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1 Introduction

We want to solve the equation

F [u] = 0

where F [·] is a differential operator and maybe not nice. One simple way: approx-

imate the nice F ε[·] → F [·] as ε → 0. Suppose uε solves F ε[uε] = 0. As ε → 0,

do we have that uε → ū in some sense of convergence ? And if so, do we have

F [ū] = 0 ?

Key points:

1. We need to understand the convergence of uε → ū if possible.

2. {
F [·] is a nonlinear operator

F ε[·] is nonlinear operators.

Does nonlinearity intervene in F [ū] = 0 ?

Example 1 (1 = 0 !!). Approximation equation: 1 + εuε = 0. If uε is bounded as

ε→ 0, then, we have to conclude that 1 = 0 ! Luckily, uε = −1/ε is not bounded.

In PDEs, if the approximation equation is physically relevant, then we can often

find bounds for uε. This is often called “a priority estimates”.
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1.1 The weak convergence

Let U ⊂ Rd be an bounded, open set with smooth boundary.

i. For 1 < p < ∞, let {fn} be a sequence in Lp(U) and f ∈ Lp(U). We say

that fn converges weakly to f and write fn ⇀ f if∫
U

fnϕ→
∫
U

fϕ for every ϕ ∈ Lq(U)

where 1
p

+ 1
q

= 1.

ii. For p = ∞, let {fn} be a sequence in L∞(U) and f ∈ L∞(U). We write

fn
∗
⇀ f if ∫

U

fnϕ→
∫
U

fϕ for every ϕ ∈ L1(U).

Theorem 1.1. (1 < p < ∞) Let {fn} be a bounded sequence in Lp(U). Then

there exists a subsequence {fnk} which converges weakly to some f ∈ Lp(U).

Proof. We use the diagonal argument. Since Lq(U) is separable, let {ek} be

a dense sequence in Lq(U). Suppose {fn} ⊂ Lp(U) such that ‖fn‖p ≤ C for

every n, then {〈fn, e1〉} is a sequence bounded by C‖e1‖q. Thus, we can extract

a subsequence {f1,n} ⊂ {fn} such that {〈f1,n, e1〉} converges to a limit, called

L(e1). Similarly, we can extract a further subsequence {f2,n} ⊂ {f1,n} such that

{〈f2,n, e2〉} converges to a limit, called L(e2). Continue this process to obtain a

sequence {fk,n} ⊂ {fk−1,n} and a real number L(ek) such that 〈fk,n, ek〉 → L(ek)

as n → ∞ for every k ∈ N. Put gn = fn,n. Since gn belongs to {fk,n} for every

k < n, we have 〈gn, ek〉 → L(ek) as n→∞ for every k. Pick ϕ ∈ Lq(U) and ε > 0

arbitrarily, there is a number k ∈ N such that ‖ek−ϕ‖q < ε. Whenever m,n ∈ N
such that |〈gn − gm, ek〉| < ε, we have

|〈gn − gm, ϕ〉| ≤ |〈gn − gm, ek〉|+ |〈gn − gm, ek − ϕ〉| < ε+ ε‖gn − gm‖p
≤ ε+ 2Cε.

Hence, {〈gn, ϕ〉} is a Cauchy sequence, so it converges to a limit called L(ϕ).

Noting that L(ϕ) ≤ C‖ϕ‖q, the linear functional L : ϕ 7→ L(ϕ) is bounded. By

Riesz’s Representation Theorem, there exists a function f ∈ Lp(U) such that

L(ϕ) = 〈f, ϕ〉 for every ϕ ∈ Lq(U). We conclude that gn ⇀ f .

Using similar argument, it is easy to prove the following result:

Theorem 1.2. (p = ∞) Let {fn} be a bounded sequence in L∞(U). Then there

exists a subsequence {fnk} such that fnk
∗
⇀ f for some f ∈ Lp(U).

2



Proposition 1.3. For 1 < p <∞ and 1
p

+ 1
q

= 1, let {fn} be a sequence in Lp(U)

which converges weakly to f .

(i) lim inf
n→∞

‖fn‖Lp ≥ ‖f‖Lp .

(ii) Suppose ‖fn‖Lp → ‖f‖Lp, then fn → f strongly in Lp(U)

(iii) Suppose gn → g strongly in Lq(U), then∫
U

fngn →
∫
U

fg.

Proof. In order to prove (i), choose

g =
1

‖f‖p/qLp

sgn(f)|f |
p
q ,

where

sgn(f) =

{
−1 if f < 0,

1 if f ≥ 0.

Then, it is clear that g ∈ Lq(U), ‖g‖Lq = 1 and∫
U

f(x)g(x)dx = ‖f‖Lp .

From definition of weak convergence and Holder inequality, we have

‖f‖Lp =

∫
U

f(x)g(x)dx = lim
n→∞

∫
U

fn(x)g(x)dx ≤ lim inf
n→∞

‖fn‖Lp .

For (ii), let gn = fn/‖fn‖Lp and g = f/‖f‖Lp . Then gn ⇀ g weakly and therefore

(gn + g)/2 ⇀ g weakly. By (i), we have

1 = ‖g‖Lp ≤ lim inf
n→∞

∥∥∥∥gn + g

2

∥∥∥∥
Lp
≤ 1.

So ‖(gn + g)/2‖Lp → 1. Since Lp(U) is a uniformly convex space, it follows that

‖gn − g‖Lp → 0, which also implies

‖fn − f‖Lp → 0.

The assertion (iii) is followed from∣∣∣∣∣∣
∫
U

fngn −
∫
U

fg

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∫
U

fngn −
∫
U

fng

∣∣∣∣∣∣+

∣∣∣∣∣∣
∫
U

fng −
∫
U

fg

∣∣∣∣∣∣
≤ ‖fn‖Lp(U)‖gn − g‖Lq(U) +

∣∣∣∣∣∣
∫
U

fng −
∫
U

fg

∣∣∣∣∣∣
which tends to 0 as n → ∞ since ‖fn‖Lp(U) is bounded by Uniformly Bounded

Principle.
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Question. Suppose fn ⇀ f weakly in Lp(U) and gn ⇀ g weakly in Lq(U). Is it

generally true that ∫
U

fn(x)gn(x)dx→
∫
U

f(x)g(x)dx ?

Answer: No. For a counterexample, let Lp(U) = L2(0, π) and fn(x) = gn(x) =√
2
π

sin(nx). Since, (fn)n∈N is an orthogonal basis of the Hilbert space L2(0, π), it

converges weakly to zero. However,

π∫
0

fn(x)gn(x)dx = 1

for every n.

Remark. Most of the time, functional spaces are infinite dimensional, so they lose

compactness.

Weak convergence of measures. Let R(U) be the space of Radon measure

on U . We have that L1(U) ⊂ R(U) in following sense: For f ∈ L1(U), define

f 7→ µf by

µf (B) =

∫
U

f(x)dx.

Then, for any g ∈ L∞(U),∫
U

f(x)g(x)dx =

∫
U

g(x)dµf (x).

Compactness of R(U): Let µ ∈ R(U), define |µ|(U) as the total variation of µ:

µ(U) := sup
|h|≤1 a.e in U

∫
U

hdµ.

For f ∈ L1(U),

|µf |(U) =

∫
U

|f(x)|dx = ‖f‖L1(U).

