γ be a minimizer
of ht(x, y) for x, y ∈ Tn and t ≥ σ. By the mean value theorem, there exists
t0 ∈ (0, t) such that

L(γ(t0), γ̇(t0)) ≤ max
x∈Tn

|v|≤t−1√n

|L(x, v)| ≤ max
x∈Tn

|v|≤σ−1√n

|L(x, v)|.

By the superlinearity of L in v, there exists K = K(σ) > 0 such that

|γ̇(t0)| ≤ K(σ) =⇒ |P (t0)| = |DvL(γ(t0), γ̇(t0))| ≤ K(σ).

As s 7→ H(X(s), P (s)) is constant, we see that, for s ∈ [0, t],

H(X(s), P (s)) ≤ K(σ) =⇒ |P (s)| ≤ K(σ).

We also used the superlinearity of H in p in the above. Therefore, for
s ∈ [0, t],

|γ̇(s)| = |Ẋ(s)| = |DpH(X(s), P (s))| ≤ K(σ),
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x̂
ŷ

x = γ(0)
y = γ(t)

γ(·)z1 = γ(ε)

z2 = γ(t− ε)

Figure 2. A curve connecting x̂ to ŷ

which completes the proof. Note that K(σ) changes from line to line in the
above steps. □

We are now ready to prove the following uniform Lipschitz result.

Theorem 4.34. Assume (4.1). For each σ > 0, there exists C = C(σ) > 0
such that ht : Tn × Tn → R is Lipschitz with Lipschitz constant at most
C(σ) for all t ≥ σ.

Proof. Fix (x, y) and (x̂, ŷ) in Tn×Tn. Take a minimizer path γ : [0, t] → Tn

with γ(0) = x, γ(t) = y, and

ht(x, y) =

∫ t

0
L(γ(s), γ̇(s))ds.

Fix ε > 0, let z1 = γ(ε) and z2 = γ(t− ε), we connect x̂ to ŷ as following.

Let us define

η(s) =


γ(s) + ε−s

ε (x̂− x) s ∈ [0, ε],

γ(s) s ∈ [ε, t− ε],

γ(s) + s−(t−ε)
ε (ŷ − y) s ∈ [t− ε, t].

Then, η connects x̂ to ŷ in time t. We have

ht(x̂, ŷ)− ht(x, y)

≤
∫ ε

0

[
L

(
γ(s) +

ε− s

ε
(x̂− x), γ̇(s)− x̂− x

ε

)
− L(γ(s), γ̇(s))

]
ds

+

∫ t

t−ε

[
L

(
γ(s) +

s− (t− ε)

ε
(ŷ − y), γ̇(s) +

ŷ − y

ε

)
− L(γ(s), γ̇(s))

]
ds.

It is enough to consider the case |x̂ − x| + |ŷ − y| ≤ σ. Since t ≥ σ, from
Lemma 4.33, we have |γ̇(s)| ≤ K(σ) for all s ∈ [0, t]. Choosing ε = 1

4σ, we
obtain that

|η̇(s)| ≤ K(σ) + 4 for all s ∈ [0, t].
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Thus, there exists C(σ) > 0 such that, for x1, x2 ∈ Tn and |v1|, |v2| ≤
K(σ) + 4,

|L(x1, v1)− L(x2, v2)| ≤ C(σ)
(
|x1 − x2|+ |v1 − v2|

)
.

We deduce that

ht(x̂, ŷ)− ht(x, y) ≤ C(σ)(|x̂− x|+ |ŷ − y|),

and by symmetry, we obtain

|ht(x̂, ŷ)− ht(x, y)| ≤ C(σ)(|x̂− x|+ |ŷ − y|).

□

4.3.6. The Lax-Oleinik semigroup. Given g ∈ C(Tn), we define the
Lax-Oleinik semigroup as follows. For t > 0,

T−
t g(x) = w(x, t) = inf

y∈Tn
{g(y) + ht(y, x)} .

For t = 0, set T−
0 g = g.

Definition 4.35 (the Lax-Oleinik semigroup). The map T−
t : C(Tn) →

C(Tn) is called the Lax-Oleinik semigroup.

In fact, w(x, t) = T−
t g(x) is the viscosity solution to the Cauchy problem{

wt +H(x,Dw) = 0 in Tn × (0,∞),

w(x, 0) = g(x) on Tn.

And the Lax-Oleinik semigroup is exactly the optimal control formula for
Cauchy problems. We will make everything clear on this aspect later.

For now, we proceed to investigate properties of T−
t .

Proposition 4.36. Assume (4.1). The following properties hold.

(i) For g ∈ C(Tn), t > 0, and x ∈ Tn,

min
Tn

g + t min
Tn×Rn

L ≤ T−
t g(x) ≤ min

Tn
g + max

Tn×Tn
ht(·, ·).

(ii) For fixed σ > 0, there exists C(σ) > 0 such that, if g ∈ C(Tn) and
t > σ, then T−

t g is Lipschitz with Lipschitz constant at most C(σ).

Proof. The bounds in item (i) are straightforward.

Item (ii) is quite interesting as although we only start with g ∈ C(Tn),
T−
t has a uniform Lipschitz regularizing effect for t > σ. Fix x, z ∈ Tn.

There exists x̄ ∈ Tn such that

T−
t g(x) = min

y∈Tn
(ht(y, x) + g(y)) = ht(x̄, x) + g(x̄).
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It is clear that

T−
t g(z) ≤ ht(x̄, z) + g(x̄).

For t > σ, we use Theorem 4.34 and the above points to get

T−
t g(z)− T−

t g(x) ≤ ht(x̄, z)− ht(x̄, x) ≤ C(σ)|z − x|.

By a symmetric argument, we imply

|T−
t g(z)− T−

t g(x)| ≤ C(σ)|z − x|.

□

Next, we list further properties of T−
t .

Proposition 4.37. Assume (4.1). The following properties hold.

(i) (Semigroup property) For t, t′ ≥ 0,

T−
t+t′ = T−

t ◦ T−
t′ = T−

t′ ◦ T−
t ,

and, for g ∈ C(Tn), c ∈ R,

T−
t (g(x) + c) = T−

t (g(x)) + c.

(ii) (Monotonicity property) If g, h ∈ C(Tn) with g ≤ h, then, for t ≥ 0,

T−
t g ≤ T−

t h.

(iii) (Infimum commutativity) If {gi}i∈I ⊂ C(Tn) and g = infi∈I gi ∈
C(Tn), then, for t ≥ 0,

T−
t g = T−

t

(
inf
i∈I

gi

)
= inf

i∈I
T−
t gi.

Proof. We first prove (i). For t, t′ ≥ 0, we use Proposition 4.32 to compute

T−
t+t′g(x) = inf

y
(g(y) + ht+t′(y, x))

= inf
y

(
g(y) + inf

z
(ht(y, z) + ht′(z, x))

)
= inf

y,z
(g(y) + ht(y, z) + ht′(z, x))

= inf
z

(
inf
y
(g(y) + ht(y, z)) + ht′(z, x)

)
= inf

z

(
T−
t g(z) + ht′(z, x)

)
= T−

t′ (T
−
t g)(x).

It is also clear that for g ∈ C(Tn), c ∈ R,

T−
t (g(x) + c) = T−

t (g(x)) + c.

The monotonicity property (ii) is also straightforward as for g ≤ h and t > 0,

T−
t g(x) = inf

y
(g(y) + ht(y, x)) ≤ inf

y
(h(y) + ht(y, x))) ≤ T−

t h(x).
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Finally, we prove the infimum stability. For {gi}i∈I ⊂ C(Tn) with g =
infi∈I gi ∈ C(Tn) and t > 0,

T−
t g(x) = inf

y
(g(y) + ht(y, x))

= inf
y

(
inf
i∈I

gi(y) + ht(y, x)

)
= inf

y,i
(gi(y) + ht(y, x))

= inf
i

(
inf
y
(gi(y) + ht(y, x))

)
= inf

i∈I

(
T−
t gi(x)

)
.

□

We now prove the contraction property (non-expansiveness property) of
T−
t .

Lemma 4.38 (Non-expansiveness property of T−
t ). Assume (4.1). For

g1, g2 ∈ C(Tn) and t ≥ 0,

(4.15) ∥T−
t g1 − T−

t g2∥L∞(Tn) ≤ ∥g1 − g2∥L∞(Tn).

Proof. Let K = ∥g1 − g2∥L∞(Tn). Then,

g1 −K ≤ g2 ≤ g1 +K.

In light of the semigroup property and monotonicity property,

T−
t g1 −K = T−

t (g1 −K) ≤ T−
t g2 ≤ T−

t (g1 +K) = T−
t g2 +K.

Therefore, (4.15) holds true. □

We already showed that for fixed σ > 0, there exists C(σ) > 0 such that
T−
t g is Lipschitz with Lipschitz constant at most C(σ) for any g ∈ C(Tn)

and t > σ. Let us now investigate the continuity of t 7→ T−
t g.

Lemma 4.39. Assume (4.1). For a given g ∈ C(Tn),

(i) limt→0+ T
−
t g = g;

(ii) t 7→ T−
t g is uniformly continuous.

Proof. By the non-expansiveness property, it is enough to prove (i) for the
case that g ∈ Lip (Tn). Assume ∥Dg∥L∞(Tn) ≤ K. Then, for γ(s) = x for
all s ∈ [0, t], we see

T−
t g(x) ≤ g(x) +

∫ t

0
L(x, 0) ds,
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which gives

(4.16) T−
t g(x)− g(x) ≤ tL(x, 0).

Besides, as L is superlinear in v, there exists CK > 0 such that

L(x, v) ≥ K|v| − CK for all (x, v) ∈ Tn × Rn.

Then, for any γ ∈ AC([0, t],Rn) with γ(t) = x,∫ t

0
L(γ(s), γ̇(s)) ds ≥

∫ t

0
(K|γ̇(s)| − CK) ds

≥ K|γ(t)− γ(0)| − CKt = K|x− γ(0)| − CKt.

We hence deduce that

T−
t g(x) = inf

y
(g(y) + ht(y, x)) ≥ inf

y
(g(y) +K|x− y| − CKt)(4.17)

≥ g(x)− CKt.

Combine (4.16) and (4.17) to conclude that

(4.18) |T−
t g(x)− g(x)| ≤ tmax

{
CK ,max

x∈Tn
L(x, 0)

}
,

which yields (i).

To prove (ii), we simply use (i), the semigroup property, and the non-
expansiveness property. Indeed, for 0 < t < t′,

∥T−
t′ g − T−

t g∥L∞(Tn) = ∥T−
t ◦ (T−

t′−tg − g)∥L∞(Tn)

≤ ∥T−
t′−tg − g∥L∞(Tn) ≤ (t′ − t)max

{
CK ,max

x∈Tn
L(x, 0)

}
.

□

Theorem 4.40. Assume (4.1). Fix σ > 0. Then the family of functions
{T−

t g : g ∈ C(Tn)} is equi-Lipschitz on Tn × [σ,∞).

Proof. By Proposition 4.36, for any fixed t ≥ σ, x 7→ T−
t g(x) is Lipschitz

with Lipchitz constant at most C(σ). We then use the proof of Lemma 4.39
above to yield further that, for t, t′ ≥ σ and g ∈ C(Tn),

∥T−
t′ g − T−

t g∥L∞(Tn) ≤ |t′ − t|max

{
CC(σ),max

x∈Tn
L(x, 0)

}
.

Summing things up, we deduce, for g ∈ C(Tn), t, t′ ≥ σ, and x, y ∈ Tn,∣∣T−
t′ g(x)− T−

t g(y)
∣∣ ≤ C̃

(
|x− y|+ |t− t′|

)
,

where

C̃ = max

{
C(σ), CC(σ),max

x∈Tn
L(x, 0)

}
.

□



66 4. The weak KAM theorem

4.3.7. The weak KAM theorem.

Theorem 4.41 (the weak KAM theorem). Assume (4.1). There exists
u− ∈ C(Tn) such that

T−
t u− + c[0]t = u− for all t ≥ 0.

Moreover, for each x ∈ Tn, there exists a (u−, L, c[0])-calibrated curve ξ :
(−∞, 0] → Tn with ξ(0) = x. In particular, u− is a weak KAM solution of
negative type.

Proof. We divide the proof into several steps.

Step 1. By Theorem 4.24, there exists u ∈ Lip (Tn) such that u ≺ L+ c[0],
or in other words,

H(x,Du(x)) ≤ c[0] a.e. in Tn.

Step 2. Evolve u under T−
t . We claim that

(4.19) t 7→
(
T−
t u+ c[0]t

)
is nondecreasing.

To do this, we first show that, for t > 0 and x ∈ Tn,

T−
t u(x) + c[0]t ≥ u(x).

Indeed, as u ≺ L+ c[0], we have, for γ ∈ AC([0, t],Tn) with γ(t) = x,

u(γ(t))− u(γ(0)) ≤
∫ t

0
L(γ, γ̇) ds+ c[0]t,

which means

u(x) ≤ inf

{∫ t

0
L(γ, γ̇) ds+ u(γ(0)) : γ ∈ AC([0, t],Tn), γ(t) = x

}
+ c[0]t

= inf
y∈Tn

{u(y) + ht(y, x)}+ c[0]t = T−
t u(x) + c[0]t.

Then, by the semigroup and monotonicity properties, for r > 0,

T−
r u(x) ≤ T−

r

(
T−
t u(x) + c[0]t

)
= T−

t+ru(x) + c[0]t.

Add c[0]r to both sides to yield (4.19).

Step 3. As u ∈ Lip (Tn), T−
t u(x) + c[0]t is globally Lipschitz in (x, t) ∈

Tn × [0,∞). We now show that there exists C > 0 such that

(4.20) T−
t u(x) + c[0]t ≤ C for all x ∈ Tn, t > 0.

Assume by contradiction that this is not the case. If for each t ≥ 0, we can
find xt ∈ Tn such that

T−
t u(xt) + c[0]t ≤ u(xt),

then, for every x ∈ Tn,

T−
t u(x) + c[0]t ≤ u(xt) + C|x− xt| ≤ C,
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which confirms (4.20) and violates our assumption. Therefore, there exist
δ, r > 0 such that

(4.21) T−
r u(x) + c[0]r ≥ u(x) + δ for all x ∈ Tn.

By repeating this multiple number of times, we yield, for all k ∈ N,

T−
kru(x) + c[0]kr ≥ u(x) + kδ for all x ∈ Tn.

Let c = c[0]− δ/r < c[0]. Then, by the above

(4.22) T−
kru(x) + ckr ≥ u(x) for all x ∈ Tn.

For x ∈ Tn, denote

w(x) = inf
t≥0

(
T−
t u(x) + ct

)
.

Thanks to (4.22), w is well-defined and finite. In fact, by the semigroup and
monotonicity properties,

w(x) = inf
0≤t≤r

(
T−
t u(x) + ct

)
.

Of course, w ∈ Lip (Tn). We claim that w ≺ L+ c, which gives a contradic-
tion as c < c[0]. Indeed, for s ≥ 0,

T−
s (w + cs) = T−

s

(
inf
t≥0

(T−
t u(x) + ct) + cs

)
= inf

t≥0

(
T−
s+tu(x) + c(s+ t)

)
≥ w.

Thus, w ≤ T−
s (w + cs) for all s > 0, which gives w ≺ L + c. We conclude

that (4.20) holds.

Step 4. We use (4.19), (4.20), and the fact that T−
t u(x) + c[0]t is globally

Lipschitz in (x, t) ∈ Tn × [0,∞) to yield that

(4.23)
(
T−
t u(x) + c[0]t

)
→ u−(x) uniformly on Tn as t→ ∞

for some u− ∈ Lip (Tn).

Step 5. We next show that

T−
t u− + c[0]t = u− for all t ≥ 0.

This is rather clear as

T−
t u−(x) + c[0]t = T−

t

(
lim
s→∞

(
T−
s u(x) + c[0]s

))
+ c[0]t

= lim
s→∞

(
T−
t+su(x) + c[0](t+ s)

)
= u−(x).

Step 6. Finally, we show the existence of a (u−, L, c[0])-calibrated curve
ξ : (−∞, 0] → Tn with ξ(0) = x. The proof of this step is similar to that of
Theorem 3.10. We construct ξ iteratively on [−m,−m+ 1] for m ∈ N. It is
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enough for us to give the construction of ξ on [−1, 0]. There exists z ∈ Tn

such that

u−(x) = T−
1 u−(x) + c[0] = min

y∈Tn
(h1(y, x) + u−(y)) + c[0]

= h1(z, x) + u−(x) + c[0].

By Proposition 4.32, there exists η ∈ Ck([0, 1]) with η(0) = z, η(1) = x, and

h1(z, x) =

∫ 1

0
L(η(s), η̇(s)) ds.

Set

ξ(s) = η(s+ 1) for all s ∈ [−1, 0].

The proof is complete. □

We give a second proof of the weak KAM theorem by using Schauder’s
fixed point theorem.

Second proof of Theorem 4.41. The key point that we use in this proof
is Theorem 4.40. As usual, we divide the proof into several steps for clarity.

Step 1. Set E = C(Tn)/R · 1, that is, we put φ and φ+C for C ∈ R in the
same equivalent class in E for each φ ∈ C(Tn). For each such φ ∈ C(Tn),
we have [φ] ∈ E with

[φ] = {φ+ C : C ∈ R},

and denote

∥[φ]∥E = inf
C∈R

∥φ+ C∥L∞(Tn).

As T−
t (u+ C) = T−

t u+ C, we can think of T−
t : E → E as well.

Step 2. For each fixed σ > 0, we see that T−
σ (E) is equi-Lipschitz in Tn

with Lipschitz constant at most C(σ). Therefore, for [φ] ∈ T−
σ (E),

∥[φ]∥E ≤ C(σ)
√
n.

By the Arzelà-Ascoli theorem, T−
σ (E) is compact in E. By Schauder’s fixed

point theorem, there exists [uσ] ∈ E such that

T−
σ [uσ] = [uσ].

Then, for any k ∈ N,

(4.24) T−
kσ[uσ] = [uσ].

Step 3. For each j ∈ N, let [uj ] be a fixed point to T−
2−j . By (4.24), for

k, j ∈ N,
T−
k2−j [uj ] = [uj ].
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As j → ∞, by the Arzelà-Ascoli theorem, up to passing to a subsequence,
we can assume [uj ] → [u] for some [u] ∈ E. By the continuity of t 7→ T−

t ,
we see that, for t ≥ 0,

(4.25) T−
t [u] = [u].

Step 4. Thanks to (4.25), for each t > 0, there exists c(t) ∈ R such that

T−
t u = u+ c(t).

It is clear that t 7→ c(t) is additive, that is, for t, s > 0,

c(t+ s) = c(t) + c(s).

As T−
t is continuous, so is c(t). Therefore, there exists c ∈ R such that

c(t) = −ct for all t ≥ 0.

We thus get

(4.26) T−
t u+ ct = u for all t ≥ 0.

Step 5. By repeating Step 6 of the first proof, we have the existence of
a (u, L, c)-calibrated curve ξ : (−∞, 0] → Tn with ξ(0) = x. Thanks to
Theorem 4.27, c = c[0].

□
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[Fat]. In fact, this chapter is heavily based on [Fat]. See also the
books of Gomes [Gom09], Sorrentino [Sor15], Tran [Tra21].

(3) There are many excellent survey papers and lecture notes in weak
KAM theory: see Evans [Eva08, Eva04], Ishii [Ish], Kaloshin
[Kal05], and the references therein.





Chapter 5

Invariant measures

In this chapter, we always consider a given Hamiltonian H : Tn × Rn → R
that satisfies

(5.1)


H ∈ Ck(Tn × Rn) for some k ≥ 2,

D2
ppH(y, p) > 0 for all (y, p) ∈ Tn × Rn,

lim|p|→∞miny∈Tn
H(y,p)

|p| = +∞.

Let L be the corresponding Lagrangian (the Legendre transform of H).
Then, L satisfies

(5.2)


L ∈ Ck(Tn × Rn),

D2
vvL(y, v) > 0 for all (y, v) ∈ Tn × Rn,

lim|v|→∞miny∈Tn
L(y,v)
|v| = +∞.

The main object in this chapter is still the cell problem at p = 0, that is,

(5.3) H(y,Dv(y)) = H(0) = c[0] in Tn.

Here, c[0] = H(0) ∈ R is the unique constant so that (4.3) has a viscosity
solution as discussed in the previous chapters. Sometimes, c[0] = H(0) is
also called the ergodic constant in the literature.

We have proved the weak KAM theorem (Theorem 4.41) using the dy-
namical system viewpoint in the previous chapter. The equivalent form of
this weak KAM theorem is Theorem 3.16 from the PDE viewpoint. Ba-
sically, the weak KAM theorem asserts that (5.3) has a viscosity solution
u ∈ Lip (Tn), which is equivalent to the fact that

T−
t u+ c[0]t = u for all t ≥ 0.

71
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Here, we write u instead of u− for clarity. Besides, for each x ∈ Tn, there
exists a (u, L, c[0])-calibrated curve ξ : (−∞, 0] → Tn with ξ(0) = x. More
precisely, for r < r′ ≤ 0, we have

u(ξ(r′))− u(ξ(r)) =

∫ r′

r

(
L(ξ(s), ξ̇(s)) + c[0]

)
ds.

In the PDE language, ξ is also called a backward characteristic of u ema-
nating from x. In particular, u is a weak KAM solution of negative type.

If we view the calibrated curve ξ as a curve in Rn, then ξ has cor-
responding rotation vectors. By Theorem 3.15, there exist a subsequence
{tk} → −∞ and a vector q ∈ ∂H(0) such that

(5.4) lim
k→∞

ξ(tk)

tk
= q.

If H is differentiable at 0, that is, ∂H(0) is a singleton, then the above limit
holds for the full sequence

lim
t→−∞

ξ(t)

t
= DH(0).

If H is not differentiable at 0, then it is not yet clear whether we have
different subsequences convergent to different rotation vectors.

The main goal of this chapter is to study further properties of u and ξ.
Recall that we proved in Theorem 4.29 that u is differentiable at ξ(t) for all
t ∈ (−∞, 0), and

(5.5) Du(ξ(t)) = DvL(ξ(t), ξ̇(t)).

5.1. Flow invariance

Recall first the Lagrangian flow{
ϕLt (x, v) = (x(t), ẋ(t)) = (x(t), v(t)) for t ∈ R,
(x(0), ẋ(0)) = (x(0), v(0)) = (x, v).

Here, x(·) solves the Euler-Lagrange equations

d

dt
(DvL(x(t), ẋ(t))) = DxL(x(t), ẋ(t)).

Definition 5.1 (Flow invariance measures). A Radon probability measure
µ ∈ P(Tn ×Rn) is said to be flow invariant if for every bounded continuous
function ψ : Tn × Rn → R and every t ≥ 0,∫

Tn×Rn

ψ
(
ϕLt (x, v)

)
dµ(x, v) =

∫
Tn×Rn

ψ(x, v) dµ(x, v).

We also say that µ is invariant under the Euler-Lagrange flow.
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Here is another characterization of c[0].

Theorem 5.2. Assume (5.1). Then,

c[0] = − inf

{∫
Tn×Rn

L(x, v) dµ(x, v) : µ ∈ P(Tn × Rn) is flow invariant

}
.

Proof. For each (x, v) ∈ Tn×Rn, let (x(t), ẋ(t)) = (x(t), v(t)) be the Euler-
Lagrange curve as above. As u ≺ L+ c[0],

u(x)− u(x(−1)) ≤
∫ 0

−1
L(x(s), ẋ(s)) ds+ c[0].

Integrate this with respect to µ ∈ P(Tn × Rn) flow invariant to yield

0 =

∫
Tn×Rn

(
u(π ◦ ϕL0 (x, v))− u(π ◦ ϕL−1(x, v))

)
dµ(x, v)

≤
∫ 0

−1

∫
Tn×Rn

L(ϕLs (x, v)) dµ(x, v) ds+ c[0]

=

∫
Tn×Rn

L(x, v) dµ(x, v) + c[0].

Thus,

inf

{∫
Tn×Rn

L(x, v) dµ(x, v) : µ ∈ P(Tn × Rn) is flow invariant

}
≥ −c[0].

We now prove the converse. Fix x ∈ Tn, and let ξ be a (u, L, c[0])-
calibrated curve ξ : (−∞, 0] → Tn with ξ(0) = x. For each t < 0,

u(ξ(0))− u(ξ(t)) =

∫ 0

t

(
L(ξ(s), ξ̇(s)) + c[0]

)
ds.

Define µt ∈ P(Tn × Rn) as

⟨µt, ψ⟩ =
∫
Tn×Rn

ψ(x, v) dµt(x, v) =
1

|t|

∫ 0

t
ψ(ξ(s), ξ̇(s)) ds

for all bounded continuous functions ψ. As ∥ξ̇∥L∞((−∞,0]) ≤ C, we see that

supp (µt) ⊂ Tn ×B(0, C) for all t < 0.

Then, we have

(5.6)
u(x)− u(ξ(t))

|t|
=

∫
Tn×Rn

L(x, v) dµt(x, v) + c[0].

By compactness, there exists a sequence {tk} → −∞ such that

µtk ⇀ µ ∈ P(Tn ×B(0, C)) weakly in the sense of measures.
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Let t = tk and tk → −∞ in (5.6) to yield

(5.7)

∫
Tn×Rn

L(x, v) dµ(x, v) = −c[0].

To finish the proof, we need to show that µ is flow invariant. Indeed, for
any bounded continuous function ψ and t > 0,∫

Tn×Rn

ψ(ϕLt (x, v)) dµ(x, v) = lim
k→∞

1

|tk|

∫ 0

tk

ψ ◦ ϕLt (ξ(s), ξ̇(s)) ds

= lim
k→∞

1

|tk|

∫ 0

tk

ψ(ξ(s+ t), ξ̇(s+ t)) ds

= lim
k→∞

1

|tk|

∫ 0

tk

ψ(ξ(s), ξ̇(s)) ds

+ lim
k→∞

1

|tk|

[∫ t

0
ψ(ξ(s), ξ̇(s)) ds−

∫ tk+t

tk

ψ(ξ(s), ξ̇(s)) ds

]
=

∫
Tn×Rn

ψ(x, v) dµ(x, v) + lim
k→∞

C

|tk|

=

∫
Tn×Rn

ψ(x, v) dµ(x, v).

□

Remark 5.3. Through the construction in the above proof, we have ob-
tained a minimizer µ to the minimizing (variational) problem

(5.8) inf

{∫
Tn×Rn

L(x, v) dµ(x, v) : µ ∈ P(Tn × Rn) is flow invariant

}
.

