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Preface

I introduce in this book an extensive survey of many important topics in the theory of
Hamilton–Jacobi equations with particular emphasis on modern approaches and viewpoints.

Firstly, I cover the basic well-posedness theory of viscosity solutions for first-order Hamilton–
Jacobi equations. This is, by now, quite standard and there have been some great books on
this matter since 1980s in the literature. Nevertheless, it is important to have some key
topics covered here in a self-contained way for the use throughout the book. It is not of our
intention here to cover extensively about well-posedness of viscosity solutions for various
different kinds of partial differential equations (PDEs).

Then, I aim at going beyond the well-posedness theory and studying further properties of
viscosity solutions to Hamilton–Jacobi equations. Along this direction, I first discuss in deep
the homogenization theory for Hamilton–Jacobi equations. Although this has always been a
very active research topic since the late 1980s until this moment (2020), there has not been
any standard textbook covering this. I am hopeful that this book will serve as a gentle intro-
ductory reference on this subject. Various connections between homogenization and other
research subjects are discussed as well. I focus on the periodic and almost periodic settings
in the book, and choose not to cover a more general and more complicated framework,
which is the stationary ergodic setting.

Afterwards, dynamical properties, Aubry–Mather theory, and weak Kolmogorov–Arnold–
Moser (KAM) theory are studied. These appear naturally in the study of first-order Hamilton–
Jacobi equations when the Hamiltonian is convex in the momentum variable. I will intro-
duce both dynamical and PDE approaches to study these theories. Then, I will discuss con-
nections between homogenization and dynamical system, and optimal rate of convergence
in homogenization theory as well.

Let me emphasize that this is a textbook, not a research monograph. My hope is that it can
be used by advanced undergraduate students, first and second year graduate students, and
new researchers entering the fields of Hamilton–Jacobi equations and viscosity solutions as
a learning tool. In this case, the readers can follow the flow of the book from the beginning
(Chapters 1 and 2), then jump to the topics that the readers aim at. Besides, I intend to
keep the contents of various topics covered here as independent as possible so that other
interested readers are able to jump directly to a subject of interests in the book.

My intention when writing this book is to present the essential ideas in the clearest possible
ways, and thus, in various places, the assumptions/conditions imposed are not sharp. In
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many cases, the readers can improve the assumptions/conditions imposed right away. I will
refer to a list of research articles and monographs at the end of each chapter that provide
more general pictures of the situations.

Here is a quick outline of the content of the book. Chapter 1 contains the basic theory of
viscosity solutions for Hamilton–Jacobi equations. This includes the well-posedness theory
of viscosity solutions, the classical Bernstein method to obtain gradient bounds, Perron’s
method to prove existence of viscosity solutions, finite speed of propagation for Cauchy
problems, and rate of convergence of the vanishing viscosity process via both the doubling
variables method, and the nonlinear adjoint method. Chapter 2 is about Hamilton–Jacobi
equations with convex Hamiltonians. We discuss the optimal control theory, Dynamical
Programming Principle, Legendre’s transform, the Lagrangian viewpoint, and the Hopf-Lax
formula. We then study some further hidden convex structures, and also the maximal sub-
solutions with their representation formulas there.

Chapter 3 is concerned with Hamilton–Jacobi equations with possibly nonconvex Hamilto-
nians. We discuss two-player zero-sum differential games, the upper and lower values of the
games, and the corresponding equations. We then give representation formulas including
the Hopf formula of the solutions to these equations. Finally, we give a brief introduction
to finite difference approximations to first-order Hamilton–Jacobi equations.

In Chapter 4, I cover the periodic homogenization theory for Hamilton–Jacobi equations.
Homogenization results, cell problems, properties of the effective Hamiltonian in the convex
and nonconvex settings, and some rates of convergence are studied. In a similar way, the
almost periodic homogenization theory is discussed in Chapter 5 although much less is well
understood here.

Chapter 6 is devoted to the analysis of convex Hamilton–Jacobi equations in a flat torus.
We introduce new representation formulas for solutions to the discount problems and give
some applications. The discount problems already appear in Chapter 2. Then, backward
characteristics corresponding to the cell problems, and optimal rate of convergence in peri-
odic homogenization are studied. This is related to the last part of Chapter 4. Besides, the
backward characteristics provide a natural link between viscosity solutions and dynamical
aspects of the corresponding Hamiltonian ODEs.

A gentle introduction to weak KAM theory is given in Chapter 7. Both Lagrangian methods
and nonlinear PDE methods are presented. In particular, Mather measures, Mather set, and
projected Aubry set are defined and analyzed. In Chapter 8, we study further properties of
the effective Hamiltonians in the convex setting, which include strict convexity in certain
directions, and the method of asymptotic expansion at infinity. Afterwards, the classical
Hedlund example and its generalization are discussed.

The homework problems given in this book are of various level of difficulties. Most of
the times, the exercises in corresponding sections are helpful for further understandings
of relevant methods, ideas and techniques. Few of the problems are open ended and are
related to some active research directions.

I would like to thank my Ph.D. student, Son Tu, who provided me the first draft of some of
these notes based on a graduate topic course (Math 821) that I taught in Fall 2016 at UW
Madison. Solutions to some problems were provided by him as well. I have been sitting on
the notes for a long time before putting some real effort to have this book written.
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Besides, I have also used some parts of my lecture notes taught at a topic course at University
of Tokyo, Tokyo, Japan (September 2014), two topic courses at University of Science, Ho
Chi Minh city, Vietnam (July 2015, July 2017) to form parts of this book. I would like to
thank Professors Yoshikazu Giga, Hiroyoshi Mitake (University of Tokyo), Huynh Quang Vu
(University of Science, Ho Chi Minh city) for their hospitalities.

I would like to thank my wife, Van Hai Van, and my daughter, An My Ngoc Tran, for their
constant wonderful supports during the writing of this book. Besides, I am extremely grate-
ful for the friendships and the supports from Wenjia Jing, Hiroyoshi Mitake, Yifeng Yu.

In the appendix, I include a characterization of the Legendre transform following Nam Le’s
very useful suggestion. I thank Nam much for this.

I appreciate Nattakorn Kittisut, Yeon-Eung Kim, Yuchen Mao, Loc Hoang Nguyen, Son Tu,
Son Van, Lizhe Wan, Yifeng Yu for pointing out various typos and giving some great sugges-
tions to improve the presentation of this book.

I am supported in part by NSF grant DMS-1664424 and NSF CAREER grant DMS-1843320
during the writing of this book.

Hung Vinh Tran
Madison, WI

Fall 2020.
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CHAPTER 1
Introduction to viscosity solutions

for Hamilton–Jacobi equations

1 Introduction

Basic notions. Let u : Rn → R be a smooth function. We have some basic notions as
following.

• Du(x) =∇u(x) =
�

∂ u
∂ x1
(x), . . . , ∂ u

∂ xn
(x)
�

.

• D2u(x) = Hessian of u at x =







∂ 2u
∂ x2

1
(x) ∂ 2u

∂ x1∂ x2
(x) . . . ∂ 2u

∂ x1∂ xn
(x)

...
...

. . .
...

∂ 2u
∂ xn∂ x1

(x) ∂ 2u
∂ xn∂ x2

(x) . . . ∂ 2u
∂ x2

n
(x)






.