For {µn} ⊂ R(U) satisfying |µn|(U) ≤ C for all n, then there exists a subsequence

{µnk} such that

µnk ⇀ µ ∈ R(U) in sense of measure,

which means ∫
U

gdµnk →
∫
U

gdµ for all g ∈ Cc(U).
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Lemma 1.4. . Assume that {µn} is a sequence of positive Radon measures that

converges in measure to µ ∈ R(U). Then

(i) For K ⊂ U compact

lim sup
n→∞

µn(K) ≤ µ(K). (1.1)

(ii) For V ⊂ U open

lim inf
n→∞

µn(V ) ≥ µ(V ). (1.2)

Proof. For (i), let K ⊂ U be compact. Choose an open set Uε ⊃ K such that

µ(K) + ε > µ(Uε). By Urysohn lemma, there exists a function f ∈ Cc(Uε),

0 ≤ f ≤ 1 and f = 1 on K. So

µ(K) + ε > µ(Uε) ≥
∫
Uε

fdµ = lim
n→∞

∫
Uε

fdµn ≥ lim sup
n→∞

∫
K

fdµn = lim sup
n→∞

µn(K).

Letting ε→ 0, we conclude that

µ(K) ≥ lim sup
n→∞

µn(K).

In order to verify (ii), let V ⊂ U be open. Choose a compact set Aε ⊂ V such that

µ(Aε) + ε > µ(V ). By Urysohn lemma again, there exists a function f ∈ Cc(V ),

0 ≤ f ≤ 1 and f = 1 on Aε. Thus

µ(V )− ε < µ(Aε) ≤
∫
V

fdµ = lim
n→∞

∫
V

fdµn ≤ lim inf
n→∞

µn(V ).

Letting ε→ 0, it follows that

µ(V ) ≤ lim inf
n→∞

µn(V ).

Question. Show that in some cases, we don’t have equalities in (1.1) and (1.2).

Answer: Suppose {µn} defined by

µn(A) =
n

2

∣∣∣∣A ∩ [−1

n
,

1

n

]∣∣∣∣ for Borel set A,

| · | denotes the Lebesgue measure. Then, for any f ∈ Cc(−1, 1),

1∫
−1

f(x)dµn(x) =
n

2

1
n∫

−1
n

f(x)dx→ f(0).
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So µn converges in measure to the dirac mass δ0 at 0. Choose K = {0}, then

µn({0}) = 0 while δ0({0}) = 1. In this case, the equality in (1.1) doesn’t hold.

For the other, suppose (µn) defined by

µn = µfn

where

fn(x) =

{
−n2x+ n for 0 < x < 1

n
,

0 for 1
n
≤ x < 1.

Then µn ⇀ 0 weakly. However µn((0, 1)) = 1
2

for all n. Thus, the equality in (1.2)

doesn’t hold in this case. �

1.2 More on functional spaces

Now, we turn to some important results in Sobolev spaces.

Theorem 1.5 (Gagliardo-Nirenberg-Sobelev inequality). Given f ∈ C1
c (Rd), then∫

Rd

|f(x)|p∗dx

 1
p∗

≤ C

∫
Rd

|Df(x)|pdx

 1
p

,

where C is a constant depending only on d and p. Here, for d > p ≥ 1, p∗ = dp
d−p .

Why p∗ ? Suppose

∫
Rd

|f(x)|qdx

 1
q

≤ C

∫
Rd

|Df(x)|pdx

 1
p

,

for all f ∈ C1
c (Rd). Scaling analysis: put fλ(x) = f(λx) for λ > 0. Then,

Dfλ = λDf and∫
Rd

|f(λx)|qdx

 1
q

=

∫
Rd

|fλ(x)|qdx

 1
q

≤ C

∫
Rd

|Dfλ(x)|pdx

 1
p

= C

∫
Rd

λp|Df(x)|pdx

 1
p

.

Making some change in variables: y = λx and dy = λddx, then∫
Rd

|f(y)|qdx

 1
q

λ−
d
q ≤ C

∫
Rd

|Dfλ(y)|pdx

 1
p

λ1− d
p .
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Therefore, we must have

−d
q

= 1− d

p
=⇒ q = p∗.

Before proving the theorem, we need a technical result

Lemma 1.6. For f ∈ C1
c (Rd),

‖f‖ d
d−1
≤

d∏
i=1

‖fxi‖
1/d
1 .

Proof. For d = 2
∞∫

−∞

∞∫
−∞

f 2(x1, x2)dx1dx2 ≤
∞∫

−∞

max
x2∈R
|f(x1, x2)|dx1

∞∫
−∞

max
x1∈R
|f(x1, x2)|dx2.

Since

|f(x1, x2)| =

∣∣∣∣∣∣
x2∫
−∞

fx2(x1, t2)dt2

∣∣∣∣∣∣ ≤
∞∫

−∞

|fx2(x1, t2)|dt2,

it follows that
∞∫

−∞

∞∫
−∞

f 2(x1, x2)dx1dx2 ≤
∞∫

−∞

∞∫
−∞

|fx1(x)|dx
∞∫

−∞

∞∫
−∞

|fx2(x)|dx.

Thus, the assertion holds for d = 2. Suppose it still holds for some d > 2. Put

x = (x1, x2, . . . , xd) ∈ Rd for x = (x1, x2, . . . , xd, xd+1) ∈ Rd+1.

Then, by induction and Holder inequality,

‖f‖
d+1
d
d+1
d

=

∫
R

∫
Rd

|f(x, xd+1)|
d+1
d dxdxd+1

≤
∫
R

∫
Rd

|f(x, xd+1)|dx

 1
d
∫
Rd

|f(x, xd+1)|
d
d−1dx

 d−1
d

dxd+1

≤ ‖fxd+1
‖1/d

1

∫
R

∫
Rd

|f(x, xd+1)|
d
d−1dx

 d−1
d

dxd+1

≤ ‖fxd+1
‖1/d

1

∫
R

d∏
i=1

∫
Rd

|f(x, xd+1)|dx

 1
d

dxd+1

≤ ‖fxd+1
‖1/d

1

d∏
i=1

 ∫
Rd+1

|fxi(x, xd+1)|dxdxd+1

 1
d

=
d+1∏
i=1

‖fxi‖
1/d
1 .
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By the Lemma, we have

‖f‖ d
d−1
≤ ‖Df‖1. (1.3)

Proof of Theorem 1.5. Set

λ =
p(d− 1)

d− p
.

Then
λd

d− 1
=

(λ− 1)p

p− 1
= p∗.

Therefore, by (1.3), we have∫
Rd

|f(x)|p∗dx

 d−1
d

=

∫
Rd

|f(x)|
λd
d−1dx

 d−1
d

≤ λ

∫
Rd

|f(x)|λ−1|Df(x)|dx

≤ λ

∫
Rd

|f(x)|
(λ−1)p
p−1 dx


p−1
p

‖Df‖p

= λ

∫
Rd

|f(x)|p∗dx


p−1
p

‖Df‖p.

So

‖f‖p∗ ≤ λ‖Df‖p.

Define

W 1,p(U) = {f : U → R such that f,Df ∈ Lp(U)}.

This is a Banach space with the norm

‖f‖W 1,p(U) = ‖f‖p + ‖Df‖p.

Theorem 1.7 (Sobolev Compactness Embedding Theorem). For 1 ≤ p < d,

assume {fn} ⊂ W 1,p(U) such that ‖fn‖W 1,p(U) ≤ C for all n. Then there exists a

subsequence {fnk} and a function f ∈ W 1,p(U) satisfying{
fnk → f in Lq(U) for all 1 ≤ q ≤ p∗,

Dfnk ⇀ Df weakly in Lp(U).
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Difference quotient. Assume u : U → R is locally summable function and

V ⊂⊂ U . The i-th difference quotient of size h is

Dh
i u(x) :=

u(x+ hei)− u(x)

h
, i = 1, . . . , d

for x ∈ V , h ∈ R, 0 < |h| < dist(V, ∂U) and (ei)1≤i≤d is the standard basis of Rd.

