A note on weak convergence methods

Doanh Pham*

This is based on the summer course “Weak convergence methods for nonlin-
ear PDEs” taught by Prof. Hung Tran (University of Wisconsin, Madison)
in July 2016 at University of Science, Ho Chi Minh City, Vietnam and his

following reading course.

1 Introduction
We want to solve the equation
Flul=0

where F'[-] is a differential operator and maybe not nice. One simple way: approx-
imate the nice F¢[-] — F[] as ¢ — 0. Suppose u° solves F¢[uf] = 0. As e — 0,
do we have that u® — @ in some sense of convergence ? And if so, do we have
Fluj=07?

Key points:

1. We need to understand the convergence of u® — u if possible.

2.

F[-] is a nonlinear operator
F¢[-] is nonlinear operators.

Does nonlinearity intervene in Fa] =0 ?
Ezample 1 (1 =0 !!). Approximation equation: 1+ eu® = 0. If u° is bounded as
¢ — 0, then, we have to conclude that 1 = 0! Luckily, u® = —1/¢ is not bounded.

In PDESs, if the approximation equation is physically relevant, then we can often

find bounds for w®. This is often called “a priority estimates”.
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1.1 The weak convergence

Let U C R? be an bounded, open set with smooth boundary.

i. For 1 < p < oo, let {f,} be a sequence in LP(U) and f € LP(U). We say
that f,, converges weakly to f and write f,, — f if

/fngo — /fgo for every v € LI(U)
U U
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ii. For p = oo, let {f,} be a sequence in L>*(U) and f € L>®(U). We write
fo = fif
/fngo—>/fgo for every ¢ € L'(U).
U U

Theorem 1.1. (1 < p < o0) Let {f,} be a bounded sequence in LP(U). Then

there exists a subsequence {f,,} which converges weakly to some f € LP(U).

Proof. We use the diagonal argument. Since LY(U) is separable, let {e;} be
a dense sequence in LY(U). Suppose {f,} C LP(U) such that | f,||, < C for
every n, then {(f,,e1)} is a sequence bounded by C'le;||,- Thus, we can extract
a subsequence {f1,} C {f.} such that {(fi,,e1)} converges to a limit, called
L(ey). Similarly, we can extract a further subsequence {f2,,} C {fi.} such that
{(fan,€2)} converges to a limit, called L(eg). Continue this process to obtain a
sequence {frn} C {fi—1.} and a real number L(e;) such that (fi.,ex) — L(ey)
as n — oo for every k € N. Put g, = f, . Since g, belongs to {fi} for every
k < n, we have (g,,er) — L(ey) as n — oo for every k. Pick p € LY(U) and e > 0
arbitrarily, there is a number k& € N such that ||ex — ¢l|, < e. Whenever m,n € N
such that [(g, — gm, ex)| < €, we have

[{gn = Gm> ©)| < {(gn = Gmser)| + [{n — gm- e — @) <€+ ¢llgn — gmllp
<e+2Ce.

Hence, {(gn,¢)} is a Cauchy sequence, so it converges to a limit called L(¢p).
Noting that L(yp) < C||¢|l4, the linear functional L : ¢ — L(y) is bounded. By
Riesz’s Representation Theorem, there exists a function f € LP(U) such that
L(p) = (f, ) for every ¢ € L1(U). We conclude that g, — f. O

Using similar argument, it is easy to prove the following result:

Theorem 1.2. (p = o0) Let {f.} be a bounded sequence in L>°(U). Then there
exists a subsequence {f, } such that f, — f for some f € LP(U).
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Proposition 1.3. For1 < p < oo and %—i—% =1, let {f.} be a sequence in LP(U)

which converges weakly to f.
(i) Yninf | follr > 1111
(i1) Suppose || fulle = | fllze, then fn — f strongly in LP(U)

(11i) Suppose g, — g strongly in LY(U), then

/n%%/m

Proof. In order to prove (i), choose

9= qu<ﬁm?
where
)1 if f <0,
%Mﬂ_{ 1 it f>o0.

Then, it is clear that g € LY(U), ||g|/z« = 1 and

/f 2)dz = | £z

From definition of weak convergence and Holder inequality, we have

Il = [ )o@t = i [ @) < mint 1,
U U

For (i), let g, = fo/||fullee and g = f/|| f||z»- Then g, — g weakly and therefore

(gn + g)/2 — g weakly. By (i), we have

gnt9g

<1

1 =|lg|lrr <liminf
n—oo P

So ||(gn + g)/2||L» — 1. Since LP(U) is a uniformly convex space, it follows that
llgn — gllz»r — 0, which also implies

[ = fllr = 0.

The assertion (ii7) is followed from

[ o= [ 10| [ 5= [ sl 4| [ s [ 10
U U U U U U

snhmﬂmwn—wmwﬁ—/ﬁg—/}g
U U

which tends to 0 as n — oo since || f,||zr() is bounded by Uniformly Bounded
Principle. O



Question. Suppose f, — f weakly in LP(U) and g, — g weakly in LI(U). Is it
generally true that

[ f@a@e— [ s

Answer: No. For a counterexample, let LP(U) = L*(0,7) and f,(z) = gu(z) =
\/gsin(mc). Since, (fyn)nen is an orthogonal basis of the Hilbert space L*(0, 7), it

converges weakly to zero. However,
/fn(a:)gn(x)dx =1
0

for every n.

Remark. Most of the time, functional spaces are infinite dimensional, so they lose

compactness.