Note the similarity between µtk ⇀ µ weakly in the sense of measures and
(5.4).

5.2. Mather’s measures

We are ready to define Mather’s measures as minimizing measures to the
variational problem (5.8).

Definition 5.4 (Mather’s measures). If µ is a minimizer of (5.8), then we
call µ a Mather measure. Denote the Mather set by

M̃0 =
⋃

µ is a
Mather measure

supp (µ).

For π : Tn × Rn → Tn being the natural projection, that is, π(x, v) = x for
(x, v) ∈ Tn × Rn, the projected Mather set is defined as

M0 = π
(
M̃0

)
.
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We have the following property of M̃0.

Lemma 5.5. Assume (5.1). Let u ∈ Lip (Tn) be a solution to (5.3). Pick

(x, v) ∈ M̃0. Then, for t ≤ t′,

(5.9) u
(
π ◦ ϕLt′(x, v)

)
− u

(
π ◦ ϕLt (x, v)

)
=

∫ t′

t

(
L
(
ϕLs (x, v)

)
+ c[0]

)
ds.

Proof. Pick a Mather measure µ such that (x, v) ∈ supp (µ). First of all, it
is clear that

u
(
π ◦ ϕLt′(x, v)

)
− u

(
π ◦ ϕLt (x, v)

)
≤
∫ t′

t

(
L
(
ϕLs (x, v)

)
+ c[0]

)
ds.

Integrate this over dµ(x, v) to yield

0 =

∫
Tn×Rn

u ◦ π dµ(x, v)−
∫
Tn×Rn

u ◦ π dµ(x, v)

=

∫
Tn×Rn

u
(
π ◦ ϕLt′(x, v)

)
dµ(x, v)−

∫
Tn×Rn

u
(
π ◦ ϕLt (x, v)

)
dµ(x, v)

≤
∫ t′

t

∫
Tn×Rn

(
L
(
ϕLs (x, v)

)
+ c[0]

)
dµ(x, v)ds = 0.

Thus, the inequality in the above must become an equality. Hence, equality
must happen on the support of µ, which means that (5.9) holds. □

Lemma 5.6. Assume (5.1). Let u ∈ Lip (Tn) be a solution to (5.3). Then,

for (x, v) ∈ M̃0, u is differentiable at x, and

Du(x) = DvL(x, v).

Moreover,

M̃0 ⊂ {(x, v) ∈ Tn × Rn : H(x,DvL(x, v)) = c[0]} .

In particular, M̃0 is contained in the c[0]-level set of H and is compact.

Proof. We note that (5.9) holds for t < 0 < t′. By Theorem 4.29, u is
differentiable at x(s) for all s ∈ R, and

(5.10) Du(x(s)) = DvL(x(s), ẋ(s)).

In particular, u is differentiable at x = x(0), and

Du(x) = DvL(x, v).

Since u is differentiable at x, (5.3) holds in the classical sense there, and

H(x,Du(x)) = H(x,DvL(x, v)) = c[0].

The proof is complete. □
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5.2.1. A uniqueness result. We now have a uniqueness result for weak
KAM solutions of negative type.

Theorem 5.7. Assume (5.1). Let u1, u2 be two weak KAM solutions of
negative type. Assume that u1 = u2 on M0. Then, u1 = u2.

Proof. Fix x ∈ Tn. Let ξ : (−∞, 0] → Tn be a (u1, L, c[0])-calibrated curve.
Then, for any t < 0,

u1(x)− u1(ξ(t)) =

∫ 0

t
L(ξ, ξ̇) ds+ |t|c[0],

u2(x)− u2(ξ(t)) ≤
∫ 0

t
L(ξ, ξ̇) ds+ |t|c[0].

We infer that, for all t < 0,

(5.11) u2(x)− u1(x) ≤ u2(ξ(t))− u1(ξ(t)).

We use ξ to construct a Mather measure as in the proof of Theorem 5.2.
Define µt ∈ P(Tn × Rn) as

⟨µt, ψ⟩ =
∫
Tn×Rn

ψ(x, v) dµt(x, v) =
1

|t|

∫ 0

t
ψ(ξ(s), ξ̇(s)) ds

for all bounded continuous functions ψ. As ∥ξ̇∥L∞((−∞,0]) ≤ C, we see that

supp (µt) ⊂ Tn ×B(0, C) for all t < 0.

By compactness, there exists a sequence {tk} → −∞ such that

µtk ⇀ µ ∈ P(Tn ×B(0, C)) weakly in the sense of measures,

and µ is a Mather measure. We use (5.11) to imply

u2(x)− u1(x) ≤
1

|tk|

∫ 0

tk

(u2 − u1)(ξ(s)) ds =

∫
Tn×Rn

(u2 − u1) ◦ π dµtk(x, v).

Let k → ∞ to deduce that

u2(x)− u1(x) ≤
∫
Tn×Rn

(u2 − u1) ◦ π dµ(x, v) = 0.

By a symmetric argument, we conclude that u1 = u2. □

5.2.2. Lipschitz graph theorem. In the following, we obtain the famous
Lipschitz graph theorem.

Theorem 5.8. Assume (5.1). Let u ∈ Lip (Tn) be a solution to (5.3). There
exists C > 0 such that, for all x ∈ M0 and h ∈ Rn,

|u(x+ h) + u(x− h)− 2u(x)| ≤ C|h|2.
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Proof. Fix (x, v) ∈ M̃0. For t ∈ R, write ϕLt (x, v) = (x(t), ẋ(t)). By (5.9),

u(x(1))− u(x(0)) =

∫ 1

0
L(x(s), ẋ(s)) ds+ c[0],

u(x(0))− u(x(−1)) =

∫ 0

−1
L(x(s), ẋ(s)) ds+ c[0].

On the other hand,

u(x(1))− u(x(0) + h) ≤
∫ 1

0
L(x(s) + (1− s)h, ẋ(s)− h) ds+ c[0],

u(x(1))− u(x(0)− h) ≤
∫ 0

−1
L(x(s)− (1− s)h, ẋ(s) + h) ds+ c[0].

Combine the above relations to imply

u(x+ h) + u(x− h)− 2u(x)

≥
∫ 1

0
(2L(x, ẋ)− L(x+ (1− s)h, ẋ− h)− L(x− (1− s)h, ẋ+ h)) ds

≥ − C|h|2.

We obtain the converse bound in a similar way. Indeed,

u(x(0) + h)− u(x(−1)) ≤
∫ 0

−1
L(x(s) + (1 + s)h, ẋ(s) + h) ds+ c[0],

u(x(0)− h)− u(x(−1)) ≤
∫ 0

−1
L(x(s)− (1 + s)h, ẋ(s)− h) ds+ c[0].

Hence,

u(x+ h) + u(x− h)− 2u(x)

≤
∫ 1

0
(L(x+ (1 + s)h, ẋ+ h)− L(x− (1 + s)h, ẋ− h)− 2L(x, ẋ)) ds

≤ C|h|2.

□

Theorem 5.9. Assume (5.1). Let u ∈ Lip (Tn) be a solution to (5.3). There
exists C > 0 such that, for all x ∈ M0 and h ∈ Rn,

|u(x+ h)− u(x)−Du(x) · h| ≤ C|h|2.

Proof. We use essentially the ideas in the proof of Theorem 5.8. Fix (x, v) ∈
M̃0. Then, Du(x) = DvL(x, v).
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By the first part of the proof of Theorem 5.8 and the Euler-Lagrange
equations,

u(x+ h)− u(x)

≥
∫ 1

0
(L(x, ẋ)− L(x+ (1− s)h, ẋ− h)) ds

≥
∫ 1

0
(DxL(x, ẋ) · (s− 1)h+DvL(x, ẋ) · h) ds− C|h|2

=

∫ 1

0

(
d

ds
(DvL(x, ẋ)) · (s− 1)h+DvL(x, ẋ) · h

)
ds− C|h|2

=

∫ 1

0

d

ds
(DvL(x, ẋ) · (s− 1)h) ds− C|h|2

= DvL(x(0), ẋ(0)) · h− C|h|2 = Du(x) · h− C|h|2.

The converse bound can be obtained in a similar way by using the second
part of the proof of Theorem 5.8 and the Euler-Lagrange equations, and its
proof is hence omitted. □

Hidden in the above two theorems are rather deep properties of the
differentiability of u along backward characteristics. Let us record them
here. It is always fine to go back in time along the backward characteristics,
and hence the second part of the proof of Theorem 5.8 always holds true.
This leads to the semiconcavity of u.

Theorem 5.10 (semiconcavity). Assume (5.1). Let u ∈ Lip (Tn) be a so-
lution to (5.3). There exists C > 0 such that, for all x ∈ Tn and h ∈ Rn,

u(x+ h) + u(x− h)− 2u(x) ≤ C|h|2.

Besides, we also have local controls along backward characteristics ex-
cept the endpoints.

Corollary 5.11. Assume (5.1). Let u ∈ Lip (Tn) be a solution to (5.3).
Let γ : (−∞, 0] → Tn be a backward characteristic of u. There exists C > 0
such that, for y = γ(t) with t < 0 and h ∈ Rn,

|u(y + h) + u(y − h)− 2u(y)| ≤ C

t2
|h|2.

Theorem 5.12 (Lipschitz graph theorem). Assume (5.1). Let u ∈ Lip (Tn)
be a solution to (5.3). There exists C > 0 such that, for all x, y ∈ M0,

|Du(y)−Du(x)| ≤ C|x− y|.
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Proof. Fix x, y ∈ M0. For z ∈ Tn to be chosen,

|u(y)− u(x)−Du(x) · (y − x)| ≤ C|y − x|2,
|u(z)− u(x)−Du(x) · (z − x)| ≤ C|z − x|2,
|u(z)− u(y)−Du(y) · (z − y)| ≤ C|z − y|2.

Combine these three inequalities and use the triangle inequality to yield

(5.12) |(Du(x)−Du(y)) · (z − y)| ≤ C(|x− y|2 + |y − z|2 + |z − x|2).

If Du(x) = Du(y), then we are done. Else, choose z as

z = y + |x− y| Du(x)−Du(y)

|Du(x)−Du(y)|
.

Then, we see that

|y − z| = |x− y|, |z − x| ≤ |x− y|+ |y − z| ≤ 2|x− y|.

Plug these into (5.12) to deduce that

|Du(y)−Du(x)| ≤ C|x− y|.

□

Corollary 5.13. Assume (5.1). Let u ∈ Lip (Tn) be a solution to (5.3).

Then, the projection map π : M̃0 → M0 with π(x,Du(x)) = x for x ∈ M0

is Lipschitz. The inverse map π−1 : M0 → M̃0 is also Lipschitz.

5.2.3. Examples of Mather set.

Definition 5.14 (Reversible Lagrangian). The Lagrangian L is said to be
reversible if

L(x, v) = L(x,−v) for all (x, v) ∈ Tn × Rn.

An example of a reversible Lagrangian is

L(x, v) =
1

2
|v|2 − V (x) for all (x, v) ∈ Tn × Rn,

for a given potential energy V ∈ C(Tn).

Proposition 5.15. Assume (5.1). Assume further that L is reversible.
Then, the following points hold.

(i)

−c[0] = min
x∈Tn

L(x, 0) = min
(x,v)∈Tn×Rn

L(x, v).

(ii)

M̃0 = {(x, 0) : L(x, 0) = −c[0]} .
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Proof. Thanks to (5.1) and the reversibility of L, for (x, v) ∈ Tn×Rn \{0},

L(x, v) =
1

2
(L(x, v) + L(x,−v)) > L(x, 0).

Therefore,

min
x∈Tn

L(x, 0) = min
(x,v)∈Tn×Rn

L(x, v) = α ∈ R.

By Theorem 5.2,

−c[0] = inf

{∫
Tn×Rn

L(x, v) dµ(x, v) : µ ∈ P(Tn × Rn) is flow invariant

}
≥ min

(x,v)∈Tn×Rn
L(x, v) = α.

On the other hand, for each x0 ∈ Tn such that L(x0, 0) = α, we claim that
the stay put curve

γ(t) = x0 for all t ∈ R
is a minimizing extremal curve. Indeed, for any η ∈ AC([a, b],Tn) with
η(a) = η(b) = x0,∫ b

a
L(γ, γ̇) ds = (b− a)L(x0, 0) ≤

∫ b

a
L(η, η̇) ds.

Thus,

ϕLt (x0, 0) = (x0, 0) for all t ∈ R,
and hence, δ(x0,0) is invariant by ϕ

L
t . As∫

Tn×Rn

L(x, v) dδ(x0,0) = α,

we conclude that δ(x0,0) is a Mather measure. We hence get both (i) and
(ii). □

Remark 5.16. Some comments are in order.

(1) The above proposition can be generalized to more complicated
cases. For example, we only need to require the Lagrangian satis-
fying that

L(x, v) ≥ L(x, 0) for all (x, v) ∈ Tn × Rn.

(2) In the above proposition, for x1, . . . , xk ∈ argminL(·, 0),

α1δ(x1,0) + · · ·+ αkδ(xk,0)

is a Mather measure for α1, . . . , αk ≥ 0 and
∑k

i=1 αi = 1. In
this situation, we say that δ(xi,0) is an ergodic Mather measure for
1 ≤ i ≤ k.

Let us consider further a more specific example in one dimension.
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Example 5.17. Assume n = 1, and

H(x, p) =
1

2
|p|2 + V (x) for (x, p) ∈ T× R.

Then,

L(x, v) =
1

2
|v|2 − V (x) for (x, v) ∈ T× R.

As proved in the previous proposition,{
c[0] = maxT V,

M̃0 = {(x, 0) : V (x) = c[0] = maxT V } .

Let us now consider the simplest case in which

M̃0 = {(0, 0)}.

We already proved that M0 = {0} is the uniqueness set for solutions to
(5.3). Let us now construct all possible viscosity solutions to (5.3). The
PDE for u is

(5.13)
1

2
|u′(x)|2 + V (x) = c[0] = maxV in T.

Then, for a.e. x ∈ [0, 1],

u′(x) = ±
√

2(c[0]− V (x)).

Choose z ∈ (0, 1) such that∫ z

0

√
2(c[0]− V (x)) dx =

∫ 1

z

√
2(c[0]− V (x)) dx.

Set

u(x) =

{∫ x
0

√
2(c[0]− V (s)) ds for 0 ≤ x ≤ z,∫ 1

x

√
2(c[0]− V (s)) ds for z ≤ x ≤ 1.

Then,

u′(x) =

{√
2(c[0]− V (x)) for 0 ≤ x < z,

−
√

2(c[0]− V (x)) for z < x ≤ 1.

It is clear that

u(0) = u′(0) = u(1) = u′(1) = 0,

and u is not differentiable at z. Extend u in a periodic way to R.
We now show quickly that u is a viscosity solution to (5.13). We only

need to verify this at z. It is clear that

D+u(z) = [−
√

2(c[0]− V (z)),−
√

2(c[0]− V (z))],

and for any p ∈ D+u(z),

1

2
|p|2 + V (z) ≤ c[0].
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Thus, all viscosity solutions to (5.13) are u+ C for C ∈ R.

5.3. The Peierls barrier

Definition 5.18 (the Peierls barrier). Define h : Tn × Tn → R as: For
x, y ∈ Tn,

h(x, y) = lim inf
t→∞

[ht(x, y) + c[0]t] .

Recall that ht(x, y) is the minimal cost it takes to travel from x to y
in a given fixed amount of time t corresponding to the given Lagrangian L.
More specifically, as defined in (4.13),

ht(x, y) = inf
γ∈AC([0,t],Tn)
γ(0)=x,γ(t)=y

∫ t

0
L(γ(s), γ̇(s)) ds.

Lemma 5.19 (Properties of ht). Assume (5.1). Then, the following points
hold.

(1) For x, y, z ∈ Tn and t, t′ > 0,

ht(x, y) + ht′(y, z) ≥ ht+t′(x, z).

(2) If u ≺ L + c for some u ∈ C(Tn) and c ∈ R, then, for x, y ∈ Tn

and t > 0,

u(y)− u(x) ≤ ht(x, y) + ct.

(3) For x ∈ Tn and t > 0, we have

ht(x, x) + c[0]t ≥ 0.

(4) For each u ∈ S− and t0 > 0, there exists a constant C = C(u, t0) >
0 such that, for x, y ∈ Tn and t > t0,

−2∥u∥L∞(Tn) ≤ ht(x, y) + c[0]t ≤ 2∥u∥L∞(Tn) + C.

(5) For each t > 0 and x, y ∈ Tn, there exists an extremal curve γ :
[0, t] → Tn with γ(0) = x, γ(t) = y such that

ht(x, y) =

∫ t

0
L(γ(s), γ̇(s)) ds.

Moreover, an extremal curve γ : [0, t] → Tn is minimizing if and
only if

ht(γ(0), γ(t)) =

∫ t

0
L(γ(s), γ̇(s)) ds.

(6) For each t0 > 0, there exists a constant C = C(t0) > 0 such that,
for each t > t0, ht is Lipschitz in Tn × Tn with Lipschitz constant
at most C(t0).
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Proof. We note that we already proved most of the claims. More precisely,
(1), (2), and (5) were shown in the proof of Proposition 4.32. Claim (6) was
obtained in Theorem 4.34.

Let us proceed to prove (3). Take u ∈ S−. Then, in light of (2),

0 = u(x)− u(x) ≤ ht(x, x) + c[0]t.

Finally, we prove (4). The lower bound is rather obvious as

−2∥u∥L∞(Tn) ≤ u(y)− u(x) ≤ ht(x, y) + c[0]t.

The upper bound is important as we need to have that for all t > t0. First
of all, it is clear that, for each x, z ∈ Tn, we can find γx,z : [0, t0] → Tn such
that γx,z(0) = x, γx,z(t0) = z, and

ht0(x, z) =

∫ t0

0
L(γx,z, γ̇x,z) ds ≤ C = C(t0).

Secondly, as u ∈ S−, we can find a calibrated curve ξ : (−∞, 0] → Tn such
that ξ(0) = y, and for t2 < t1 ≤ 0,

u(ξ(t1))− u(ξ(t2)) =

∫ t1

t2

(
L(ξ, ξ̇) + c[0]

)
ds.

We now combine these two points to conclude. Let z = ξ(t0 − t). Define
γ : [0, t] → Tn connecting x to y as

γ(s) =

{
γx,z(s) for 0 ≤ s ≤ t0,

ξ(s− t) for t0 ≤ s ≤ t.

Then,

ht(x, y) + c[0]t ≤
∫ t

0
(L(γ, γ̇) + c[0]) ds

≤ (C(t0) + c[0]t0) + u(ξ(0))− u(ξ(t0 − t))

≤ C(t0) + 2∥u∥L∞(Tn).

□

Theorem 5.20 (Properties of the Peierls barrier). Assume (5.1). Then,
the following points hold.

(1) h is Lipschitz.

(2) If u ≺ L+ c[0] for u ∈ C(Tn), then, x, y ∈ Tn,

u(y)− u(x) ≤ h(x, y).

(3) For x ∈ Tn, h(x, x) ≥ 0.

(4) For x, y, z ∈ Tn, we have the triangle inequality

h(x, y) + h(y, z) ≥ h(x, z).
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(5) For x, y ∈ Tn,

h(x, y) + h(y, x) ≥ 0.

(6) For x ∈ M0, h(x, x) = 0.

(7) For x, y ∈ Tn, there exists a sequence of minimizing extremal curves
γk : [0, tk] → Tn with tk → ∞, γk(0) = x, γk(tk) = y, and

h(x, y) = lim
k→∞

∫ tk

0
(L(γk, γ̇k) + c[0]) ds.

(8) For any sequence of continuous piecewise C1 curve γk : [0, tk] → Tn

with tk → ∞, γk(0) → x, γk(tk) → y, we have

h(x, y) ≤ lim inf
k→∞

∫ tk

0
(L(γk, γ̇k) + c[0]) ds.

Proof. Note first that h is finite by item (4) of Lemma 5.19.

For t ≥ 1, ht is Lipschitz in Tn × Tn with Lipschitz constant at most
C(1). As such, h is Lipschitz with Lipschitz constant at most C(1), and (1)
is proved.

Point (2) is rather straightforward as for x, y ∈ Tn and t > 0,

u(y)− u(x) ≤ ht(x, y) + c[0]t.

Take lim inf of the above as t→ ∞ to conclude. We then take x = y in (2)
to get (3).

By item (1) of Lemma 5.19, for x, y, z ∈ Tn and t, t′ > 0,

ht(x, y) + ht′(y, z) ≥ ht+t′(x, z).

Hence,

(ht(x, y) + c[0]t) + (ht′(y, z) + c[0]t′) ≥ ht+t′(x, z) + c[0](t+ t′).

Take lim inf of the above left hand side as t→ ∞ and t′ → ∞ to imply (4).
Item (5) follows immediately from (4).

Let us now prove (6), which is very interesting as we start seeing con-
nections between points in the projected Mather set M0 and the Peierls

barrier. Take x ∈ M0. There is v ∈ Rn such that (x, v) ∈ M̃0. Pick µ to
be a Mather measure such that (x, v) ∈ supp (µ). Note that the recurrent
points of ϕLt contained in supp (µ) form a dense set in supp (µ). By the
continuity of h, we can then assume that (x, v) is a recurrent point of ϕLt .
In particular, there exists a sequence {tk} → ∞ such that

(5.14) lim
k→∞

π ◦ ϕtk(x, v) = x.
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Fix u ∈ S−. We have

u(π ◦ ϕLtk(x, v))− u(x) =

∫ tk

0

(
L(ϕLs (x, v)) + c[0]

)
ds,

which together with (5.14) yields

(5.15) lim
k→∞

∫ tk

0

(
L(ϕLs (x, v)) + c[0]

)
ds = 0.

We now construct a sequence of loops connecting x to itself. For each k ∈ N,
if π ◦ϕtk(x, v) = x, then denote by ηk(s) = π ◦ϕLs (x, v) for 0 ≤ s ≤ tk. Else,
let sk = tk + |π ◦ ϕtk(x, v)− x| and

ηk(s) =

π ◦ ϕLs (x, v) for 0 ≤ s ≤ tk,

π ◦ ϕtk(x, v) + (s− tk)
x− π ◦ ϕtk(x, v)
|x− π ◦ ϕtk(x, v)|

for tk ≤ s ≤ sk.

In light of (5.14) and (5.15), we see that

lim
k→∞

∫ tk

0
(L(ηk, η̇k) + c[0]) ds = 0,

which gives h(x, x) = 0.

Item (7) follows directly from the definition of h and item (5) of Lemma
5.19.

Finally, let us prove (8). We use a similar construction to the one of
ηk above. The point is that, as k → ∞, the costs of connecting x to γk(0)
and γk(tk) to y vanish. To be more precise, let αk = |x − γk(0)|, and
βk = |γk(tk)− y|. Set

ξk(s) =


x+ s γk(0)−x

|γk(0)−x| for 0 ≤ s ≤ αk,

γk(s− αk) for αk ≤ s ≤ tk + αk,

γk(tk) + (s− (tk + αk))
y−γk(tk)
|y−γk(tk)| for tk + αk ≤ s ≤ tk + αk + βk.

Then,

h(x, y) ≤ lim inf
k→∞

∫ tk+αk+βk

0

(
L(ξk, ξ̇k) + c[0]

)
ds

≤ lim inf
k→∞

∫ tk

0
(L(γk, γ̇k) + c[0]) ds.

The proof is complete. □

We next have the following important lemma.

Lemma 5.21. Assume (5.1). Let V be an open neighborhood of M̃0 in
Tn × Rn. Then, there exists T = T (V ) > 0 such that if γ : [0, t] → Tn

is a minimizing curve with t ≥ T , then we can find s ∈ [0, t] such that
(γ(s), γ̇(s)) ∈ V .
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Proof. We give a proof by contradiction. Assume otherwise that we can
find {tk} → ∞ and a sequence of minimizing curves γk : [0, tk] → Tn such
that

(5.16) {(γk(s), γ̇k(s)) : 0 ≤ s ≤ tk} ∩ V = ∅.
Without loss of generality, assume tk ≥ 1 for all k ∈ N and there exists a
compact set K ⊂ Rn such that, for all k ∈ N,

(5.17) {(γk(s), γ̇k(s)) : 0 ≤ s ≤ tk} ⊂ Tn ×K.

We now construct a Mather measure from {γk} to get a contradiction. Let
µk ∈ P(Tn × Rn) be such that∫

Tn×Rn

ψ(x, v) dµk(x, v) =
1

tk

∫ tk

0
ψ(γk(s), γ̇k(s)) ds

for all ψ continuous and bounded in Tn×Rn. By (5.17), supp (µk) ⊂ Tn×K.
By passing to a subsequence if necessary, we assume that µk ⇀ µ weakly in
the sense of measure for some µ ∈ P(Tn × Rn). It is clear that supp (µ) ⊂
Tn ×K and µ is invariant under ϕLt . Besides, for each k ∈ N,∫

Tn×Rn

L(x, v) dµk(x, v) =
1

tk
htk(γk(0), γk(tk)),

which together with item (4) of Lemma 5.19 implies

−
2∥u∥L∞(Tn)

tk
≤
∫
Tn×Rn

L(x, v) dµk(x, v) + c[0] ≤
2∥u∥L∞(Tn) + C

tk
.

Let k → ∞ to deduce that∫
Tn×Rn

L(x, v) dµ(x, v) = −c[0],

which gives further that µ is a Mather measure. This contradicts (5.16).

□

5.4. Aubry set

There are many different ways to define Aubry set. We give here one that
uses h.

Definition 5.22 (Aubry set). Assume (5.1). Denote the Aubry set A0 as

A0 = {x ∈ Tn : h(x, x) = 0}.

It is clear that A0 ̸= ∅ as item (6) of Theorem 5.20 gives

∅ ≠ M0 ⊂ A0.

We have the following clear characterizations of A0.

Proposition 5.23. Assume (5.1). The followings are equivalent.
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(i) x ∈ A0, that is, h(x, x) = 0.

(ii) There exists a sequence {γk} of continuous piecewise C1 curves
γk : [0, tk] → Tn with γk(0) = γk(tk) = x and tk → ∞ such that

lim
k→∞

∫ tk

0
(L(γk, γ̇k) + c[0]) ds = 0.

(iii) There exists a sequence {γk} of minimizing extremal curves γk :
[0, tk] → Tn with γk(0) = γk(tk) = x and tk → ∞ such that

lim
k→∞

∫ tk

0
(L(γk, γ̇k) + c[0]) ds = 0.