We denote

Dhu := (Dh
1u, . . . , D

h
du).

Theorem 1.8. (i). Suppose 1 ≤ p < ∞ and u ∈ W 1,p(U). Then there exists a

constant C > 0 such that

‖Dhu‖Lp(V ) ≤ C‖Du‖Lp(U)

for every 0 < |h| < 1
2
dist(V, U).

(ii). Assume 1 < p < ∞, u ∈ Lp(V ) and there exists a constant C, ε > 0 such

that

‖Dhu‖Lp(V ) ≤ C

for every 0 < |h| < ε. Then u ∈ W 1,p(V ) and

‖Du‖Lp(V ) ≤ C.

Proof. (i). Since C∞(U) is dense in W 1,p(U), it suffices to prove the assertion

when u is smooth. For x ∈ V and 0 < |h| < 1
2
dist(V, ∂U), we have

|u(x+ hei)− u(x)| ≤ |h|
1∫

0

|uxi(x+ thei)| dt ≤ |h|
1∫

0

|Du(x+ thei)| dt.

Thus,

‖Dhu‖pLp(V ) =

∫
V

∣∣Dhu
∣∣p ≤ C

∫
V

1∫
0

|Du(x+ thei)|p dtdx

≤ C

1∫
0

∫
U

|Du(x)|p dxdt

= C‖Du‖pLp(U).

(ii). Since {Dhu}, 0 < |h| < ε, is bounded in Lp(V ;Rd), we can take a sequence

hn → 0 such that

D−hnu ⇀ v = (v1, . . . , vd) weakly in Lp(V ;Rd). (1.4)
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Fix ϕ ∈ C∞c (V ), when |h| is small enough such that

suppϕ− hei ⊂ V,

we get

∫
V

u(x)
ϕ(x+ hei)− ϕ(x)

h
dx =

1

h

∫
V

u(x)ϕ(x+ hei) dx−
∫
V

u(x)ϕ(x) dx


=

1

h

∫
V

u(x− hei)ϕ(x) dx−
∫
V

u(x)ϕ(x) dx


= −

∫
V

ϕ(x)D−hi u(x) dx.

Choose h = hn as n→∞, recall (1.4) and use Lebesgue’s dominated convergence

theorem to obtain ∫
V

u(x)ϕxi(x) dx = −
∫
V

vi(x)ϕ(x) dx.

This holds for arbitrary ϕ ∈ H1
0 (V ); so, u ∈ W 1,p(V ) and uxi = vi. Also, in view

of (1.4), we have

‖Du‖Lp(V ) = ‖v‖Lp(V ) ≤ lim inf
n→∞

‖D−hnu‖Lp(V ) ≤ C.

2 Calculus of variations

Minimize an energy functional

E[u] =

∫
U

F (Du(x))dx (2.1)

for u ∈ A = {v ∈ W 1,p(U), v = g on ∂U}.
Assumption:

(A1) Growth condition: There exists C > 0 such that

1

C
|s|p − C ≤ F (s) ≤ C|s|p + C.

(A2) Convexity: s 7→ F (s) is convex.

Theorem 2.1. The minimizers for energy functional (2.1) exist.
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Proof. Since

−C|U | ≤
∫
U

(
1

C
|Du|p − C

)
≤
∫
U

F (Du) = E[u] ≤
∫
U

C(|Du|p + 1) <∞,

infu∈AE[u] exists. We want to show that the infimum is actually the minimum.

There exists a sequence {uk} such that

E[uk]→ inf
u∈A

E[u].

Note that

C ≥ E[uk] =

∫
U

F (Duk) ≥
∫
U

(
1

C
|Du|p − C

)
,

which implies ‖Duk‖p ≤ C. Since uk = g on ∂U , by Sobolev Embedding Theorem,

‖uk‖p ≤ C and, thus, ‖uk‖W 1,p(U) ≤ C. By Theorem 1.7, we can extract {ukj}
such that {

ukj → ū in Lp(U),

Dukj ⇀ Dū weakly in Lp(U).

Since E[ukj ]→ inf E[u], it is sufficient to show

lim inf
j→∞

E[Dukj ] ≥ E[Dū].

By the convexity assumption,

F (Dukj) ≥ F (Dū) +DF (Dū) ·D(ukj − ū).

Therefore,

E[ukj ] =

∫
U

F (Dukj) ≥
∫
U

F (Dū) +

∫
U

DF (Dū) ·D(ukj − ū)

= E[ū] +

∫
U

DF (Dū) ·D(ukj − ū).

Since |DF (Dū)| ≤ C(|Dū|p−1 + 1), we have that DF (Dū) ∈ Lq(U,Rd) with
1
p

+ 1
q

= 1. Moreover, as Dukj ⇀ Dū,∫
U

DF (Dū) ·D(ukj − ū)→ 0.

Consequently, at the limit,

lim inf
j→∞

E[ukj ] ≥ E[ū].
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Remark. 1. The same result holds for

E[u] =

∫
U

F (x, u(x), Du(x))dx.

2. This is only for real-valued function. For vector-valued function, there are

still a lot of open problems.

Question. When the minimizers exist, do they satisfy some properties ?

Let E[ū] = minu∈AE[u]. For any v ∈ W 1,p
0 (U), then ū + tv ∈ A for any t ∈ R.

Thus,

E[ū] = min
t∈R

E[ū+ tv] =: i(t).

The function i(t) attains the minimum at t = 0, so{
i′(0) = 0 the first variation

i′′(0) ≥ 0 the second variation.
(2.2)

The first variation. We have

i′(t) =
d

dt

∫
U

F (Dū+ tDv) =

∫
U

DF (Dū+ tDv) ·Dv.

By (2.2),

i′(0) =

∫
U

DF (Dū) ·Dv = 0.

so,

∫
U

−div (DF (Dū))v = 0.


Since v is arbitrarily chosen from W 1,p

0 (U), we conclude that ū is a weak solution

of the Euler-Lagrange equation

−div (DF (Dū)) = 0 in U.

Question. Suppose f ∈ L1(U) such that∫
U

f(x)ϕ(x)dx = 0

for all ϕ ∈ Cc(U). Prove that f = 0 a.e in U.
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Answer: Since Cc(U) is dense in L1(U), let (ϕn) ⊂ Cc(U) be a sequence converging

in L1(U) to f . Take a subsequence (ϕnk) converging almost everywhere to f .

Then, by Lebesgue Dominated Convergence theorem, we have

0 =

∫
U

f(x)
ϕnk(x)

1 + ϕ2
nk

(x)
dx→

∫
U

f 2(x)

1 + f 2(x)
dx.

So f = 0 a.e. �

Example 2. When F (s) = |s|2, DF (s) = 2s, E[u] =
∫
U
|Du|2, the Euler-Lagrange

equation becomes the Laplace equation:{
−∆u = 0 in U

u = g on ∂U.

Example 3. When F (s) = |s|p, DF (s) = p|s|p−2s, E[u] =
∫
U
|Du|p, the Euler-

Lagrange equation becomes the p-Laplace equation:{
−div (|Du|p−2Du) = 0 in U

u = g on ∂U.