• The Laplacian ∆u(x) = tr(D2u(x)) =
∑n

i=1
∂ 2u
∂ x2

i
(x) is the trace of D2u(x).

For u : Rn × [0,∞)→ R smooth, we write

• Du(x , t) = Dxu(x , t) and ut(x , t) = ∂ u
∂ t (x , t).

• D2u(x , t) = D2
x u(x , t), and ∆u(x , t) =∆xu(x , t).

The following equations are of interests.

Cauchy problem. We consider the initial value problem

¨

ut(x , t) + F(x , Du(x , t), D2u(x , t)) = 0 in Rn × (0,∞),
u(x , 0) = u0(x) on Rn,

(C)

where u : Rn × [0,∞)→ R is the unknown. Here, the initial data u0 is given.

9



Static (Stationary) problem. Given λ≥ 0, we consider the equation:

λu+ F(x , Du, D2u) = 0 in Rn. (Sλ)

Here u : Rn→ R is the unknown. In both problems, F : Rn×Rn×Sn→ R is a given function,
where Sn is the set of all symmetric matrices of size n. These problems come from a lot of
sources such as

• Hamilton–Jacobi equations (classical mechanics, n-body problems);

• Optimal control theory;

• Differential games (two players zero-sum differential games);

• Front propagation (the level set method).

Next, we present a few examples that lead to either Cauchy problems or static problems.

Example 1.1 (First-order front propagation). Consider a surface Γt ⊂ Rn moving under a law
of motion at time t > 0 with the initial profile Γ0. The goal is to study how the family {Γt}t≥0

evolves.

• The simplest example is Γ0 is the unit sphere in Rn, and every point is moving inward in
the normal direction to the surface with constant (vector) speed 1, then Γt is remain a
sphere for t ∈ [0, 1), and eventually shrinks into a point at t = 1, which is located at the
center.

• In general, if each point on the surface Γt is moving with variable velocity, then the situa-
tion becomes more complicated. Osher, Sethian [122] introduced the level set method
(numerically) to study this problem. The rigorous treatment was developed later by
Evans, Spruck [55] and Chen, Giga, Goto [32], independently.

Let us assume that Γt is the 0-level set of a function u(x , t) for each t ≥ 0, that is,

Γt = {x ∈ Rn : u(x , t) = 0} .

Assume further that Γt is a closed hypersurface in Rn. We set u(x , t)> 0 in the region enclosed
by Γt and u(x , t)< 0 elsewhere. Suppose u and Γt are smooth, and the given velocity at x ∈ Γt

is
V (x) = a(x)n(x),

where n(x) is the inward normal vector to Γt at x. Here, a : Rn → R is a given function. See
Figure 1.1. Let us then try to find a PDE for u(x , t) based on this given law of motion.
For a point x(0) ∈ Γ0, we keep track with its position x(t) ∈ Γt for t ≥ 0 under this front
propagation problem. First of all, we have

x ′(t) = a(x(t))n(x(t)) = a(x(t))
Du(x(t), t)
|Du(x(t), t)|

.

Moreover, in light of the fact that u(x(t), t) = 0,

d
d t

�

u(x(t), t)

�

= ut (x(t), t) + Du(x(t), t) · x ′(t) = 0,
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Figure 1.1: Front propagation of {Γt}t≥0.

which implies
ut (x(t), t) + a(x(t)) |Du(x(t), t)|= 0.

Thus, we obtain a PDE

ut + a(x)|Du|= 0 in Rn × (0,∞),

which is a first-order Hamilton–Jacobi equation.

Example 1.2 (G-equation). We assume the same settings as in Example 1.1. The law of motion
is different here, and is given as

V (x) = n(x) +W(x),

for each x ∈ Γt . Here, n(x) is the inward normal vector to Γt at x, and W : Rn→ Rn is a given
vector field.
As above, for a point x(0) ∈ Γ0, we keep track with its position x(t) ∈ Γt for t ≥ 0 under this
front propagation problem. Firstly,

x ′(t) = n(x(t)) +W(x(t)) =
Du(x(t), t)
|Du(x(t), t)|

+W(x(t)).

Besides, u(x(t), t) = 0 gives

d
d t

�

u(x(t), t)

�

= ut (x(t), t) + Du(x(t), t) · x ′(t) = 0,

which implies
ut (x(t), t) + |Du(x(t), t)|+W(x(t)) · Du(x(t), t) = 0.

Thus, we obtain a PDE

ut + |Du|+W(x) · Du= 0 in Rn × (0,∞),

which is another first-order Hamilton–Jacobi equation. This equation is called a G-equation,
which is very popular in the combustion science literature.

Example 1.3 (Level set mean curvature flow). Let {Γt}t≥0 be smooth surfaces in Rn. Let κ(x)
be the summation of all principle curvatures at x ∈ Γt of the surface Γt . By convention, we say
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that κ(x) is the mean curvature at x ∈ Γt of the surface Γt . For example, if Γt is a sphere of
radius R(t)> 0, then for x ∈ Γt , κ(x) =

n−1
R(t) .

Again, we assume that Γt is the 0-level set of some function u(x , t), that is,

Γt = {x ∈ Rn : u(x , t) = 0} .

Assume that Γt is a closed hypersurface in Rn. Set u(x , t) > 0 in the region enclosed by Γt and
u(x , t)< 0 elsewhere. Assume u and Γt are smooth, and the given velocity at x ∈ Γt is

V (x) = κ(x)n(x),

where n(x) is the inward normal vector to Γt at x. As above, for a point x(0) ∈ Γ0, we keep
track with its position x(t) ∈ Γt for t ≥ 0 under this mean curvature flow motion. It is clear
that

ut(x(t), t) + Du(x(t), t) · x ′(t) = 0,

where

x ′(t) = κ(x(t))n(x(t)) = −div
�

Du(x(t), t)
|Du(x(t), t)|

�

Du(x(t), t)
|Du(x(t), t)|

.

Thus the level set mean curvature flow equation of interest is

ut = |Du|div
�

Du
|Du|

�

in Rn × (0,∞).

Of course, the Cauchy problem (C) is a general form of all equations occurring in above
examples. From the PDE viewpoints, we focus on the following main issues

1. Well-posedness theory: Existence, uniqueness and stability of solutions;

2. The study of fine properties of solutions such as regularity, large time behavior, ho-
mogenization, dynamical properties of solutions.

Example 1.4 (one dimensional eikonal equation).
¨

|u′(x)| = 1 in (−1, 1),
u(−1) = u(1) = 0.

It is not hard to see that there are infinitely many almost everywhere solutions to this equa-
tion. To design such a solution, one just needs to draw its graph which is zero at the two
endpoints ±1, and always has slope ±1 in between. Here are some simple but important
observations.

1. This eikonal equation has no classical solution (C1 solution).

2. If u is an a.e. solution, then so is −u. In a sense, if we want to select only one solution
(well-posedness goal), then we have to breakdown the symmetry. Besides, we might
need to be careful with stability then.

3. Clearly, we need to impose a bit more in order to get less solutions. This is typically
the case in the theories of viscosity solution, renormalized solutions, etc.
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2 Vanishing viscosity method for first-order
Hamilton–Jacobi equations

Let us look at the following simple Cauchy problem for Hamilton–Jacobi equation
¨

ut +H(Du) = 0 in Rn × (0,∞),
u(x , 0) = u0(x) on Rn,

(1.1)

where H : Rn → R is the given Hamiltonian, and u0 is the given initial data. Assume that
H and u0 are smooth enough. One way to study the solution of (1.1) is using the idea of
vanishing viscosity procedure. For each ε > 0, we consider

¨

uεt +H(Duε) = ε∆uε in Rn × (0,∞),
uε(x , 0) = u0(x) on Rn.