The proof of this proposition is straightforward and hence is omitted.
Next, we give another characterization of the Aubry set.

Theorem 5.24. Assume (5.1). Then, x ∈ A0 if and only if for any fixed
δ > 0,

inf
{∫ t

0
(L(γ, γ̇) + c[0]) ds :

γ ∈ AC([0, t],Tn) with t > δ, γ(0) = γ(t) = x
}
= 0.

Proof. We first prove the “⇒” direction. Take x ∈ A0. By (ii) of Propo-
sition 5.23, there exists a sequence {γk} of continuous piecewise C1 curves
γk : [0, tk] → Tn with γk(0) = γk(tk) = x and tk → ∞ such that

lim
k→∞

∫ tk

0
(L(γk, γ̇k) + c[0]) ds = 0,

which allows us to conclude right away.

Next, we prove the “⇐” direction. Fix δ > 0. For each k ∈ N, there
exists γ ∈ AC([0, t],Tn) with t > δ and γ(0) = γ(t) = x such that

0 ≤
∫ t

0
(L(γ, γ̇) + c[0]) ds ≤ 1

k2
.

Let γk be k copies of γ (or γ with multiplicity k). More explicitly, let tk = kt,
and

γk(s) = γ(s− it) for i ∈ {0, . . . , k − 1}, it ≤ s ≤ (t+ 1)t.

Then,

0 ≤
∫ tk

0
(L(γk, γ̇k) + c[0]) ds = 0 ≤ k

1

k2
=

1

k
.

Besides, tk = kt ≥ kδ, and so, limk→∞ tk = ∞. By (ii) of Proposition 5.23,
we yield that x ∈ A0. □
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Remark 5.25. Note that for x ∈ A0, we do not know in general if there
exists a loop γ : [0, t] → Tn with t > 0, γ(0) = γ(t) = x such that∫ t

0
(L(γ, γ̇) + c[0]) ds = 0.

Example 5.26. Consider the case where

H(x, p) =
1

2
|p|2 + V (x) for (x, p) ∈ Tn × Rn,

for some V ∈ C(Tn). Then,

L(x, v) =
1

2
|v|2 − V (x) for (x, v) ∈ Tn × Rn.

We already computed that c[0] = maxV , and

M0 = {y ∈ Tn : V (y) = c[0] = maxV }.

Let us find out what is A0 in this case. Note that for γ : [0, t] → Tn with
t > 0, and γ(0) = γ(t) = x,∫ t

0
(L(γ, γ̇) + c[0]) ds

=

∫ t

0

(
1

2
|γ̇(s)|2 +maxV − V (γ(s))

)
ds ≥ 0.

It is clear that equality in the above happens if and only if

γ(s) = x ∈ M0 for all s ∈ [0, t].

Next, take x /∈ M0. Then, V (x) = c[0]− 2θ < c[0] for some θ > 0. Let

O = V −1([c[0]− θ, c[0]]) ⊃ M0.

Then, δ = dist (x,O) > 0. For any t > 1, denote by J = {s ∈ [0, t] : γ(s) ∈ O},
and

τ =

{
inf J if J ̸= ∅,
t if J = ∅.

Then, ∫ t

0
(L(γ, γ̇) + c[0]) ds

≥
∫ τ

0

(
1

2
|γ̇(s)|2 + θ

)
ds

≥ θτ +
τ

2

∣∣∣∣1τ
∫ τ

0
γ̇(s) ds

∣∣∣∣2 = θτ +
|γ(τ)− x|2

2

≥ min
{
θ, δ

√
2θ
}
,
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which implies that x /∈ A0. We hence conclude in this case that

A0 = M0 = {y ∈ Tn : V (y) = c[0] = maxV }.

We discuss further about properties of h.

Theorem 5.27. Assume (5.1). Fix x ∈ Tn. Denote by

hx(y) = h(x, y) for y ∈ Tn.

Then, hx ∈ S−.

Proof. We first show that hx ≺ L+ c[0]. Fix γ ∈ AC([0, t],Tn). Of course,

ht(γ(0), γ(t)) ≤
∫ t

0
L(γ, γ̇) ds,

and, for t′ > 0, by the triangle inequality,

ht+t′(x, γ(t)) ≤ ht′(x, γ(0)) +

∫ t

0
L(γ, γ̇) ds.

Therefore,

ht+t′(x, γ(t)) + c[0](t+ t′) ≤ ht′(x, γ(0)) + c[0]t′ +

∫ t

0
L(γ, γ̇) ds+ c[0]t.

Take lim inf as t′ → ∞ to yield

(5.18) hx(γ(t))− hx(γ(0)) ≤
∫ t

0
L(γ, γ̇) ds+ c[0]t.

We get hx ≺ L+ c[0].

Next, to finish the proof, we need to show that for each y ∈ Tn, there
exists a calibrated curve γ : (−∞, 0] → Tn with γ(0) = y, and for t > 0,

hx(γ(0))− hx(γ(−t)) =
∫ 0

−t
L(γ, γ̇) ds+ c[0]t.

Take a sequence of extremal curves ηk : [−tk, 0] → Tn connecting x to y
with tk → ∞, ηk(−tk) = x, ηk(0) = y, and

hx(y) = h(x, y) = lim
k→∞

(∫ 0

−tk

L(ηk, η̇k) ds+ c[0]tk

)
There exists C > 0 such that, for all k ∈ N,

∥ηk∥L∞([−tk,0]) + ∥η̇k∥L∞([−tk,0]) ≤ C.

By a diagonal argument and the Arzelà-Ascoli theorem, by passing to a
subsequence if needed, there exists γ ∈ Lip ((−∞, 0],Tn) with γ(0) = y such
that

ηk → γ locally uniformly on (−∞, 0].
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We claim that γ is exactly the calibrated curve that we want. Indeed, fix
t > 0. For k large enough such that tk > t, then∫ 0

−tk

L(ηk, η̇k) ds+ c[0]tk

=

∫ −t

−tk

L(ηk, η̇k) ds+ c[0](tk − t) +

∫ 0

−t
L(ηk, η̇k) ds+ c[0]t.

Let k → ∞ to imply

(5.19) hx(y) ≥ hx(γ(−t)) +
∫ 0

−t
L(γ, γ̇) ds+ c[0]t.

Combine (5.18) and (5.19) to conclude the proof. □
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Chapter 6

Aubry-Mather theory
in two dimensions in
the smooth setting

In this chapter, we are always in two dimensions. We consider a given
Hamiltonian H : T2 × R2 → R that satisfies

(6.1)


H ∈ Ck(T2 × R2) for some k ≥ 2,

D2
ppH(y, p) > 0 for all (y, p) ∈ T2 × R2,

lim|p|→∞miny∈T2
H(y,p)

|p| = +∞.

Let L be the corresponding Lagrangian (the Legendre transform of H).
Then, L satisfies

(6.2)


L ∈ Ck(T2 × R2),

D2
vvL(y, v) > 0 for all (y, v) ∈ T2 × R2,

lim|v|→∞miny∈T2
L(y,v)
|v| = +∞.

The main object in this chapter is still the cell problem at p ∈ R2, that is,

(6.3) H(y, p+Dv(y)) = H(p) in T2.

Here, H(p) ∈ R is the unique constant so that (6.3) has a viscosity solution
as discussed in the previous chapters.

6.1. Absolute minimizing curves

6.1.1. Absolute minimizing curves.

91
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Definition 6.1 (Absolute minimizing curve). Assume (6.1). A curve γ ∈
AC(R,R2) is called an absolute minimizer (or absolute minimizing curve)
associated with L+ c for some c ∈ R if for any t1 < t2,∫ t2

t1

(L(γ, γ̇) + c) ds ≤
∫ s2

s1

(
L(δ, δ̇) + c

)
ds

for every δ ∈ AC([s1, s2],R2) satisfying δ(si) = γ(ti) for i = 1, 2.

Two absolute minimizers associated with L + c cannot intersect twice
unless they are the same after suitable translation in time. This non-crossing
property, together with the two dimensional topology, plays a crucial role in
the Aubry-Mather theory, which provides detailed information about distri-
butions of absolute minimizers (see [Ban88]).

Theorem 6.2. Assume (6.1). Let γ1 and γ2 be two distinct (up to trans-
lation in time) absolute minimizers associated with L + c for some given
c ∈ R. Then, γ1 and γ2 intersect at most once.

Proof. Assume otherwise that γ1 and γ2 intersect at least twice. By a
suitable translation in time, we may assume that there are a, b1, b2 ∈ R such
that a < b1 ≤ b2 and

γ1(a) = γ2(a), γ1(b1) = γ2(b2).

It is clear that∫ b1

a
(L(γ1, γ̇1) + c) ds =

∫ b2

a
(L(γ2, γ̇2) + c) ds.

Let γ3 : [a, b1 + 1] → R2 be such that

γ3(s) =

{
γ1(s) for s ∈ [a, b1],

γ2(s+ b2 − b1) for s ∈ [b1, b1 + 1].

As ∫ b2+1

a
(L(γ2, γ̇2) + c) ds =

∫ b1+1

a
(L(γ3, γ̇3) + c) ds,

we yield that γ3 is also a minimizer of the action∫ b1+1

a
(L(γ, γ̇) + c) ds

with corresponding fixed endpoints γ(a) = γ2(a) and γ(b1+1) = γ2(b2+1).
Hence γ3 is Ck and solves the following Euler-Lagrange equations

d

ds
(DvL(γ3(s), γ̇3(s))) = DxL(γ3(s), γ̇3(s)) for all s ∈ [a, b1 + 1].

Accordingly, at the junction γ1(b1) = γ2(b2) = γ3(b1), we must have that

γ̇1(b1) = γ̇2(b2) = γ̇3(b1).
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Since γ1 and γ2 are also solutions to the above Euler-Lagrange equations, the
uniqueness result for second order ODEs yields that γ1(t) = γ2(t+ b2 − b1),
which is absurd.

□

6.1.2. Preliminaries on orbits in projected Mather sets. Let us re-
call the result in Lemma 5.5. Let u ∈ Lip (T2) be a solution to (6.3). Pick

(x, v) ∈ M̃p. Then, for t ≤ t′,

(6.4) p · (π ◦ ϕLt′(x, v)) + u
(
π ◦ ϕLt′(x, v)

)
− p · (π ◦ ϕLt (x, v))

− u
(
π ◦ ϕLt (x, v)

)
=

∫ t′

t

(
L
(
ϕLs (x, v)

)
+H(p)

)
ds.

Definition 6.3 (Orbits in projected Mather sets). Assume (6.1). Fix p ∈
R2. For each (x, v) ∈ M̃p, we lift π ◦ ϕLt (x, v) for t ∈ R to R2 and say that
it is an orbit in Mp.

By using a similar idea to that in the proof of Theorem 6.2, we also have
the following result.

Theorem 6.4. Assume (6.1). Let γ1 and γ2 be two distinct (up to trans-
lation in time) orbits in Mp for some p ∈ R2. Then, γ1 and γ2 do not
intersect.

Proof. Without loss of generality, assume p = 0. Assume otherwise that
γ1 and γ2 intersect at least once. By a suitable translation in time, we may
assume that there exists a ∈ R such that

γ1(a) = γ2(a).

Let γ3 : R → R2 be such that

γ3(s) =

{
γ1(s) for s ≤ a,

γ2(s) for s ≥ a.

Then, in light of (6.4), γ3 is an absolute minimizer associated with L+H(0).
Hence γ3 is Ck and solves the following Euler-Lagrange equations

d

ds
(DvL(γ3(s), γ̇3(s))) = DxL(γ3(s), γ̇3(s)) for all s ∈ R.

Accordingly, at the junction, we have

γ̇1(a) = γ̇2(a) = γ̇3(a).

Since γ1 and γ2 are also solutions to the above Euler-Lagrange equations,
the uniqueness result for second order ODEs yields that γ1 = γ2, which gives
a contradiction.

□
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6.1.3. Existence of periodic orbits.

Proposition 6.5. Assume (6.1), and

min
R2

H = H(0) = 0.

If c > 0, then there exists a periodic orbit η : R → R2, which is an absolute
minimizer associated with L+ c, and

η(T )− η(0) = (0, 1)

for some T > 0.

Proof. Denote by

Γ(1) = {γ ∈ AC(R,R2) : there exists Tγ > 0 such that

γ(t+ Tγ) = γ(t) + (0, 1) for t ∈ R}.

We study the following minimization problem

(6.5) inf
γ∈Γ(1)

∫ Tγ

0
(L(γ, γ̇) + c) ds.

Let w be a solution to (6.3) with p = 0. As H(0) = 0, for any γ ∈ Γ(1),∫ Tγ

0
L(γ, γ̇) ds ≥ w(γ(Tγ))− w(γ(0)) = 0,

and hence, ∫ Tγ

0
(L(γ, γ̇) + c) ds ≥ cTγ > 0.

Let ξ(s) = (0, s) for s ∈ R. Then, Tξ = 1, and∫ Tξ

0

(
L(ξ, ξ̇) + c

)
ds ≤ c+ max

T2×B(0,1)
L ≤ C.

Therefore, we only need to study (6.5) for γ ∈ Γ(1) with Tγ ≤ C/c. Thus,

(6.5) admits a minimizer η ∈ Ck([0, Tη]). By shifting the time, we also have

that η ∈ Ck([s, s+ Tη]) for any s ∈ R, which gives us that η ∈ Ck(R).
Let us now prove that η is an absolute minimizer associated with L+ c.

By using the proof of Theorem 6.2, for any two minimizers of (6.5), they
intersect at most once in their periods. Therefore, all the minimizers of (6.5)
are well-ordered from left to right on the plane (they can still tangentially
touch each other).

For m ∈ N with m ≥ 2, set

Γ(m) = {γ ∈ AC(R,R2) : there exists Tm
γ > 0 such that

γ(t+ Tm
γ ) = γ(t) + (0,m) for t ∈ R}.
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We then consider

(6.6) inf
γ∈Γ(m)

∫ Tm
γ

0
(L(γ, γ̇) + c) ds.

By a similar argument to the above, (6.6) admits a minimizer ηm ∈ Ck(R).
Again, all the minimizers of (6.6) are well-ordered from left to right on the
plane.

We claim that in fact, ηm is also a minimizer to (6.5). Indeed, both ηm

and ηm+(0, k) for k ∈ N are minimizers of (6.6). Without loss of generality,
assume ηm is on the left of ηm + (0, 1). By shifting, ηm + (0, k) is on the
left of ηm + (0, k + 1) for k ∈ N. Since ηm = ηm + (0,m), we see that
ηm = ηm + (0, 1). Thus, our claim holds true. We get further that η is a
minimizer to (6.6) for all m ∈ N. This important point implies that η is an
absolute minimizer associated with L+ c.

□

6.2. Regularity of the level curves of the effective
Hamiltonian

Here is the main result of this section.

Theorem 6.6. Assume (6.1). If H(p) > minR2 H, then the subgradient set
∂H(p) is a radical segment, that is,

∂H(p) = {rnp : r ∈ [r1(p), r2(p)]}

for some unit vector np ∈ R2 and r1(p), r2(p) > 0. In particular, this implies

that for s > minR2 H, the level curve {H = s} is C1.

Note that the above is in general false when n ≥ 3.

Proof. Suppose that q1, q2 ∈ ∂H(p). Then, there exist two Mather mea-
sures µ1 and µ2 associated with p such that, for i = 1, 2,∫∫

T2×R2

q dµi = qi.

Accordingly, if q1 and q2 are not parallel, then there are two different orbits
γ1 and γ2 from supports of µ1 and µ2 respectively, which intersect each
other. We use strongly the two dimensional geometry in this point. In
higher dimensions, it is not necessarily the case that γ1 and γ2 intersect.
However, this is impossible thanks to Theorem 6.4.

Thus, all the vectors in the subgradient set ∂H(p) are parallel. In par-
ticular, the subgradient set ∂H(p) is a radical segment, that is,

∂H(p) = {rnp : r ∈ [r1(p), r2(p)]}
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for some unit vector np ∈ R2 and r1(p), r2(p) > 0. We have furthermore
that there exists sp ∈ [−∞,∞] such that, for any orbit ξ(t) = (x(t), y(t)) in
the projected Mather set Mp,

lim
|t|→∞

y(t)

x(t)
= sp.

Fix s > minR2 H. For every p ∈ {H = s}, the above claim also yields
that there is a unique normal vector from p to {H = s}. Therefore, {H = s}
is C1. □

6.3. Orbits in projected Mather sets

6.3.1. Identification with circle homeomorphisms. Let us first recall
a result on circle homeomorphisms.

Definition 6.7 (Circle homeomorphism). A continuous function f : R → R
is called a circle homeomorphism if f is strictly increasing and

f(x+ 1) = f(x) + 1 for all x ∈ R.

If f is a circle homeomorphism, then it is well-known that the Poincaré
rotation number

βf = lim
i→∞

f i(x)

i
.

exists and is independent of x ∈ R. Moreover,

(6.7) |f i(x)− f(x)− iβf | ≤ 1 for all i ∈ Z.
Also, βf = p

q ∈ Q with p ∈ Z, q ∈ N if and only if there exists x0 ∈ R such

that
f q(x0) = f(x0) + p.

Here, for i ∈ N, f i represents the i-th iteration of f .

Now, we identify orbits in projected Mather sets with circle homeomor-
phisms. Fix p ∈ R2. Assume that ξ : R → R2 is an orbit in Mp. By
Theorem 6.4, orbits in Mp do not intersect with each other. Therefore,
they are totally ordered in R2 (see Figure 1 below).

In the following, we explain how to associate ξ(t) = (x(t), y(t)) with a
circle map f : R → R when H(p) > minR2 H, which is well-known in the
Aubry-Mather theory. Without loss of generality, we assume that

lim
|t|→∞

y(t)

x(t)
= sp ∈ [0, 1].

By Proposition 6.5, there exists a periodic trajectory η : R → R2, which is
an absolute minimizer associated with L+H(p), and

η(T )− η(0) = (0, 1)
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for some T > 0. Clearly, for each k ∈ Z, ξ intersects with ηk = η + (k, 0)
exactly once since both ξ and η are absolute minimizers of the action∫ (

L(γ, γ̇) +H(p)
)
ds.

Without loss of generality, we may assume that

ξ(0) = η(0) ∈ [0, 1]2.

For each k ∈ Z, let ak ∈ R be such that

ξ ∩ ηk = ηk(akT ).

Since orbits in Mp are totally ordered in R2, either ak = 0 for all k ∈ Z or
{ak}k∈Z is a strictly increasing sequence. Moreover, for fixed k > l,

ak − al = i ∈ Z =⇒ ak+m − al+m = i for all m ∈ Z.

Indeed, ak − al = i means that there exists α ∈ R such that ξ(s + α) =
ξ(s) + (k − l, i) for all s ∈ R, and hence, the implication follows.

Thus, there exists a circle homeomorphism f such that

f(ak) = ak+1 for all k ∈ Z.

See [Ban88, Theorem 3.15] and Appendix B for further detail on the defi-
nition of f .

ξ̃

ξ

η0 η1 η2

Figure 1. Orbits in Mp and {ηk}k∈Z
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6.3.2. Uniform convergence of slope of orbits on Mather sets.
Through suitable translations, we may assume that

min
R2

H = H(0) = 0.

Let p, ξ, and η be from the previous section. Denote

H(p) = r > 0.

By (6.1), there exists Cr > 0 such that

L(x, v) ≥ 2

(
r + max

T2×B(0,1)
L

)
|v| − Cr for all (x, v) ∈ T2 × R2.

We first give uniform lower and upper bounds of the period T of η.

Lemma 6.8. Assume (6.1). Let η : R → R2 be a periodic trajectory as in
the construction of Proposition 6.5 with c = r = H(p), and

η(T )− η(0) = (0, 1)

for some T > 0. Then,

(6.8)
r +maxT2×B(0,1) L

Cr
≤ T ≤ 1 +

maxT2×B(0,1) L

r
.

Proof. By the proof of Proposition 6.5,

T = Tη ≤
r +maxT2×B(0,1) L

r
= 1 +

maxT2×B(0,1) L

r
.

On the other hand,

r + max
T2×B(0,1)

L ≥
∫ T

0
L(η, η̇) ds+ rT

≥
∫ T

0

(
2

(
r + max

T2×B(0,1)
L

)
|η̇| − Cr

)
ds

≥ 2

(
r + max

T2×B(0,1)
L

)
− CrT.

Thus,

T ≥
r +maxT2×B(0,1) L

Cr
.

□

We give some preparations before stating the main result of this section.
Let v be a viscosity solution to

H(y, p+Dv) = H(p) = r in T2.
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Note that v is differentiable along ξ, and

ξ̇ = DpH(ξ, p+Dv(ξ)) in R.

Therefore, there exists C(r) > 0 depending only on r and the growth rate
of L such that

(6.9) ∥ξ̇∥L∞(R), ∥η̇∥L∞(R) ≤ C(r).

Let w be a solution to (6.3) with p = 0. As H(0) = 0, for any γ ∈
AC([s1, s2],R2),∫ s2

s1

L(γ, γ̇) ds ≥ w(γ(s2))− w(γ(s1)) ≥ −d
√
2,(6.10)

where

d = max {|p̃| : H(y, p̃) = 0} .
Here is the main result in this section.

Theorem 6.9. Assume (6.1). Assume that ξ(t) = (x(t), y(t)) for t ∈ R is
an orbit in Mp, and

lim
|t|→∞

y(t)

x(t)
= sp ∈ [0, 1].

Then for all t ∈ R,
|y(t)− spx(t)| ≤ C.

Here, C > 0 is a constant depending only on r, d, and the growth rate of L.

Proof. Assume that

ξ(tk) = ηk(akT ).

In light of (6.8) and (6.9),∣∣∣∣η(t)− η(0)−
(
0,
t

T

)∣∣∣∣ ≤ C.

Therefore,

|x(tk)− k| ≤ C and |y(tk)− ak| ≤ C.

Hence,

lim
k→∞

ak
k

= sp.

Since t0 = a0 = 0, thanks to (6.7),

|ak − ksp| ≤ 1.

Accordingly,

(6.11) |y(tk)− spx(tk)| ≤ C for all k ∈ Z.

To finish the proof, we show that

(6.12) |tk − tk+1| ≤ C for all k ∈ Z.
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In fact, from the previous calculations, we have that

|x(tk+1)− x(tk)| ≤ C and |y(tk+1)− y(tk)| ≤ C,

which imply

C ≥ p · (ξ(tk+1)− ξ(tk)) + v(ξ(tk+1))− v(ξ(tk))

=

∫ tk+1

tk

(
L(ξ, ξ̇) +H(p)

)
ds

= r(tk+1 − tk) +

∫ tk+1

tk

L(ξ, ξ̇) ds

≥ r(tk+1 − tk)− d
√
2.

We used (6.10) in the last inequality above. Thus, (6.12) holds. Combine
(6.9), (6.11) and (6.12) to imply

(6.13) |y(t)− spx(t)| ≤ C for all t ∈ R.

□

6.4. Effective fronts in two dimensions

In this section, we consider the Hamiltonian from the front propagation
framework

(6.14)

{
H(y, p) = a(y)|p| for all (y, p) ∈ T2 × R2,

a ∈ C2(T2, (0,∞)).

Here is the main result of this section.

Theorem 6.10. Assume (6.14). If the level curve
{
H = 1

}
is strictly con-

vex, that is, it does not contain any flat piece, then a is constant.

We list first some basic results in order to prove the above theorem.

6.4.1. Preliminaries.

Lemma 6.11. Assume (6.14). Then, H ∈ C1(R2 \ {0}).

Proof. Note first that H is 1-homogeneous, and

H(0) = 0 = min
R2

H.

Thus, to prove that H ∈ C1(R2 \ {0}), it is enough to show that
{
H = 1

}
is C1. The cell problem at p can be written in an equivalent form as

a(y)2|p+Dv|2 = H(p)2 in T2.

We then use Theorem 6.6 to conclude. □
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Definition 6.12 (Riemannian distance). For x, y ∈ R2, denote by d(x, y)
the Riemannian distance between x and y, where

d(x, y) = min

{∫ 1

0

|ξ̇(s)|
a(ξ(s))

ds : ξ ∈ AC([0, 1],R2), ξ(0) = x, ξ(1) = y

}
.

In fact, x 7→ dy(x) = d(x, y) is the maximal viscosity solution to{
a(x)|Ddy(x)| = 1 in R2 \ {y},
dy(y) = 0.

Geometrically, x 7→ dy(x) looks like a cone with vertex y.

Definition 6.13 (minimizing geodesics). A curve c : R → R2 is called a
minimizing geodesic if, for any t1 < t2,

d(c(t1), c(t2)) =

∫ t2

t1

|ċ(s)|
a(c(s))

ds.

Moreover, γ : [0,∞) → R2 is called a minimizing ray (or simply a ray) if the
above equality holds for any 0 ≤ t1 < t2.

Lemma 6.14. Assume (6.14). For p0 ∈
{
H = 1

}
, let v0 be a viscosity

solution to (6.3) with p = p0. Then, any global characteristic of v0 is a
minimizing geodesic with rotation vector DH(p0).

Proof. Assume that γ : R → R2 is a global characteristic of v0. Then, for
s ∈ R, v0 is differentiable at γ(s), and

(6.15) γ̇(s) = a(γ(s))
p0 +Dv0(γ(s))

|p0 +Dv0(γ(s))|
.

Moreover, for t1 < t2,

(6.16) p0 · γ(t2) + v0(γ(t2))− p0 · γ(t1)− v0(γ(t1)) = t2 − t1.

On the other hand, by using the usual convolution trick to regularize v0, we
have, for any ξ ∈ AC([0, 1],R2) with ξ(0) = γ(t1) and ξ(1) = γ(t2),∫ 1

0

|ξ̇(s)|
a(ξ(s))

ds ≥
∫ 1

0

ξ̇(s) · (p0 +Dv0(ξ(s)))

a(ξ(s))|p0 +Dv0(ξ(s))|
ds

= p0 · γ(t2) + v0(γ(t2))− p0 · γ(t1)− v0(γ(t1)).

This, together with (6.15) and (6.16), yields that

d(γ(t1), γ(t2)) = t2 − t1 =

∫ t2

t1

|γ̇(s)|
a(γ(s))

ds.

Thus, γ is a minimizing geodesic. □

Let us now list various special properties in the two dimensional setting.
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(1) Two minimizing geodesics intersect at most once.