The second variation. We have

i′′(t) =

∫
U

d∑
i,j=1

Fsisj(Dū+ tDv)vxivxj .

Thus, (2.2) implies

i′′(0) =

∫
U

d∑
i,j=1

Fsisj(Dū)vxivxj ≥ 0. (2.3)

Take

v(x) = ε ξ(x) v0

(r · x
ε

)
where ε > 0, ξ ∈ C∞c (U), r = (r1, r2, . . . , rd) ∈ Rd and v0 is the 2-periodic

saw-tooth function on R defined by

v0(x) =

{
x for 0 ≤ x ≤ 1,

2− x for 1 ≤ x ≤ 2.

Then,

vxi = ε ξxi(x) v0

(r · x
ε

)
+ ξ(x) v′0

(r · x
ε

)
si.

Plug v into (2.3) and send ε→ 0 to obtain∫
U

d∑
i,j=1

Fsisj(Dū)ξ2rirj ≥ 0.

13



Since ξ arbitrarily belongs to C∞c (U), we conclude that

d∑
i,j=1

Fsisj(Dū)rirj ≥ 0 for all s ∈ Rd.

Remark. 1. For real-valued u, convexity is natural.

2. For vector-valued u, it is completely different.

Theorem 2.2. E[·] is lower semi-continuous with respect to weak convergence in

W 1,p(U) if and only if the convexity assumption (A2) holds.

Proof. The ”⇐=” is clear by the proof of Theorem 2.1.

For the ”=⇒”, assume E[·] is lower semi-continuous w.r.t weak convergence in

W 1,p(U), that is, for any {vi} such that Dvj ⇀ Dv in Lp(U), we have

lim inf
j→∞

E[vj] ≥ E[v].

First, we assume U = (−1, 1)n. Divide U into kn subcubes. For each subcube Ql,

let xl be its center. Take

ξ ∈ C∞c
((
−1

2
,
1

2

)n)
=⇒

∫
(−1

2
, 1
2)
n

Dξ(x)dx = 0.

Choose s ∈ Rd and put

vk(x) = s · x+
1

k

∑
l

ξ(k(x− xl)).

Then,

Dvk(x) = s+
∑
l

Dξ(k(x− xl)).

Because of the ”crazy” oscillation of
∑

lDξ(k(x − xl)) around 0 as k → ∞, we

have Dvk ⇀ s weakly in Lp(U). Thus, by the assumption,

lim inf
k→∞

∫
U

F (Dvk) ≥
∫
U

F (s) = F (s)|U |.

On the other hand, for any k,∫
U

F (Dvk(x))dx =
∑
l

∫
Ql

F (s+Dξ(k(x− xl)))dx =

∫
(−1

2
, 1
2)
n

F (s+Dξ(x))dx.

Therefore, with Q =
(−1

2
, 1

2

)n
,∫

Q

F (s+Dξ(x))dx ≥
∫
U

F (s) ≥
∫
Q

F (s) = F (s)|Q|.
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Let v0 be the 2-periodic saw-tooth function on R defined by

v0(x) =

{
x for 0 ≤ x ≤ 1,

2− x for 1 ≤ x ≤ 2.

Take ε > 0, r ∈ Rd, ζ ∈ C∞c (Q) and choose

ξ(x) = εζ(x)v0

(r · x
ε

)
.

Also, put

i(t) =

∫
Q

F (s+ tDv(x))dx.

Since t = 0 is the minimizer for i, we must have i′′(0) ≥ 0. Sending ε → 0, as in

page 12, we get ∫
Q

n∑
i,j=1

Fxixj(p)ζ
2(x)rirj dx ≥ 0

which implies
n∑

i,j=1

Fxixj(s)rirj ≥ 0.

Hence, F is convex. The theorem is done when U is a cube. For a general open,

bounded set U with smooth boundary, we just need to pick an inside cube and

apply the above argument to deduce the result.

We can use the more direct approaching: Since U is bounded and has a smooth

boundary, we can approximate U by a countable family of disjoint inside cubes.

Suppose E1, E2, · · · ⊂ U are disjoint cubes such that

U =
∞⋃
i=1

Ei.

Fix s ∈ Rd. For an integer k, divide Ek to md subcubes and let x
(k,m)
l be the center

of each subcube. Take ξ ∈ C∞c (U) and for x ∈ Ek belonging to the subcube l, let

w(k)
m (x) =

1

m

∑
l

ξ
(
m
(
x− x(k,m)

l

))
.

Then, set

vk(x) = s · x+
k∑
i=1

χEi(x)w
(k)
k (x).

Then Dvk ⇀ s weakly in Lp(U). Moreover

lim
k→∞

E[vk] = lim
k→∞

∫
U

F (D(vk)) = lim
k→∞

∫
k⋃
i=1

Ei

F (p+Dξ) =

∫
U

F (p+Dξ).
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Therefore, by the semicontinuity, we have∫
U

F (s+Dξ) ≥ F (s)|U |.

3 Galerkin method in elliptic PDEs

From now on, U is a bounded open subset of Rd with smooth boundary. Consider

a differential operator

Lu =
d∑

i,j=1

aijuxixj +
d∑
i=1

biuxi + cu

where aij, bi, c belong to L∞(U). We also assume L satisfies ellipticity condition,

that is
d∑

i,j=1

aijξiξj ≥ θ|ξ|2

for all ξ = (ξ1, . . . , ξd) ∈ Rd and for some constant θ > 0. We are interested in the

elliptic boundary equation {
Lu+ λu = f in U

u = 0 on ∂U,
(3.1)

where f ∈ L2(U) and λ is a constant. A function u ∈ H1
0 (U) is called weak

solution of (3.1) if it satisfies∫
U

d∑
i,j=1

aijuxivxj+
d∑
i=1

biuxiv+cuv dx+λ

∫
U

uv dx =

∫
U

fv dx for all v ∈ H1
0 (U).

For simplicity, define the bilinear form from H1
0 (U)×H1

0 (U)→ R as

B[u, v] =

∫
U

d∑
i,j=1

aijuxivxj +
d∑
i=1

biuxiv + cuv dx.

In this section, we will use Galerkin method to show that, under the ellipticity

condition and with appropriate constant λ ≥ 0, equation (3.1) always has an

unique weak solution. To do this, we need some estimates:

Theorem 3.1 (Energy estimate). There are α > 0 and β ≥ 0 such that

α‖u‖2
H1

0 (U) ≤ B[u, u] + β‖u‖L2(U) (3.2)

for all u ∈ H1
0 (U).
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Proof. From the ellipticity condition,

θ

∫
U

|Du|2 dx ≤ B[u, u]−

∫
U

d∑
i=1

biuxiu+ c|u|2 dx


≤ B[u, u] +

d∑
i=1

‖bi‖L∞(U)

∫
U

|Du||u| dx+ ‖c‖L∞(U)

∫
U

|u|2 dx.

By Cauchy’s inequality, we have∫
U

|Du||u| dx ≤ θ

2
∑
‖bi‖L∞(U)

∫
U

|Du|2 dx+

∑
‖bi‖L∞(U)

2θ

∫
U

|u|2 dx.

Consequently,

θ

2

∫
U

|Du|2 dx ≤ B[u, u] +

(
‖c‖L∞(U) +

1

2θ

d∑
i=1

‖bi‖L∞(U)

)∫
U

|u|2 dx.

Let (ek)k∈N be an orthonormal basis of H1
0 (U) and an orthogonal basis of L2(U).