Weak convergence of measures. Let R(U) be the space of Radon measure
on U. We have that L'(U) C R(U) in following sense: For f € L'(U), define

J = uy by

ui(B) = [ fa)de.
U
Then, for any g € L>(U),

[ t@gtade = [ gw)dus(o)

U U

Compactness of R(U): Let u € R(U), define |u|(U) as the total variation of pu:

p(U) = sup /hd,u.

|h|<1 a.e in U
U
For f € L'(U),
s (U) = / F@)ldz = [l
U

For {u,} € R(U) satistfying |p,|(U) < C for all n, then there exists a subsequence
{ttn,, } such that

fn, — € R(U) in sense of measure,

which means

/gdp,nk — /gdu for all g € C.(U).
U U
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Lemma 1.4. . Assume that {u,} is a sequence of positive Radon measures that

converges in measure to p € R(U). Then

(i) For K C U compact

limsup 11, (K) < p(K). (1.1)
n—oo
(1) For V.C U open
lim inf p, (V') > u(V). (1.2)
n—oo

Proof. For (i), let K C U be compact. Choose an open set U. D K such that
w(K) +e > p(U:). By Urysohn lemma, there exists a function f € C.(U.),
0<f<land f=1on K. So

wWK)+e>uU;) > /fdu = lim /fdun > limsup/fdpn = lim sup p, (K).
n—oo
K

n—oo n—oo

Letting ¢ — 0, we conclude that

pu(K) > limsup g, (K).

n—o0

In order to verify (ii), let V' C U be open. Choose a compact set A. C V' such that
w(As) + e > p(V). By Urysohn lemma again, there exists a function f € C.(V),
0<f<1land f=1on A.. Thus

u(V) == < u(d) < [ fdp= lim [ fdp, < timint (V)
n—oo n—oo
|4 |4

Letting ¢ — 0, it follows that

(V) < liminf p, (V).

n—o0

]

Question. Show that in some cases, we don’t have equalities in (1.1 and (1.2]).

Answer: Suppose {u,} defined by

AN [__1’1}
n n

| - | denotes the Lebesgue measure. Then, for any f € C.(—1,1),

tn(A) = g for Borel set A,

jﬂ@@%ﬂ%jﬂﬁm%fw-

=1
n



So p, converges in measure to the dirac mass dy at 0. Choose K = {0}, then
1 ({0}) = 0 while 0¢({0}) = 1. In this case, the equality in (1.1)) doesn’t hold.
For the other, suppose (i, ) defined by

where

—n?r+n for0<z<?i
fn(x):{ "

0 for%§x<1.

Then 11, — 0 weakly. However 41,,((0,1)) = 5 for all n. Thus, the equality in (1.2)
doesn’t hold in this case. i

1.2 More on functional spaces

Now, we turn to some important results in Sobolev spaces.

Theorem 1.5 (Gagliardo-Nirenberg-Sobelev inequality). Given f € C}(R?), then

(R/f W da *<C(R/|Df e | .
dp

where C' is a constant depending only on d and p. Here, ford >p > 1, p* = s

Why p* 7 Suppose

([R/ [ (@)da E <c ({R/ D | |

for all f € CYHR?). Scaling analysis: put fy(z) = f(Az) for A > 0. Then,
Dfy = ADf and

(m/f(m% g = (m/|fx(iﬂ)qd$ E <C (R/Dja(a:)pdx
=C (R/ N|Df(z)|Pdw

Making some change in variables: y = Az and dy = \dx, then

(R/f(y)Ide ATi<C (N/ka(y)pdx A

D =



Therefore, we must have
d d .
—=1—-—-—=q=p"
q p

Before proving the theorem, we need a technical result

Lemma 1.6. For f € C}(R%),

d
191 < T 15
1=

1/d
1 .

Proof. For d =2

//f2($1,$2)d$1d332§ /%gﬁg’f@l,@)‘dﬂ?l/ggﬁﬂf(ﬂ?l,%?)\dﬂfz-

Since
s, 22)] = / Fonlr, b2)dts] < / o (1, £2)| i,

it follows that

707f2(x1,x2)dx1dx2§ 77\fx1(x)|dx77\fm(x)|dx_

—00 —00 —00 —00 —00 —00

Thus, the assertion holds for d = 2. Suppose it still holds for some d > 2. Put
T=(11,79,...,24) €ER? for x=(21,29,...,04Tqr1) € R
Then, by induction and Holder inequality,

a4l — d+1 .
Hf”% ://’f(x,xd_i_l” d dﬂ?dl‘d+1

R R4
1

d
S/ /’f(faxd+1)‘df /|f(f,xd+1)|ddldf dderl
R d d

Iy
all
_

d—1

d

_ _d_ .
< HfdeH}/d/ /!f(3779€d+1)|d‘1d37 dxgqq
d

R

d d
< ||fxd+1‘|}/d/H /’f(fa $d+1)|df dx g4
r =1 |pa

d %
1/d _ —
TN | / s (@ 2 AT
i=1 d+1

d+1

1/d
s




By the Lemma, we have

1A e < DSl (1.3)
Proof of Theorem[1.5 Set
- Pld—1)
d—p
Then
A A=1p
d—1 p—1 7~

Therefore, by (1.3]), we have

d—1

d

[1s@P s o [1s@[#E s

<) / F@)| D ()| da

p—1
P

R
(A=1)p
<) / F@) 54| DA,
d

e

£l < AD -

p—1

" dz 1D fllp-

So

Define
W'P(U) = {f: U — R such that f,Df € LP(U)}.

This is a Banach space with the norm

I lwrr@y = LFllp + 1D flp-

Theorem 1.7 (Sobolev Compactness Embedding Theorem). For 1 < p < d,
assume { f,} C WHP(U) such that || f|lwre@y < C for all n. Then there exists a
subsequence {f,,} and a function f € WHP(U) satisfying

fo, = f in LYU) for all1 < q < p*,
Df,. — Df weakly in LP(U).