(1.2)

Under some appropriate assumptions on H and u0, (1.2) is a parabolic equation, which has
a unique smooth solution uε. The question is what happens as ε→ 0. Do we have uε→ u for
some function u and in some sense? If it is the case, do we have that u solves (1.1) in some
sense? This is the idea of a selection principle, which often appears when one introduces
some approximation procedures to a nonlinear PDE.

Evans [46] first showed that this process leads to uε→ u locally uniformly on Rn × [0,∞),
and u solves (1.1) in the viscosity sense, which will be defined later. Later on, Crandall and
Lions [39] proved the uniqueness of viscosity solutions to (1.1), thus, established the firm
foundation for the theory of viscosity solutions to first-order equations. Roughly speaking,
the procedure is carried out as following.

• Equation (1.2) is a parabolic equation, and thus, it satisfies the maximum principle.

• Hamiltonian H(p) is nonlinear in p in general (e.g., H(p) = |p|2), so there is no way
to use integration by parts technique to define weak solutions.

• There is a priori estimate for {uε}ε∈(0,1): There exists a constant C > 0 independent of
ε ∈ (0,1) such that

‖uεt‖L∞(Rn×[0,∞)) + ‖Duε‖L∞(Rn×[0,∞)) ≤ C .

We will supply a proof of this later. Thus, {uε(x , t)}ε∈(0,1) is equi-continuous, and by
the Arzelà-Ascoli theorem, there exists {ε j} ↘ 0 such that uε j → u locally uniformly
on Rn× [0,∞) as j→∞. We hence hope that u solves (1.1) naturally in some sense
that fits well within the context of the maximum principle.

Let us now analyze further along this line for a possible definition of weak solutions to (1.1).
Let ϕ ∈ C∞(Rn × [0,∞)) be an arbitrary smooth test function. First, assume that uε −ϕ
has a strict maximum at (x0, t0) ∈ Rn × (0,∞), then the maximum principle says that







(uε −ϕ)t(x0, t0) = 0

D(uε −ϕ)(x0, t0) = 0

∆(uε −ϕ)(x0, t0) ≤ 0

=⇒ ϕt(x0, t0) +H(Dϕ(x0, t0))≤ ε∆ϕ(x0, t0).
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In a sense, this is a L∞-integration by parts trick, which kicks the derivatives of the solutions
to our favorite (nice) test functions ϕ. Let us modify this argument a little bit to study
u. Assume that u − ϕ has a strict max at (x0, t0). Then, if uε → u locally uniformly on
Rn × [0,∞), for ε small, uε − ϕ has a max nearby at (xε, tε), and (xε, tε) → (x0, t0) by
passing to a subsequence if necessary. By the above analysis,

ϕt(xε, tε) +H(Dϕ(xε, tε))≤ ε∆ϕ(xε, tε).

Let ε→ 0+, we arrive at
ϕt(x0, t0) +H(Dϕ(x0, t0))≤ 0.

Similarly, if u−ψ has a strict min at (x0, t0) ∈ Rn× (0,∞) for a given smooth test function
ψ, then we get

ψt(x0, t0) +H(Dψ(x0, t0))≥ 0.

The above two criteria seem natural from the viewpoint of the maximum principle, and
indeed, they constitute the definition of viscosity solutions in the following.

2.1 Definition of viscosity solutions via touching functions

Let us denote

• BUC (Rn) the space of bounded, uniformly continuous functions on Rn;

• Lip (Rn) the space of Lipschitz functions on Rn.

For a given initial data u0 ∈ BUC (Rn)∩Lip(Rn), we give the following definition, which was
formulated by Crandall, Evans, Lions [37].

Definition 1.1 (viscosity solutions of (1.1)). For each time T > 0, a function u ∈ BUC (Rn×
[0, T )) is called

(a) a viscosity subsolution of (1.1) if for any ϕ ∈ C1(Rn × (0, T )) such that u(x0, t0) =
ϕ(x0, t0), and u−ϕ has a strict max at (x0, t0) ∈ Rn × (0, T ), then

ϕt(x0, t0) +H(Du(x0, t0))≤ 0,

and u(·, 0)≤ u0;

(b) a viscosity supersolution of (1.1) if for any ψ ∈ C1(Rn × (0, T )) such that u(x0, t0) =
ψ(x0, t0), and u−ψ has a strict min at (x0, t0) ∈ Rn × (0, T ), then

ψt(x0, t0) +H(Du(x0, t0))≥ 0,

and u(·, 0)≥ u0;

(c) a viscosity solution of (1.1) if it is both a viscosity subsolution and a viscosity supersolu-
tion.

Remark 1.2. We actually do not need the condition u(x0, t0) = ϕ(x0, t0) in the above
definition since we can always add a constant to ϕ to adjust it appropriately. Requiring
u(x0, t0) = ϕ(x0, t0) means that ϕ touches u from above geometrically, which is quite help-
ful to think about the definition in geometric terms. See Figure 1.2.
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Figure 1.2: An illustration of ϕ touches u from above at (x0, t0).

2.2 Problems

Exercise 1. Consider the eikonal problem mentioned earlier

¨

|u′(x)| = 1 in (−1, 1),
u(1) = u(−1) = 0.

(1.1)

(a) Show that there is no C1 solution.

(b) Show that all the continuous a.e. solutions with finitely many gradient jumps are mutu-
ally viscosity subsolutions.

Exercise 2. For each ε > 0, consider the equation

¨

|(uε)′| = 1+ ε(uε)′′ in (−1, 1),
uε(1) = uε(−1) = 0.

(1.2)

(a) Solve the equation to find uε for each ε > 0.

(b) Find the limit of uε as ε→ 0.

Exercise 3. Prove that in the above definition of viscosity solutions of (1.1), we can equiva-
lently require the test functions ϕ,ψ ∈ C2(Rn × (0,∞)). Same holds when we require that
ϕ,ψ ∈ C∞(Rn × (0,∞)).

Exercise 4. Prove that in the above definition of viscosity subsolutions of (1.1), we can equiv-
alently require that u−ϕ has a local maximum at (x0, t0) (instead of strict maximum).

Exercises 3–4 show that definition of viscosity solutions is rather flexible in term of smooth-
ness of test functions, and requirements of local/strict/global maximum, minimum points.
One can use any of these equivalent forms of definitions from now on.
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2.3 Definition of viscosity solutions via generalized differentials

Definition 1.3. Let u be a real valued function defined on the open set Ω ⊂ Rn. For any x ∈ Ω,
the sets

D−u(x) =
§

p ∈ Rn : lim inf
y→x

u(y)− u(x)− p · (y − x)
|y − x |

≥ 0
ª

,

D+u(x) =

�

p ∈ Rn : lim sup
y→x

u(y)− u(x)− p · (y − x)
|y − x |

≤ 0

�

are called the (Frechét) subdifferential and superdifferential of u at x, respectively.