The idea of Galerkin method is to find ”projectional solutions” of (3.1) on finite

dimensional subspaces spanned by (ek); then pass to limit to obtain the desire

solution.

Indeed, we look for appropriate real numbers d1
n, . . . , d

n
n such that the function of

the form

un = d1
ne1 + d2

ne2 + · · ·+ dnnen ∈ span{e1, e2, . . . , en}

satisfies

B[un, ek] + λ

∫
U

unek =

∫
U

fek for k = 1, . . . , n (3.3)

or equivalently,

n∑
l=1

B[el, ek] + λ

∫
U

elek

 dln =

∫
U

fek for k = 1, . . . , n. (3.4)

In order to verify existence of such real numbers, put

αij = B[ej, ei] + λ

∫
U

ejei

and let A = (αij) be a square matrix of size n×n. Then (3.4) can be rewritten as

AD = P (3.5)
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where

D =



d1
n

d2
n

...

dnn


and P =



p1

p2

...

pn


,

with

pk =

∫
U

fek for k = 1, . . . , n.

Recall α and β as in Theorem 3.1. If λ ≥ β, then A is invertible since

D ∈ kerA⇐⇒ AD = 0 =⇒ DTAD = 0

=⇒ B[un, un] + λ

∫
|un|2 = 0

=⇒ α‖un‖2
H1

0 (U) = 0 (follows from (3.2))

=⇒ un = 0

=⇒ D = 0.

Hence, when λ ≥ β, D = A−1P satisfies (3.5) and therefore solves (3.3).

Theorem 3.2 (Existence and uniqueness). Let α and β be as in Theorem 3.1.

Then for every λ ≥ β, there exists unique weak solution for the boundary equation

(3.1).

Proof. Existence. Let un ∈ span{e1, e2, . . . , en} satisfying (3.3). It follows from

(3.2), (3.3) and Poincare’s inequality that

α‖un‖2
H1

0 (U) ≤ B[un, un] + λ

∫
U

|un|2 =

∫
U

fun ≤ C‖un‖H1
0 (U),

for some constant C, which implies the boundedness of (un) in H1
0 (U). Conse-

quently, there exist a subsequence (unl) ⊂ (un) and a function u ∈ H1
0 (U) such

that

unl ⇀ u weakly in H1
0 (U).

For any k ∈ N and nl ≥ k, from (3.3) we have

B[unl , ek] + λ

∫
U

unlek =

∫
U

fek.

Passing to the limit as l→∞, the weak convergence of (unl) to u yields

B[u, ek] + λ

∫
U

uek =

∫
U

fek for all k ∈ N.
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Since (ek) is dense in H1
0 (U), we deduce that u is a weak solution of (3.1).

Uniqueness. Suppose u, v ∈ H1
0 (U) are two weak solutions of (3.1). Set w = u−v,

then

B[w,ϕ] + λ

∫
U

wϕ = 0 for any ϕ ∈ H1
0 (U).

In particular, choose ϕ = w and recall (3.2) to conclude that w = 0.

4 Monotonicity method in nonlinear PDEs

4.1 Quasilinear PDEs: existence, uniqueness & regularity

of solution. Minty-Browder trick in L2

In this section, we study the quasilinear equation{
−div a(Du) = f in U

u = 0 on ∂U,
(4.1)

where f ∈ L2(U) and a : Rd → Rd is a smooth vector field. Also, a has some

properties:

i. Monotonicity :

(a(p)− a(q)) · (p− q) ≥ 0 (4.2)

for all p, q ∈ Rd.

ii. Growth bound:

|a(p)| ≤ C(1 + |p|) (4.3)

for all p ∈ Rd and a constant C.

iii. Coercivity :

a(p) · p ≥ α|p|2 − β (4.4)

for all p ∈ Rd and constants α > 0, β ≥ 0.

If a(p) = DF (p) for some smooth function F : Rd → R, (4.1) becomes Euler-

Lagrange equation {
−divDF (Du) = f in U

u = 0 on ∂U,
(4.5)

In section 2, the existence solution of (4.5) could be derived by minimizing the

energy functional

u 7→
∫
U

F (Du) (4.6)
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in H1
0 (U). Furthermore, the minimizer of (4.6) exists if and only if F is convex.

In this case,

(a(p)− a(q)) · (p− q) = (DF (p)−DF (q)) · (p− q) ≥ 0.

Thus, the assumption (4.2) is naturally needed.

We will prove the existence of weak solution of (4.1), that is, u ∈ H1
0 (U) and

satisfies ∫
U

a(Du) ·Dϕ =

∫
U

fϕ for every ϕ ∈ H1
0 (U). (4.7)

To do this, we again use the Galerkin approaching. The point is that our problem

now is nonlinear. In section 3, the results heavily depend on linear structures.

However, surprisingly, the Galerkin approaching can still be useful in this case,

thanks to the monotonicity. To see this, we begin with a lemma

Lemma 4.1. Suppose v : Rd → Rd is a smooth vector-valued function satisfying

v(x) · x ≥ 0 whenever |x| = r

for a constant r > 0. Then there exists x0 ∈ B′(0, r) such that v(x0) = 0.

Proof. Assume, by contradiction, that v(x) 6= 0 for all |x| ≤ r. Put

w(x) = − r

|v(x)|
v(x).

Then w : B′(0, r)→ ∂B′(0, r). By Brouwer’s fixed point theorem (Theorem A.3),

there exists y ∈ B′(0, r) such that w(y) = y. But then, |y| = r and

r2 = w(y) · y = − r

|v(y)|
v(y) · y ≤ 0,

which is impossible.

Let (ek)k∈N be an orthonormal basis of H1
0 (U). As an idea of Galerkin method,

our aim is to find functions of the form

un = d1
ne1 + d2

ne2 + · · ·+ dnnen (4.8)

satisfying ∫
U

a(Dun) ·Dek =

∫
fek for any k = 1, . . . , n. (4.9)

In other words, un is the ”projectional solution” of (4.1) on the finite dimensional

subspace spanned by {e1, . . . , en}.

Theorem 4.2. For every n ∈ N, there exists un as in (4.8) satisfies (4.9).
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Proof. Put v = (v1, . . . , vn) where

vk(d) =

∫
U

a

(
n∑
i=1

diDei

)
·Dek dx−

∫
U

fek dx, (4.10)

for d = (d1, . . . , dn) ∈ Rn. Then employ (4.4) to have

v(d) · d =

∫
U

a

(
n∑
i=1

diDei

)
·

(
n∑
i=1

diDei

)
dx−

∫
U

f
n∑
i=1

diei dx

≥
∫
U

α

∣∣∣∣∣
n∑
i=1

diDei

∣∣∣∣∣
2

− β − f
n∑
i=1

diei dx

= α|d|2 − β|U | −
n∑
i=1

di
∫
U

fei dx

≥ α|d|2 − C(|d|+ 1).

Taking r > 0 large enough, above inequalities implies v(d) · d ≥ 0 for all |d| = r.

According to Lemma 4.1, there exists dn = (d1
n, · · · , dnn) such that v(dn) = 0.

With such dn, it follows from (4.10) that un as in (4.8) satisfies (4.9).

Theorem 4.3 (Energy estimate).

‖un‖H1
0 (U) ≤ C(1 + ‖f‖L2(U))

for every n ∈ N and a constant C.

Proof. It follows from (4.9) that∫
U

a(Dun) ·Dun =

∫
U

fun.