Difference quotient. Assume u : U — R is locally summable function and
V CcC U. The i-th difference quotient of size h is

Dhu(z) — u(z + hefi) - u(m))

i=1,....d

forx € V, h e R, 0 < |h| < dist(V,0U) and (e;)1<i<q is the standard basis of R%.
We denote
D"y = (D, ..., Dhu).

Theorem 1.8. (7). Suppose 1 < p < oo and uw € WHP(U). Then there exists a
constant C > 0 such that

1D ull vy < CllDull oy

for every 0 < |n| < 3dist(V, U).
(i1). Assume 1 < p < oo, u € LP(V') and there exists a constant C,e > 0 such
that

||Dhu||Lp(v) <C

for every 0 < |h| < e. Thenu € WHP(V) and

1Dl ey < C.
Proof. (i). Since C*°(U) is dense in WP(U), it suffices to prove the assertion
when u is smooth. For z € V and 0 < |h| < 1dist(V,9U), we have

lu(z + he;) — u(x)| < || / |tz (z + the;)| dt < |hl / |Du(x + the;)| dt.

Thus,

||Dhu||1£p( /‘Dhu‘ <C//|Du (z + the;)|? dtdx

v
SC//|DU )P dxdt

= CHDUHLP(U)

(ii). Since {D"u}, 0 < |h| < ¢, is bounded in LP(V;R?), we can take a sequence
h, — 0 such that

D7y — v = (vy,...,09) weakly in LF(V; R%). (1.4)



Fix ¢ € C°(V), when |h| is small enough such that
supp ¢ — he; C V,
we get

o(r +he;)) —p(x) 1
/M” i v =7

\%

/
-1 /ux_he mx_/umwmwm
/

o(x) D u(x) do.

Choose h = h,, as n — oo, recall (1.4)) and use Lebesgue’s dominated convergence

theorem to obtain

[ utaeneyde =~ [ wa)ota) do

\%4 %4

This holds for arbitrary ¢ € Hj(V); so, u € W'?(V) and u,, = v;. Also, in view

of (1.4), we have

| Dull o vy = ]| ze(vy < hmlnf D~ || oy < C.

2 Calculus of variations

Minimize an energy functional

EM:/memm (2.1)

U

forue A= {veW(U),v=gon dU}.

Assumption:

(A1) Growth condition: There exists C' > 0 such that
1
E|S|p —C < F(s) <C|s]P + C.

(A2) Convexity: s — F(s) is convex.

Theorem 2.1. The minimizers for energy functional exist.
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Proof. Since

el §/(é|Du|p—C’> g/F(Du):E[u]§/C(|Du|p+1)<oo,

inf,e 4 Efu] exists. We want to show that the infimum is actually the minimum.

There exists a sequence {uy} such that

Elug] — inf Elul.

ueA

C'> Eluy] = /F(Duk) > / (%muv’—c),

which implies || Duy||, < C. Since u, = g on OU, by Sobolev Embedding Theorem,
|lugll, < C and, thus, |ug|lwir@) < C. By Theorem we can extract {ug,}
such that

Note that

up, — u in LP(U),
Duy, — Du  weakly in LP(U).

Since Elug,| — inf Eful, it is sufficient to show

lim inf E[Duy,| > E[Dal.

j—>oo

By the convexity assumption,
F(Duy,;) > F(Du) + DF(Du) - D(uy; — ).

Therefore,

Since |DF(Du)| < C(|DufP~* + 1), we have that DF(Du) € L9(U,R?Y) with

141 —1 Moreover, as Duy, — Du
p q ) J )

Consequently, at the limit,

liminf Eluy,| > Elal.

J—00
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Remark. 1. The same result holds for

Elu] = /F(m,u(m),Du(m))dm.

U

2. This is only for real-valued function. For vector-valued function, there are

still a lot of open problems.
Question. When the minimizers exist, do they satisfy some properties ?

Let E[a] = min,c4 E[u]. For any v € WyP(U), then @ + tv € A for any t € R.
Thus,

Elu) = I}él}él Elu+ tv] =:i(t).

The function i(¢) attains the minimum at ¢ = 0, so

i'(0) =0 the first variation (2.2)
i"(0) >0 the second variation. '

The first variation. We have

7(t) = % / F(Di + tDv) = / DF(Di +tDv) - Dv.

By (2.2),

Since v is arbitrarily chosen from W, (U), we conclude that @ is a weak solution

of the Euler-Lagrange equation
—div (DF(Du)) =0 in U.

Question. Suppose f € L'(U) such that
[ ta@etads =0
U

for all ¢ € C.(U). Prove that f =0 a.e in U.

12



Answer: Since C.(U) is dense in L' (U), let (¢,) C C.(U) be a sequence converging
in L'(U) to f. Take a subsequence (p,,) converging almost everywhere to f.

Then, by Lebesgue Dominated Convergence theorem, we have

Pn, (7) f* (@)
0= r)————dr — | ————dx.
[ 1025 T+ (@)
U U
So f =0 a.e. U
Ezample 2. When F(s) = |s|*>, DF(s) = 2s, E[u] = [,; |Dul*, the Euler-Lagrange
equation becomes the Laplace equation:
—Au=0 in U
u=gq on OU.
Ezample 3. When F(s) = [s|P, DF(s) = p|s|P~?s, E[u] = [, |Dul?, the Euler-
Lagrange equation becomes the p-Laplace equation:
—div (|DulP~?Du) = 0 inU
u=gq on OU.

The second variation. We have

d
i"(t) = Z Fos, (Dt A+ tDv)v,, vy,

Thus, (2.2) implies
d
i"(0) = / Z Fos,(D0)vg, v, > 0. (2.3)
) S

,L?J:

Take
rex

v(x) =e&(z) v (—)

£
where ¢ > 0, £ € C®(U), r = (r1,72,...,7q) € R? and vy is the 2-periodic
saw-tooth function on R defined by

r for0<azxz <1,
vo() =
2—x forl<ax<2.