Theorem 1.4. Let Ω ⊂ Rn be an open set and f : Ω → R be a continuous function. Then,
for x ∈ Ω, p ∈ D+ f (x) if and only if there is a function ϕ ∈ C1(Ω;R) such that Dϕ(x) = p
and f −ϕ has a local max at x. The same claim holds if we replace super-differential/max by
sup-differential/min.

Proof. We only need to prove “=⇒". Let p ∈ D+ f (x). If we have that

lim sup
y→x

u(y)− u(x)− p · (y − x)
|y − x |

< 0,

then we can find r > 0 such that u(y) ≤ u(x) + p · (y − x) for all y ∈ Br(x). Simply set
ϕ(y) = u(x) + p · (y − x) + C |y − x |2 for C > 0 sufficiently large to conclude.
We now consider the case that

lim sup
y→x

u(y)− u(x)− p · (y − x)
|y − x |

= 0.

There exists δ > 0 such that Bδ(x) ⊂ Ω. Define σ : (0,δ]→ R by

σ(r) = sup
y∈Br (x)

f (y)− f (x)− p · (y − x)
|y − x |

=⇒ lim
r→0
σ(r) = inf

r>0
σ(r) = 0.

Setσ(0) = 0. It is clear that σ is non-decreasing. It is not hard to check thatσ is continuous
as well. By the definition of σ,

f (y)≤ f (x) + p · (y − x) +σ(|y − x |)|y − x | for all y ∈ Bδ(x).

Now define ρ :
�

0, δ2
�

→ R by

ρ(r) =

∫ 2r

r

σ(s) ds.

It is clear that, for r ∈ [0, δ2 ],

rσ(r)≤ ρ(r)≤ rσ(2r) =⇒ σ(r)≤
ρ(r)

r
≤ σ(2r). (1.3)

Besides, ρ satisfies ρ′(r) = 2σ(2r)−σ(r) for r ∈ [0, δ2 ], and ρ(0) = ρ′(0) = 0. Now let us
define for y ∈ B δ

2
(x)

ϕ(y) = f (x) + p · (y − x) +ρ(|y − x |).
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We have ϕ ∈ C1
�

B δ
2
(x)
�

and ϕ(x) = f (x), also from (1.3) we have Dϕ(x) = p since

lim
y→x

ϕ(y)−ϕ(x)− p · (y − x)
|y − x |

= lim
y→x

ρ(|y − x |)
|y − x |

= 0.

Also, u−ϕ has a local max at x since for |y − x |< δ
2 ,

f (y)− f (x)≤ p · (y − x) +σ(|y − x |)|y − x | ≤ p · (y − x) +ρ(|y − x |) = ϕ(y)−ϕ(x).

Finally, we can extend ϕ smoothly to Ω easily to complete the proof.

Using the notions of sub-differentials and super-differentials, one is able to give an equiva-
lent definition of viscosity solution using somehow geometric interpretation of generalized
differentials. This is clear from the result of Theorem 1.4. Nevertheless, let us present this
equivalent definition here for completeness. In fact, it is important to keep in mind both of
these definitions.

We consider the following first-order static PDE

F (x , u(x), Du(x)) = 0 in Ω. (1.4)

Here, Ω ⊂ Rn is a given open set, and u : Ω→ R is an unknown. The function F : Ω×R×
Rn→ R is a given continuous function.

Definition 1.5 (An equivalent definition of viscosity solutions to (1.4)). A function u ∈ C(Ω)
is a viscosity subsolution of (1.4) if

F(x , u(x), p)≤ 0 for every x ∈ Ω, p ∈ D+u(x). (1.5)

A function u ∈ C(Ω) is a viscosity supersolution of (1.4) if

F(x , u(x), p)≥ 0 for every x ∈ Ω, p ∈ D−u(x). (1.6)

We say that u is a viscosity solution of (1.4) if it is both a viscosity subsolution and a viscosity
supersolution of (1.4).

We have some basic properties of generalized differentials as following.

Proposition 1.6. Let f : Ω→ R and x ∈ Ω, then the following properties hold

(a) D+ f (x) = −D−(− f )(x).

(b) D+ f (x) and D− f (x) are convex (possibly empty).

(c) D+ f (x) and D− f (x) are both nonempty if and only if f is differentiable at x. In this
case, we have that D+ f (x) = D− f (x) = {D f (x)}.

(d) If f ∈ C(Ω), the sets of points where an one-sided differential exists

Ω+ =
�

x ∈ Ω : D+ f (x) 6= ;
	

, Ω− =
�

x ∈ Ω : D− f (x) 6= ;
	

are both non-empty. In fact, they are dense in Ω.
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Proof. It is easy to see that (a) and (b) are obvious from the definitions. Let us proceed to
prove the remaining two claims.

(c) If f is differentiable at x , then clearly D f (x) ∈ D+ f (x) ∩ D− f (x). Furthermore, if
p ∈ D+ f (x), then there exists ϕ ∈ C1(Ω) such that

ϕ(x) = f (x) and Dϕ(x) = p,

and f −ϕ has a local maximum at x , hence D( f −ϕ)(x) = 0, therefore p = Dϕ(x) =
D f (x). Doing similarly for D− f (x), we obtain D+ f (x) = D− f (x) = {D f (x)}.

For the converse, assume that D+ f (x) and D− f (x) are both nonempty. Pick any p ∈
D+ f (x) and q ∈ D− f (x), then there exist ϕ,ψ ∈ C1(Ω) such that







ϕ(x) =ψ(x) = f (x),
f −ϕ has local maximum at x , and Dϕ(x) = p,

f −ψ has local minimum at x , and Dψ(x) = q.

Therefore, in a neighborhood Bδ(x) for δ > 0 sufficiently small, we have

ψ(y)≤ f (y)≤ ϕ(y) for all y ∈ Bδ(x).

Since ψ,ϕ ∈ C1(Ω), it’s easy to see that f is also differentiable at x , and thus,
D+ f (x) = D− f (x) = {D f (x)}.

(d) Let x0 ∈ Ω, and ε > 0 be sufficiently small. We will show that there exists a function
ϕ ∈ C1(Ω) such that f −ϕ has local maximum in B(x0,ε) at some point y in B(x0,ε).
Consider a smooth function in C1(B(x0,ε)) given by

ϕ(x) =
1

ε2 − |x − x0|2
for all x ∈ B(x0,ε) ⊂ Ω.

It is clear that
ϕ(x)→ +∞ as |x − x0| → ε − .

Since f is continuous, we have f −ϕ has a local maximum in B(x0,ε), denoted by y .
We conclude that p = Dϕ(y) ∈ D+ f (y), and therefore, Ω+ is dense in Ω.

By a similar proof, Ω− is also dense in Ω.

Remark 1.7. It is worth noting that if D+u(x) = ;, then the viscosity subsolution test for u
automatically holds there. Similarly, if D−u(x) = ;, then the viscosity supersolution test for
u holds true at x .
Nevertheless, as Ω± are dense in Ω, we surely need to check for the subsolution and super-
solution tests for at least a.e. x ∈ Ω. Later on, when we put more assumptions, we will
have typically more regularity results on u (e.g., u is Lipschitz in Ω), and we will discuss this
situation more later.
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2.4 Problems

Exercise 5. Let u be a viscosity solution of (1.4). Show that

(a) If u is differentiable at y ∈ Ω, then F(y, u(y), Du(y)) = 0 in the classical sense.