Hence, the coercivity (4.4), Poincare’s theorem and Cauchy’s inequality yield

α‖un‖2
H1

0 (U) = α

∫
U

|Dun|2 dx ≤
∫
U

fun dx+ C

≤ C + C‖f‖L2(U)‖un‖H1
0 (U)

≤ C +
α

2
‖un‖2

H1
0 (U) +

C2

2α
‖f‖2

L2(U),

which is equivalent to

α

2
‖un‖2

H1
0 (U) ≤ C +

C2

2α
‖f‖2

L2(U).
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Similar to section 3, we want to obtain the solution u of (4.1) upon passing to

the limit of (un) as n → ∞ in some sense of convergence. In this case, weak

convergence is still helpful with assistance of monotonicity and Browder-Minty’s

trick.

Theorem 4.4 (Existence and uniqueness). There exists a weak solution for (4.1).

In addition, if a is strictly monotone, that is, there exists γ > 0 such that

(a(p)− a(q)) · (p− q) ≥ γ|p− q|2 (4.11)

for every p, q ∈ Rd, then the solution is unique.

Proof. Existence. According to Theorem 4.3, since (un) is bounded in H1
0 (U), we

can take a subsequence (unl) ⊂ (un) such that

unl ⇀ u weakly in H1
0 (U). (4.12)

Also, in view of growth bound (4.3), a(Dun) is bounded in L2(U ;Rd). Hence, by

taking further subsequence if necessary, we assume

a(unl) ⇀ ζ weakly in L2(U ;Rd). (4.13)

By monotonicity (4.2), we have∫
U

(a(Dunl)− a(Dv)) · (Dunl −Dv) ≥ 0 (4.14)

for any l ∈ N and v ∈ H1
0 (U). From (4.9), we get∫

U

a(Dunl) ·Dunl =

∫
U

funl .

So, (4.14) is equivalent to∫
U

funl − a(Dunl) ·Dv − a(Dv) · (Dunl −Dv) ≥ 0.

Let l→∞ and invoke (4.12), (4.13) to obtain∫
U

fu− ζ ·Dv − a(Dv) · (Du−Dv) ≥ 0. (4.15)

Moreover, in (4.9), set n = nl, send l→∞ and recall (4.13) to yield∫
U

ζ ·Dek =

∫
U

fek for all k = 1, 2, . . .
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and, consequently, ∫
U

ζ ·Dv =

∫
U

fv for every v ∈ H1
0 (U). (4.16)

Taking v = u in (4.16) and substituting into (4.15):∫
U

(ζ − a(Dv)) · (Du−Dv) ≥ 0 for every v ∈ H1
0 (U). (4.17)

Trick: Fix w ∈ H1
0 (U) and put v = u− λw with λ > 0, in (4.17), we have∫

U

(ζ − a(Du− λDw)) ·Dw ≥ 0.

Sending λ→ 0, by Lebesgue’s dominated convergence theorem,∫
U

(ζ − a(Du)) ·Dw ≥ 0. (4.18)

Taking −w in lieu of w, the inverse inequality of (4.18) also holds; thus, (4.18) is

actually the equality. By (4.16), we obtain∫
U

a(Du) ·Dw =

∫
U

fw.

Since w is arbitrary in H1
0 (U), we conclude that u is a weak solution for (4.1).

Uniqueness. Suppose u and u are both solutions of (4.1). Then∫
U

(a(Du)− a(Du)) ·Dv = 0 for every v ∈ H1
0 (U).

In particular, ∫
U

(a(Du)− a(Du)) · (Du−Du) = 0.

From (4.11), we deduce that u = u.

The argument used in the proof of Theorem 4.4 yields the following:

Theorem 4.5. Assume that {uk} ∈ H1
0 (U) and fk ∈ L2(U) such that{

uk ⇀ u weakly in H1
0 (U),

fk → f strongly in L2(U).

Assume further more that uk solves{
−div (a(Duk)) = fk in U,

uk = 0 on ∂U,
(4.19)

then, u solves (4.1)
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Proof. We have ∫
U

a(Duk) ·Dϕ =

∫
U

fkϕ ∀ϕ ∈ H1
0 (U).

For all v ∈ H1
0 (U),

0 ≤
∫
U

(a(Duk)− a(Dv)) · (Duk −Dv)

=

∫
U

a(Duk) ·D(uk − v)−
∫
U

a(Dv) ·D(uk − v)

=

∫
U

fk(uk − v)−
∫
U

a(Dv) ·D(uk − v).

Letting k → ∞ and reminding that the convergence of {fk} is in the strong

topology, we deduce ∫
U

f(u− v)−
∫
U

a(Dv) ·D(u− v) ≥ 0.

Now, apply the trick as in the proof of Theorem 4.4 to complete the proof.

Under the strict monotonicity assumption (4.11), the unique solution u obtained

from Theorem 4.4 is actually in H2
loc(U) and therefore satisfies

−div a(Du) = f almost everywhere in U.

Theorem 4.6 (H2 regularity). Suppose a is strictly monotone as in (4.11). Then

the unique weak solution of (4.1) belongs to H2
loc(U).

Proof. Fix an open set V ⊂⊂ U and select other open set W such that V ⊂⊂
W ⊂⊂ U . According to Urysohn’s lemma, there is a smooth function ζ satisfying

ζ = 1 in V

ζ = 0 outside W

0 ≤ ζ ≤ 1.

Set

ϕ = −D−hk (ζ2Dh
ku) ∈ H1

0 (U)

for some sufficiently small |h|. Let u be the weak solution of (4.1). Then, by

definition, ∫
U

a(Du) ·Dϕ =

∫
U

fϕ. (4.20)
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Write∫
U

a(Du) ·Dϕ = −
∫
U

a(Du) ·D−hk D(ζ2Dh
ku)

=

∫
U

Dh
ka(Du) ·D(ζ2Dh

ku)

=

∫
U

ζ2
(
Dh
ka(Du) ·Dh

kDu
)

+

∫
U

Dh
ka(Du) ·

(
Dh
ku2ζDζ

)
.

(4.21)

From the strict monotonicity condition (4.11), we have

Dh
ka(Du(x)) ·Dh

kDu(x) =
a(Du(x+ hek))− a(Du(x))

h
· Du(x+ hek)−Du(x)

h

≥ 1

h2
γ|Du(x+ hek)−Du(x)|2

= γ
∣∣Dh

kDu(x)
∣∣2

thereby obtaining ∫
U

ζ2
(
Dh
ka(Du) ·Dh

kDu
)
≥ γ

∫
U

ζ2
∣∣Dh

kDu
∣∣2. (4.22)

Moreover, rewrite∫
U

Dh
ka(Du) ·

(
Dh
ku2ζDζ

)
= −

∫
U

a(Du) ·D−hk
(
Dh
ku2ζDζ

)
. (4.23)

By Cauchy’s inequality,∣∣∣∣∣∣
∫
U

a(Du) ·D−hk
(
Dh
ku2ζDζ

)∣∣∣∣∣∣ ≤ 1

4ε

∫
U

|a(Du)|2 + ε

∫
U

∣∣D−hk (
Dh
ku2ζDζ

)∣∣2. (4.24)

According to Theorem 1.8,∫
U

∣∣D−hk (
Dh
ku2ζDζ

)∣∣2 =

∫
U

d∑
i=1

∣∣D−hk (Dh
ku2ζζxi)

∣∣2
≤ C

∫
U

d∑
i=1

∣∣D(Dh
ku2ζζxi)

∣∣2
= C

∫
U

d∑
i=1

∣∣(Dh
kDu)2ζζxi + (Dh

ku)D(2ζζxi)
∣∣2

≤ C

∫
U

ζ2
∣∣Dh

kDu
∣∣2 + C

∫
W

∣∣Dh
ku
∣∣2

≤ C

∫
U

ζ2
∣∣Dh

kDu
∣∣2 + C

∫
U

|Du|2

(4.25)
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for some constant C > 0. Put (4.21)-(4.25) together, we have∫
U

a(Du)·Dϕ ≥ γ

∫
U

ζ2
∣∣Dh

kDu
∣∣2− 1

4ε

∫
U

|a(Du)|2−Cε
∫
U

ζ2
∣∣Dh

kDu
∣∣2−Cε∫

U

|Du|2.