Then,
rex

_ rx (T
Uy, = €&, () v ( . ) + &(z) v ( . ) S;.
Plug v into (2.3) and send € — 0 to obtain

d
/ Z FSiSj (Dﬂ)fQTZ"f’j Z 0
i :

t,j=1

13



Since ¢ arbitrarily belongs to C°(U), we conclude that

d
> F..(Duyry; >0 forall s € R
ij=1

Remark. 1. For real-valued u, convexity is natural.

2. For vector-valued u, it is completely different.

Theorem 2.2. E[] is lower semi-continuous with respect to weak convergence in
WYP(U) if and only if the convexity assumption (A2) holds.

Proof. The "<=" is clear by the proof of Theorem [2.1]
For the ”=", assume E[-] is lower semi-continuous w.r.t weak convergence in
WhP(U), that is, for any {v;} such that Dv; — Duv in LP(U), we have

liminf Efv;] > Elv].

j—o0
First, we assume U = (—1,1)". Divide U into k™ subcubes. For each subcube @y,

let x; be its center. Take

g«sz>(<%;,%>n> — ‘/' Dé(x)dz = 0.
-

-1
(T’

N

Choose s € R? and put

Then,
Dug(x) = s+ Y _ DE(k(z — ).
l

Because of the ”crazy” oscillation of ), D{(k(z — x;)) around 0 as k — oo, we
have Dvy — s weakly in LP(U). Thus, by the assumption,

MMM/HQMZ/F@:F@WL

k—o0
U U

On the other hand, for any k,



Let vy be the 2-periodic saw-tooth function on R defined by

r for0<azxz <1,
vo(x) =
2—x forl<ax<2.

Take e > 0, r € R, ¢ € C°(Q) and choose

r-x

£(z) = eC(x)vy <—) :

€
Also, put
i(t) = /F(S + tDv(x))dx.
Q
Since ¢ = 0 is the minimizer for ¢, we must have i”(0) > 0. Sending ¢ — 0, as in

page 12, we get

1,j=1

/ i inxj (p)CQ(f)'ri’/“j dx 2 0
-

which implies

Z Fypo;(s)rir; > 0.

ij=1
Hence, F'is convex. The theorem is done when U is a cube. For a general open,
bounded set U with smooth boundary, we just need to pick an inside cube and

apply the above argument to deduce the result. O]

We can use the more direct approaching: Since U is bounded and has a smooth
boundary, we can approximate U by a countable family of disjoint inside cubes.

Suppose Fi, Es,--- C U are disjoint cubes such that

Fix s € R%. For an integer k, divide Ej to m® subcubes and let a:l(k’m) be the center
of each subcube. Take £ € C°(U) and for z € Ej, belonging to the subcube [, let

Then, set

Then Dvy — s weakly in LP(U). Moreover

klim Elvg] = klim F(D(v)) = klim . Fp+ D¢ = /F(p—|— Dg).

U U
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Therefore, by the semicontinuity, we have

[ Fis+ D) = Fs)wl

U

3 Galerkin method in elliptic PDEs

From now on, U is a bounded open subset of R? with smooth boundary. Consider

a differential operator

d d

Lu = Z QijUz;z; + Z biuy, + cu

ij=1 i=1

where a;;, b;, ¢ belong to L>(U). We also assume L satisfies ellipticity condition,

that is
d

Z a;;&€; > 0)¢f

ij=1
for all ¢ = (&1,...,&;) € R? and for some constant § > 0. We are interested in the

elliptic boundary equation

{Lu+>\u:f in U 31)

u=0 on OU,

where f € L?*(U) and ) is a constant. A function v € H}(U) is called weak
solution of (3.1)) if it satisfies

/

For simplicity, define the bilinear form from H}(U) x H}(U) — R as

d d
Blu,v] = / Z AUy, Vg, + Zbiumv + cuv dzx.
U =1

ij=1

ij=1

d d
Z &ijuxivxj+z bity, v+cuv dx—i—)\/uv dr = /fv dr for all v € Hé(U).
i i=1 7 0

In this section, we will use Galerkin method to show that, under the ellipticity
condition and with appropriate constant A > 0, equation (3.1)) always has an

unique weak solution. To do this, we need some estimates:

Theorem 3.1 (Energy estimate). There are « > 0 and 8 > 0 such that
allullfp @) < Blu,u] + Bllull 2w (3.2)
for allu € HY(U).
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Proof. From the ellipticity condition,

/|Du|2dx<Buu /Zbumu+c|u|2dx
zﬂun4+—§j|wnuwanu/rDuuur¢r+|wuu«Uy/ﬂuFdx
i=1

U U

By Cauchy’s inequality, we have

b;
/|Du|2dm+ZH HL > (U) /| |2d1,’

6
|Dulju|de < ———————
/ 25 bl o)
U U

Consequently,

d
0 1
§/WWMSBMM+mem+%§NMwm>/M”%
U =1 U

]

Let (ex)ren be an orthonormal basis of H}(U) and an orthogonal basis of L?(U).
The idea of Galerkin method is to find ”projectional solutions” of (3.1)) on finite

dimensional subspaces spanned by (eg); then pass to limit to obtaln the desire

solution.
Indeed, we look for appropriate real numbers d}., ..., d" such that the function of
the form
U, =dley +d’eq + - +d', € span{ey, s, ..., €.}
satisfies
Bluy, ex] + /\/unek = /fek fork=1,....,n (3.3)
U U

or equivalently,

n

Z B[el,ek]+)\/elek d;:/fek for k=1,...,n. (3.4)

=1 U U

In order to verify existence of such real numbers, put

Oéij = B[ej, 61'] + )\/ejei
U

and let A = (oy;) be a square matrix of size n x n. Then (3.4) can be rewritten as
AD =P (3.5)

17



where

d711 D1
di D2

D = and P = ,
dy Dn

with
PkZ/fek fork=1,...,n.