(b) If u ∈ C1(Ω), then u is a classical solution to (1.4).

Exercise 6. Let u(x) = |x | for all x ∈ B1(0). Compute D±u(x) for all x ∈ B1(0). Then, show
that u is not a viscosity solution to |Du|= 1 in B1(0).

Exercise 7. Let Ω ⊂ Rn be a bounded domain, and F : Ω×Rn→ R be a continuous function.
Assume that u ∈ C(Ω) is a viscosity solution to

F(y, Du(y)) = 0 in Ω.

Show that ũ= −u is a viscosity solution to

F̃(y, Dũ(y)) = 0 in Ω,

where F̃(y, p) = −F(y,−p) for (y, p) ∈ Ω×Rn.

Exercise 8. Let U ⊂ Rn be a bounded domain with smooth boundary. Let u(x) = dist (x ,∂ U)
for x ∈ U. Show that u is Lipschitz continuous and u solves the following eikonal equation in
the viscosity sense

¨

|Du|= 1 in U ,

u= 0 on ∂ U .

3 Existence of viscosity solutions via the vanishing
viscosity method

Let us look at the usual Cauchy problem that was discussed earlier
¨

ut +H(Du) = 0 in Rn × (0,∞),
u(x , 0) = u0(x) on Rn.

(1.7)

Before going to the proof of the existence of viscosity solutions to (1.7), we need a following
stability lemma.

Lemma 1.8 (Stability of maximum/minimum points). Let u ∈ C(Rn), and ϕ ∈ C1(Rn) such
that u(x0) = ϕ(x0) for some x0 ∈ Rn, and u−ϕ has a strict max (or strict min) at x0. Assume
{uε}ε>0 ⊂ C(Rn) converges to u locally uniformly on Rn as ε → 0+. Then, for ε > 0 small
enough, uε −ϕ has a local max (or min) at xε nearby x0, and there is a subsequence {ε j} ↘ 0
such that xε j

→ x0 as j→∞.

Proof. Let r > 0 be sufficiently small such that u(x)−ϕ(x)< 0 for any x ∈ B (x0, 2r)\{x0}.
Since ∂ B(x0, r) is compact, we note that

α=max
�

u(x)−ϕ(x) : x ∈ ∂ B (x0, r)
	

< 0.
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Since uε→ u uniformly on B (x0, r), there exists λr > 0 such that, for any ε < λr ,

max
B(x0,r)

|uε(x)− u(x)|< −
α

2
⇐⇒

α

2
< uε(x)− u(x)< −

α

2
for x ∈ B (x0, r) .

From this fact, on ∂ B (x0, r), we imply

max
∂ B(x0,r)

�

uε(x)−ϕ(x)
�

≤ max
B(x0,r)

|uε(x)− u(x)|+ max
∂ B(x0,r)

�

u(x)−ϕ(x)
�

<
α

2
.

But uε(x0)−ϕ(x0) = uε(x0)−u(x0)>
α
2 . Thus, uε(x)−ϕ(x)must obtain its maximum over

B (x0, r) at some point xε ∈ B(x0, r). Finally, let ε1 < λ1, and construct by induction {ε j}
as following. Let r = 1

j for j ≥ 2, and choose ε j < min
¦

λ 1
j
,ε j−1

©

. By the above, we obtain

{ε j} ↘ 0 and uε j − ϕ achieves its local maximum over the closed ball B
�

x0, 1
j

�

at xε j
and

�

�

�xε j
− x0

�

�

�< 1
j . The proof is complete.

Next is our existence result for viscosity solutions to (1.7). For now, we need to assume
before hand that (1.8) has a unique solution uε, and uε enjoys a priori estimates (1.9),
which is independent of ε ∈ (0, 1). These will be discussed and verified later.

Theorem 1.9 (Existence of viscosity solutions via the vanishing viscosity method). For each
ε > 0, consider the equation

¨

uεt +H(Duε) = ε∆uε in Rn × (0,∞),
uε(x , 0) = u0(x) on Rn.

(1.8)

Here, the initial data u0 ∈ BUC (Rn) ∩ Lip(Rn) is given. Assume that (1.8) has a unique
smooth solution uε for any ε > 0. Furthermore, we assume that there exists a constant C > 0
independent of ε ∈ (0, 1) such that, for each ε ∈ (0, 1),

|uεt |+ |Duε| ≤ C on Rn × [0,∞). (1.9)

Then, there exists a subsequence {ε j} ↘ 0 such that uε j → u locally uniformly on Rn× [0,∞)
for some function u ∈ C(Rn × [0,∞)). Moreover, u is a viscosity solution of (1.7).

Proof. Thanks to (1.9), by the Arzelà–Ascoli theorem, there exists a subsequence {ε j} ↘ 0
such that uε j → u locally uniformly on Rn × [0,∞) for some function u ∈ C(Rn × [0,∞)).
We show that u is a viscosity subsolution of (1.7). The viscosity supersolution test is similar,
hence omitted. By Exercise 3, we can instead choose the test function ϕ ∈ C2(Rn × (0, T ))
(or C∞(Rn × (0, T ))) such that u−ϕ has a strict max at (x0, t0) ∈ Rn × (0, T ). By Lemma
1.8, we may assume that uεi −ϕ has a local max at (x i, t i) ∈ Rn× (0, T ) for each i ∈ N, and
(x i, t i)→ (x0, t0) as i→∞. Since uεi −ϕ has a local max at (x i, t i), we have







D
�

uεi −ϕ
�

(x i, t i) = 0,
�

uεi −ϕ
�

t
(x i, t i) = 0,

∆
�

uεi −ϕ
�

(x i, t i) ≤ 0.

Then, substituting these relations into (1.8), we obtain

ϕt(x i, t i) +H
�

Dϕ(x i, t i)
�

= εi∆uεi(x i, t i)≤ εi∆ϕ(x i, t i).

Let i→∞ to yield ϕt(x0, t0) +H(Dϕ(x0, t0))≤ 0, which concludes the proof.
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Remark 1.10.

1. If u−ϕ has a strict max at (x0, t0) ∈ Rn×(0,∞), then it does not mean that u touches
ϕ from below at (x0, t0), but we can always add a constant to ϕ by

ϕ(x , t) = ϕ(x , t)−ϕ(x0, t0) + u(x0, t0)
︸ ︷︷ ︸

a constant

to make that u touches ϕ from below at (x0, t0). Geometrically, it is sometimes easier
and more helpful to think about touching u by smooth test functions from above and
below when performing sub/supersolution tests.

2. Note that by the vanishing viscosity method, we have the a priori estimate

|ut(x , t)|+ |Du(x , t)| ≤ C in Rn × [0,∞),

which means that u is Lipschitz in space and time. Hence, by Rademacher’s theorem,
u is differentiable a.e. in Rn × (0,∞).

4 Consistency and stability of viscosity solutions

From the vanishing viscosity procedure, we obtain a viscosity solution u ∈ Lip(Rn× [0,∞))
to the following Hamilton–Jacobi equation

¨

ut +H(x , Du) = 0 in Rn × (0,∞),
u(x , 0) = u0(x) on Rn.

(1.10)

It is worth noting that (1.10) is a bit more complicated than (1.7), but the procedure is
the same. By Rademacher’s theorem, u is differentiable a.e. in Rn × (0,∞). We show that
indeed, if u is differentiable at (x0, t0), then u satisfies (1.10) in the usual sense at this point.
Before showing that, we need a following lemma (compare this with Exercise 5).