Choose ε = γ
2C

and recall growth bound (4.3) to obtain∣∣∣∣∣∣
∫
U

a(Du) ·Dϕ

∣∣∣∣∣∣ ≥ γ

2

∫
U

ζ2
∣∣Dh

kDu
∣∣2 − C ∫

U

|a(Du)|2 − C
∫
U

|Du|2

≥ γ

2

∫
U

ζ2
∣∣Dh

kDu
∣∣2 − C ∫

U

|Du|2 − C.
(4.26)

In order to estimate the right side of (4.20), apply Theorem 1.8 again to have∫
U

|ϕ|2 ≤ C

∫
U

∣∣D(ζ2Dh
ku)
∣∣2 ≤ C

∫
W

∣∣Dh
ku
∣∣2 + C

∫
W

ζ2
∣∣Dh

kDu
∣∣2

≤ C

∫
U

|Du|2 + C

∫
U

ζ2
∣∣Dh

kDu
∣∣2.

Therefore, by Cauchy’s inequality,∣∣∣∣∣∣
∫
U

fϕ

∣∣∣∣∣∣ ≤ ε

∫
U

ζ2
∣∣Dh

kDu
∣∣2 +

C

ε

∫
U

f 2. (4.27)

Choosing ε = γ
4

in (4.27) and combining (4.20), (4.26) yields∫
V

∣∣Dh
kDu

∣∣2 ≤ ∫
U

ζ2
∣∣Dh

kDu
∣∣2 ≤ C

∫
U

|Du|2 + C

∫
U

f 2 + C,

for k = 1, 2, . . . , d. Hence, by Theorem 1.8, we deduce that u ∈ H2(V ). Since

V ⊂⊂ U is arbitrary, we conclude u ∈ H2
loc(U).

4.2 Minty-Browder trick in L∞

We study the fully nonlinear PDE:{
F (D2u) = f in U

u = 0 on ∂U.
(4.28)

Here, D2u is the Hessan matrix. If u ∈ C2(U), then D2u ∈ Sd - the set of all

symmetric matrices of size d. Also, F : Sd → R is a function. We assume that F

is (degenerate) elliptic, that is, for S,R ∈ Sd, then

S ≥ R =⇒ F (S) ≤ F (R).

By saying S ≥ R, we mean P T (S −R)P ≥ 0 for all column vector P ∈ Rd.

26



Example 4. Set F (S) = −traceS, then (4.28) becomes{
−∆u = f in U

u = 0 on ∂U,

Example 5. Set F (S) = max{−traceS;−1
2

traceS}, then (4.28) becomes{
max{−∆u;−1

2
∆u} = f in U

u = 0 on ∂U,

Example 6. Assume u is convex in U and F (S) = − detS, (4.28) becomes the

Monge-Ampere equation:{
− det(D2u) = f in U

u = 0 on ∂U,

Theorem 4.7. Assume that uk solves{
F (D2uk) = fk in U

uk = 0 on ∂U.

and that 
‖uk‖L∞(Ū) + ‖Duk‖L∞(Ū) + ‖D2uk‖L∞(Ū) ≤ C.

uk → u, Duk ⇀ Du in C(Ū)

D2uk
∗
⇀ D2u in L∞(U)

fk → f in C(Ū).

Then, u solves (4.28).

Note: We do not have the variational structure as F is not linear. We also do not

have the L2 structure.

Pairings in Banach spaces. Let X be a real Banach space, how do we define

[f, g] for f, g ∈ X ? When X is a Hilbert space, [f, g] = 〈f, g〉. For a real Banach

space, we can choose

[f, g] = lim
λ→0+

‖f + λg‖2 − ‖f‖2

2λ
.

To see the existence of the limit, write

‖f + λg‖2 − ‖f‖2

λ
= (‖f + λg‖+ ‖f‖)(‖λ−1f + g‖ − ‖λ−1f‖).

Take a sequence λn → 0+. Clearly,

‖f + λng‖+ ‖f‖ → 2‖f‖,
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and

‖λ−1
n f + g‖ − ‖λ−1

n f‖ ≤ ‖g‖.

So it suffices to show that the sequence ‖λ−1
n f + g‖ − ‖λ−1

n f‖ is monotone. This

is true since for every λm > λn,

‖λ−1
n f + g‖ − ‖λ−1

n f‖ − ‖λ−1
m f + g‖ − ‖λ−1

m f‖ ≤ 0

⇐⇒ ‖λ−1
n f + g‖ − ‖λ−1

m f + g‖ ≤ ‖(λ−1
n − λ−1

n )f‖

which is the triangle inequality.

Proposition 4.8. For X = C(U), then

[f, g] = lim
λ→0+

max
x∈U
|f(x) + λg(x)|2 −max

x∈U
|f(x)|2

2λ

= max

{
f(x0)g(x0) for x0 ∈ U s.t |f(x0)| = max

x∈U
|f(x)|

}
.

Proof. Put

M = max

{
f(x0)g(x0) for x0 ∈ U s.t |f(x0)| = max

x∈U
|f(x)|

}
.

If |f(x0)| = maxx∈U |f(x)|, then

[f, g] ≥ lim
λ→0+

(f(x0) + λg(x0))2 − f 2(x0)

2λ
= f(x0)g(x0).

So [f, g] ≥M . To prove the inverse inequality, let λn → 0+ and xn ∈ U such that

|f(xn) + λng(xn)| = max
x∈U
|f(x) + λng(x)|. (4.29)

Since U is compact, we can assume further that xn → y for some y ∈ U . Then

[f, g] ≤ lim
n→∞

(f(xn) + λg(xn))2 − f 2(xn)

2λ
= f(y)g(y). (4.30)

Moreover, letting n→∞ in (4.29), we have |f(y)| = maxx∈U |f(x)|. So, in (4.30),

we conclude that [f, g] ≤M .

Proposition 4.9. Define A[u] = F (D2u) for u ∈ C2(Ū) such that u = 0 on ∂U .

Then

[u− v, A[u]− A[v]] ≥ 0.

Proof. WLOG, assume

(u− v)(x0) = max |u− v| ≥ 0.

Then, D2u(x0) ≤ D2v(x0) which implies F (D2u(x0)) ≥ F (D2v(x0)). Hence,

[u− v,A[u]− A[v]] ≥ (u− v)(x0)(F (D2u(x0))− F (D2v(x0)) ≥ 0.
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Corollary 4.10 (Viscosity solution). Suppose that u ∈ C2(Ū) and solves{
F (D2u) = f in U

u = 0 on ∂U.

Let ϕ ∈ C2(U).

i. If u− ϕ has a strict maximum at x0 ∈ U , then

F (D2ϕ(x0)) ≤ f(x0).

ii. If u− ϕ has a strict minimum at x0 ∈ U , then

F (D2ϕ(x0)) ≥ f(x0).