U
Recall o and /3 as in Theorem If X > 3, then A is invertible since

DekerA<= AD=0=— DTAD =0

—> Blup, u,] + )\/ |un|2 =0

— oz||un||§{&(U) =0 (follows from ((3.2]))
= u, =0
— D =0.

Hence, when A > 3, D = A~ P satisfies (3.5)) and therefore solves (3.3)).

Theorem 3.2 (Existence and uniqueness). Let « and [ be as in Theorem .

Then for every A > B, there exists unique weak solution for the boundary equation

:

Proof. Existence. Let u, € span{ej, ey, ..., e,} satisfying (3.3)). It follows from
(3.2), (3.3) and Poincare’s inequality that

alenlByyy < Blunsual 4 [l = [ fun < Clltallnyon
U U

for some constant C, which implies the boundedness of (u,) in H}(U). Conse-
quently, there exist a subsequence (u,,) C (u,) and a function u € Hg(U) such
that

u,, —u weakly in Hy(U).
For any k € N and n; > k, from (3.3|) we have

Bluy, , ex] —1—/\/unle/LC :/fek.
U

U

Passing to the limit as [ — oo, the weak convergence of (u,,) to u yields

Blu, ex] + )\/uek = /fek for all £ € N.
U

U

18



Since (ey,) is dense in H}(U), we deduce that u is a weak solution of (3.1)).
Uniqueness. Suppose u,v € H}(U) are two weak solutions of . Set w =u—wv,
then
B[w,go]+)\/w<p—0 for any ¢ € Hy(U).
U
In particular, choose ¢ = w and recall to conclude that w = 0. O

4 Monotonicity method in nonlinear PDEs

4.1 Quasilinear PDEs: existence, uniqueness & regularity

of solution. Minty-Browder trick in L?

In this section, we study the quasilinear equation

{ —diva(Du) = f in U (4.1)

u=20 on OU,

where f € L?(U) and a : R? — R? is a smooth vector field. Also, a has some

properties:
i. Monotonicity:
(a(p) —alq)) - (p—q) =20 (4.2)
for all p,q € RY.
ii. Growth bound:
la(p)| < C(1+ [p]) (4.3)
for all p € R? and a constant C.
iii. Coercivity:
a(p) -p > alp|* - 3 (4.4)
for all p € R? and constants o > 0, 8 > 0.
If a(p) = DF(p) for some smooth function F' : R — R, (4.1)) becomes Euler-
Lagrange equation

{—div DF(Du)=f inU (45)

u=20 on OU,

In section [2] the existence solution of (4.5]) could be derived by minimizing the
energy functional

u— [ F(Du) (4.6)
/
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in H}(U). Furthermore, the minimizer of (4.6)) exists if and only if F' is convex.

In this case,

(a(p) —a(q)) - (p—q) = (DF(p) — DF(q)) - (p—q) > 0.

Thus, the assumption (4.2)) is naturally needed.
We will prove the existence of weak solution of (4.1)), that is, v € H}(U) and
satisfies

/a(Du) - Do = /fgp for every ¢ € Hy(U). (4.7)
U U
To do this, we again use the Galerkin approaching. The point is that our problem
now is nonlinear. In section [3] the results heavily depend on linear structures.
However, surprisingly, the Galerkin approaching can still be useful in this case,

thanks to the monotonicity. To see this, we begin with a lemma

Lemma 4.1. Suppose v : R — R? is a smooth vector-valued function satisfying
v(z) x>0 whenever |x| =r

for a constant r > 0. Then there exists xo € B'(0,r) such that v(xy) = 0.

Proof. Assume, by contradiction, that v(z) # 0 for all |z| < r. Put
r

v(x).

w(z) = —

[v(z)]

Then w : B'(0,7) — 0B'(0,r). By Brouwer’s fixed point theorem (Theorem |A.3)),
there exists y € B'(0,r) such that w(y) = y. But then, |y| = r and

which is impossible. [

Let (ex)ren be an orthonormal basis of Hj(U). As an idea of Galerkin method,

our aim is to find functions of the form
U, =dre; +deg + -+ dle, (4.8)

satisfying
/a(Dun) - Dey, = /fek forany k =1,...,n. (4.9)

U
In other words, u,, is the ”projectional solution” of (4.1]) on the finite dimensional

subspace spanned by {ej, ..., e,}.

Theorem 4.2. For every n € N, there exists u, as in (@ satisfies .
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Proof. Put v = (v',... v") where

v"(d) = [ a (i diDei> -Deypdr — [ ferdx, (4.10)
[(5 /

for d = (d',...,d") € R". Then employ (4.4 to have

o(d) -d = U/a (; diDei) : <; diDeZ) dz — U/f;diei dx
- [

i d’DeZ
U =1

= ald* - B|U| - Zdi/fe,- dx
1=1 U

> ald]> — C(|d| + 1).

2 n
—B—f) deidx
=1

Taking r > 0 large enough, above inequalities implies v(d) - d > 0 for all |d| = r.
According to Lemma [4.1] there exists d, = (d%,---,d") such that v(d,) = 0.
With such d,, it follows from (4.10]) that u, as in (4.8)) satisfies (4.9). O

Theorem 4.3 (Energy estimate).

[tnllmy 0y < CA+ ([ fll2w))
for every n € N and a constant C'.