Lemma 1.11. Let Ω be an open subset of Rn, and u : Ω→ R be a continuous function. If u is
differentiable x0 ∈ Ω, then there exist ϕ,ψ ∈ C1(Ω) such that ϕ(x0) = u(x0) = ψ(x0), and
ϕ(x)< v(x)<ψ(x) for x ∈ Br(x0)\{x0} for some r > 0 sufficiently small. As a consequence,
Du(x0) = Dϕ(x0) = Dψ(x0).

Proof. If u is differentiable at x0, then D+u(x0) = D−u(x0) = {Du(x0)}. There exist ϕ,ψ ∈
C1(Ω) such that ϕ(x0) =ψ(x0) = u(x0), Dϕ(x0) = Dψ(x0) = Du(x0), and u−ϕ has a local
minimum at x0, u −ψ has a local maximum at x0. The proof is complete by setting, for
x ∈ Ω,

ϕ(x) = ϕ(x)− |x − x0|2, and ψ(x) =ψ(x) + |x − x0|2.

Theorem 1.12. Let u be a viscosity solution of (1.10) constructed by the vanishing viscosity
method. If u is differentiable at (x0, t0) ∈ Rn × (0,∞), then

ut(x0, t0) +H(x , Du(x0, t0)) = 0.
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Proof. Using the lemma above, there exist two test functions ϕ,ψ ∈ C1(Rn × (0,∞)) such
that ut(x0, t0) = ϕt(x0, t0) = ψt(x0, t0), Du(x0, t0) = Dϕ(x0, t0) = Dψ(x0, t0), and u − ϕ
has a strict minimum at (x0, t0), u−ψ has a strict maximum at (x0, t0). Then, the viscosity
subsolution and supersolution tests imply the result.

We now show that viscosity solutions are stable under locally uniform convergence.

Theorem 1.13 (Stability of viscosity solutions to (1.10)). Assume that






Hk→ H locally uniformly in Rn ×Rn,

u0,k→ u0 locally uniformly on Rn,

uk→ u locally uniformly on Rn × [0,∞).

For each k ∈ N, assume further that uk is a viscosity solution to
¨

(uk)t +Hk(x , Duk) = 0 in Rn × (0,∞),
uk(x , 0) = u0,k(x) on Rn.

(1.11)

Then u is a viscosity solution to (1.10).

Proof. It is clear that u satisfies the initial condition in the classical sense. We show that u
is a viscosity subsolution to (1.10). The supersolution follows in a similar way.
Take any C1 test function ϕ such that u−ϕ has strict max at (x0, t0) ∈ Rn × (0,∞). Since
uk→ u locally uniformly on Rn× [0,∞), for k large enough, uk−ϕ has a local max (xk, tk)
near (x0, t0), and (xk, tk)→ (x0, t0) up to passing to a subsequence if necessary. Since uk is
a viscosity solution of (1.11), we have

ϕt(xk, tk) +Hk (Dϕ(xk, tk))≤ 0.

Letting k→∞ and using the assumptions, we obtain

ϕt(x0, t0) +H (Dϕ(x), t0))≤ 0.

The proof is complete.

5 The comparison principle and uniqueness result for
static problem

We consider the following static problem

u(x) +H(x , Du(x)) = 0 in Rn. (1.12)

In this section we assume the following Lipschitz assumption on H. There exists a constant
C > 0 such that, for all x , y, p, q ∈ Rn,

¨

|H(x , p)−H(y, p)| ≤ C(1+ |p|)|x − y|,
|H(x , p)−H(x , q)| ≤ C |p− q|.

(1.13)

The main result is the following comparison principle.
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Theorem 1.14 (The comparison principle for static equation (1.12)). Assume (1.13). As-
sume that u, v ∈ BUC (Rn) are a viscosity subsolution and a viscosity supersolution of (1.12),
respectively. Then, u(x)≤ v(x) for any x ∈ Rn.

Before writing down a proof, it is fair to say that condition (1.13) is a bit restrictive. It is fine
to assume H is Lipschitz in x , but it is too strict to assume that H is global Lipschitz in p. For
example, if one considers the classical mechanics Hamiltonian H(x , p) = |p|2

2 + V (x), then
(1.13) does not hold. This deserves some explanations after the proof of this comparison
result.

Proof of Theorem 1.14. We give a proof by using the classical “doubling variables" method.
Since u, v are bounded in Rn, assume by contradiction that

sup
x∈Rn

�

u(x)− v(x)
�

= σ > 0.

Then, there exists x1 ∈ Rn such that u(x1)− v(x1)>
3σ
4 . For ε > 0 such that

ε <
σ

8 (1+ |x1|2)
=⇒ −2ε|x1|2 > −

σ

4
,

we consider the following auxiliary function

Φε : Rn ×Rn −→ R.

(x , y) 7−→ Φε(x , y) = u(x)− v(y)−
|x − y|2

ε2
− ε
�

|x |2 + |y|2
�

.

Then Φε is continuous, bounded above and tends to −∞ as either |x | →∞ or |y| →∞,
and hence, it must achieves a global maximum at some point (xε, yε) ∈ R2n. Note first that

Φε (xε, yε)≥ Φε(x1, x1) = u(x1)− v(x1)− 2ε|x1|2 ≥
3σ
4
−
σ

4
=
σ

2
. (1.14)

As this is the first time we present the doubling variables method, let us proceed gently by
breaking the proofs into various simple steps as following.

• STEP 1. We have Φε (xε, yε)≥ Φε(0,0), thus

u(xε)− v(yε)≥ u(0)− v(0) +
|xε − yε|2

ε2
+ ε
�

|xε|2 + |yε|2
�

.

Let C = 2(‖u‖L∞(Rn) + ‖v‖L∞(Rn)), we obtain

C ≥
|xε − yε|2

ε2
+ ε
�

|xε|2 + |yε|2
�

.

This implies that (xε − yε)→ 0 as ε→ 0, and

|xε − yε| ≤ Cε, and |xε|+ |yε| ≤
C
p
ε

.
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• STEP 2. We claim further that |xε − yε| = o(ε), that is,
|xε − yε|2

ε2
→ 0 as ε → 0.

Indeed, this follows by noting that

Φε (xε, yε)≥ Φε (xε, xε) =⇒
|xε − yε|2

ε2
≤ v(xε)− v(yε) + ε

�

|xε|2 − |yε|2
�

=⇒
|xε − yε|2

ε2
≤ v(xε)− v(yε) + Cε3/2,

and that v is uniformly continuous in Rn, which gives limε→0(v(xε)− v(yε)) = 0.

• STEP 3. Now x 7→ Φε(x , yε) has a max at xε, which means

x 7−→ u(x)−
�

|x − yε|2

ε2
+ ε|x |2

�

︸ ︷︷ ︸

test function ϕ(x)

has a max at xε.

As u is a viscosity subsolution of (1.12), by the viscosity subsolution test, we have

u(xε) +H
�

xε,
2 (xε − yε)

ε2
+ 2εxε

�

≤ 0. (1.15)

• STEP 4. Next, as y 7→ Φε(xε, y) has a max at yε, which yields

y 7−→ v(y)−
�

−
|xε − y|2

ε2
− ε|y|2

�

︸ ︷︷ ︸

test functionψ(y)

has a min at yε.