(2) Periodic minimizing orbits of the same period are completely or-
dered in R2. Two periodic minimizing orbits of the same period
are called neighboring if there does not exist any other periodic
minimizing orbit between them.

(3) For any minimizing geodesic c : R → R2, the asymptotic slope

αc = lim
t→∞

c(t)

|c(t)|
= lim

t→−∞
− c(t)

|c(t)|
exists.

(4) If αc is rational, then c is either periodic or asymptotic to periodic
minimizing geodesics as t → ±∞. In the latter case, c could be a
heteroclinic orbit connecting two periodic orbits for example.

(5) If αc is irrational, then the set of minimizing geodesics with as-
ymptotic slope αc is ordered. In particular, two such minimizing
geodesics do not cross.

Definition 6.15. Let c, c1, c2 be given minimizing geodesics. Denote by
Γ+
c the region in R2 that stays above c, and Γ−

c the region in R2 that stays
below c.

We say that c1 < c2 if c1 stays strictly below c2 in R2, or equivalently, if
c2 stays in Γ+

c1 .

Definition 6.16 (Function uc). Let c : R → R2 be a minimizing geodesic.
We define a Lipschitz continuous function uc : R2 → R such that

(6.17) uc(x) = lim
t→∞

(d(x, c(t))− d(c(t), c(0))) .

If we normalize c such that d(c(t), c(0)) = t for t ≥ 0, then the above becomes

uc(x) = lim
t→∞

(d(x, c(t))− t) .

Intuitively, we kick the vertex c(t) of the cone d(x, c(t)) in (6.17) to infinity
as t→ ∞.

Lemma 6.17. Assume (6.14). Then, uc defined in (6.17) is well-defined
and is a viscosity solution to

a(x)|Duc| = 1 in R2.

Proof. For t ≥ 0, denote by

ut(x) = d(x, c(t))− d(c(t), c(0)) for x ∈ R2.

Clearly, by the triangle inequality, for fixed x ∈ R2,

ut(x) = d(x, c(t))− d(c(t), c(0)) ≥ −d(x, c(0)).
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For 0 ≤ t1 ≤ t2, by the triangle inequality again,

ut2(x)− ut1(x) = (d(x, c(t2))− d(c(t2), c(0)))− (d(x, c(t1))− d(c(t1), c(0)))

= d(x, c(t2))− d(x, c(t1))− d(c(t1), c(t2)) ≤ 0.

As t 7→ ut(x) is nonincreasing and bounded from below, we imply that uc is
well-defined.

Besides, ut is a viscosity solution to{
a(x)|Dut(x)| = 1 in R2 \ {c(t)},
ut(c(t)) = −d(c(t), c(0)).

Let t→ ∞ and use the stability result for viscosity solutions to conclude. □

We note further that

uc(c(s)) = −d(c(s), c(0))sign(s) for s ∈ R.

After a suitable normalization, c is a global characteristic of uc.

Definition 6.18 (Co-rays). Let c be a minimizing geodesic. Let uc be
defined as in (6.17). A ray c̃ : [0,∞) → R2 is called a co-ray of c if, for all
s ≥ 0,

uc(c̃(s)) = uc(c̃(0))− d(c̃(s), c̃(0)).

It is important noting that if c̃ is a co-ray of c, then uc is differentiable
at c̃(s) for s > 0, and

(6.18) Duc(c̃(s)) = −
˙̃c(s)

a(c̃(s))|c̃(s)|
.

The lemma below gives a simple way to construct co-rays.

Lemma 6.19. Assume (6.14). Let c be a minimizing geodesic. Let uc be
defined as in (6.17). Fix x ∈ R2. For k ∈ N, let γk : [0, k] → R2 be a
minimizing geodesic connecting x to c(k), that is, γk(0) = x, and γk(k) =
c(k). Assume that there exists a subsequence {γkj} of {γk} that converges

locally uniformly to γ ∈ AC([0,∞),R2). Then, γ is a co-ray of c.

Proof. By stability results, we have first that γ is a ray.

We next prove that γ is a co-ray of c. For any s ≥ 0,

uc(γ(0))− uc(γ(s)) ≤ d(γ(0), γ(s)).

We now prove the reverse inequality. For any k ∈ N with k > s, it is clear
that

uc(γk(s)) ≤ uc(c(k)) + d(γk(s), c(k))

= −d(c(0), c(k)) + d(x, c(k))− d(x, γk(s)).
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x

c(j)

c(k)

Figure 2. Construction of a co-ray

By the definition of uc,

lim
k→∞

(−d(c(0), c(k)) + d(x, c(k))) = uc(x).

Combine the two relations above and let k → ∞ to imply

uc(γ(s)) ≤ uc(γ(0))− d(γ(0), γ(s)).

Thus,

uc(γ(s)) = uc(γ(0))− d(γ(0), γ(s)).

The proof is complete. □

We next have the following property of co-rays.

Theorem 6.20. Assume (6.14). Let c be a periodic minimizing geodesic.
Let uc be defined as in (6.17). Then, a ray c̃ : [0,∞) → R2 is a co-ray of c
if one of the following holds.

(1) c̃ is a part of a periodic minimizing geodesic.

(2) There exists a periodic minimizing geodesic c+ such that c+ > c,
and c̃ is asymptotic to c+ from above as t→ ∞.

(3) There exists a periodic minimizing geodesic c− such that c− < c,
and c̃ is asymptotic to c− from below as t→ ∞.

Lemma 6.21. Assume (6.14). Let c be a periodic minimizing geodesic
with asymptotic slope α. Let uc be defined as in (6.17). Then, there exist
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c+

c

c−

c̃

Figure 3. Characterizations of co-rays

p+, p− ∈ R2 and periodic functions v+, v− such that{
uc(x)− p+ · x = v+(x) for x ∈ Γ+

c ,

uc(x)− p− · x = v−(x) for x ∈ Γ−
c .

Proof. We just need to prove the existence of p− as the proof of the exis-
tence of p+ is analogous. For any v ∈ Z2, consider Ωv = Γ−

c ∩ Γ−
c−v.

c

Γ+
c

Γ−
c

c− v

c̃

Ωv

Figure 4. Common co-ray c̃ of c and c− v
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Surely,
uc(x+ v)− uc(x) = uc−v(x)− uc(x).

Take x ∈ Ωv to be a point of differentiability of both uc and uc−v. Thanks to
Lemma 6.19 and Theorem 6.20, c and c−v have a common co-ray c̃ starting
from x. We then use (6.18) to get that

Duc−v(x) = Duc(x).

Therefore, uc−v−uc is constant in Ωv. Hence, there exists a constant l(v) ∈ R
such that

uc(x+ v)− uc(x) = uc−v(x)− uc(x) = l(v) for x ∈ Ωv.

By shifting, it is clear that l(v) is linear in v, which yields the existence of
p− immediately. □

Suppose that c and c̃ are two neighboring periodic minimizing geodesics.
Let γ± be two heteroclinic orbits between c and c̃. By suitable parametriza-
tions, we may assume that

lim
t→∞

|γ+(t)− c(t)| = lim
t→∞

|γ−(t)− c̃(t)| = 0,

lim
t→−∞

|γ+(t)− c̃(t)| = lim
t→−∞

|γ−(t)− c(t)| = 0.

c

c̃

γ+

γ−

Figure 5. Heteroclinic orbits γ±

Since γ+ and γ− cross, we have

b(c, c̃) = lim
t→∞

[
d(γ+(t), γ+(−t)) + d(γ−(t), γ−(−t))

− d(c(t), c(−t))− d(c̃(t), c̃(−t))
]
> 0.

As c, c̃ are periodic, by shifting c(0), c̃(0) to the left, we see that

(6.19) 0 < b(c, c̃) = uc(c̃(0)) + uc̃(c(0)).
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Lemma 6.22. Assume (6.14). Assume that c1, c2, c3 are three periodic
minimizing geodesics of the same period with c1 < c2 < c3. Then,

b(c1, c3) = b(c1, c2) + b(c2, c3).

Proof. It is clear that

uc1(c3(0)) = uc2(c3(0)) + uc1(c2(0)),

and

uc3(c1(0)) = uc2(c1(0)) + uc3(c2(0)).

Combine the two identities to conclude. □

Lemma 6.23. Assume the settings in Lemma 6.21. Assume further that
p+ = p−. Then, R2 is foliated by minimizing periodic orbits of the same
asymptotic slope α. In other words, for any x ∈ R2, there exists a periodic
minimizing geodesic with asymptotic slope α passing through x.

Proof. It suffices to show that there do not exist two neighboring minimiz-
ing periodic orbits of the same asymptotic slope α.

Let c be a periodic minimizing geodesic with asymptotic slope α as given
in Lemma 6.21. For v = (−n,m) ∈ Z2 with n > 0, denote by c+ = c + v
and c− = c− v. Then,

c− < c < c+.

As uc(c(0)) = 0, we have that{
uc(c(0)− v) = uc(c(0)− v)− uc(c(0)) = −p− · v,
uc−v(c(0)) = uc−v(c(0))− uc(c(0)) = uc(c(0) + v)− uc(c(0)) = p+ · v.

Since p− = p+, we imply that

uc(c(0)− v) + uc−v(c(0)) = 0,

which means that

(6.20) b(c, c− v) = 0.

Combine this with (6.19) and Lemma 6.22, we yield that c−v does not have
any neighboring periodic orbit. The proof is complete. □

6.4.2. Proof of Theorem 6.10.

Proof of Theorem 6.10. Assume that the level curve C = {H = 1} is
strictly convex. By Lemma 6.11, this level curve is also C1. Hence, the map
G : C → S1 defined as

G(p) =
DH(p)

|DH(p)|
for p ∈ C

is continuous and one-to-one.
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For any rational vector α ∈ S1, Let c be a periodic minimizing geodesic
with asymptotic slope α. Let p± be as in Lemma 6.21. By Lemma 6.14, we
imply that there exist periodic functions v+, v− ∈ C(T2) such that

a(y)|p+ +Dv+(y)| = a(y)|p− +Dv−(y)| = 1 in T2.

Thus,

H(p+) = H(p−) = 1 and G(p+) = G(p−) = α.

Therefore, p+ = p−. We then use Lemma 6.23 to deduce further that for any
x ∈ R2 and any rational vector α ∈ S1, there exists a periodic minimizing
geodesic with asymptotic slope α passing through x.

By approximations and stability, we derive that for any x ∈ R2 and
any vector α ∈ S1, there exists a minimizing geodesic γx,α with asymptotic
slope α passing through x. Of course, γx,α is unique. It is then not hard to

see that for fixed x, the map α 7→ γ̇x,α
|γ̇x,α| is continuous and one-to-one. The

map is hence onto as well. Therefore, any geodesic is a minimizing geodesic
and there does not exist conjugate points. This implies that the metric is
flat. □

6.5. References

(1) Much of the content in this chapter is based on Bangert [Ban88].

(2) Theorem 6.6 was obtained by Carneiro in [Car95].

(3) Theorem 6.10 was proved by Bangert [Ban94].



Chapter 7

Aubry-Mather theory
in the merely
continuous setting

In this chapter, we are always in the merely continuous setting. The main
focus will be in two dimensions.

In the first section, we give some basic results of the weak KAM theory
for the classical mechanic Hamiltonian in the merely continuous setting.
Because of the lack of smoothness, we need to proceed with care.

7.1. Classical mechanic Hamiltonian

We assume throughout this section

H(y, p) =
1

2
|p|2 + V (y) for all (y, p) ∈ Tn × Rn,

where V ∈ C(Tn). Then, the cell problem reads

(7.1)
1

2
|p+Dv(y)|2 + V (y) = H(p) in Tn.

It is important to note that we only have V is merely continuous on Tn.

7.1.1. Differentiability property. The following lemma plays an impor-
tant role in this setting.

Lemma 7.1. Let U be an open subset of Rn and c ∈ R. For i = 1, 2, assume
wi ∈W 1,∞(U) satisfies

1

2
|Dwi|2 + V (x) ≤ c for a.e. x ∈ U .

109
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Assume further that there exists a curve η ∈ AC([a, b], U) such that, for
i = 1, 2, ∫ b

a

(
1

2
|η̇(t)|2 − V (η(t)) + c

)
dt = wi(η(b))− wi(η(a)).

Then, the following properties hold.

(1) For a.e. t ∈ [a, b],

(7.2)
1

2
|η̇(t)|2 + V (η(t)) = c.

(2) If η is differentiable at t0 ∈ (a, b), then both w1 and w2 are differ-
entiable at x = η(t0), and

Dw1(η(t0)) = Dw2(η(t0)) = η̇(t0).

(3) For all t ∈ (a, b), w1 − w2 is differentiable at x = η(t), and

D(w1 − w2)(x) = 0.

Proof. By translations, we assume that 0 ∈ (a, b) and η(0) = 0.

We first prove (7.2). As usual, by standard mollification of w1 and
approximations, we have that

w1(η(b))− w1(η(a)) =

∫ b

a
p1(t) · η̇(t) dt

=

∫ b

a

1

2

(
|p1(t)|2 + |η̇(t)|2 − |p1(t)− η̇(t)|2

)
dt

for some p1(t) ∈ ∂w1(η(t)) for t ∈ (a, b). Here,

∂w1(x) = co(K(x)),

where co(K(x)) is the convex hull of the set

K(x) =

{
p ∈ Rn : ∃ {xk} → x s.t. Dw1(xk) exists, p = lim

k→∞
Dw1(xk)

}
.

Also, through the approximation process,

1

2
|p1(t)|2 + V (η(t)) ≤ c for all t ∈ [a, b].

Combining the above points with the hypothesis, we yield

1

2
|p1(t)|2 + V (η(t)) = c and p1(t) = η̇(t) for a.e. t ∈ [a, b].

Hence (7.2) holds. Moreover, we get that η is Lipschitz continuous.

Let us now prove (2) and (3). It suffices to show that for a sequence
{λm} ⊂ (0,∞) with limm→∞ λm = 0, if

lim
m→∞

η(λmt)

λm
exists for all t ∈ R,
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then, for all t ∈ R, x ∈ Rn, and i = 1, 2,

lim
m→∞

η(λmt)

λm
= qt and lim

m→∞

wi(λmx)− wi(0)

λm
= q · x

for some q satisfying 1
2 |q|

2 + V (0) = c. It is enough to prove this claim for
w1 as the proof for w2 is analogous. Let

η̄(t) = lim
m→∞

η(λmt)

λm
for t ∈ R.

By the hypothesis, η is an absolute minimizer of the action∫
(
1

2
|γ̇(t)|2 − V (γ(t)) + c) dt

on [a, b]. Then, η(λmt)/λm is an absolute minimizer of the action∫ (
1

2
|γ̇(t)|2 − V (λmγ(t)) + c

)
dt

on [a/λm, b/λm]. By the stability of minimizing curves, η̄ is an absolute
minimizer of the action∫ (

1

2
|γ̇(t)|2 − V (0) + c

)
dt,

and η̄(0) = 0. By the Euler-Lagrange equations,

¨̄η(t) = 0 for t ∈ R,

and hence

η̄(t) = tq

for some q ∈ Rn. In light of (7.2),

|q| ≤M =
√

2(c− V (0)).

By passing to a subsequence if necessary, we assume

lim
m→∞

w1(λmx)− w1(0)

λm
= u(x) for all x ∈ Rn.

Then, u ∈W 1,∞(Rn), and

1

2
|Du(x)|2 + V (0) ≤ c for a.e. x ∈ Rn,

which is equivalent to

|Du(x)| ≤M for a.e. x ∈ Rn.
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Thanks to (7.2),

w1(η(λmt))− w1(η(0)) =

∫ λmt

0

(
1

2
|η̇(s)|2 − V (η(s)) + c

)
ds

=

∫ λmt

0
2 (c− V (η(s))) ds.

Dividing both sides by λm, and sending m→ ∞, we imply

u(qt) = tM2 for all t ∈ R.

As |Du| ≤M ,

u(qt) = u(qt)− u(0) ≤M |q|t ≤M2t.

Therefore, we deduce that |q| =M , and

u(et) =Mt for t ∈ R

for e = q
|q| =

q
M . We claim that

(7.3) u(x) = q · x for x ∈ Rn.

Indeed, as |Du| ≤M ,

|u(x)−Mt| = |u(x)− u(et)| ≤M |x− et| for x ∈ Rn, t ∈ R.

Taking square of both sides to get

u(x)2 − 2Mtu(x) +M2t2 ≤M2(|x|2 − 2x · et+ t2),

which is reduced to

u(x)2 −M2|x|2 ≤ 2Mt(u(x)− q · x).

Let t→ ±∞ in the above to conclude that

u(x) = q · x.

□

7.1.2. The Aubry set. Let us now proceed to define the Aubry set, which
is analogous to the smooth setting. Nevertheless, we recall everything here
for clarity. Instead of phrasing everything on the torus Tn, we lift all the
curves to Rn. For t > 0, and p, x, y ∈ Rn, denote by

Gt,p(x, y) = inf
ξ∈AC([0,t],Rn),

ξ(0)=x, ξ(t)∈y+Zn

∫ t

0

(
1

2
|ξ̇(s)|2 − V (ξ(s))− p · ξ̇(s) +H(p)

)
ds,

and

Gp(x, y) = lim inf
t→∞

Gt,p(x, y).

By Lemma 3.14, Gt,p(x, y) ≥ v(y)− v(x), and hence

Gp(x, y) ≥ v(y)− v(x)
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for any viscosity solution v ∈ C(Tn) of (7.1). In particular,

Gp(x, x) ≥ 0.

Besides, Gp(x, y) is Zn-periodic and Lipschitz continuous in both x and y.

Definition 7.2. The Aubry set associated with p ∈ Rn is defined as

Ap = {x ∈ Rn : Gp(x, x) = 0}.

Lemma 7.3. Let v ∈ C(Tn) be a viscosity solution of (7.1) for some p ∈ Rn

fixed. Suppose that {ξm} is a sequence of global characteristics of v such that

lim
m→∞

ξm = ξ locally uniformly in R.

Then, ξ is also a global characteristic of v.

Proof. Denote by u(x) = p · x+ v(x) for x ∈ Rn. Fix t1 < t2. For m ∈ N,
we have that

u(ξm(t2))− u(ξm(t1)) =

∫ t2

t1

(
1

2
|ξ̇m(s)|2 − V (ξ(s)) +H(p)

)
ds.

Sending m → ∞ and using the weakly lower semicontinuity of the integral
to imply

u(ξ(t2))− u(ξ(t1)) ≥ lim inf
m→∞

∫ t2

t1

(
1

2
|ξ̇m(s)|2 − V (ξm(s)) +H(p)

)
ds

≥
∫ t2

t1

(
1

2
|ξ̇(s)|2 − V (ξ(s)) +H(p)

)
ds.

Combining this with Lemma 3.14, we get the conclusion. □

Definition 7.4. Fix p ∈ Rn. A Lipschitz continuous curve ξ : R → Rn

is called a universal global characteristic associated with p if it is a global
characteristic of every viscosity solution v of the cell problem (7.1).

Denote by Up the collection of all universal characteristics associated
with p. It is then clear that, for every ξ ∈ Up,

(7.4)
1

2
|ξ̇(s)|2 + V (ξ(s)) = H(p) for a.e. t ∈ R.

Besides, Up is closed in the locally uniform topology thanks to Lemma 7.3.

Lemma 7.5. For every p ∈ Rn,

Ap ̸= ∅.

We have already proved this lemma in Theorem 5.20 in the smooth set-
ting. The merely continuous setting then follows by suitable approximations.
Nevertheless, it is natural to give a direct proof here.
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Proof. Let v be a viscosity solution of (7.1). Let ξ : R → Rn be a global
characteristic of with v. By projecting ξ back to Tn and using a suitable
translation in time, we find two sequences {tm} → +∞ and {xm} ⊂ [0, 1]n

such that 
limm→∞(tm+1 − tm) = +∞,

ξ(tm) = xm + km for some km ∈ Zn,

limm→∞ xm = x0 ∈ [0, 1]n,

and

v(xm+1)− v(xm) =

∫ tm+1

tm

(
1

2
|ξ̇(s)|2 − V (ξ(s))− p · ξ̇(s) +H(p)

)
ds.

Then,
Gtm+1−tm,p(xm, xm+1) = v(xm+1)− v(xm).

Let m→ ∞ to deduce that

Gp(x0, x0) ≤ lim inf
m→∞

Gtm+1−tm,p(xm, ym) = 0,

which means x0 ∈ Ap.

□

Lemma 7.6. For any x ∈ Ap, there exists ξ ∈ Up such that ξ(0) = x. In
particular, Up ̸= ∅.

Proof. Fix x ∈ Ap. By the definition of Ap, there exist {tm} → ∞ and a
sequence of curves γm : [0, tm] → Rn such that γm(0) = x, and γm(tm) =
x+ km for some km ∈ Zn, and

lim
m→∞

∫ tm

0

(
1

2
|γ̇m(s)|2 − V (γm(s))− p · γ̇m(s) +H(p)

)
ds = 0.

Let v be a viscosity solution of (7.1). Then, for L > 0 and m large enough,

v(γm(L))− v(x) ≤
∫ L

0

(
1

2
|γ̇m(s)|2 − V (γm(s))− p · γ̇m(s) +H(p)

)
ds

and

v(γm(tm))− v(γm(L)) ≤
∫ tm

L

(
1

2
|γ̇m|2 − V (γm)− p · γ̇m +H(p)

)
ds.

We use the above two equalities and the fact that

v(γm(L))− v(x) + v(γm(tm))− v(γm(L)) = 0

to yield

lim
m→∞

(∫ L

0

(
1

2
|γ̇m(s)|2 − V (γm(s))− p · γ̇m(s) +H(p)

)
ds

− (v(γm(L))− v(x)
)
= 0.
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By using a similar logic,

lim
m→∞

(∫ tm

tm−L

(
1

2
|γ̇m(s)|2 − V (γm(s))− p · γ̇m(s) +H(p)

)
ds

− (v(γm(tm))− v(γ(tm − L))
)
= 0.

Define ξm : [−tm/2, tm/2] → Rn as

ξm(t) =

{
γm(t) for t ∈

[
0, tm2

]
,

γm (tm + t)− km for t ∈
[
− tm

2 , 0
]

Clearly, for any fixed L > 0, {∥ξm∥H1((−L,L))} is uniformly bounded. By
passing to a subsequence if needed, we assume that

lim
m→∞

ξm(t) = ξ(t) locally uniformly in R.

for ξ ∈ AC(R,Rn). By the above points,

lim
m→∞

(∫ L

−L

(
1

2
|ξ̇m(s)|2 − V (ξm(s))− p · ξ̇m(s) +H(p)

)
ds

− (v(ξm(L))− v(ξm(−L))
)
= 0.

Thanks to the weakly lower semicontinuity of the integral, we see that, for
any L > 0,∫ L

−L

(
1

2
|ξ̇(s)|2 − V (ξ(s))− p · ξ̇(s) +H(p)

)
ds = v(ξ(L))− v(ξ(−L)).

Hence ξ is a universal global characteristic associated with p. □

7.1.3. Modifications of global characteristics. For smooth V , two dif-
ferent orbits in the same Aubry set cannot intersect and two different ab-
solute minimizers of the same action cannot intersect twice as discussed in
the previous chapter. However, both situations could happen with merely
continuous V . A key difference is that we do not have the corresponding
Euler-Lagrange equations and the uniqueness property of their solutions in
this merely continuous setting. Consequently, the structure of orbits on Up

might be very complicated, and the orbits might have pathological behav-
iors. It is then extremely hard to understand the topology of Up.

We now provide two procedures to join different pieces of two global
characteristics, which will be used later to select nice minimizing orbits and
then simplify the topology of interacting curves.

Definition 7.7 (Procedure 1). Fix p ∈ Rn. Let v be a viscosity solution
of (7.1). Assume that ξ1 and ξ2 are two global characteristics of with v.
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Assume further that for some t1, t2 ∈ R,

ξ1(t1) = ξ2(t2).

We now glue a part of ξ1 with a part of ξ2 to have a new global characteristic
of with v. Define

ξ3(t) =

{
ξ1(t) for t ≤ t1

ξ2(t− t1 + t2) for t ≥ t1.

See Figure 1.

Figure 1. Formation of the curve ξ3

Let us prove quickly that ξ3 is also a global characteristic of with v.
Indeed, for a ≤ t1 ≤ b,

v(ξ3(b))− v(ξ3(t1)) =

∫ b

t1

(
1

2
|ξ̇3(s)|2 − V (ξ3(s))− p · ξ̇3(s) +H(p)

)
ds

and

v(ξ3(t1))− v(ξ3(a)) =

∫ t1

a

(
1

2
|ξ̇3(s)|2 − V (ξ3(s))− p · ξ̇3(s) +H(p)

)
ds.

Thus

v(ξ3(b))− v(ξ3(a)) = v(ξ3(b))− v(ξ3(t1)) + v(ξ3(t1))− v(ξ3(a))

=

∫ b

a

(
1

2
|ξ̇3(s)|2 − V (ξ3(s))− p · ξ̇3(s) +H(p)

)
ds.

Definition 7.8 (Procedure 2 – Crossing of two universal global character-

istics). Let p, p′ ∈ Fc =
{
p ∈ R2 : H(p) = c

}
. Let ξ and ξ̃ be orbits in Up

and Up′ , respectively. Assume that there exist t1, t2, t
′
1, t

′
2 ∈ R such that, for

i = 1, 2,

Pi = ξ(ti) = ξ̃(t′i).
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We construct new orbits on Up and Up′ by joining different pieces of ξ and

ξ̃ in a very natural way. Without loss of generality, we assume that t1 < t2.
There are two cases to be considered as following.

Case 1. t′1 < t′2. Define

ξ2(t) =


ξ(t) for t ≤ t1,

ξ̃(t+ t′1 − t1) for t1 ≤ t ≤ t1 + t′2 − t′1,

ξ(t+ t2 − t1 − t′2 + t′1) for t1 + t′2 − t′1 ≤ t.

See Figure 2.

Case 2. t′1 > t′2. Define

ξ3(t) =


ξ(t) for t ≤ t1,

ξ̃(t1 + t′1 − t) for t1 ≤ t ≤ t1 + t′1 − t′2,

ξ(t+ t2 − t1 − t′1 + t′2) for t1 + t′1 − t′2 ≤ t.

Figure 2. Combining two universal global characteristics

We say that ξ2 or ξ3 is the adjustment of ξ with respect to ξ̃ between t1
and t2. It is not hard to see that ξ2 or ξ3 belongs to Up.

Let us now state a relevant result on rotation vectors. We have already
given a proof of a similar version of this in Theorem 3.15, and thus, we omit
the proof here.