Proof. 1t follows from (4.9) that

/ a(Du) - Duy, — / i,

U

Hence, the coercivity (4.4, Poincare’s theorem and Cauchy’s inequality yield
oc||un\|§{3(U) = a/ | Du, | da < /fun dx + C
U U

< C+ Ol fll ey lunll mp )
(0% 2 02 2

which is equivalent to

o 9 c? o
EHUHHH(}(U) <C+ %HfHB(U)'
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Similar to section [3, we want to obtain the solution u of (4.1)) upon passing to
the limit of (u,) as n — oo in some sense of convergence. In this case, weak
convergence is still helpful with assistance of monotonicity and Browder-Minty’s
trick.

Theorem 4.4 (Existence and uniqueness). There exists a weak solution for (4.1)).

In addition, if a is strictly monotone, that is, there exists v > 0 such that

(a(p) = a(q)) - (p — q) = 7lp — af? (4.11)
for every p,q € R?, then the solution is unique.

Proof. Existence. According to Theorem [4.3] since (u,) is bounded in H}(U), we

can take a subsequence (uy,,) C (u,) such that

Un,

—wu  weakly in H)(U). (4.12)

l

Also, in view of growth bound (4.3)), a(Du,) is bounded in L*(U; R%). Hence, by

taking further subsequence if necessary, we assume
a(un,) = ¢ weakly in L2(U; R). (4.13)
By monotonicity (4.2)), we have

/(a(Dunl) —a(Dv)) - (Duy,, — Dv) >0 (4.14)
U

for any [ € N and v € H}(U). From (4.9), we get

/ a(Duy,) - Duy, = U/ Fttn,.

U

So, (4.14]) is equivalent to

/fum — a(Duy,) - Dv — a(Dv) - (Du,, — Dv) > 0.
U

Let | — oo and invoke (4.12)), (4.13) to obtain

/fu —(¢-Dv—a(Dv) - (Du— Dv) > 0. (4.15)

Moreover, in (4.9)), set n = n;, send [ — oo and recall (4.13]) to yield

/C-Dek:/fek for all k =1,2,...
U U
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and, consequently,

/g . Dy = /ffu for every v € Hy(U). (4.16)
U

U

Taking v = u in (4.16) and substituting into (4.15)):

/(C —a(Dv)) - (Du— Dv) >0  for every v € Hy(U). (4.17)

TrIcK: Fix w € H}(U) and put v =« — Aw with A > 0, in (4.17), we have

/(C — a(Du — ADw)) - Dw > 0.

Sending A — 0, by Lebesgue’s dominated convergence theorem,

/(C —a(Du)) - Dw > 0. (4.18)

U

Taking —w in lieu of w, the inverse inequality of (4.18]) also holds; thus, (4.18) is
actually the equality. By (4.16)), we obtain

/a(Du)-Dw:/fw.

U

Since w is arbitrary in Hj(U), we conclude that u is a weak solution for (4.1)).
Uniqueness. Suppose u and u are both solutions of (4.1]). Then

/(a(Du) —a(Du))-Dv=0 for every v € Hy (U).
In particular,
/(a(Du) —a(Du)) - (Du — Du) = 0.
U

From (4.11)), we deduce that u = w. O]

The argument used in the proof of Theorem [£.4] yields the following:
Theorem 4.5. Assume that {u,} € Hj(U) and f, € L*(U) such that

up — U weakly in Hy(U),
o= f strongly in L*(U).

Assume further more that uy solves

—div (a(Dug)) = fr ~ inU, (4.19)
up =0 on OU, ‘

then, u solves
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Proof. We have

/a(Duk)-Dgp = U/fkgo Vo € Hy(U).

<

For all v € Hg(U),

0 < [ (a(Duy) — a(Dv)) - (Duy — Dv)

a(Duyg) - D(uy, —v) — /a(Dv) - D(ug — v)

S— c* S—

fr(ug —v) — /a(Dv) - D(ug — v).

U

Letting & — oo and reminding that the convergence of {f;} is in the strong
topology, we deduce

/f(U—v)—/a(Dv)-D(u—v)ZO.

U U

Now, apply the trick as in the proof of Theorem to complete the proof. m

Under the strict monotonicity assumption (4.11)), the unique solution u obtained
from Theorem [4.4]is actually in HZ (U) and therefore satisfies

loc

—diva(Du) = f almost everywhere in U.

Theorem 4.6 (H? regularity). Suppose a is strictly monotone as in . Then
the unique weak solution of belongs to HE (U).

loc

Proof. Fix an open set V' CC U and select other open set W such that V' CC
W cc U. According to Urysohn’s lemma, there is a smooth function ( satisfying

(=1 inV
(=0 outside W
0<¢< 1

Set
p = —D;"(¢°Dru) € Hy(U)

for some sufficiently small |h|. Let u be the weak solution of (4.1). Then, by

definition,

/ a(Du) - Dy = / fo. (4.20)

U
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Write
/ a(Du) - Dp = — / a(Du) - D;"D(¢*Dju)

U

/Dka (Du) - D(¢*D}u) (4.21)
_ / ¢ (Da(Du) - DI Du) + / Dlta(Du) - (DIu2¢DC)

From the strict monotonicity condition (4.11]), we have
a(Du(x + hey)) — a(Du(z)) Du(z + hey) — Du(z)
h h
1
> ﬁﬂDu(x + hey,) — Du(x)[?