Since v is a viscosity supersolution of (1.12), by the viscosity supersolution test, we
obtain

v(yε) +H
�

yε,
2 (xε − yε)

ε2
− 2ε yε

�

≥ 0. (1.16)

• STEP 5. From (1.15) and (1.16), we imply

u(xε)− v(yε)≤ H
�

yε,
2 (xε − yε)

ε2
− 2ε yε

�

−H
�

xε,
2 (xε − yε)

ε2
+ 2εxε

�

. (1.17)

Now using the Lipschitz assumption (1.13) of H, we have

H
�

yε,
2 (xε − yε)

ε2
− 2ε yε

�

−H
�

yε,
2 (xε − yε)

ε2

�

≤ 2Cε|yε|,

H
�

yε,
2 (xε − yε)

ε2

�

−H
�

xε,
2 (xε − yε)

ε2

�

≤ C |xε − yε|
�

1+
2|xε − yε|
ε2

�

,

H
�

yε,
2 (xε − yε)

ε2

�

−H
�

xε,
2 (xε − yε)

ε2
+ 2εxε

�

≤ 2Cε|xε|.

Plugging all of these together, we obtain

H
�

yε,
2 (xε − yε)

ε2
− 2ε yε

�

−H
�

xε,
2 (xε − yε)

ε2
+ 2εxε

�

≤ 2C

�

ε
�

|xε|+ |yε|
�

+
|xε − yε|

2
+
|xε − yε|2

ε2

�

.
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Combine this with (1.17) to deduce that

u(xε)− v(yε)≤ 2C

�

ε
�

|xε|+ |yε|
�

+
|xε − yε|

2
+
|xε − yε|2

ε2

�

. (1.18)

Recall that (1.14) gives

u(xε)− v(yε)≥ Φε(xε, yε)≥
σ

2
.

Plug it into (1.18) to yield

σ

2
≤ 2C

�

ε
�

|xε|+ |yε|
�

+
|xε − yε|

2
+
|xε − yε|2

ε2

�

.

Letting ε→ 0, and using results from Step 1 and Step 2, we get

0<
σ

2
≤ 0,

which is a contradiction. The proof is complete.

Remark 1.15. In the above proof by via the doubling variable method, the following ob-
servation, which is elementary, plays a key role

∂

∂ x

�

|x − yε|2

ε2

�

�

�

�

x=xε
=
∂

∂ y

�

−|xε − y|2

ε2

�

�

�

�

y=yε
=

2 (xε − yε)
ε2

.

Corollary 1.16 (Uniqueness of viscosity solution of static equation (1.12)). Assume (1.13).
If u, v ∈ BUC (Rn) are viscosity solution of (1.12), then u≡ v in Rn.

Proof. Since u is a viscosity subsolution and v is a viscosity supersolution of (1.12), by the
comparison principle above, we have u ≤ v. Conversely, since v is a viscosity subsolution
and u is a viscosity supersolution of (1.12), we deduce v ≤ u. Thus, u= v.

Remark 1.17. Let us discuss further condition (1.13) here. In general, if we do not know
anything further about the solutions, except that they are in BUC (Rn), then it is hard to
remove this condition. Still, from the proof, it is easy to see that (1.13) can be changed into
the following weaker one: For all x , y, p, q ∈ Rn,

¨

|H(x , p)−H(y, p)| ≤ ωH((1+ |p|)|x − y|),
|H(x , p)−H(x , q)| ≤ ωH(|p− q|).

(1.19)

Here, ωH : [0,∞) → [0,∞) is a modulus of continuity corresponding to H, that is,
limr→0ωH(r) = 0. Still, a disadvantage of (1.19) is that these two inequalities have to
hold for all p, q ∈ Rn.

Nevertheless, we often have more information, such as the existence of a Lipschitz viscosity
solution u to (1.12), and in such cases, (1.13) can be relaxed significantly. The following
points are quite well-known to experts in the field, but sometimes, they are not written
down and explained clearly.
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2. It is typically the case that for a given nice H, we can obtain a Lipschitz viscosity
solution u to (1.12) via some methods (e.g., the vanishing viscosity method, or the
Perron method to be described later). It is then clear that information of H matters
only for (x , p) ∈ Rn × B(0, R) for R = ‖Dv‖L∞(Rn) + 1. We then define a modification
H̃ of H such that

H̃(x , p) =

¨

H(x , p) for all x ∈ Rn, |p| ≤ R,

|p| for all x ∈ Rn, |p| ≥ 2R,

and H̃ satisfies (1.13). Then, v is still a viscosity solution to (1.12) with H̃ in place
of H. And, for this new equation with H̃ in place of H, we have the uniqueness
of solutions. This technique of modifying H is used a lot in the theory of viscosity
solutions whenever a priori estimates are available.

3. Again, under nice enough assumptions, let us assume that there is a Lipschitz viscosity
solution u to (1.12). Here is a different way to look at the uniqueness proof by com-
paring every solution of (1.12) with u, which is already known to be Lipschitz. Let
v ∈ BUC (Rn) be another viscosity solution to (1.12). By looking back into Step 2 of
the proof of Theorem 1.14, we have in additional that |xε− yε| ≤ Cε2. Then, in order
to have the uniqueness result, we are able relax (1.13) a lot, for example, (1.13) can
be replaced by the following







For each R> 0, there exists CR > 0 so that, for x , y ∈ Rn, p, q ∈ B(0, R),
|H(x , p)−H(y, p)| ≤ CR|x − y|,
|H(x , p)−H(x , q)| ≤ CR|p− q|.

(1.20)

Actually, (1.13) can also be replaced by the following condition, which is much simpler
and weaker than (1.20)

H ∈ BUC (Rn × B(0, R)) for every R> 0. (1.21)

One can see that (1.13) and (1.20) have the same spirit. And, similarly, (1.19) and
(1.21) are of the same type.

5.1 Problems

Exercise 9. Consider the setting in Exercise 8. Show that u(x) = dist (x ,∂ U) for x ∈ U is the
unique viscosity solution to the given eikonal equation.

6 The comparison principle and uniqueness result for
Cauchy problem

We consider the following usual Cauchy problem
¨

ut +H(x , Du) = 0 in Rn × (0,∞),
u(x , 0) = u0(x) on Rn.

(1.22)
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In this section, we still assume that H satisfies the Lipschitz assumption (1.13). For clarity,
let us recall it here: There exists a constant C > 0 such that, for x , y, p, q ∈ Rn,

¨

|H(x , p)−H(y, p)| ≤ C(1+ |p|)|x − y|,
|H(x , p)−H(x , q)| ≤ C |p− q|.

The main result here is the comparison principle for (1.22), which is similar to Theorem
1.14. But before we proceed, we need the following simple lemma.

Lemma 1.18 (Extrema at terminal time t = T). Fix T > 0. Let u be a viscosity subsolution
to (1.22), and ϕ ∈ C1(Rn× [0, T]) be such that u−ϕ has a strict max at (x0, t0) over (x , t) ∈
Rn × (0, T], then the subsolution test still holds, that is,

ϕt(x0, t0) +H(x0, Dϕ(x0, t0))≤ 0.