Lemma 7.9. Let p ∈ Rn, and v be a viscosity solution of (7.1). Let ξ : R →
Rn be a global characteristic of v. Assume that there exists {tm} converging
to either −∞ or +∞ such that ξ(tm)/tm converges as m→ ∞. Then,

lim
m→∞

ξ(tm)

tm
∈ ∂H(p).
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Definition 7.10. Fix p ∈ Rn. Let v be a viscosity solution of (7.1). Let
ξ : R → Rn be a global characteristic of v. Then, ξ is called periodic if there
exist T > 0 and q ∈ Zn such that

ξ(t+ T )− ξ(t) = q for all t ∈ R.

In this case, q/T is called the rotation vector of ξ.

Thanks to Lemma 7.9, the rotation vector

q

T
∈ ∂H(p).

Also, it is clear that every periodic global characteristic associated with some
v must be a universal global characteristic.

The following corollary follows rather straightforwardly from the above
definition and Lemma 7.9.

Corollary 7.11. Fix p ∈ Rn. Let v be a viscosity solution of (7.1). Let
ξ : R → Rn be a global characteristic of v. If there exist t1 < t2 such that

ξ(t2)− ξ(t1) = q ∈ Zn,

then
q

t2 − t1
∈ ∂H(p).

The following result is important and always needed in the construction
of circle maps. The idea of the proof is similar to that of Proposition 6.5
and hence is omitted for now. Note that we do not need the smoothness
assumption here as all can be done by approximations.

Lemma 7.12. Assume that n = 2. For every q ∈ Z2 and c > maxT2 V ,
there exists pq ∈ Fc such that Upq has a periodic orbit ξ such that, for some
T > 0,

ξ(t+ T )− ξ(t) = q for all t ∈ R.

Next, we have the following lemma on the strict convexity of H.

Lemma 7.13. Suppose that there exist p0, p1 ∈ Rn and λ ∈ (0, 1) such that,
for pλ = λp0 + (1− λ)p1,

H(pλ) = λH(p0) + (1− λ)H(p1).

Then, 
H(pλ) = H(p0) = H(p1),

Apλ ⊂ Ap0 ∩ Ap1 ,

Upλ ∩ Up0 ∩ Up1 ̸= ∅.
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Proof. We divide the proof into two steps for clarity.

Step 1. For x ∈ Apλ , there exist {tm} → ∞ and a sequence of curves
γm : [0, tm] → Rn such that γm(0) = x, γm(tm) ∈ x+ Zn, and

lim
m→∞

∫ tm

0

(
1

2
|γ̇m(s)|2 − V (γm(s))− pλ · γ̇m(s) +H(pλ)

)
ds = 0.

Let

Am = λ

∫ tm

0

(
1

2
|γ̇m(s)|2 − V (γm(s))− p0 · γ̇m(s) +H(p0)

)
ds,

and

Bm = (1− λ)

∫ tm

0

(
1

2
|γ̇m(s)|2 − V (γm(s))− p1 · γ̇m(s) +H(p1)

)
ds.

Then, as pλ = λp0 + (1− λ)p1,∫ tm

0

(
1

2
|γ̇m(s)|2 − V (γm(s))− pλ · γ̇m(s) +H(pλ)

)
ds = Am +Bm.

By Lemma 3.14,

Am, Bm ≥ 0.

As limm→∞(Am +Bm) = 0, we then deduce that

lim
m→∞

Am = lim
m→∞

Bm = 0.

Meanwhile, by the definition of Gp(x, x), it is clear that{
0 ≤ λGp0(x, x) ≤ limm→∞Am,

0 ≤ (1− λ)Gp1(x, x) ≤ limm→∞Bm.

Therefore, Gp0(x, x) = Gp1(x, x) = 0, which means that x ∈ Ap0 ∩ Ap1 . We
thus have

Apλ ⊂ Ap0 ∩ Ap1 .

Moreover, by using the proof of Lemma 7.6, we introduce a suitable
reparametrization of {γm} to get a sequence of curves converging locally
uniformly to a common orbit in Upλ ∩ Up0 ∩ Up1 .

Step 2. Fix an orbit ξ ∈ Up0 ∩ Up1 . Then, by (7.4),{
1
2 |ξ̇(t)|

2 + V (ξ(t)) = H(p0) for a.e t ∈ R,
1
2 |ξ̇(t)|

2 + V (ξ(t)) = H(p1) for a.e t ∈ R.

Therefore, H(p0) = H(p1).

□

Thanks to Lemma 7.13, we have immediately the following result.
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Theorem 7.14. Assume that H(y, p) = 1
2 |p|

2 + V (y) for (y, p) ∈ Tn × Rn

for some V ∈ C(Tn). Fix p0, p1 ∈ Rn. If H(p0) ̸= H(p1), then for all
λ ∈ (0, 1),

H(λp1 + (1− λ)p0) < λH(p0) + (1− λ)H(p1),

that is, H is strictly convex along directions that are not tangential to each
given level set.

7.2. The two dimensional setting

We are always in the two dimensional setting, that is, n = 2 in this section.
Let us state the main theorem of this section right away.

Theorem 7.15. Assume n = 2. Assume that H(y, p) = 1
2 |p|

2 + V (y) for

(y, p) ∈ T2 × R2 for some V ∈ C(T2). Then, for n = 2 and c > maxT2 V ,
Fc =

{
p ∈ R2 : H(p) = c

}
does not contain a line segment of irrational

slope.

The proof of this theorem is rather long, and we will proceed through
various steps.

Proof. We give a proof by contradiction.

Step 1. Assume otherwise that Fc contains a line segment of an irrational
slope. Let p0 and p1 be two points in the interior of this line segment.
Thanks to Lemma 7.13,

Ap0 = Ap1 ,

and

p0 − p1 is an irrational vector.

Then, the outward unit normal vector n⃗ is also irrational, and

∂H(p0) = ∂H(p1) = {λn⃗ : λ ∈ [α, β]}
for two positive numbers 0 < α < β. Without loss of generality, we assume
that

(7.5) n⃗ · (1, 0) > 0.

Let v0 and v1 be viscosity solutions to (7.1) corresponding to p = p0 and
p = p1, respectively. Denote by

U = Up0 ∩ Up1 ,

and

S =
⋃
ξ∈U

ξ(R) ⊂ R2.

In light of Lemma 7.13,

U ̸= ∅.
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Step 2. For x ∈ R2, set{
u0(x) = p0 · x+ v0(x),

u1(x) = p1 · x+ v1(x).

By Lemma 7.1, u0 − u1 is differentiable at x ∈ S, and

(7.6) D(u0 − u1)(x) = 0 for x ∈ S.

Note again that we do not know if u0 or u1 is differentiable at x individually
yet. Thanks to Lemma 7.12, we pick p′ ∈ Fc such that Up′ contains a periodic
orbit η such that for some T > 0

η(t+ T )− η(t) = (0, 1) = e2 for all t ∈ R.

For e1 = (1, 0), denote

(7.7) Λ = max{|e1 · (x− y)| : x, y ∈ η(R)}.

Choose a positive integer J > Λ + 1 and for k ∈ Z, denote

ηk = η + k(J, 0).

η0 η1 η2

Figure 3. Family of {ηk}k∈Z

Clearly, these curves are mutually disjoint. These are similar to the ideas
in Section 6.3.1, in which we used {ηk} to create circle homeomorphisms.
See Figure 3.

Step 3. Let ξ be a given orbit on U . Then, in light of Lemma 7.9,

(7.8) lim
t→∞

ξ(t)

|ξ(t)|
= lim

t→−∞

−ξ(t)
|ξ(t)|

= n⃗.
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In particular, we yield that ξ intersects each ηk for k ∈ Z. Unlike the
smooth cases that ξ intersects ηk only once, the situation here is much more
complicated. As a matter of fact, ξ might intersect ηk infinitely many times,
and there might be pathological behaviors. It is thus extremely important
to overcome this technical hurdle and to come up with a systematic way to
understand the asymptotic behavior of ξ using {ηk}.

For k ∈ Z, write{
tk,+ = max{t ∈ R : ξ(t) ∈ ηk(R)},
tk,− = min{t ∈ R : ξ(t) ∈ ηk(R)}.

Thanks to (7.8), both tk,+ and tk,− are finite. See Figure 4.

ξ
ηk

tk,−

tk,+

Figure 4. Intersections of ηk and ξ

For k ∈ Z, assume that

ξ(tk,+) = ηk(θ+) and ξ(tk,−) = ηk(θ−)

for θ−, θ+ ∈ R. We claim that{
ξ(R) ∩ ηk(R) ⊂ {ηk(t) : min{θ+, θ−} ≤ t ≤ max{θ+, θ−}} ,
|θ+ − θ−| < T.

See Lemma 7.16 below for the proof.

Next, denote by

LA =

∫ T

0

(
1

2
|η̇(s)|2 − V (η(s)) + c

)
ds,

which is exactly the action of one cycle of η. Pick

J > max

{
Λ + 1,

LA√
c−maxT2 V

+ Λ

}
.
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Then,

tk,+ < tk+1,− for all k ∈ Z.
See Lemma 7.17.

Step 4. For two orbits ξ1 and ξ2 on U , we denote

d(ξ1, ξ2, k) = min{|θ1 − θ2| : θ1 ∈ A1,k, θ2 ∈ A2,k},

where, for i = 1, 2,

Ai,k = {θ ∈ R : ηk(θ) ∈ ξi(R)}.

Then, define the distance

d(ξ1, ξ2) =
∑
k∈Z

arctan(d(ξ1, ξ2, k))

|k|2 + 1
.

It is not hard to see that the distance functions d(·, ·, k) and d(·, ·) are
lower semicontinuous with respect to orbits on U , that is, if ξi,n → ξi locally
uniformly for i = 1, 2, then

lim inf
m→∞

d(ξ1,n, ξ2,n) ≥ d(ξ1, ξ2).

Denote by

(7.9) I = {θ ∈ R : there exists an orbit ξ ∈ U such that η(θ) ∈ ξ(R)}.

Due to the T -periodicity of η and the fact that the set U is closed under
limits of orbits, I is a T -periodic closed subset of R.
Step 5. We claim that

(7.10) u0 − u1 is constant on I,

which gives to a contradiction as

lim
θ→∞

|u0(η(θ))− u1(η(θ))| = ∞.

Indeed, write

R\I =

∞⋃
i=1

(ai, bi),

where {(ai, bi)}i≥1 are disjoint open intervals. Obviously, (ai, bi) ⊆ (ai, ai +
T ) for each i ∈ N since ξ ∈ U ⇒ ξ + (0, 1) ∈ U . To prove (7.10), we assume
first that, for j ∈ N,

u0(η(aj))− u1(η(aj)) = u0(η(bj))− u1(η(bj)).

This will be verified in Lemma 7.18. Set, for t ∈ R,

g(t) = u0(η(t))− u1(η(t)).

Then, g is Lipschitz continuous and by (7.6),

g′(t) = 0 for t ∈ I.
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Combine this with the fact that g(ai) = g(bi) for i ∈ N to yield that

g(t) = c for t ∈ I

for some constant c ∈ R. This is absurd as for m→ ∞,

|g(mT )− g(0)| ≥ m|(p0 − p1) · (0, 1)| − ∥v0∥L∞(T2) − ∥v1∥L∞(T2) → +∞.

□

In the following, we present various results that were needed in the above
proof. We are always in the setting of Theorem 7.15.

Lemma 7.16. For k ∈ Z, assume that

ξ(tk,+) = ηk(θ+) and ξ(tk,−) = ηk(θ−)

for θ−, θ+ ∈ R. Then,

(1) ξ(R) ∩ ηk(R) ⊂ {ηk(t) : min{θ+, θ−} ≤ t ≤ max{θ+, θ−}};
(2) |θ+ − θ−| < T .

Proof. We first prove (1). Were the conclusion of (1) not true, there would
exist t0 ∈ (tk,−, tk,+) such that

ξ(t0) = ηk(θ)

for some θ < min{θ+, θ−} or θ > max{θ+, θ−}. Without loss of generality,
we assume that θ > θ+ > θ−. Then,∫ θ+

θ−

(
1

2
|η̇k(s)|2 − V (ηk(s)) + c

)
ds︸ ︷︷ ︸

A

=

∫ tk,+

tk,−

(
1

2
|ξ̇(s)|2 − V (ξ(s)) + c

)
ds︸ ︷︷ ︸

B

as both ηk and ξ are absolute minimizers of the action connecting ηk(θ−)
and ηk(θ+). On the other hand,∫ θ

θ−

(
1

2
|η̇k(s)|2 − V (ηk(s)) + c

)
ds︸ ︷︷ ︸

C

=

∫ t0

tk,−

(
1

2
|ξ̇(s)|2 − V (ξ(s)) + c

)
ds︸ ︷︷ ︸

D

since both ηk and ξ are absolute minimizers of the action connecting ηk(θ−)
and ηk(θ). However, it is obvious that

B > D and A < C,

which gives a contradiction.

Next we prove (2). Again we argue by contradiction. Without loss of
generality, assume that θ+ − θ− ≥ T . See Figure 5.
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ξ
ηk

θ−

θ+

θ− + T

Figure 5. The situation where θ+ − θ− ≥ T

Let ξ1 be the adjustment of ξ with respect to ηk between tk,− and tk,+
(see Definition 7.8). By (1),

ξ1(R) ∩ ηk(R) = ηk([θ−, θ+]).

In particular, ξ1 contains two points A = ηk(θ−) and B = ηk(θ− + T ) =
A + (0, 1). Thanks to Corollary 7.11, n⃗, the normal vector of Fc at p0, is
parallel to (0, 1), which contradicts the assumption that n⃗ is irrational. □

Lemma 7.17. Assume that

J > max

{
Λ + 1,

LA√
c−maxT2 V

+ Λ

}
.

Then,

tk,+ < tk+1,− for all k ∈ Z.

Here, Λ = max{|e1 · (x− y)| : x, y ∈ η(R)}.

Proof. Assume by contradiction that for some k ∈ Z

tk+1,− ∈ (tk,−, tk,+).

See Figure 6 for an illustration of this situation. Note first that

2(J − Λ) ≤ |ξ(tk+1,−)− ξ(tk,−)|+ |ξ(tk+1,−)− ξ(tk,+)| ≤
∫ tk,+

tk,−

|ξ̇(s)| ds.
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Figure 6. The situation where tk+1,− ∈ (tk,−, tk,+)

On the other hand,∫ tk,+

tk,−

(
1

2
|ξ̇(s)|2 − V (ξ(s)) + c

)
ds ≥

√
2

∫ tk,+

tk,−

√
c− V (ξ(s))|ξ̇(s)| ds

≥
√
c−max

T2
V

∫ tk,+

tk,−

|ξ̇(s)| ds.

Besides, for ξ(tk,+) = ηk(θk,+) and ξ(tk,−) = ηk(θk,−), we use (2) in
Lemma 7.16 to yield that |θk,+ − θk,−| ≤ T . Hence,∫ tk,+

tk,−

(
1

2
|ξ̇(s)|2 − V (ξ(s)) + c

)
ds

=

∣∣∣∣∣
∫ θk,+

θk,−

(
1

2
|η̇k(s)|2 − V (ηk(s)) + c

)
ds

∣∣∣∣∣ ≤ LA.

Therefore,

2(J − Λ) ≤ LA√
c−maxT2 V

,

which contradicts the choice of J . □

Lemma 7.18. For all j ∈ N,

(7.11) u0(η(aj))− u1(η(aj)) = u0(η(bj))− u1(η(bj)).

Proof. We only need to prove the result for j = 1. Thanks to the lower
semicontinuity of the distance function, we may choose ξ1 and ξ2 in U such
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that{
ξ1(0) = η(a1) and ξ2(0) = η(b1),

d(ξ1, ξ2) is the smallest among all pair of curves satisfying the above.

To simplify the associated topology between curves, we use Definition 7.8 to
adjust ξ1 and ξ2 with respect to each ηk between ti,k,− and ti,k,+ for i = 1, 2
respectively. Here{

ti,k,+ = max{t ∈ R : ξi(t) ∈ ηk(R)},
ti,k,− = min{t ∈ R : ξi(t) ∈ ηk(R)}.

By Lemma 7.17, for i = 1, 2, the time intervals (ti,k,−, ti,k,+) are mutually
disjoint, that is,

... < ti,−1,− ≤ ti,−1,+ < ti,0,− ≤ ti,0,+ < ti,1,− ≤ ti,1,+ < ti,2,− ≤ ti,2,+ < ..

Hence the adjustments are well-defined.

In addition, thanks to (1) of Lemma 7.16, the distance between two
adjusted orbits is not greater than d(ξ1, ξ2). Thus two adjusted orbits also
satisfy the above properties. By abuse of notations, we still use ξ1 and ξ2 to
represent corresponding adjusted orbits, which mean

(7.12) ξi(R) ∩ ηk(R) = ξi([ti,k,−, ti,k,+]) = ηk([θi,k,−, θi,k,+]).

Here ξi(ti,k,+) = ηk(θi,k,+) and ξ(ti,k,−) = ηk(θi,k,−). It could happen that
θi,k,+ < θi,k,−. In terms of topology, the above adjustment basically plays
the role like that ξi and ηk only intersect once for smooth V . This helps to
avoid pathological behaviors about the intersections between ξi and ηk. We
consider two cases.

Case 1. ξ1(R) ∩ ξ2(R) ̸= ∅, that is, ξ1 and ξ2 intersect. Assume that
ξ1(t1) = ξ2(t2) for some t1, t2 ∈ R. See Figure 7. Then,

u0(ξ1(t1))− u0(ξ1(0)) = u1(ξ1(t1))− u1(ξ1(0))

=

∫ t1

0

(
1

2
|ξ̇1(s)|2 − V (ξ1(s)) + c

)
ds,

and

u0(ξ2(t2))− u0(ξ2(0)) = u1(ξ2(t2))− u1(ξ2(0))

=

∫ t2

0

(
1

2
|ξ̇2(s)|2 − V (ξ2(s)) + c

)
ds.

Taking the difference of the two equalities above leads to the desired result.

Case 2. ξ1(R) ∩ ξ2(R) = ∅, that is, ξ1 and ξ2 do not intersect. For each
k ∈ Z, let

d1(k) = max{θ : ηk(θ) ∈ ξ1(R) ∩ ηk(R)},
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Figure 7. The situation where ξ1(R) ∩ ξ2(R) ̸= ∅

and

d2(k) = min{θ : ηk(θ) ∈ ξ2(R) ∩ ηk(R)}.
In lights of the two dimensional topology and (7.12), we have that

d1(0) = a1 and d2(0) = b1,

and

d1(k) < d2(k) for all k ∈ Z.
See Figure 8. We claim that

Figure 8. Positions of d1(k), d2(k)



7.2. The two dimensional setting 129

(7.13)
∑
k∈Z

(d2(k)− d1(k)) ≤ T.

Indeed, to verify this claim, we first show that, for all k ∈ Z, the open
interval

(7.14) (d1(k), d2(k)) ⊂ R\I,
that is, it is one of those open intervals {(aj , bj)}j≥1 described earlier. It
suffices to show this for k > 0 as the proof for k < 0 is similar. We argue by
contradiction. If this were not true, then there would exist k ∈ N and ξ̃ ∈ U
such that

(7.15) ξ̃(0) ∈ {ηk(θ) : θ ∈ (d1(k), d2(k))}.

Since ξ̃ cannot pass the portion of η on (a0, b0), we deduce that, if trace

backward along ξ̃, it must intersect ξ1 or ξ2 before it intersects η. See
Figure 9.

Figure 9. Relative position of ξ̃

Let

t− = max{t ≤ 0 : ξ̃(t) ∈ ξ1(R) ∪ ξ2(R)},

t+ = inf{t ≥ 0 : ξ̃(t) ∈ ξ1(R) ∪ ξ2(R)}.
Then t− < 0 and t+ > 0. Note that t+ could be +∞.

Now we will use the gluing property of Definition 7.7 to construct a new
orbit in U . By two dimensional topology and (7.12), it is easy to see that,
for each k ∈ Z,
(7.16) ξ̃((t−, t+)) ∩ (ηk(R)) ⊂ {ηk(θ) : θ ∈ (d1(k), d2(k))}.
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Without loss of generality, we assume that ξ̃(t−) ∈ ξ2(R) and ξ̃(t+) ∈
ξj(R) for j = 1 or j = 2 if t+ < +∞. Suppose that

ξ̃(t−) = ξ2(t̄−) and ξ̃(t+) = ξj(t̄+).

for 0 < t̄− < t̄+. If t+ = +∞, then denote by t̄+ = +∞. Let

ξ3(t) =


ξ2(t) for t ≤ t̄−,

ξ̃(t+ t− − t̄−) for t̄− ≤ t ≤ t+ + t̄− − t−,

ξj(t+ t̄+ + t− − t̄− − t+) for t ≥ t+ + t̄− − t−.

We then use (7.15) and (7.16) to deduce that

ξ3(0) = η(b1) and d(ξ3, ξ1) < d(ξ2, ξ1),

which contradicts the choice of ξ1 and ξ2. Hence our claim (7.14) holds.

Next we show that for k ̸= l, (d1(k), d2(k)) is not a T -translation of
(d1(l), d2(l)). In fact, if

(d1(k), d2(k)) = (d1(l), d2(l)) + jT

for some j ∈ Z\{0}, then both η(d1(k)) and η(d1(l)) + ((k − l)J, j) are on
ξ1. Then, the outward normal vector n⃗ is rational, which contradicts our
assumption. Accordingly, after we translate all (d1(k), d2(k)) into (a1, a1 +
T ), they are all disjoint. Therefore, (7.13) holds true.

The property (7.13) implies

lim
k→∞

(d2(k)− d1(k)) = 0.

Similar to Case 1 above, since ηk(di(k)) ∈ ξi(R) for i = 1, 2,

u0(ηk(d1(k)))− u0(ξ1(0)) = u1(ηk(d1(k)))− u1(ξ1(0)),

and

u0(ηk(d2(k)))− u0(ξ2(0)) = u1(ηk(d2(k)))− u1(ξ2(0)).

Taking the difference of the two equations and sending k → ∞, we obtain
the claim.

□

7.3. Effective fronts in two dimensions

We are always in the two dimensional setting, that is, n = 2 in this section.
In this section, we focus on the front propagation Hamiltonian

H(y, p) = a(y)|p| for (y, p) ∈ T2 × R2

for some a ∈ C(T2, (0,∞)). Again, we do not require any smoothness of a
here.
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Denote by Ha = H the corresponding effective Hamiltonian. We write
Ha to demonstrate clearly the dependence on a. Of course, Ha is positive
homogeneous of degree one, and its 1-sublevel set

Sa :=
{
p ∈ R2 : Ha(p) ≤ 1

}
belongs to W, which denotes the collection of all convex sets in R2 that are
centrally symmetric with nonempty interior. The convex dual Da of Sa,
determined by

Da = ∂Ha(0),

the subdifferential of Ha at the origin, is called the effective front, which
also belongs to W.

7.3.1. Properties of the effective front.

Theorem 7.19. Assume that n = 2, and H(y, p) = a(y)|p| for (y, p) ∈ T2×
R2 for some a ∈ C(T2, (0,∞)). Then, ∂Sa does not contain a line segment
of irrational slope. Equivalently, ∂Da is differentiable at every irrational
point.

Proof. We use Theorem 7.15 to obtain the result. We consider the closely
related mechanical Hamiltonian

K(y, p) =
1

2
|p|2 + V (y) for (y, p) ∈ T2 × R2,

for some V ∈ C(T2) to be chosen. Let K be the associated effective Hamil-
tonian. Of course, minK = maxT2 V . For any p ∈ R2 withK(p) > maxT2 V ,

1

2
|p+Dv|2 + V (y) = K(p) ⇐⇒ 1√

2(K(p)− V (y))
|p+Dv| = 1.

Pick c = 0, and

V (y) = − 1

2a(y)2
for y ∈ T2.

Then, c > maxT2 V , and

a(y) =
1√

2(−V (y))
=

1√
2(c− V (y))

.

By the above relation,

F0 =
{
p ∈ R2 : K(p) = 0

}
= ∂Sa.

By Theorem 7.15, F0 does not contain a line segment of irrational slope.

□
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7.3.2. Constructions of polygonal effective fronts with rational
vertices. We next have the following result.

Theorem 7.20. Assume that n = 2, and H(y, p) = a(y)|p| for (y, p) ∈
T2 × R2 for some a ∈ C(T2, (0,∞)). Then, for any α ∈ (0, 1) and for any
centrally symmetric polygon P with rational slopes and nonempty interior,
there exists a ∈ C1,α(T2, (0,∞)) such that

Sa = P.

Note that it is not possible to have Sa of polygonal shape if a is C2. We
already proved in Theorem 6.10 that if a is C2 and not constant, then Sa
is C1 and contains some flat pieces. Therefore, the result in Theorem 7.20
is optimal in terms of both the regularity of a and the obtainable shapes of
Sa.

We proceed to prove Theorem 7.20 in this subsection. We need to have
various preparation steps first.

Let P be a given centrally symmetric polygon with rational slopes {qi}mi=1.
As we are in two dimensions, we assume that the rational vectors {qi}mi=1 ⊂
R2 are arranged clockwise as in Figure 10. For each i = 1, ..,m, there are a
unique λi > 0 and a unique irreducible integer vector (mi, ni) ∈ Z2 so that

qi = λi (mi, ni).

Of course, {qi}mi=1 form normal vectors of half of the edges of P . We order

Figure 10. Polygon P with vertices p1, p2, . . . , p2m

the other half by
qm+i = −qi, 1 ≤ i ≤ m.
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Let pi be the vertex between qi and qi+1 for 1 ≤ i ≤ 2m − 1. Let p2m be
the vertex between q2m and q1. We then have the following relations by
normalizing {qi}mi=1 appropriately, for 1 ≤ i ≤ m,

(7.17) pi · qi = pi · qi+1 = 1 and max
j ̸=i,i+1
1≤j≤m

|qj · pi| < 1 = pi · qi.

Lemma 7.21. Suppose that ξ ∈ C1([0, T ],R2) satisfies that

ξ(T )− ξ(0) = (m,n) ∈ Z2.

Denote by

λ =

(∫ T

0

|ξ̇(t)|
a(ξ(t))

dt

)−1

.

Then

Ha(p) ≥ λ p · (m,n).

Proof. Thanks to the inf-max formula, it suffices to show that for any
ϕ ∈ C∞(T2),

M := max
x∈R2

a(x)|p+Dϕ(x)| ≥ λ p · (m,n).