Dla(Du(z)) - DfDu(z) =

= ’}/|DZDU($)|2

thereby obtaining

/ ¢? (Dla(Du) - D!Du) > ~ / ¢ Dl Dul”. (4.22)
U
Moreover, rewrite
/ Dla - (Dru2¢DC) = / a(Du) - D" (Dpu2¢DC) . (4.23)
U

By Cauchy’s inequality,

/ a(Du) - D" (Dpu2¢DC)
U
According to Theorem [I.8],

1
< 4—€/|a(Du)|2+e/|D,;h (Dpu2¢DC) [P, (4.24)
U U

d

S| D (D¢ |

=1

/ | D" (DPu2¢DC)|* =

U

Q\

I/\

/ de D(Dpu2¢C,,)f

U

C/Z\(DZDU)%C% + (D}u) D2 (425)

i=1

< (J/g \Dgpufw/\pzuf

/CQ\D,’;Du| +C/|Du|
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for some constant C' > 0. Put (4.21)-(4.25) together, we have

1
/a(Du)-Dgp 27/<2|D2Du‘2—4—/\a(Du)\Q—Ce/CQ‘DZDuF—Ce/]Du\2.
€
U U U U U
Choose € = 55 and recall growth bound (4.3]) to obtain

/a(Du>.D<p > %/g?\p’,;z)uf—c/\a(pu)\2—c/yz>u|2
U U U

U (4.26)

> %/@\ngf - 0/ |Duf> - C.
U U
In order to estimate the right side of (4.20)), apply Theorem again to have

/w < o/w(g?Dgu)f < c/|pguf+c/<2\pgpu|2
U U w w
< C/|Du12+0/g2\D,’;Du|2.
U U

Therefore, by Cauchy’s inequality,

C
[te|<e [+ S [ 1 (4.27)
U U U
Choosing € = T in (4.27) and combining (4.20)), (4.26) yields

[1touf < [@pio? <c [ipap+c [ #c
|4 U U U

for k = 1,2,...,d. Hence, by Theorem [1.8, we deduce that u € H?*(V). Since
V CC U is arbitrary, we conclude u € HZ (U). O

loc

4.2 Minty-Browder trick in L*

We study the fully nonlinear PDE:

(4.28)
u=0 on OU.

Here, D?u is the Hessan matrix. If w € C*(U), then D*u € 87 - the set of all
symmetric matrices of size d. Also, F': S — R is a function. We assume that F
is (degenerate) elliptic, that is, for S, R € 8%, then

{F(DQU) —f iU

S>R =  F(S)<F(R).

By saying S > R, we mean PT(S — R)P > 0 for all column vector P € R
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Ezxample 4. Set F(S) = —trace S, then (4.28)) becomes

—Au = f in U
u=0 on OU,

Ezample 5. Set F(S) = max{—trace S; —3 trace S}, then (4.28) becomes

max{—Au; —3Au} = f  inU
u=0 on OU,

Ezample 6. Assume u is convex in U and F(S) = —det .S, (4.28)) becomes the

Monge-Ampere equation:

—det(D%*u) = f in U
u=20 on OU,

Theorem 4.7. Assume that u; solves

up =0 on OU.

and that

ur — u, Dup — Du in C(U)
D?uy, = D2y in L=(U)

fo— f in C(U).
Then, u solves .

Note: We do not have the variational structure as F' is not linear. We also do not

have the L? structure.

Pairings in Banach spaces. Let X be a real Banach space, how do we define
[f,g] for f,g € X 7 When X is a Hilbert space, [f,g] = (f, g). For a real Banach

space, we can choose

1f +Xgll® = 112
A—07F 2\ .

To see the existence of the limit, write

LS + Agll® = I£1P
A

Take a sequence A, — 07. Clearly,

= (If + Agll + IFDANTf + gl = 1A

L+ Angll + LA = 21 £
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and
I+ gl = A< lgll-
So it suffices to show that the sequence ||\, 'f + g|| — ||\, ] is monotone. This

is true since for every A, > A\,

I+ gl = 1A = A + gl = I I <0
= Nl = I gl SIS = A0S

which is the triangle inequality.

Proposition 4.8. For X = C(U), then
max | f(z) + Ag(x)|* — max|f(x)|*
xeU

— i zeU
ool = i, )

= max{f(xo)g(:vo) for 2o € U s.t |f(x0)| = Ia?eaUX’f<x)’} :

Proof. Put
M = max {f(xg)g(a:o) for zg € U s.t | f(zo)| = mEaUX ]f(q:)|} :

If | f(2o)| = max, g7 | f(2)], then

_ (f(xo) + Ag(x0))* — f*(w0)
£ 2 Alir{)l+ 2\

= f(z0)g(zo).
So [f, g] > M. To prove the inverse inequality, let A, — 0¥ and z,, € U such that

£(2) + Aug(a)| = max | £ () + Mg (o). (4.20)

Since U is compact, we can assume further that z,, — vy for some y € U. Then

(f (@n) + Aglan))® — f*(xn)

< li = . 4.
[f,9] < lim X Fw)g(y) (4.30)
Moreover, letting n — oo in (4.29), we have | f(y)| = max, 7 | f(z)|. So, in (4.30)),
we conclude that [f, g] < M. O

Proposition 4.9. Define Au] = F(D?u) for u € C?(U) such that u =0 on OU.
Then
[u — v, Alu] — Av]] > 0.

Proof. WLOG, assume
(u—v)(xp) = max |u —v| > 0.
Then, D*u(xq) < D?*v(zg) which implies F(D?u(zo)) > F(D?*v(z0)). Hence,
[ — v, Alu] = A[p]] > (u — v)(@0) (F(D*u(0)) — F(D*v(z0)) > 0.
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Corollary 4.10 (Viscosity solution). Suppose that u € C*(U) and solves

F(D*>u)=f inU
u =0 on OU.

Let o € C*(U).
i. If u— @ has a strict maximum at xq € U, then
F(D*p(0)) < f(x0).
1. If u— @ has a strict minimum at xo € U, then
F(D*p(0)) = f(x0).
Lemma 4.11. Let u; and u be as in Theorem[{.7], then
[w =, f = F(D*)] >0,
for all ¢ € C2(U).
Proof. By Proposition 4.9
[uk — . fi, = F(D*¢)] > 0.