Lemma 4.11. Let uk and u be as in Theorem 4.7, then

[u− ϕ, f − F (D2ϕ)] ≥ 0,

for all ϕ ∈ C2
0(U).

Proof. By Proposition 4.9,

[uk − ϕ, fk − F (D2ϕ)] ≥ 0.

Let xk ∈ U such that

|uk(xk)− ϕ(xk)| = max
x∈U
|uk(x)− ϕ(x)|.

Taking subsequence if necessary, assume xk → y for some y ∈ U . Then

|u(y)− ϕ(y)| = max
x∈U
|u(x)− ϕ(x)|.

Hence, by Proposition 4.8,

[u− ϕ, f − F (D2ϕ)] = (u(y)− ϕ(y))
(
f(y)− F (D2ϕ(y))

)
= lim

k→∞
(uk(xk)− ϕ(xk))

(
fk(xk)− F (D2ϕ(xk))

)
= lim

k→∞
[uk − ϕ, fk − F (D2ϕ)] ≥ 0.

Proof of Theorem 4.7. Since ‖D2u‖L∞ ≤ C, by Rademacher theorem, u is twice

differential almost everywhere. Let x0 be the point at which u is twice differential.

By Taylor expansion, we have

u(x) = u(x0) +Du(x0)(̇x− x0) +
1

2

〈
D2u(x0)(x− x0), (x− x0)

〉
+ o(|x− x0|2)

= Q(x) + o(|x− x0|2).
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For ε > 0, let V be a small open set containing x0 and ϕ ∈ C2
0(U) such that{

ϕ(x) = Q(x) + ε|x− x0|2 − 1 in V,

|ϕ(x)− u(x)| < 1
2

outside V.

Since |u − ϕ| attains its maximum at the unique point x0, by Lemma 4.11, we

have

0 ≤ [u− ϕ, f − F (D2ϕ)] = f(x0)− F (D2ϕ(x0))

which is

F (D2u(x0) + 2εI(x0)) ≤ f(x0).

Send ε → 0 to get F (D2u(x0)) ≤ f(x0). Similarly, we also get F (D2u(x0)) ≥
f(x0). Since x0 is an arbitrary point at which D2u exists, we conclude the proof.

A Brouwer’s fixed point theorem

We discuss an important theorem which plays a crucial role in the proof of Lemma

4.1. First, we need some technical results.

Lemma A.1. Let P = (pij)1≤i,j≤n be a square matrix of size n× n. Then

∂

∂pij
detP = (cof P )ij := (−1)i+j det P̃ij,

where P̃ij is the square matrix of size (n − 1) × (n − 1) obtained by deleting the

i-th row and j-th column from P .

Proof. Using the expansion of determinant according to the i-th row to have

detP =
n∑
j=1

(cof P )ijpij.

Since (cof P )ij is independent of pik for any 1 ≤ j, k ≤ n, we get

∂

∂pij
detP = (cof P )ij.

Lemma A.2. Suppose f : Rn+1 → Rn, f = (f 1, . . . , fn), is a smooth function.

Define square matrices

Ai =



f 1
x1
· · · f 1

xi−1
f 1
xi+1
· · · f 1

xn+1

f 2
x1
· · · f 2

xi−1
f 2
xi+1
· · · f 2

xn+1

· · · · · · · · · ·

fnx1 · · · f
n
xi−1

fnxi+1
· · · fnxn+1


for i = 1, 2, . . . , n+ 1.
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Then
n+1∑
i=1

(−1)i
∂

∂xi
detAi = 0.

Proof. Let Bij, i 6= j, be the square matrix obtained from Ai by replacing column

f 1
xj

f 2
xj

...

fnxj


with column



f 1
xjxi

f 2
xjxi

...

fnxjxi


.

It is easy to observe that detBij = (−1)i−j+1 detBji for i 6= j. We denote

detBii := 0. Then, by Lemma A.1, we have

∂

∂xi
detAi =

∑
j≤n+1
j 6=i

∑
k≤n

fkxjxi(cof Ai)kj

=
∑
j≤n+1
j 6=i

∑
k≤n

fkxjxi(cof Bij)kj

=
∑
j≤n+1
j 6=i

detBij

=
∑
j≤n+1

detBij.

It follows that

n+1∑
i=1

(−1)i
∂

∂xi
detAi =

n+1∑
i=1

n+1∑
j=1

(−1)i detBij

=
n+1∑
i=1

n+1∑
j=1

(−1)j+1 detBji

= −
n+1∑
i=j

(−1)j
∂

∂xj
detAj.

Therefore,
n+1∑
i=1

(−1)i
∂

∂xi
detAi = 0.

Theorem A.3 (Brouwer’s fixed point). Let B = {x ∈ Rn, |x| ≤ 1} and f : B →
B be a continuous function. Then there exists x0 ∈ B such that f(x0) = x0.
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Proof. We assume temporarily that f is smooth and f(x) 6= x for all x ∈ B. Set

g(x) = f(x) + k(x)
x− f(x)

|x− f(x)|

where k(x) is the larger root of the equation∣∣∣∣f(x) + k(x)
x− f(x)

|x− f(x)|

∣∣∣∣2 = 1,

that is

k(x) = −(x− f(x))f(x)

|x− f(x)|
+

√
|(x− f(x))f(x)|2
|x− f(x)|2

+ 1− |f(x)|2.

Here are some properties of g that can be easily checked:

• g is smooth

• |g(x)| = 1 for all x ∈ B

• g(x) = x for all |x| = 1.

Now, put

h(t, x) = ht(x) = tg(x) + (1− t)x for 0 ≤ t ≤ 1 and x ∈ B.

We claim that
d

dt

∫
B

detDht(x)dx = 0. (A.1)

To see this, consider h(t, x) as a Rn-valued function of (n + 1) variables where t

is the (n + 1)-th variable. Let Ai be as in Lemma A.2 with h in lieu of f . Then

it suffices to prove
n∑
i=1

(−1)i
∫
B

∂

∂xi
detAi = 0. (A.2)

Observe that the last column of Ai is

g1(x)− x1

g2(x)− x2

...

gn(x)− xn


which is zero on ∂B. Therefore, detAi = 0 on ∂B and, consequently, by Green’s

theorem, ∫
B

∂

∂xi
detAi = 0 for all i = 1, . . . , n.
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Thus, (A.2) holds and so does (A.1). It follows that

t 7→
∫
B

detDht(x)dx

is a constant function. Choosing t = 0 and t = 1 to have∫
B

detDg(x)dx =

∫
B

detDxdx =

∫
B

det Indx = |B|. (A.3)

On the other hand, that |g(x)| = 1 for all x ∈ B implies

(Dg(x))g(x) = 0.

So kerDg(x) 6= 0 for all x ∈ B. Hence∫
B

detDg(x)dx =

∫
B

0dx = 0,

which contradicts (A.3). Therefore, f must have a fixed point. The theorem is

done when assuming f is smooth.

Now, for a general continuous function f , choose a sequence of smooth functions

(ϕn) converging to f in C(B,B). Let xn be the fixed point of ϕn and assume

further, since B is compact, that xn → x for some x ∈ B. Then, for every ε > 0

and n large enough, we have

|f(x)− x| ≤ |f(x)− f(xn)|+ |f(xn)− ϕn(xn)|+ |ϕn(xn)− xn|+ |xn − x| ≤ 3ε.

So, x is a fixed point of f . The theorem is done.
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