Let u(x) = p · x+ ϕ(x) for x ∈ R2. We see that

p · (m,n) = u(ξ(T ))− u(ξ(0)) =

∫ T

0
Du(ξ(t)) · ξ̇(t) dt ≤ M

λ
,

which yields the needed inequality. □

We now create a suitable network with directions {qi}mi=1. Choose m
lines {Li}mi=1 in R2 such that Li is parallel to qi for 1 ≤ i ≤ m, and,
when projected to T2, no three lines intersect at one point. Note that the
projection of each line to T2 gives a periodic orbit. By (7.17), for every two
distinct points x and y on Li, we have that

|pi · (x− y)| > max
j ̸=i−1,i
1≤j≤m

|pj · (x− y)|.

Consider all integer translations of Li, which form a network

Υ =

m⋃
i=1

(
Li + Z2

)
.

Let I be the collection of all intersection points in this network Υ. Of course,
I is Z2-periodic. Denote by

d = min{|x− y| : x ̸= y, x, y ∈ I}.

Clearly, d > 0.
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Figure 11. Intersection points on Li

Next, we perform the following procedure at each point in I. In a small
neighborhood of each fixed intersection point in I, we perturb the two cor-
responding intersecting lines a bit to create gradient flows of an appropriate
function. As this point is of distance at least d away from other intersection
points, this process is purely local. By linear transformations and transla-
tions, it suffices to show how to perform this procedure in a neighborhood
of the origin (0, 0) provided that L1, L2 are the x1-axis and x2-axis, respec-
tively. The adjustment can be done by using the following lemma.

Lemma 7.22. Let α ∈ (0, 1) be a fixed number as in the statement of
Theorem 7.20. Pick k ∈ N so that

α ≤ 1− 1

2k
.

Consider the potential function

u(x1, x2) = Ck

(
x4k1
Ck

+ x22

)1− 1
4k

+ 2x1 for (x1, x2) ∈ R2,

where Ck > 2k(4k + 1) is a constant. Then, u has infinitely many distinct
gradient flows passing through the origin.
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Figure 12. Local perturbation at the intersection of L1 and L2

Proof. Clearly, u ∈ C1,1− 1
2k (R2) and is C2 away from the origin.

Firstly, we note that γ1(t) = (f(t), 0) with{
f ′(t) = 2 + C

1
4k
k (4k − 1)f(t)4k−2,

f(0) = 0.

is a gradient flow of u passing through the origin.

Denote by

D =
{
(a, b) : 0 < a < 1, 0 < b < a2k

}
.

To finish, it suffices to show that if ξ(t) = (x1(t), x2(t)) : R → R2 is a
gradient flow of u and ξ(0) ∈ D, then

ξ((−∞, 0)) ∩ (0,∞)2 ⊂ D.

Note that x1(t) and x2(t) are both increasing withinD and ξ cannot intersect
with γ1 away from the origin. If the above statement were not correct, there
would exist θ < 0 such that

0 < x2(θ) = x2k1 (θ) and 0 < x2(t) < x2k1 (t) < 1 for t ∈ (θ, 0).

At θ,

Ckx
2k−1
1 (θ)

1 + 4k
<
ux2(x1(θ), x2(θ))

ux1(x1(θ), x2(θ))
=
x′2(θ)

x′1(θ)
≤ 2kx2k−1

1 (θ),

which contradicts the assumption that Ck > 2k(4k + 1). The proof is com-
plete. □
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Figure 13. Graph of ξ in D

By the above constructions, we get m periodic curves {L̃i}mi=1 and their

integer translations such that, for some small r ∈ (0, d
10), we have the fol-

lowing important properties.

(1) L̃i = Li away from the set Ir = {x ∈ R2 : d(x, I) ≤ r}.
(2) The set of intersection points remains the same, that is, for i ̸= j

and any integer vector v ∈ Z2,

L̃i ∩ (L̃j + v) = Li ∩ (Lj + v).

Equivalently, L̃i ∩ L̃j = Li ∩ Lj when projected to T2.

(3) For i ̸= j and an integer vector v ∈ Z2, if L̃i and L̃j + v intersect
at x = xi,j,v, then there exists a C1,α function u = ui,j,v in B r

2
(x)

such that
• |Du(x)| ≥ 1 in B r

2
(x);

• within B r
2
(x), L̃i and L̃j + v are two gradient flows of u that

only intersect at x;
• (periodicity) if two intersection points xi,j,v = xi′,j′,v′ + w for
some w ∈ Z2, then

ui,j,v(x+ w) = ui′,j′,v′(x) for x ∈ Br(xi′,j′,v′).

In particular, u is well defined on I r
2
when being projected to

the flat torus T2.
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Denote by

Γ =
⋃

1≤i≤m

(L̃i + Z2)

the perturbed network.

We are done with important preparation results. We now give the proof
of the main theorem in this subsection.

Proof of Theorem 7.20. As usual, we divide the proof into several steps.

Step 1. Initial choice of a0. We first pick r0 ∈ (0, r2) and a0 ∈
C1,α(T2, (0,∞)) such that a0 is C∞ away from the set I and satisfies the
following conditions.

(1) For every intersection point x = xi,j,v ∈ I and the associated func-
tion u = ui,j,v from the above construction, let

a0(y) =
1

|Du(y)|
for x ∈ Br0(x).

(2) For every two intersection points x, y on L̃i for 1 ≤ i ≤ m (i.e.,

x, y ∈ L̃i ∩ I), the weighted length li(x, y) between x and y along

L̃i satisfies

(7.18) li(x, y) :=

∫ 1

0

1

a0(ξ(t))
|ξ̇(t)| dt = |pi · (x− y)|.

Here, ξ : [0, 1] → L̃i is an arbitrary parametrization of L̃i between x and y.
In particular, the weighted length of each period (i.e., from x to x+(mi, ni))

of L̃i is

|pi · (mi, ni)| =
1

λi
|pi · qi| =

1

λi
.

The existence of a0 is clear provided r > 0 is small enough. By Lemma 7.21,

(7.19) Ha0(p) ≥ max
1≤i≤m

|qi · p|.

For i = 1, 2, ...,m, let ξi : R → L̃i be the smooth reparametrization of L̃i

such that

|ξ̇i(t)| =
1

a0(ξi(t))
for t ∈ R.

By usual constructions and the periodicity of Γ, there exists a universal
δ0 ∈ (0, r0) such that for each i = 1, 2, 3, ...,m, there exists wi ∈ C1,α(L̃i,δ0)
such that wi is C

∞ away from intersection points and

(1) ξ̇i(t) = Dwi(ξi(t)) for all t ∈ R, i.e., ξi is the gradient flow of wi;

(2) Dwi(x) = Dui,j,v(x) for x ∈ Bδ0(xi,j,v);

(3) infx∈L̃i,δ0
|Dwi(x)| > 0.
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Here, L̃i,δ0 = {x : d(x, L̃i) < δ0} and xi,j,v is any intersection point on L̃i.
Let

Γδ0 = {x ∈ R2 : d(x,Γ) < δ0} =
m⋃
i=1

(L̃i,δ0 + Z2).

Then, for x ∈ Γδ0 , we define

a0(x) =
1

|Dwi(x− v)|
if x− v ∈ L̃i,δ0 for 1 ≤ i ≤ m, and v ∈ Z2.

Extend a0 to C1,α(T2, (0,∞)) in such a way that it is smooth away from I.

Figure 14. Part of Γδ0

Step 2. Adjustments of a0. Next we need to construct ã ∈ C1,α(T2, (0,∞))
that is smooth away from I and satisfies{

ã = a0 on Γ,

H ã(pi) ≤ 1 for 1 ≤ i ≤ m.

Since ã agree with a0 of the previous step along L̃i’s, the property (7.18)
and, by Lemma 7.21, the inequality (7.19) are preserved. We hence obtainH ã(p) ≥ max1≤i≤m |qi · p|,

H ã(pi) ≤ 1 for 1 ≤ i ≤ m.
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Therefore, the function ã is exactly what we are looking for, that is, Sã = P .

Let us now give the construction of ã. In light of (7.17), for given
i ∈ {1, 2, 3, ..,m}, the following points hold

• for j = i, i+ 1 and two intersection points x, y ∈ Lj ,

|pi · x− pi · y| = lj(x, y);

• for j ̸= i, i+ 1 and every two distinct intersection points x, y ∈ Lj ,

|pi · x− pi · y| = |pi · (x− y)| ≤ max
l ̸=j−1,j

|pl · (x− y)| < |pj · (x− y)| = lj(x, y).

By usual constructions and the periodicity of Γ, there exists µ0 ∈ (0, δ0)
such that for each i = 1, 2, 3, ..,m, there exists a function ũi ∈ C1,α(Γµ0)
such that 

ũi ∈ C1,α(Γδ0), ũi ∈ C∞(Γµ0\I),
infΓδ0

|Dũi| > 0,

ũi − pi · x is Z2-periodic in Γµ0 ,

|Dũi| ≤ |Dwi| in Γµ0 ,

and for any intersection point x = xi,j,v ∈ I,

Dũi = Dwi = Dui,j,v in Bµ0(xi,j,v).

We extend ũi − pi · x to vi ∈ C1,α(T2) such that vi is C
2 away from I, and

for ui = pi · x+ vi,

ui = ũi on Γµ0
2
.

Now let

K1 = max
1≤i≤m

max
x∈R2

|Dui(x)| and K2 = max
x∈R2

a0(x).

Choose a cut-off function ϕ(x) ∈ C∞(T2, (0, 1]) such that

ϕ(x) =

{
1 for x ∈ Γµ0

4
,

1
K1(1+K2)

for x ∈ R2\Γµ0
2
.

We then simply define

ã(x) = ϕ(x)a0(x) for x ∈ R2.

Then, for i = 1, 2, ...,m,{
ã(x)|p+Dvi(x)| ≤ ã(x)|Dwi(x)| = ϕ(x) ≤ 1 for x ∈ Γµ0

2
,

ã(x)|p+Dvi(x)| = a0(x)|Dui(x)|
K1(1+K2)

≤ 1 for x ∈ R2\Γµ0
2
,

which implies

max
x∈R2

ã(x)|p+Dvi(x)| = max
x∈R2

ã(x)|Dui(x)| ≤ 1.
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By the inf-max formula, for 1 ≤ i ≤ m,

H ã(pi) ≤ 1.

Thus, ã constructed above has the desired properties. The proof of Theorem
7.20 is complete.

□

Thanks to the two main theorems, Theorem 7.19 and Theorem 7.20, we
have the following important claim.

Theorem 7.23. Assume that n = 2, and H(y, p) = a(y)|p| for (y, p) ∈
T2 × R2 for some a ∈ C(T2, (0,∞)). Then, a polygon could be an effective
front Da if and only if it is centrally symmetric with rational vertices and
nonempty interior.

7.4. Open problems

In the following, we list several open problems along the directions discussed
in this chapter.

Question 1. In Lemma 7.1 , we obtained that for all t ∈ (a, b), w1 − w2 is
differentiable at x = η(t), and

D(w1 − w2)(x) = 0.

Is it possible to show that w1 and w2 are individually differentiable at x =
η(t) for all t ∈ (a, b)?

Next, we address questions concerning the shape of Ha and the effective
fronts. For clarity, recall that

Sa :=
{
p ∈ R2 : Ha(p) ≤ 1

}
belongs to W, the collection of all convex sets in R2 that are centrally
symmetric with nonempty interior. The convex dual Da of Sa, determined
by

Da = ∂Ha(0),

the subdifferential of Ha at the origin, is called the effective front, which
also belongs to W.

Question 2. Is any set in W realizable as the effective front if we look at
a ∈ L∞(T2, (0,∞)) with ess infT2 a > 0?

Question 3. Does there exist a nonconstant a ∈ C(T2, (0,∞)) such that Sa
is a strictly convex set (e.g., a disk)?

Question 4. Assume n ≥ 3. What are the differentiability properties of
Ha? What can we say about the effective front?
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Chapter 8

Optimal rate of
convergence for
periodic
homogenization of
Hamilton-Jacobi
equations in the convex
setting

In this chapter, we obtain optimal rate of convergence for periodic homog-
enization of Hamilton-Jacobi equations in the convex setting. We always
assume that the Hamiltonian H = H(y, p) : Rn ×Rn → R is a given contin-
uous function satisfying

(8.1)


y 7→ H(y, p) is Zn-periodic for each p ∈ Rn,

lim|p|→∞miny∈Rn H(y, p) = +∞,

p 7→ H(y, p) is convex for each y ∈ Tn.

Of course, a short way to state (8.1) is that H ∈ C(Tn × Rn) is convex
and coercive in p. Let us now give a very quick summary of the qualitative
theory of periodic homogenization of Hamilton-Jacobi equations. In fact,
we do not need to use this qualitative theory here and we obtain directly

143
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the optimal quantitative estimates. Nevertheless, it is important to mention
things clearly here.

For each ε > 0, let uε ∈ C(Rn × [0,∞)) be the viscosity solution to

(8.2)

{
uεt +H

(
x
ε , Du

ε
)
= 0 in Rn × (0,∞),

uε(x, 0) = g(x) on Rn.

For the initial data, we typically assume g ∈ BUC(Rn)∩Lip (Rn). As ε→ 0,
uε converges to u locally uniformly on Rn × [0,∞) as ε → 0, and u solves
the effective equation

(8.3)

{
ut +H (Du) = 0 in Rn × (0,∞),

u(x, 0) = g(x) on Rn.

Here, H is the usual effective Hamiltonian.

Our main goal in this chapter is to obtain rate of convergence of uε to u
in L∞, that is, an optimal bound for ∥uε − u∥L∞(Rn×[0,∞)) as ε→ 0+. Here
is the main result.

Theorem 8.1. Assume (8.1) and g ∈ BUC(Rn) ∩ Lip (Rn). For ε > 0, let
uε be the viscosity solution to (8.2). Let u be the viscosity solution to (8.3).
Then, there exists C > 0 depending only on H, ∥Dg∥L∞(Rn), and n such
that

∥uε − u∥L∞(Rn×[0,∞)) ≤ Cε.

For (x, t) ∈ Rn × (0,∞), the optimal control formula for the solution to
(8.2) is

uε(x, t) = inf
γ(t)=x

γ∈AC([0,t])

{
g (γ (0)) +

∫ t

0
L

(
γ(s)

ε
, γ̇(s)

)
ds

}
.

It is hard to understand the action with the highly oscillatory spatial variable
γ(s)
ε . We make a change of variables to see this averaging effect better.

Denote by

r =
s− t

ε
for − t

ε
≤ r ≤ 0,

and

η(r) =
γ(εr)

ε
=⇒ η̇(r) = γ̇(εr).

Then, the above optimal control formula becomes
(8.4)

uε(x, t) = inf
εη(0)=x

η∈AC([−ε−1t,0])

{
g
(
εη
(
−ε−1t

))
+ ε

∫ 0

−ε−1t
L(η(r), η̇(r)) dr

}
.
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A key point we see here is the averaging effect coming from the action

ε

∫ 0

−ε−1t
L(η(r), η̇(r)) dr.

The curve η travels in the periodic environment for a long period of time
t/ε, and intuitively, it should be able to see the repeated structure. We then
take average of the action and obtain the large time average heuristically.
This large time average gives the homogenization result. Of course, this
discussion is purely heuristic, but it is rather important to see the key point
before giving rigorous treatments.

In the following, we use the optimal control formula (8.4) together with
deep understanding of the metric distance to prove Theorem 8.1. The metric
distance is similar to the minimal cost ht(x, y) defined in Subsection 4.3.5.
The only difference is that the metric distance is defined in Rn × Rn, not
Tn × Tn. We give some preparations in the next section.

8.1. Preliminaries and the metric problem

We assume the setting of Theorem 8.1.

8.1.1. A topological lemma. The following is a topological lemma on
how to equally divide a continuous curve.

Lemma 8.2. Let m ∈ N and ξ : [0, 1] → Rm be a continuous path. Then,
there is a collection of disjoint intervals {[ai, bi]}1≤i≤k ⊂ [0, 1] with k ≤ m+1

2
such that

k∑
i=1

(ξ(bi)− ξ(ai)) =
ξ(1)− ξ(0)

2
.

This is basically a generalized version of the intermediate value theorem
in multi dimensions. The curve ξ travels ξ(1) − ξ(0) in a unit amount of
time. And Lemma 8.2 tells us that we can find a collection of disjoint time
intervals {[ai, bi]}1≤i≤k ⊂ [0, 1] such that the through these time intervals,

the curve travels one half of the total amount, that is, ξ(1)−ξ(0)
2 . It is also

important that the number of these intervals is at most m+1
2 . Note that we

talk about the amount of travel in terms of vectors in Rm here.

Proof. Consider the unit sphere Sm in Rm+1. For x = (x1, . . . , xm+1) ∈
Sm, we of course have

m+1∑
i=1

x2i = 1.
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We define a map f : Sm → Rm as following. For each x ∈ Sm, take a
partition 0 = t0 ≤ t1 ≤ . . . ≤ tm+1 = 1 such that

ti − ti−1 = x2i for 1 ≤ i ≤ m+ 1.

In other words, for 1 ≤ i ≤ m+ 1,

ti =
i∑

j=1

x2j .

Denote by

f(x) =

m+1∑
i=1

sign(xi)(ξ(ti)− ξ(ti−1)).

Note that if xi = 0, then ti−1 = ti. Thus, f is well-defined. It is not hard to
see that f ∈ C(Sm,Rm) and f is odd, that is,

f(x) = −f(−x) for x ∈ Sm.

Thus, by the Borsuk–Ulam theorem, there exists x̄ ∈ Sm such that

f(x̄) = f(−x̄) =⇒ f(x̄) = 0.

Here, x̄ is called an antipodal point. Without loss of generality, we assume
that x̄ has at most m+1

2 positive coordinates. Then, the collection of disjoint
intervals [ti−1, ti] with x̄i > 0 is exactly what we need. The proof is complete.

□

8.1.2. A priori estimates and simplifications. By the usual compari-
son principle, we have

∥uεt∥L∞(Rn×[0,∞)) + ∥Duε∥L∞(Rn×[0,∞)) ≤ C0.

Here, C0 > 0 is a constant depending only on H and ∥Dg∥L∞(Rn). In
particular, we see that the values of H(y, p) for |p| > C0 are irrelevant. By
modifying H(y, p) for |p| > 2C0 + 1 if needed, we assume further that H
grows quadratically in p, that is,

(8.5)
1

2
|p|2 −K0 ≤ H(y, p) ≤ 1

2
|p|2 +K0 for all (y, p) ∈ Tn × Rn,

for some K0 > 1. Let L(y, v) be the Lagrangian (Legendre transform) of
the Hamiltonians H(y, p). It is clear that

(8.6)
1

2
|v|2 −K0 ≤ L(y, v) ≤ 1

2
|v|2 +K0 for all (y, v) ∈ Tn × Rn.

The quadratic growth of both H and L helps us control various bounds in
a more intuitive way later on. Besides, as our estimates are independent
of the smoothness of H and L, by approximations, we may assume further
that

H,L ∈ Ck(Tn × Rn)
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for some k ≥ 2.

8.1.3. The metric distance. For x, y ∈ Rn and t > 0, denote by

m(t, x, y) = inf

{∫ t

0
L(η(s), η̇(s)) ds : η ∈ AC([0, t],Rn), η(0) = x, η(t) = y

}
.

Here, m(t, x, y) is the minimum cost to travel from x to y in a given time
t > 0. We say that m(t, x, y) is the metric distance from x to y in time t.
Again, the metric distance is similar to the minimal cost ht(x, y) defined in
Subsection 4.3.5. The only difference is that the metric distance is defined
in Rn × Rn, not Tn × Tn.

The homogenized (large time average) metric is

(8.7) m(t, x, y) = lim
k→∞

1

k
m(kt, kx, ky).

In fact,

m(t, x, y) = tL

(
y − x

t

)
,

where L is the Lagrangian (Legendre transform) of the effective Hamiltonian
H. In particular, for s > 0,

m(st, sx, sy) = stL

(
y − x

t

)
= sm(t, x, y).

Thus, m is positively homogeneous of degree one. Some basic properties
of m are collected in the following lemma. To make the presentation self-
contained, we prove that (8.7) holds also in this lemma.

Lemma 8.3. Assume (8.5)–(8.6). Then, there exists C > 0, a universal
constant depending only on L and n, such that we have the following prop-
erties.

(a) m is subadditive, that is, for x, y, z ∈ Rn and t, s > 0,

m(t, x, y) +m(s, y, z) ≥ m(t+ s, x, z).

(b) m is periodic, that is, x, y ∈ Rn, w ∈ Zn, and t > 0,

m(t, x+ w, y + w) = m(t, x, y).

(c) For t > 0, and |y| ≤ Ct,

m(2t, 0, 2y) ≤ 2m(t, 0, y) + C.

Generally speaking, for r, l > 0,

m((r + l)t, 0, (r + l)y) ≤ m(rt, 0, ry) +m(lt, 0, ly) + C.
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(d) The convergence (8.7) holds, that is, for given x, y ∈ Rn and t > 0,
there exists m(t, x, y) ∈ R such that,

m(t, x, y) = lim
k→∞

1

k
m(kt, kx, ky).

Moreover, m is positively homogeneous of degree one.

(e) For t > 0, and |y| ≤ Ct,

(8.8) m(t, 0, y) ≤ m(t, 0, y) + C.

(f) For ε, t > 0, and |y| ≤ Ct,

(8.9) m(t, 0, y) ≤ εm

(
t

ε
, 0,

y

ε

)
+ Cε.

Proof. We note that (a) is just the usual triangle inequality and its proof is
clear from the definition of m. Also, (b) follows directly from the fact that
L is Zn-periodic in y.

Let us now prove (c). Write

y = [y] + ỹ,

where [y] ∈ Zn is the integer part of y, and ỹ ∈ [0, 1)n. By (a) and (b),

m(2t, 0, 2y) ≤ m(t, 0, y) +m(t, y, 2y)

= m(t, 0, y) +m(t, ỹ, y + ỹ).

By Theorem 4.34, as ỹ ∈ [0, 1)n,

|m(t, 0, y)−m(t, ỹ, y + ỹ)| ≤ C|ỹ| ≤ C.

We thus obtain

m(2t, 0, 2y) ≤ 2m(t, 0, y) + C.

Similarly, for r, l > 0,

m((r + l)t, 0, (r + l)y) ≤ m(rt, 0, ry) +m(lt, 0, ly) + C.

Let us now prove (d). It is enough to consider the case x = 0 as the
general case follows in a similar manner. Fix y ∈ Rn and t > 0. Then, we
can find C > 0 such that |y| ≤ Ct. Let ϕ : [0,∞) → R be such that, for
l ≥ 0,

ϕ(l) = m(lt, 0, ly) + C.

Then, in light of (c), ϕ is subadditive, that is, for l, r ≥ 0,

ϕ(l + r) ≤ ϕ(l) + ϕ(r).

Thanks to Fekete’s lemma,

lim
k→∞

ϕ(k)

k
= inf

l>0

ϕ(l)

l
.
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See Appendix D for an elementary proof of Fekete’s lemma. Note that, by
(8.6), ϕ(l) ≥ −K0l + C, which yields that the right hand side of the above
equality is finite. We conclude the proof of (8.7) and also that the limit is
finite. It is quite clear that m is positively homogeneous of degree one as
for s > 0,

m(st, sx, sy) = lim
k→∞

1

k
m(kst, ksx, ksy)

= s lim
k→∞

1

ks
m(kst, ksx, ksy) = sm(t, x, y).

Next, we prove (e). From (c), we see that

1

2
(m(2t, 0, 2y) + C) ≤ m(t, 0, y) + C.

By iterations, for k ∈ N,
1

2k

(
m(2kt, 0, 2ky) + C

)
≤ m(t, 0, y) + C.

Let k → ∞ to deduce

m(t, 0, y) ≤ m(t, 0, y) + C.

Finally, we prove (f). By (e),

m

(
t

ε
, 0,

y

ε

)
≤ m

(
t

ε
, 0,

y

ε

)
+ C.

As m is positively homogeneous of degree one, we imply

m(t, 0, y) ≤ εm

(
t

ε
, 0,

y

ε

)
+ Cε.

□

Next, we show that m is superadditive, which is harder to obtain in
general.

Lemma 8.4. Assume (8.5)–(8.6). Then, for t > n and y ∈ Rn with |y| ≤
Ct,

(8.10) 2m(t, 0, y) ≤ m(2t, 0, 2y) + C.

In particular,

(8.11) m(t, 0, y) ≤ m(t, 0, y) + C,

and, for ε > 0,

(8.12) εm

(
t

ε
, 0,

y

ε

)
≤ m(t, 0, y) + Cε.

Here, C > 0 is a universal constant depending only on L and n.



150 8. Optimal rate of convergence

Proof. It is enough to prove (8.10). The proofs of (8.11) and (8.12) then
follow in a similar manner like those in the end of the proof of Lemma 8.3.
Hereafter, C > 0 represents a universal constant depending only on L and n.
By considering α(s) = sy/t for s ∈ [0, 2t], we deduce that m(2t, 0, 2y) ≤ Ct.
Thanks to Theorem 2.23, there exists γ : [0, 2t] → Rn with γ(0) = 0,
γ(2t) = 2y, and γ ∈ Ck such that

(8.13) m(2t, 0, 2y) =

∫ 2t

0
L(γ(s), γ̇(s)) ds ≤ Ct.

Let ξ(s) = (γ(s), s) for s ∈ [0, 2t], that is, we add the time variable also
to the curve ξ. By Lemma 8.2, we are able to find a collection of disjoint
intervals {[ai, bi]}1≤i≤k ⊂ [0, 2t] with k ≤ n+2

2 such that

k∑
i=1

(ξ(bi)− ξ(ai)) =
ξ(2t)− ξ(0)

2
= (y, t).

Rearranging and shifting γ on {[ai, bi]}ki=1 in a periodic way in space to get

γ̃ : (0, t) → Rn such that, for t0 = 0, tj =
∑j

i=1(bi − ai) for 1 ≤ j ≤ k,

• γ̃(0+) ∈ [0, 1]n;

• γ̃|(tj−1,tj) is a periodic shift of γ|(aj ,bj) for 1 ≤ j ≤ k;

• for 1 ≤ j ≤ k − 1, γ̃(t+j )− γ̃(t−j ) ∈ [0, 1]n, which gives∣∣∣γ̃(t+j )− γ̃(t−j )
∣∣∣ ≤ √

n;

•
k∑

i=1

(γ̃(t−i )− γ̃(t+i−1)) = y.