Let xj, € U such that

lur () — p(x1)| = max |ug(x) — @()].

zeU

Taking subsequence if necessary, assume zj, — y for some y € U. Then

lu(y) — w(y)| = max lu(x) — w(z)].

Hence, by Proposition {4.8
[u—, f = F(D*)] = (uly) — ¢(y)) (f(y) — F(D*¢(y)))
= lim (up(zx) — (1)) (fr(zk) = F(D*¢(x)))
= lim [uy — ¢, fi — F(D*g)] > 0.
]

Proof of Theorem[].7]. Since ||D?*ul|z~ < C, by Rademacher theorem, u is twice
differential almost everywhere. Let xq be the point at which wu is twice differential.

By Taylor expansion, we have

u(x) = u(zo) + Dul(wo)(z — o) + % (D*u(xo)(z — 39), (x — x0)) + 0o(|z — 20|?)

= Q) +o(|z — xo[*).
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For ¢ > 0, let V be a small open set containing xq and ¢ € C2(U) such that
o(x) =Q(x) +elr —xol>*—1 inV,
{ lp(z) —u(x)] < 1 outside V.
Since |u — | attains its maximum at the unique point zy, by Lemma , we
have
0< [u—o, f—F(D*)] = f(xo) — F(D*())
which is
F(D*u(x0) + 2¢1(z0)) < f(m0).

Send ¢ — 0 to get F(D?*u(xg)) < f(xo). Similarly, we also get F(D?*u(xq)) >

f(xp). Since z( is an arbitrary point at which D?u exists, we conclude the proof.
O

A Brouwer’s fixed point theorem

We discuss an important theorem which plays a crucial role in the proof of Lemma
[4.1] First, we need some technical results.

Lemma A.1. Let P = (p;j)i<ij<n be a square matriz of size n x n. Then

det P = (cof P);; := (—1)"" det P,

Ipij
where 1325 is the square matriz of size (n — 1) X (n — 1) obtained by deleting the
i-th row and j-th column from P.

Proof. Using the expansion of determinant according to the i-th row to have
j=1

Since (cof P);; is independent of p;; for any 1 < j, k <n, we get

det P = (cof P);,.
]
Lemma A.2. Suppose f : R"™ — R", f = (f',..., f"), is a smooth function.

Define square matrices

1 .« .. 1 1 “ .. 1
T Ti—1 JTi41 Tn41
2 DY 2 2 ... 2
x1 Ti—1 JTi4+1 Tn41 .
A = fori=1,2,... . n+1.
n “ .. n n ... n
x1 Ti—1 JTi4+1 Tn41
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Then

n+1 a

D (—1) 5= det A; = 0.

: o0x;

=1

Proof. Let B;j, i # j, be the square matrix obtained from A; by replacing column

1 1
Py 5T
2 2
I with column i
n n
Tj T;x;

It is easy to observe that det B;; = (—1)"7*tdet B;; for i # j. We denote
det B;; := 0. Then, by Lemma we have

—detA = > D fi, (cof Ay

1<n+1 k<n
JF#i

= > ) fh . (cof Bij)j

Jj<n+1l k<n
JF

= Z det B,‘j

j<n+1
J#i

= Z det Bz]

j<n+1

It follows that

n+1 n+1l n+1

> (= ) 0 detA > ) (~1)'det By

=1 =1 j=1
n+1 n+l

= Z Z ]+1 det Bji

Therefore,
n+1 a

> (= )axzdetA =0.

i=1

]

Theorem A.3 (Brouwer’s fixed point). Let B ={z € R", |z| < 1} and f: B —

B be a continuous function. Then there exists xg € B such that f(x¢) = xo.
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Proof. We assume temporarily that f is smooth and f(x) # x for all x € B. Set

P ()
where k(z) is the larger root of the equation
r—f() |
)+ M) R <1

that is

Here are some properties of g that can be easily checked:
e ¢ is smooth
o |g(z)|=1forallz € B
e g(x) =z for all |z| = 1.
Now, put
h(t,x) = h'(x) =tg(z)+ (1 —t)z  for0<t<1landz € B.
We claim that

% /det Dh(x)dx = 0. (A.1)
B

To see this, consider h(t,x) as a R"-valued function of (n + 1) variables where ¢
is the (n + 1)-th variable. Let A; be as in Lemma with h in lieu of f. Then

it suffices to prove
n

Z(_l)i/aidetAi =0. (A.2)

=1

Observe that the last column of A; is

gH(x) —at
g*(x) — 2
g"(x) —a"

which is zero on 0B. Therefore, det A; = 0 on 0B and, consequently, by Green’s

theorem,

/ 8detAi:O foralli=1,... n.
8a:i
B
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Thus, (A.2)) holds and so does (A.1)). It follows that

t— /det Dhl(x)dx
B

is a constant function. Choosing t = 0 and ¢ = 1 to have

/det Dg(z)dx = /det Dzxdx = /det I,dx = |B. (A.3)

B B B

On the other hand, that |g(x)| =1 for all z € B implies

(Dg(x))g(x) = 0.

So ker Dg(z) # 0 for all z € B. Hence

/det Dg(z)dx = /Od:v =0,

B B

which contradicts . Therefore, f must have a fixed point. The theorem is
done when assuming f is smooth.

Now, for a general continuous function f, choose a sequence of smooth functions
() converging to f in C(B, B). Let z, be the fixed point of ¢, and assume
further, since B is compact, that x,, — x for some x € B. Then, for every ¢ > 0

and n large enough, we have

() = 2| < |f(x) = f@n)| + |f(@n) = on(@n)| + |on(2n) — 2| + |20 — 2] < 3.

So, x is a fixed point of f. The theorem is done. [
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