Set γ̃(0−) = 0, and γ̃(t+) = y. We now use γ̃ to create η ∈ AC([0, t],Rn)
with η(0) = 0, η(t) = y, and

(8.14)

∫ t

0
L(η(s), η̇(s)) ds ≤

∫ t

0
L(γ̃(s), ˙̃γ(s)) ds+ C,

that is, we are off by at most a constant cost. We create η by using γ̃ and
connectors. Here, all connectors are straight lines with constant velocity for
simplicity (other options also work).

If t < n, then we simply let η be the connector connecting 0 to y, that
is, η(s) = sy/t for s ∈ [0, t]. It is clear that (8.14) holds.

Let us now consider the case where t ≥ n. By (8.13), there exists
d ∈ {0, 1, . . . , [t]− 1} such that∫ d+1

d
L(γ̃(s), ˙̃γ(s)) ds ≤ C.
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By the bound (8.6), we yield

(8.15)

∫ d+1

d
| ˙̃γ(s)|2 ds ≤ C.

Let us now rescale γ̃ on [d, d+1] to save an amount of time 1/2. Denote by

α(s) =


γ̃(s) for 0 ≤ s ≤ d,

γ̃(d+ 2(s− d)) for d ≤ s ≤ d+ 1
2 ,

γ̃(s+ 1
2) for d+ 1

2 ≤ s ≤ t− 1
2 .

Thanks to (8.15),

(8.16)

∣∣∣∣∣
∫ t

0
L(γ̃(s), ˙̃γ(s)) ds−

∫ t− 1
2

0
L(α(s), α̇(s)) ds

∣∣∣∣∣ ≤ C.

The main point here is that α saves an amount of time 1/2, and this amount
of time can be used to go along the k + 1 connectors suitably.

We next create k+1 connectors, each takes an amount of time 1/(2k+2)
connecting γ̃(t−j ) to γ̃(t+j ) for 0 ≤ j ≤ k. We then glue the pieces of α
together with these k+1 connectors to get the desired path η. See Figure 1.
In light of (8.16), (8.14) holds true. Combining (8.13) and (8.14), we arrive

Figure 1. Formation of the curve η

at

2m(t, 0, y) ≤ m(2t, 0, 2y) + C.

□
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8.2. Proof of Theorem 8.1

Proof of Theorem 8.1. We combine (8.8), (8.9), (8.11), and (8.12) to
yield, for ε, s > 0 and y ∈ Rn with |y| ≤ Cs,

(8.17) |m(s, 0, y)−m(s, 0, y)| ≤ C,

and

(8.18)
∣∣∣εm(s

ε
, 0,

y

ε

)
−m(s, 0, y)

∣∣∣ ≤ Cε.

By suitable scalings and translations, it suffices to obtain the result for
(x, t) = (0, 1). As g ∈ Lip (Rn),

(8.19) |g(x)| ≤ |g(x)− g(0)|+ |g(0)| ≤ C(|x|+ 1) for all x ∈ Rn.

Recall that the optimal control formula (8.4) gives us that

uε(0, 1) = inf
η(0)=0

η∈AC([−ε−1,0])

{
g
(
εη
(
−ε−1

))
+ ε

∫ 0

−ε−1

L(η(t), η̇(t)) dt

}
.

Thanks to (8.6) and the Jensen inequality,

ε

∫ 0

−ε−1

L(η(t), η̇(t)) dt ≥ ε

∫ 0

−ε−1

(
|η̇(t)|2

2
−K0

)
dt ≥ 1

2
ε2
∣∣η(−ε−1)

∣∣2 −K0.

Combining the above with (8.19) and the optimal control formula, we yield
that the infimum in the optimal control formula only happens when

ε
∣∣η(−ε−1)

∣∣ ≤ C

for C > 0 depending only on L, ∥Dg∥L∞(Rn), and n.

Therefore, we can write

uε(0, 1) = inf
η(0)=0,

ε|η(−ε−1)|≤C

{
g
(
εη
(
−ε−1

))
+ ε

∫ 0

−ε−1

L(η(t), η̇(t)) dt

}

= inf
|y|≤C

(g(y) + εm(ε−1, ε−1y, 0))

= inf
|y|≤C

(g(y) +m(1, 0,−y)) +O(ε)

= u(0, 1) +O(ε).

We used (8.18) in the second last equality. The proof is complete. □

8.3. An example on optimal rate O(ε) in one dimension

We now show that O(ε) is indeed the optimal rate of convergence via the
following simple proposition. We note that there are many such examples,
and we choose one that is relatively simple to present here.
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Proposition 8.5. Assume that n = 1 and

H(y, p) =
p2

2
+ V (y) for (y, p) ∈ T× R

for some given V ∈ C(T) with maxT V = 0 and V ≤ −1 in [−3−1, 3−1].
Assume further that g ≡ 0. For ε > 0, let uε be the solution to (8.2). Let u
be the solution to (8.3). Then, uε converges locally uniformly to u ≡ 0 on
R× [0,∞) as ε→ 0. Furthermore, for ε ∈ (0, 1),

(8.20) uε(0, 1) ≥ ε

6
.

Proof. Note that H(0) = 0, and thus, u ≡ 0. We already know that uε

converges locally uniformly to u ≡ 0 on R× [0,∞) as ε → 0. We just need
to prove (8.20).

As usual, the optimal control formula gives

uε(0, 1) = inf

{
ε

∫ ε−1

0

|η̇|2

2
− V (η) dt : η ∈ AC([0, ε−1]), η(0) = 0

}
.

Pick η ∈ AC([0, ε−1]) with η(0) = 0. There are two cases to be considered.

Case 1. If η([0, 3−1]) ⊂ [−3−1, 3−1], then

ε

∫ ε−1

0

|η̇|2

2
− V (η) dt ≥ ε

∫ 3−1

0
−V (η) dt ≥ ε

3
.

Case 2. η([0, 3−1]) ⊈ [−3−1, 3−1]. Then, without loss of generality, we
assume that there exists t ∈ (0, 3−1) such that η(t) = 3−1. We use Jensen’s
inequality to deduce that

ε

∫ ε−1

0

|η̇|2

2
− V (η) dt ≥ ε

∫ t

0

|η̇|2

2
dt ≥ ε

2t

(∫ t

0
η̇ dt

)2

≥ ε

6
.

The proof is complete. □

8.4. Open problems

The main remaining open problem in the quantitative theory is to find opti-
mal convergence rates for periodic homogenization of nonconvex Hamilton-
Jacobi equations, where all methods and ideas from stable norms and first
passage percolations cease to work. The first nonconvex situation with O(ε)
convergence rate was obtained in [TY21] for

H(y, p) = max{|p| − 1, 1− |p|}+ V (y) for all (y, p) ∈ Tn × Rn

with osc(V ) = maxV − minV ≥ 1. One possible strategy to handle the
nonconvex case is to first identify the shape of the effective Hamiltonian,
then design customized strategies based on the game theory interpretation.



154 8. Optimal rate of convergence

Question 5. Identify and prove the optimal rate of convergence of uε to u
in the general nonconvex setting.

Question 6. Theorem 8.1 gives us that ∥uε−u∥L∞(Rn×[0,∞)) ≤ Cε. Identify

any possible pattern of uε−u
ε as ε→ 0+.

Question 7. Study the optimal rate of convergence in the convex setting
when H has multiscale nature, for example,

H = H

(
x,
x

ε
,
t

ε
,
uε

ε

)
.

8.5. References

(1) Much of the content of this chapter is based on Tran, Yu [TY21].

(2) Proposition 8.5 is based on an example given in Mitake, Tran, Yu
[MTY19].

(3) We give a minimalistic review of the PDE literature playing major
roles in finding the convergence rate in the periodic setting.

For the general nonconvex setting, the best known convergence
rate is O(ε1/3) obtained by Capuzzo-Dolcetta and Ishii [CDI01].
Although the result in [CDI01] concerns static Hamilton-Jacobi
equations, the extension to the Cauchy problem is quite standard
(see, e.g., [Tra21]).

For convex Hamilton-Jacobi equations, by using weak KAM
methods, the lower bound uε − u ≥ −Cε was proved by Mitake,
Tran, and Yu [MTY19] for all dimensions. When n = 2, for posi-
tive homogeneous Hamiltonian, the upper bound uε − u ≤ Cε was
also derived via the classical Aubry-Mather theory, which however
heavily relies on the two dimensional topology. After [MTY19],
the major open problem was whether the upper bound uε − u ≤
Cε always holds in higher dimensions (n ≥ 3), which was com-
pletely unclear although some conditional higher dimensional re-
sults in [MTY19] sort of imply that the upper bound should hold
in “generic” situations. See also Jing, Tran, Yu [JTY20], and Tu
[Tu].

Then, Cooperman discovered that closely related convergence
rate results have been established in the context of first passage
percolation in the 1990s by Alexander [Ale90, Ale97]. By adjust-
ing the methods there, Cooperman was able to obtain in [Coo22] a
near optimal convergence rate |uε(x, t)−u(x, t)| ≤ Cε log(C+ε−1t)
when n ≥ 3, which was a very surprising result for people in the
PDE community.
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Later on, while studying finer properties of effective fronts, the
authors discovered an old result concerning the convergence rate
of stable norms in metric geometry by Burago [Bur92] also in the
1990s that is basically equivalent to the optimal convergence rate
O(ε) in the homogenization of static Hamilton-Jacobi equations.
Lemma 8.2 proved by Burago and Perelman played the key role
there. By using this crucial lemma, we obtained Theorem 8.1,
which concludes the study of this whole program in the convex
setting.





Chapter 9

Large time behavior
for Hamilton-Jacobi
equations in the torus

In this chapter, we always consider a given Hamiltonian H : Tn × Rn → R
that satisfies

(9.1)


H ∈ Ck(Tn × Rn) for some k ≥ 2,

D2
ppH(y, p) > 0 for all (y, p) ∈ Tn × Rn,

lim|p|→∞miny∈Tn
H(y,p)

|p| = +∞.

Let L be the corresponding Lagrangian (the Legendre transform of H).
Then, L satisfies

(9.2)


L ∈ Ck(Tn × Rn),

D2
vvL(y, v) > 0 for all (y, v) ∈ Tn × Rn,

lim|v|→∞miny∈Tn
L(y,v)
|v| = +∞.

The main object in this chapter is the following Cauchy problem

(9.3)

{
ut +H(x,Du) = 0 in Tn × (0,∞),

u(x, 0) = g(x) on Tn.

Here, g ∈ C(Tn) is the given initial data, and u : Tn × [0,∞) → R is the
unknown. Our main goal in this chapter is to study the large time behavior
of u, that is, limt→∞ u(x, t) after appropriate normalizations.

Heuristically, it is natural to expect that, as t→ ∞,

u(x, t) ≈ v(x)− ct,

157
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which can be considered as an ansatz. Plug this expansion into (9.3), we see
that

H(x,Dv(x)) = c in Tn.

Thus, we see that c = c[0], and we again need the cell problem at p = 0,
that is,

(9.4) H(x,Dv(x)) = H(0) = c[0] in Tn.

Here, c[0] = H(0) ∈ R is the unique constant so that (9.4) has a viscosity
solution as discussed in the previous chapters. Sometimes, c[0] = H(0) is
also called the ergodic constant in the literature.

9.1. Large time behavior

Let us state the main result of this chapter.

Theorem 9.1. Assume (9.1). Let g ∈ C(Tn) be a given initial data, and u
be the viscosity solution to (9.3). Then, u(x, t) + c[0]t→ v uniformly on Tn

as t→ ∞, where v is a viscosity solution to (9.4).

To date, there have been many different proofs of this important large
time behavior result. We present here a proof following Fathi [Fat].

We always assume the settings of Theorem 9.1 in this section. We first
need the following important preparation lemma.

Lemma 9.2. Fix ε > 0. Then, there exists t(ε) > 0 such that, for each
t > t(ε), if Du(x, t) exists, then

c[0]− ε ≤ H(x,Du(x, t)) ≤ c[0] + ε.

Proof. Fix ε > 0. Denote by

Wε = {(x, v) ∈ Tn × Rn : c[0]− ε < H ◦ L(x, v) < c[0] + ε} .

Then, Wε is a neighborhood of M̃0 thanks to Lemma 5.6. By Lemma 5.21,
there exists t(ε) > 0 such that for any minimizing curve γ : [0, t] → Tn with
t > t(ε) then we can find t′ ∈ [0, t] with(

γ(t′), γ̇(t′)
)
∈Wε.

By the conservation of energy, we imply further that

(9.5) H ◦ L (γ(s), γ̇(s)) ∈ [c[0]− ε, c[0] + ε] for all s ∈ [0, t].

Now, for t > t(ε), if Du(x, t) exists, then we are able to find a minimizing
curve γ : [0, t] → Tn with γ ∈ Ck([0, t]), γ(t) = x, and{

u(x, t) =
∫ t
0 L(γ(s), γ̇(s)) ds+ g(γ(0)),

Du(x, t) = DvL(γ(t), γ̇(t)).
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By (9.5), we conclude that

c[0]− ε ≤ H(x,Du(x, t)) ≤ c[0] + ε.

□

Proof of Theorem 9.1. Without loss of generality, we assume c[0] = 0.
By approximations, we may also assume g ∈ Lip (Tn). We divide the proof
into several steps.

Step 1. Let v0 ∈ C(Tn) be a solution to (9.4). Pick C = ∥v0∥L∞(Tn) +
∥g∥L∞(Tn). Then,

v0 − C ≤ g ≤ v0 + C.

Note that v0 ± C are separable solutions to (9.3) with initial data v0 ± C,
respectively. By the usual comparison principle to (9.3),

(9.6) v0(x)− C ≤ u(x, t) ≤ v0(x) + C for all (x, t) ∈ Tn × [0,∞).

Since g ∈ Lip (Tn), there exists C > 0 such that

(9.7) ∥ut∥L∞(Tn×[0,∞)) + ∥Du∥L∞(Tn×[0,∞)) ≤ C.

Step 2. By (9.6) and (9.7), we use the Arzelà-Ascoli theorem to find a
sequence {tk} → ∞ such that

Ttkg(x) = u(x, tk) → u∞(x) uniformly on Tn as tk → ∞.

By Lemma 9.2, for each ε > 0, there exists t(ε) > 0 such that, for tk > t(ε),

H(x,Du(x, tk)) ≤ c[0] + ε = ε for a.e. x ∈ Tn.

In particular, u(x, tk) is a viscosity subsolution to

H(x,Du(x, tk)) ≤ ε in Tn.

Let tk → ∞ and ε→ 0 in this order to yield that u∞ is a viscosity subsolution
to

(9.8) H(x,Du∞) ≤ 0 in Tn.

Step 3. As u∞ is a subsolution to (9.8), we see that

(9.9) Ttu∞(x) ≤ u∞(x) for all t ≥ 0.

Without loss of generality, we assume tk+1 − tk → ∞ as k → ∞. Denote by
sk = tk+1 − tk. We claim that

(9.10) Tsku∞ → u∞ uniformly on Tn as k → ∞.
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Indeed, by the comparison principle and the triangle inequality

∥Tsku∞ − u∞∥L∞ ≤ ∥Ttk+1
g − Tsku∞∥L∞ + ∥Ttk+1

g − u∞∥L∞

= ∥Tsk ◦ Ttkg − Tsku∞∥L∞ + ∥Ttk+1
g − u∞∥L∞

≤ ∥Ttkg − u∞∥L∞ + ∥Ttk+1
g − u∞∥L∞ → 0

as k → ∞. Hence, (9.10) is valid.

Step 4. Thanks to (9.9) and (9.10),

(9.11) Ttu∞(x) = u∞(x) for all t ≥ 0.

We now only need to use the comparison principle to show that

(9.12) Ttu∞ → u∞ uniformly on Tn as t→ ∞.

Indeed, for t ≥ tk, we use (9.11) and the usual comparison principle to get

∥Ttg − u∞∥L∞ = ∥Tt−tk ◦ Ttkg − Tt−tku∞∥L∞

≤ ∥Ttkg − u∞∥L∞ ,

which gives (9.12). The proof is complete. □

9.2. A nonconvergence example

It turns out that the strict (or uniform) convexity of the Hamiltonian is
really needed in order to get the large time behavior result. We now give an
example to show that u(x, t) does not converge as t→ ∞ if H is not strictly
convex in p.

Example 9.3. Consider the following Hamilton-Jacobi equation in one di-
mension

(9.13) ut + |ux + a| − a = 0 in T× (0,∞).

Here, a > 0 is a given constant. The Hamiltonian H(x, p) = |p + a| − a is
convex, but not strictly convex in this case.

In this setting, (9.4) becomes

|vx + a| − a = c[0] in T.

We see that c[0] = 0, and v = C for any given constant C ∈ R is a solution
to the above.

Set

u(x, t) =
a

4π
sin(2π(x− t)) for (x, t) ∈ T× [0,∞).

It is clear that, for (x, t) ∈ T× [0,∞),

ut(x, t) = −a
2
cos(2π(x− t)) and ux(x, t) =

a

2
cos(2π(x− t)).
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Hence, u is a solution to (9.13) with initial data

g(x) = u(x, 0) =
a

4π
sin(2πx).

However, as t→ ∞, u(x, t) does not converge to any limit.

9.3. Maximal subsolutions and a different definition of the
Aubry set

We only focus on the cell problem (9.4) here. We recall that ht(x, y) is the
minimal cost it takes to travel from x to y in a given fixed amount of time
t corresponding to the given Lagrangian L. More specifically, as defined in
(4.13),

ht(x, y) = inf
γ∈AC([0,t],Tn)
γ(0)=x,γ(t)=y

∫ t

0
L(γ(s), γ̇(s)) ds.

Definition 9.4. For x, y ∈ Tn, denote by

d(x, y) = inf
{∫ t

0
L(γ(s), γ̇(s)) ds+ c[0]t :

t > 0, γ ∈ AC([0, t],Tn), γ(0) = x, γ(t) = y
}
.

From the definition of d, we see that

d(x, y) = inf {ht(x, y) + c[0]t : t > 0} .

Besides, it is worth to note that d is different from the Peierls barrier h,
where

h(x, y) = lim inf
t→∞

[ht(x, y) + c[0]t] .

In particular, we observe that, for x, y ∈ Tn,

d(x, y) ≤ h(x, y).

Theorem 9.5 (Properties of d). Assume (9.1). Then, we have the following
properties of d.

(a) For x, y ∈ Tn,

d(x, y) = sup{v(y)− v(x) : v is a subsolution to (9.4)}.

(b) For x, y, z ∈ Tn, d(x, x) = 0, and

d(x, z) ≤ d(x, y) + d(y, z).

(c) For x ∈ Tn fixed, y 7→ d(x, y) is a subsolution to (9.4), and is a
solution to (9.4) in Tn \ {x}.
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Proof. We first prove (a). By Lemma 3.14, for each v being a subsolution
to (9.4) and x, y ∈ Tn,

ht(x, y) + c[0]t ≥ v(y)− v(x).

Taking infimum over t > 0 and supremum over v in this order to yield

d(x, y) ≥ sup{v(y)− v(x) : v is a subsolution to (9.4)}.

To conclude, we show that y 7→ w(y) = d(x, y) is a subsolution to (9.4). It
is not hard to see that w is Lipschitz. Pick y ̸= x to be a differentiable point
of w. We need to show that

(9.14) H(y,Dw(y)) ≤ c[0].

By the definition of d, we see that, for 0 < r < |y − x|/2,

w(y) = inf
z∈∂B(y,r)

(w(z) + d(z, y)) .

For each nonzero vector e ∈ Rn, denote

γe(s) = y − te+ se for 0 ≤ s ≤ t

for t > 0 sufficiently small. Then, by using this path γe and the above
relation, we see that

w(y) ≤ w(y − te) +

∫ t

0
L(y − te+ se, e) ds+ c[0]t.

Hence,

w(y)− w(y − te)

t
≤ 1

t

∫ t

0
L(y − te+ se, e) ds+ c[0].

Let t→ 0+ in the above to deduce that

Dw(y) · e− L(y, e) ≤ c[0].

Maximize this inequality over e ∈ Rn to imply (9.14).

We next prove (b). The triangle inequality d(x, z) ≤ d(x, y) + d(y, z) is
immediate from the definition of d. By part (a), we see that d(x, x) ≥ 0.
Besides, as h0(x, x) = 0, we conclude that d(x, x) = 0.

Part (c) is also an immediate consequence of part (a). We already showed
that y 7→ d(x, y) is a subsolution to (9.4). Moreover, by Perron’s method
and the supremum formula of d, y 7→ d(x, y) is a solution to (9.4) in Tn\{x}.
In a more explicit way, y 7→ d(x, y) solves{

H(y,Dyd(x, y)) = c[0] in Tn \ {x},
d(x, x) = 0.

□
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Because of the characterization of d in part (a) of the theorem above, we
say that y 7→ d(x, y) is the maximal subsolution of (9.4) with given vertex
x.

Theorem 9.6 (Another characterization of the Aubry set). Assume (9.1).
Then, x ∈ A0 if and only if y 7→ d(x, y) is a solution to (9.4) in the whole
Tn.

Proof. We first prove the “⇒” direction. Assume that x ∈ A0. Then,
h(x, x) = 0. By Theorem 5.27, for hx(y) = h(x, y), then hx ∈ S− and
hx(x) = 0. This means that hx is a solution to (9.4), and hx touches d(x, ·)
from above at x. For p ∈ D−d(x, x), we then have p ∈ D−hx(x), and thus

H(x, p) = c[0].

We hence get that y 7→ d(x, y) is a solution to (9.4).

We now prove the “⇐” direction. Assume y 7→ w(y) = d(x, y) is a
solution to (9.4). Then, there exists a calibrated curve γ : (−∞, 0] → Tn

with γ(0) = x. In particular, for t > 0,

w(γ(0))− w(γ(−t)) = −d(x, γ(−t)) =
∫ 0

−t
L(γ, γ̇) ds+ c[0]t ≥ d(γ(−t), x).

Thus, we obtain

0 ≥ d(x, γ(−t)) + d(γ(−t), x) ≥ d(x, x) = 0,

which yields further that

d(x, γ(−t)) + d(γ(−t), x) = 0.

Take t = 1 and use the above equality to create a loop containing x of time
at least 1 that has zero cost. Thanks to Theorem 5.24, we conclude that
x ∈ A0. □

We use this characterization to give a new and equivalent definition of
the Aubry set.

Definition 9.7 (Another definition of the Aubry set). Denote by

A0 = {x ∈ Tn : y 7→ d(x, y) is a solution to (9.4)}.

9.4. Large time profile

In Theorem 9.1, we proved that as t→ ∞, u(x, t) + c[0]t→ v uniformly on
Tn, where v is a viscosity solution to (9.4).

Definition 9.8 (Large time profile). Assume (9.1). Let g ∈ C(Tn) be a
given initial data, and u be the viscosity solution to (9.3). Denote by

u∞(x) = u∞[g](x) = lim
t→∞

(u(x, t) + c[0]t) .
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We say that u∞ = u∞[g] is the large time profile of the given initial data g.
When there is no confusion, we write u∞ in place of u∞[g] for short.

Our goal in this section is to give a representation formula of u∞ = u∞[g]
in terms of g and the underlying dynamics.

Proposition 9.9. Assume (9.1). Let g ∈ C(Tn) be a given initial data, and
u be the viscosity solution to (9.3). Let u∞ = u∞[g] be the corresponding
large time profile. Then, for y ∈ A0,

u∞(y) = min {d(z, y) + g(z) : z ∈ Tn}
= sup {v(y) : v is a subsolution to (9.4) with v ≤ g in Tn} .

Proof. For y ∈ Tn, denote by

w(y) = min {d(z, y) + g(z) : z ∈ Tn} .

It is clear that w ≤ g in Tn. Besides, as y 7→ d(z, y) is a subsolution to (9.4)
and H is convex in p, we yield that w is also a subsolution to (9.4). By the
usual comparison principle, we imply

w(y)− c[0]t ≤ u(y, t) for all (y, t) ∈ Tn × [0,∞).

Hence,

(9.15) w ≤ u∞.

We next prove the converse inequality for y ∈ A0 to achieve that w = u∞

on A0. Fix y ∈ A0. Pick z = zy so that

w(y) = d(z, y) + g(z).

By the definition of d, for each ε > 0, there exists tε > 0 and a curve
ξε ∈ AC([0, tε],Tn) with ξε(0) = z, ξε(tε) = y such that

d(z, y) >

∫ tε

0

(
L(ξε, ξ̇ε) + c[0]

)
ds− ε.

Besides, as y ∈ A0, for each k ∈ N, there exist sk ≥ k and a loop δε :
[0, sk] → Tn such that δε(0) = δε(sk) = y, and∫ sk

0

(
L(δε, δ̇ε) + c[0]

)
ds < ε.

We next use ξε and δε to create γε as following

γε(s) =

{
ξε(s) for s ∈ [0, tε],

δε(s− tε) for s ∈ [tε, tε + sk].
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Then, ξε ∈ AC([0, tε + sk],Tn) with ξε(0) = z and ξε(tε + sk) = y. By the
optimal control formula, we see that

u(y, tε + sk) + c[0](tε + sk) ≤
∫ tε+sk

0

(
L(ξε, ξ̇ε) + c[0]

)
ds+ g(z)

≤ d(z, y) + g(z) + 2ε.

Let k → ∞ and ε→ 0 in this order to yield

(9.16) u∞(y) ≤ w(y).

Combine (9.15) and (9.16) to get w = u∞ on A0.

We next prove the second equality. Denote by

ϕ(y) = sup {v(y) : v is a subsolution to (9.4) with v ≤ g in Tn} .

On the first hand, it is clear that w is a subsolution to (9.4) and w ≤ g.
Thus, w ≤ ϕ. On the other hand, let v be a subsolution to (9.4) with v ≤ g
in Tn. Then,

v(y)− v(z) ≤ d(z, y) =⇒ v(y) ≤ v(z) + d(z, y) ≤ g(z) + d(z, y).

Take infimum over z and supremum over v in this order in the above to yield
ϕ ≤ w. The proof is complete. □

Theorem 9.10. Assume (9.1). Let g ∈ C(Tn) be a given initial data, and
u be the viscosity solution to (9.3). Let u∞ = u∞[g] be the corresponding
large time profile. For x ∈ Tn, denote by

w(x) = wg(x) = min {d(z, x) + g(z) : z ∈ Tn} .

Then, for x ∈ Tn,

u∞(x) = min {d(z, y) + wg(y) : y ∈ A0}
= inf {v(x) : v is a solution to (9.4) with v ≥ wg in Tn} .

Proof. For x ∈ Tn, set

φ(x) = min {d(y, x) + wg(y) : y ∈ A0} .

By the above proof, wg is a subsolution to (9.4) and wg ≤ g. It is clear that
φ is a solution to (9.4) as x 7→ d(y, x) is a solution to (9.4) for y ∈ A0. We
claim that

φ(y) = wg(y) for y ∈ A0.

Indeed, for y ∈ A0 fixed, by the definition of φ, we already have φ(y) ≤
wg(y). On the other hand, as wg is a subsolution to (9.4),

wg(y)− wg(z) ≤ d(z, y) =⇒ wg(y) ≤ d(z, y) + wg(z),

which means that φ(y) = wg(y). Hence, we use Proposition 9.9 to get that

u∞(y) = wg(y) = φ(y) for y ∈ A0.
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As A0 is an uniqueness set of the cell problem (9.4), we deduce by the
representation formula that, for x ∈ Tn,

u∞(x) = φ(x) = min {d(y, x) + wg(y) : y ∈ A0} .

Let us finally prove the second equality. By the above, it is clear that φ
is a solution to (9.4) and φ ≥ wg. Take any solution v to (9.4) with v ≥ wg.
Then, for x ∈ Tn,

v(x) = min {d(y, x) + v(y) : y ∈ A0}
≥ min {d(y, x) + wg(y) : y ∈ A0} = φ(x).

Thus, we get

φ(x) = inf {v(x) : v is a solution to (9.4) with v ≥ wg in Tn} .

The proof is complete. □
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Appendix A

Notations

We list here various notations that are used in the book.

A.1. Notation for sets and spaces

• n ∈ N is often used to denote the dimensions.

• Rn = n-dimensional real Euclidean space; R = R1.

• ei is the i-th vector in the canonical basis of Rn for 1 ≤ i ≤ n, that
is,

ei = (0, . . . , 0, 1, 0, . . . , 0),

where 1 occurs in the i-th position.

• A typical point in Rn is often denoted by x = (x1, . . . , xn). De-
pending on different situations, we might regard x as a row vector
or a column vector.

• For x, y ∈ Rn with x = (x1, . . . , xn), y = (y1, . . . , yn), write

x · y =

n∑
i=1

xiyi and |x| =
√
x · x.

• A typical point in Rn × [0,∞) is often denoted by

(x, t) = (x1, . . . , xn, t),

where t often stands for the time variable.

• For a given real number s ∈ R, denote by [s] its integer part.

• Tn = Rn/Zn is the usual n-dimensional flat torus. When there is
no confusion, we identify Tn with the unit cell Y = [0, 1]n with
periodic boundary condition on Y .
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• For an open set U ⊂ Rn, we write ∂U to denote its boundary, and
U = U ∪ ∂U to denote its closure.

• For U, V open sets in Rn, we write

U ⊂⊂ V

if U ⊂ U ⊂ V , and U is compact, and say that U is compactly
supported in V .

• For x ∈ Rn and r > 0, we denote by B(x, r) the open ball in Rn

with center x, radius r, that is,

B(x, r) = {y ∈ Rn : |y − x| < r} .

Denote by B(x, r) the closed ball with center x, radius r, that is,

B(x, r) = {y ∈ Rn : |y − x| ≤ r} .

We also write B(x, r), B(x, r) as Br(x), Br(x), respectively. When
x = 0, we simply write Br = Br(0), Br = Br(0).

A.2. Notation for functions

Let u : Rn → R be a smooth function. We have some basic notions as
following.

• Du(x) = ∇u(x) =
(

∂u
∂x1

(x), . . . , ∂u
∂xn

(x)
)
.

• The Hessian of u at x is

D2u(x) =


∂2u
∂x2

1
(x) ∂2u

∂x1∂x2
(x) . . . ∂2u

∂x1∂xn
(x)

...
...

. . .
...

∂2u
∂xn∂x1

(x) ∂2u
∂xn∂x2

(x) . . . ∂2u
∂x2

n
(x)

 .

• The Laplacian of u at x is

∆u(x) = tr(D2u(x)) =

n∑
i=1

∂2u

∂x2i
(x).

In this book, we use the notion Du(x) instead of ∇u(x). We usually write
uxi for

∂u
∂xi

.

When u is not smooth, we have the following definition for subdifferential
and superdifferential of u at x.

• The subdifferential of u at x is denoted by D−u(x), where

D−u(x) =

{
p ∈ Rn : lim inf

y→x

u(y)− u(x)− p · (y − x)

|y − x|
≥ 0

}
.
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• The superdifferential of u at x is denoted by D+u(x), where

D+u(x) =

{
p ∈ Rn : lim sup

y→x

u(y)− u(x)− p · (y − x)

|y − x|
≤ 0

}
.

If u is differentiable at x then

D−u(x) = D+u(x) = {Du(x)}.

When u : Rn → R is convex, we have the following definition for sub-
gradients. Fix x0 ∈ Rn. The subgradient of u at x0 is defined as

∂u(x0) = {p ∈ Rn : u(x) ≥ u(x0) + p · (x− x0) for all x ∈ Rn} .
In this convex setting, it is always true that

∂u(x0) = D−u(x0) ̸= ∅.

For u : Rn × [0,∞) → R smooth, we write

• Du(x, t) = Dxu(x, t) and ut(x, t) =
∂u
∂t (x, t).

• D2u(x, t) = D2
xu(x, t), and ∆u(x, t) = ∆xu(x, t).

Besides, we use the following for a given function u : Rn → R.

• Set u+ = max{u, 0}, and u− = −min{u, 0}. Surely, u = u+ − u−,
and |u| = u+ + u−.

• If u is compactly supported, then the support of u is denoted by
spt(u).

• If u is Zn-periodic, then we can think of u as a function from Tn

to R as well, and vice versa. In the book, we switch freely between
the two interpretations.

For a smooth path γ : R → Rn and t ∈ R, we write

γ̇(t) =
d

dt
γ(t), γ̈(t) =

d2

dt2
γ(t).

In many occasions, we use a modulus of continuity ω. By this, we
mean ω : [0,∞) → [0,∞) is a continuous function such that ω(0) = 0 =
limr→0w(r).

The following convolution trick is used quite often throughout the book.
Take η to be the standard mollifier, that is,

η ∈ C∞
c (Rn, [0,∞)), supp(η) ⊂ B(0, 1),

∫
Rn

η(x) dx = 1.

For ε > 0, denote by ηε(x) = ε−nη
(
x
ε

)
for all x ∈ Rn. Let u : Rn → R be a

continuous function. Set, for x ∈ Rn,

uε(x) = (ηε ⋆ u) (x) =

∫
Rn

ηε(x− y)u(y) dy =

∫
B(x,ε)

ηε(x− y)u(y) dy.
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Then uε ∈ C∞(Rn), and uε → u locally uniformly as ε → 0. If needed, one
can assume further that η is symmetric or radially symmetric.

A.3. Notation for function spaces

• For given a < b, AC ([a, b],Rn) denotes the space of all absolutely
continuous curves from [a, b] to Rn. When there is no confusion,
we write AC ([a, b],Rn) as AC ([a, b]).

• C(Rn) = {u : Rn → R : u is continuous}.
• B(Rn) = {u : Rn → R : u is bounded}.
• BC(Rn) = {u : Rn → R : u is bounded, and continuous}.
• BUC(Rn) = {u ∈ C(Rn) : u is bounded, uniformly continuous}.
• Ck(Rn) = {u : Rn → R : u is k-times continuously differentiable},
for each given k ∈ N.

• C∞(Rn) = {u : Rn → R : u is infinitely differentiable}. For u ∈
C∞(Rn), we say that u is smooth.

• Ck
c (Rn), C∞

c (Rn) denote the space of functions in Ck(Rn), C∞(Rn)
that have compact supports, respectively.

• Lip (Rn) =
{
u ∈ C(Rn) : ∃ C > 0 so that

|u(x)−u(y)| ≤ C|x− y| for all x, y ∈ Rn
}
.

We write

Lip [u] = sup
x,y∈Rn

x ̸=y

|u(x)− u(y)|
|x− y|

,

and say that Lip [u] is the Lipschitz constant of u.

• For α ∈ (0, 1], we say that u ∈ C(Rn) is Hölder continuous with
exponent α if there exists C > 0 such that

|u(x)− u(y)| ≤ C|x− y|α for all x, y ∈ Rn.

In this case, the α-th Hölder seminorm of u is

[u]C0,α(Rn) = sup
x,y∈Rn

x ̸=y

|u(x)− u(y)|
|x− y|α

.

If we have in addition that u is bounded, then we define the α-th
Hölder norm of u to be

∥u∥C0,α(Rn) = ∥u∥C(Rn) + [u]C0,α(Rn).

Then, the Hölder space C0,α(Rn) is defined as

C0,α(Rn) =
{
u ∈ C(Rn) : ∥u∥C0,α(Rn) < +∞

}
.
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• L∞(Rn) =
{
u : Rn → R : u is Lebesgue measurable,

and ∥u∥L∞(Rn) < +∞
}
,

where
∥u∥L∞(Rn) = ess sup

Rn
|u|.

• It is clear that C0,1(Rn) = L∞(Rn) ∩ Lip (Rn), and Lip [u] =
[u]C0,1(Rn).

• In a same way, one can define Ck,α(Rn) for k ∈ N and α ∈ (0, 1].

• USC (Rn) = {u : Rn → R : u is upper semicontinuous}.
• LSC (Rn) = {u : Rn → R : u is lower semicontinuous}.
• For a function u : Rn → R that is bounded, we denote by

u∗(x) = lim sup
y→x

u(y) for all x ∈ Rn,

and
u∗(x) = lim inf

y→x
u(y) for all x ∈ Rn.

It is clear that u∗ ∈ USC (Rn), u∗ ∈ LSC (Rn). We say that u∗, u∗
are the upper semicontinuous envelope, and the lower semicontin-
uous envelope of u, respectively. One has that u is continuous in
Rn if and only if u∗ = u∗.

• Let U ⊂ Rn be a given open set. All above function spaces can be
defined in U and U in place of Rn in a similar way.

• Cvx (Rn) denotes the class of lower semi-continuous convex func-
tions ϕ : Rn → R ∪ {±∞}.

A.4. Notation for estimates

• The constants in the estimates are often denoted by C (and C1, C2,
etc.), which might change from line to line in a given computa-
tion. This makes our presentation clearer without keeping track
with various factors in each step. Of course, we specify clearly the
dependence of these constants on specific parameters.

• (Big-oh notation) For two given functions f, h, we write f = O(h)
as x→ y if there exists C > 0 such that

|f(x)| ≤ C|h(x)| for all x sufficiently close to y.

• (Little-oh notation) For two given functions f, h, we write f = o(h)
as x→ y if

lim
x→y

|f(x)|
|h(x)|

= 0.

In particular, when h ≡ 1, we have the notions of O(1) and o(1),
respectively.





Appendix B

Some basics on circle
homeomorphisms

We give some basics on circle homeomorphisms.

Definition B.1 (Lifted circle homeomorphism). We say that f : R → R is
a lifted circle homeomorphism if f is continuous, strictly increasing, and for
all x ∈ R,

f(x+ 1) = f(x) + 1.

Sometimes, we simply call f a circle homeomorphism.

If f is a lifted circle homeomorphism, then the Poincaré rotation number

βf = lim
|i|→∞

f i(x)

i

exists and is independent of x ∈ R. Here, for i ∈ N, f i represents the
i-th iteration of f . Moreover, for all i ∈ Z, the periodic function ri(x) =
f i(x)− x− iβf satisfies

(B.1) |ri(x)| < 1 and min
R

|ri| = 0.

Lemma B.2. Let f be a lifted circle homeomorphism. Then, βf = p
q ∈ Q

with p ∈ Z, q ∈ N if and only if there exists x0 ∈ R such that

f q(x0) = f(x0) + p.

Proof. First, if there exists x0 ∈ R such that

f q(x0) = f(x0) + p,
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then by iterations,

f iq(x0) = f(x0) + ip for i ∈ N.
Hence,

βf = lim
i→∞

f iq(x0)

iq
=
p

q
.

Let us now prove the converse. Assume βf = p
q ∈ Q. Set

g(x) = f q(x)− x− p for x ∈ R.
Then, g is 1-periodic and continuous. Assume by contradiction that there
does not exist x0 ∈ R such that g(x0) = 0. Then either g > 0 or g < 0.
Without loss of generality, assume that

min
R
g = δ > 0.

Then, by iterations,
f iq(0) ≥ ip+ iδ,

which yields

lim inf
i→∞

f iq(0)

iq
≥ p

q
+
δ

q
> βf ,

which is absurd. □

Definition B.3. Let f be a lifted circle homeomorphism. We define the set
of all recurrent values of f to be

Rec(f) = {f i(x) + k : i, k ∈ Z} ⊂ R.
for any fixed x ∈ R. Surely, Rec(f) does not depend on the choice of x.

Proposition B.4. Let f1, f2 be two lifted circle homeomorphisms. Assume
that βf1 = βf2 = β ∈ R \ Tn × (0,∞). Then either Rec(f1) = Rec(f2) and
f1|Rec(f1) = f2|Rec(f2) or there exist x1 ∈ Rec(f1) and x2 ∈ Rec(f2) such that

the orbits (f i1(x1))i∈Z and (f i2(x2))i∈Z cross infinitely often.

Proof. As β is irrational, we have one basic but important point that for
any x0 ∈ R and l = 1, 2,

jβ + k 7→ f jl (x0) + k is strictly increasing.

Denote by, for l = 1, 2,

x+l (t) = inf
{
f jl (x0) + k : jβ + k > t

}
,

x−l (t) = sup
{
f jl (x0) + k : jβ + k < t

}
.

We have the following basic properties of x±l .

(1) x±l are strictly increasing for l = 1, 2.

(2) x+l is continuous from the right; and x−l is continuous from the left.
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(3) For each l = 1, 2 fixed, x+l and x−l are continuous at the same points
and coincide at such points.

(4) x±l (t+ 1) = x±l (t) + 1.

(5) fl ◦ x±l (t) = x±l (t+ β).

(6) Rec(fl) = x+l (R) ∪ x
−
l (R).

Thanks to (1) and (5), for each l = 1, 2 fixed, if x±l are not continuous, then
they have upward jumps on a countable dense set of R. On the other hand,
if x+l = x−l = xl is continuous, then xl is a lifted circle homeomorphism, and
in such case,

x−l ◦ fl ◦ xl(t) = t+ β.

Let us now proceed to prove the claims. There are two cases to be
considered.

Case 1. There exists c ∈ R such that x−1 (·+ c)−x−2 (·) changes sign. Then,
we can find nonempty open intervals I1, I2 such that

x−1 (t+ c) < x−2 (t) for x ∈ I1 + Z,

x−1 (t+ c) > x−2 (t) for x ∈ I2 + Z.

Set

x1 = x−1 (c) ∈ Rec(f1), x2 = x−2 (0) ∈ Rec(f2).

Then, for j ∈ Z,

f j1 (x1) = x−1 (c+ jβ), f j2 (x2) = x−2 (jβ).

As β is irrational, {jβ}j∈N is in each of I1 + Z and I2 + Z infinitely often.
Thus, the orbits (f i1(x1))i∈Z and (f i2(x2))i∈Z cross infinitely often.

Case 2. For every c ∈ R, x−1 (·+ c)− x−2 (·) does not change sign. Set

c0 = sup
{
c ∈ R : x−1 (·+ c) ≤ x−2 (·)

}
.

Because of (4), c0 exists and is finite. Thanks to (3), we have x−1 (·+ c0) ≤
x−2 (·). If there exists t0 ∈ R such that x−1 is continuous at t0 + c0 and

x−1 (t0 + c0) < x−2 (t0),

then there exists c1 > c0 such that

x−1 (t0 + c1) < x−2 (t0).

This contradicts the definition of c0 and the situation in Case 2. Thus, if
x−1 is continuous at t+ c0 for t ∈ R, then

x−1 (t+ c0) = x−2 (t).

By the denseness of continuous points of x−1 , we yield

x±1 (t+ c0) = x±2 (t) for t ∈ R.
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Hence, Rec(f1) = Rec(f2), and

f1(x
±
1 (t+ c0)) = x±1 (t+ c0 + β) = x±2 (t+ β) = f2(x

±
2 (t)).

We conclude that f1|Rec(f1) = f2|Rec(f2). □



Appendix C

The method of
characteristics for
Hamilton–Jacobi
equations

C.1. Quick overview

We give a brief overview of the method of characteristics for Hamilton–
Jacobi equations. Our main object here is

(C.1)

{
ut +H(x,Du) = 0 in Rn × R,
u(x, 0) = g(x) on Rn.

Here, the Hamiltonian H ∈ C2(Rn × Rn) is given. We assume that the
initial data g ∈ C2(Rn) and ∥g∥C2(Rn) < +∞.

We aim at solving (C.1) locally in time by converting the PDE into an
appropriate system of ODE. For (x, t) ∈ Rn ×R, we would like to calculate
u(x, t) by find a curve in Rn×R connecting (x, t) with some (x0, 0) ∈ Rn×R.
Since we know that u(x0, 0) = g(x0), we hope to be able to calculate u along
this particular curve, and hence obtain u(x, t). Let us write this curve as
x(t) with x(0) = x0. For t ∈ R, set

(C.2)

{
p(t) = Du(x(t), t),

z(t) = u(x(t), t).
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Assume for now that everything is smooth and nice. For 1 ≤ i ≤ n, as
pi(t) = uxi(x(t), t),

ṗi(t) = uxit(x(t), t) +Duxi(x(t), t) · ẋ(t).
On the other hand, differentiate eqrefeq:HJ-char with respect to xi to yield

uxit +DpH(x,Du) ·Duxi +Hxi(x,Du) = 0.

From the two relations above, it is quite natural to choose x(t) such that

ẋ(t) = DpH(x(t), Du(x(t))) = DpH(x(t),p(t)).

Then, we also get
ṗ(t) = −DxH(x(t),p(t)).

Combining the two, we arrive at exactly the Hamiltonian system

(C.3)

{
ẋ(t) = DpH(x(t),p(t)),

ṗ(t) = −DxH(x(t),p(t)).

Moreover, as z(t) = u(x(t), t),

ż(t) = ut(x(t), t)+Du(x(t), t)·ẋ(t) = −H(x(t),p(t))+p(t)·DpH(x(t),p(t)).

C.2. Method of characteristics

For the ODE system of characteristics, we also include the equation for z in
the Hamiltonian system, that is,

(C.4)


ẋ(t) = DpH(x(t),p(t)),

ṗ(t) = −DxH(x(t),p(t)),

ż(t) = p(t) ·DpH(x(t),p(t))−H(x(t),p(t)).

Here, the corresponding initial data is, for given y ∈ Rn,
x(0) = y,

p(0) = Dg(y),

z(0) = g(y).

To demonstrate clearly the dependence on initial data, we write
x(t) = x(y, t),

p(t) = p(y, t),

z(t) = z(y, t).

Lemma C.1 (Local invertibility). Fix x0 ∈ Rn. There exist an open interval
I ⊂ R containing 0, and two neighborhoods V,W of x0 in Rn such that, for
each (x, t) ∈ V × I, there exists a unique y ∈W such that

x = x(y, t).

Moreover, the map (x, t) 7→ y is C2.
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Proof. Consider the map (y, t) 7→ G(y, t) = (x(y, t), t). At (y, 0), we see
that

DG(y, 0) =


1 0 · · · 0 Hp1

0 1 · · · 0 Hp2

· · · · · · · · · · · · · · ·
0 0 · · · 1 Hpn

0 0 · · · 0 1


Here DG is the gradient of G in (y, t) variable, and is a square matrix of size
n+ 1. And Hpi is being evaluated at (y,Dg(y)) for 1 ≤ i ≤ n. Of course

detDG(y, 0) = 1.

By the inverse function theorem, we get the desired conclusion. □

In view of the above lemma, for each (x, t) ∈ V × I, we can locally
uniquely solve the equation

x = x(y, t) for y = y(x, t) ∈ C2.

Denote by

(C.5)

{
p(x, t) = p(y(x, t), t),

u(x, t) = z(y(x, t), t).

Theorem C.2 (Local existence theorem). The function u defined in (C.5)
above is in C2(V × I) and solves (C.1) in V × I with initial condition

u(x, 0) = g(x) for x ∈ Rn.

Proof. □

Proof. By (C.4), we first have

(C.6) zt(y, t) = p(y, t) · xt(y, t)−H(x(y, t),p(y, t)).

We claim that, for 1 ≤ i ≤ n,

(C.7) zyi(y, t) = p(y, t) · xyi(y, t).

Indeed, denote by

ri(t) = zyi(y, t)− p(y, t) · xyi(y, t) for t ∈ R.

Clearly, ri(0) = 0, and

ṙi(t) = zyit(y, t)− pt(y, t) · xyi(y, t)− p(y, t) · xyit(y, t).

Differentiate (C.6) with respect to yi and use (C.4) to yield

zyit(y, t) = p · xyit + pyi · xt −DxH · xyi −DpH · pyi

= p · xyit + pt · xyi .
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Combine this with the relation above to yield ṙi(t) = 0, and hence ri ≡ 0.
We get (C.7).

Next, we show that

(C.8) p(x, t) = Du(x, t).

Indeed, for 1 ≤ k ≤ n, thanks to (C.7),

uxk
(x, t) = zyi(y(x, t), t)(yi)xk

= p(y(x, t), t) · xyi(y(x, t), t)(yi)xk

= p(y(x, t), t) · xxk
= pk(x, t),

which gives (C.8).

Finally, we prove that u defined in (C.5) solves (C.1) in V × I. Note
that x(y(x, t), t) = x, which gives

xt + xyi(yi)t = 0.

We use this, (C.5), and (C.6)–(C.8) to compute

ut(x, t) = zt + zyi(yi)t

= p · xt −H(x,Du(x, t)) + p · xyi(yi)t

= −H(x,Du(x, t)) + p · (xt + xyi(yi)t) = −H(x,Du(x, t)).

The proof is complete. □

We note that the above theorem is only about a local existence result
defined in V × I ⊂ Rn × R, a neighborhood of (x0, 0) ∈ Rn × R. This
solution u ∈ C2(V × I) found by the method of characteristics is the same
as the viscosity solution to (C.1) in V × I provided that the Hamiltonian
H satisfies some appropriate structural assumptions. A common structural
assumption that we put on H is{

H ∈ BUC(Rn ×B(0, R)) for all R > 0,

lim|p|→∞ infx∈Rn H(x, p) = +∞.

Under this assumption and the condition that g ∈ C2(Rn) with ∥g∥C2(Rn) <
+∞, (C.1) has a unique viscosity solution u ∈ Lip (Rn × [0,∞)). Assume a
bit more that H ∈ Lip (Rn ×B(0, R)) for all R > 0. Then, by [Tra21, The-
orem 1.39], u has the finite speed of propagation property. This can be seen
directly from the method of characteristics too. Set ∥Du∥L∞(Rn×[0,∞)) =
R > 0, and ∥DxH∥L∞(Rn×B(0,R)) + ∥DpH∥L∞(Rn×B(0,R)) = C > 0. Then,
|p(t)| ≤ R, and thanks to (C.3),

|ṗ(t)|+ |ẋ(t)| ≤ C.

In particular, the values of u(x, t) for (x, t) ∈ B(0, r) × [0, T ] for r, T > 0
are determined by the values of g on B(0, r + CT ). Hence, we get that the
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local existence theorem is consistent with the finite speed of propagation
property.

C.3. References

(1) For the method of characteristics for general first-order equations,
we refer the readers to Chapter 3 in Evans [Eva10]. We here only
give the method of characteristics for Hamilton-Jacobi equations
for our purposes.

(2) For the finite speed of propagation of solutions to Hamilton-Jacobi
equations, see [Tra21, Theorem 1.39].





Appendix D

The Fekete lemma

D.1. Fekete’s lemma

Here is the main result.

Lemma D.1 (Fekete’s lemma). Let ϕ : (0,∞) → R be measurable and
subadditive, that is, for l, r > 0,

ϕ(l + r) ≤ ϕ(l) + ϕ(r).

Then,

lim
k→∞

ϕ(k)

k
= inf

l>0

ϕ(l)

l
.

We first prove that ϕ is bounded on (0, a] for any given a > 0.

Lemma D.2. Let ϕ : (0,∞) → R be measurable and subadditive. Then, for
any given a > 0, sup(0,a] ϕ < +∞.

Proof. Assume by contradiction that there exists a sequence {tn} ⊂ (0, a]
such that

ϕ(tn) > 2n.

As ϕ is subadditive, for s ∈ (0, tn),

ϕ(s) + ϕ(tn − s) ≥ ϕ(tn) > 2n ⇒ max{ϕ(s), ϕ(tn − s)} > n.

For n ∈ N, denote by En = ϕ−1([n,∞))∩ (0, a]. Then, thanks to the above,
|En| ≥ a/2. As {En} is a nested sequence of sets, we yield that∣∣ϕ−1({+∞}) ∩ (0, a]

∣∣ = ∣∣∣∣∣⋂
n∈N

En

∣∣∣∣∣ ≥ a/2,

which gives a contradiction. □

185



186 D. The Fekete lemma

We are now ready to prove Fekete’s lemma.

Proof of Lemma D.1. Let

L = inf
l>0

ϕ(l)

l
∈ [−∞,∞).

Note that L could be −∞. It is obvious from the definition of L that, for
k > 0,

ϕ(k)

k
≥ L.

Fix c > L. There exists l0 > 0 such that

ϕ(l0)

l0
≤ c.

Thanks to Lemma D.2,
sup
(0,l0]

ϕ =M < +∞.

For nl0 < k ≤ (n + 1)l0 for n ∈ N, we use the above and the subadditivity
of ϕ to imply

ϕ(k) ≤ ϕ(nl0) + ϕ(k − nl0) ≤ nϕ(l0) +M,

and hence
ϕ(k)

k
≤ nϕ(l0)

nl0
+

C

nl0
≤ c+

M

nl0
.

Therefore,

lim sup
k→∞

ϕ(k)

k
≤ c.

The proof is complete. □

We note that the proof of Fekete’s lemma is rather elementary and sim-
ple. The proof is qualitative and, in general, there is no convergence rate of
ϕ(k)/k to L.

D.2. References

(1) For more discussions on subadditive functions, we refer the readers
to Hille, Phillips [HP57, Chapter 7].
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