Proof. It suffices to only consider the case t0 = T . Define ϕε(x , t) = ϕ(x , t) + ε
T−t for

any fixed ε > 0. Then for ε > 0 is small enough, u − ϕε has a local max at (xε, tε), and
(xε, tε) → (x0, t0) as ε → 0 by passing to a subsequence if necessary (see Exercise 10 be-
low for confirmation). As u − ϕε has a local max at (xε, tε), by the definition of viscosity
subsolutions, we have

(ϕε)t (xε, tε) +H (Dϕε(xε, tε))≤ 0,

which means

ϕt(xε, tε) +
ε

(T − tε)2
+H (Dϕ(xε, tε))≤ 0 =⇒ ϕt(xε, tε) +H (Dϕ(xε, tε))≤ 0.

Let ε→ 0 to conclude.

Here is our main result on the comparison principle for Cauchy problem.

Theorem 1.19 (Comparison principle for Cauchy problem (1.22)). Assume (1.13). Fix T >
0. Assume u, v ∈ BUC (Rn × [0, T]) are a viscosity subsolution and supersolution of (1.22),
respectively. Then, u(x , t)≤ v(x , t) on Rn × [0, T].

The proof is quite similar to that of Theorem 1.14, but it is worth presenting here since there
is the time variable t that involves.

Proof. We aim at proving that u(x , t) ≤ v(x , t) for all (x , t) ∈ Rn × (0, T]. Since u, v are
bounded, assume by contradiction that

sup
(x ,t)∈Rn×[0,T]

�

u(x , t)− v(x , t)
�

= σ > 0.

Then, there exists (x1, t1) ∈ Rn × [0, T] so that u(x1, t1) − v(x1, t1) >
3σ
4 . It is clear that

t1 > 0. Let ε and λ be positive numbers such that

ε <
σ

16(|x1|2 + 1)
and λ <

σ

16(t1 + 1)
=⇒ 2ε|x1|2 + 2λt1 <

σ

4
.

For these ε,λ fixed, we consider the following auxiliary function Φ : Rn × Rn × [0, T] ×
[0, T]→ R

Φ(x , y, t, s) = u(x , t)− v(y, s)−
|x − y|2 + |s− t|2

ε2
− ε(|x |2 + |y|2)−λ(s+ t).
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Since Φ is continuous and bounded above, it must achieves its maximum at some point
(xε, yε, tε, sε) on Rn × [0, T]2. Note first that

Φ(xε, yε, tε, sε)≥ Φ(x1, x1, t1, t1)>
3σ
4
− 2ε|x1|2 − 2λt1 >

σ

2
.

Again, we divide the proofs into various small steps.

STEP 1. As Φ(xε, yε, tε, sε)≥ Φ(0, 0,0, 0),

u(xε, tε)− v(yε, sε)≥ u0(0)− v0(0) +
|xε − yε|2 + |sε − tε|2

ε2
+ ε(|xε|2 + |yε|2) +λ(sε + tε),

which yields

C ≥
|xε − yε|2 + |sε − tε|2

ε2
+ ε(|xε|2 + |yε|2) +λ(sε + tε).

Thus, we obtain

|xε − yε|+ |tε − sε| ≤ Cε and |xε|+ |yε| ≤
C
p
ε

. (1.23)

STEP 2. We use Φ(xε, yε, tε, sε)≥ Φ(xε, xε, tε, tε) to imply that

|xε − yε|2 + |sε − tε|2

ε2
≤ v(xε, tε)− v(yε, sε) + ε

�

|xε|2 − |yε|2
�

+λ(tε − sε).

≤ v(xε, tε)− v(yε, sε) + ε
C
p
ε

Cε + Cε,

which, together with the uniform continuity of v, yields further that

lim
ε→0

|xε − yε|2 + |sε − tε|2

ε2
= 0.

STEP 3. Next, we claim that there exists a constant µ > 0 independent of ε such that
tε, sε > µ > 0 for all ε > 0. It is important to have both tε, sε bounded away from 0 in order
to apply viscosity sub/supersolution tests.
To prove this claim, we use the uniform continuity of u, v and observe

σ

2
< u(xε, tε)− v(yε, sε)

= u(xε, tε)− u(xε, 0)
︸ ︷︷ ︸

ω(tε)

+u(xε, 0)− v(xε, 0)
︸ ︷︷ ︸

≤0 (by initial condition)

+ v(xε, 0)− v(xε, tε)
︸ ︷︷ ︸

ω(tε)

+v(xε, tε)− v(yε, sε)

≤ω(tε) +ω(|xε − yε|+ |tε − sε|),

where ω(·) is a modulus of continuity, that is, limr→0ω(r) = 0. Thus there exists µ > 0
independent of ε such that tε > µ > 0. By a similar argument, we also have sε > µ > 0 for
all ε > 0.

STEP 4. The map (x , t) 7→ Φ(x , yε, t, sε) has a max at (xε, tε), and thus,

(x , t) 7−→ u(x , t)−
�

|x − yε|2 + |t − sε|2

ε2
+ ε|x |2 +λt

�

︸ ︷︷ ︸

ϕ(x ,t)

has a max at (xε, tε).
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Since u is a viscosity subsolution to (1.22), the viscosity subsolution test gives

2(tε − sε)
ε2

+λ+H
�

xε,
2(xε − yε)

ε2
+ 2εxε

�

≤ 0.

STEP 5. The map (y, s) 7→ Φ(xε, y, tε, s) has a max at (yε, sε), thus,

(y, s) 7−→ v(y, s)−
�

−
|xε − y|2 + |tε − s|2

ε2
− ε|y|2 −λs

�

︸ ︷︷ ︸

ψ(y,s)

has a min at (yε, sε).

The viscosity supersolution test yields

2(tε − sε)
ε2

−λ+H
�

yε,
2(xε − yε)

ε2
− 2ε yε

�

≥ 0.

STEP 6. We combine the inequalities in Step 4 and Step 5 to obtain

2λ≤ H
�

yε,
2(xε − yε)

ε2
− 2ε yε

�

−H
�

xε,
2(xε − yε)

ε2
+ 2εxε

�

.

Using the Lipschitz assumption (1.13) on H, we have

H
�

yε,
2 (xε − yε)

ε2
− 2ε yε

�

−H
�

yε,
2 (xε − yε)

ε2

�

≤ 2Cε|yε|,

H
�

yε,
2 (xε − yε)

ε2

�

−H
�

xε,
2 (xε − yε)

ε2

�

≤ C |xε − yε|
�

1+
2|xε − yε|
ε2

�

,

H
�

yε,
2 (xε − yε)

ε2

�

−H
�

xε,
2 (xε − yε)

ε2
+ 2εxε

�

≤ 2Cε|xε|.

Put all of the above inequalities in Step 6 together to imply

2λ≤ 2Cε
�

|xε|+ |yε|
�

+ C |xε − yε|+
2C |xε − yε|2

ε2
.

Let ε→ 0 in the above to get a contradiction. The proof is complete.

Corollary 1.20 (Uniqueness of viscosity solution of Cauchy problem (1.22)). Assume (1.13).
If u and v are viscosity solutions of (1.22), then u≡ v in Rn × (0,∞).

Proof. The proof follows immediately from the comparison principle in Theorem 1.19.

6.1 Problems

Exercise 10. Let u,ϕ be two given continuous functions onRn×[0, T] for some T > 0 such that
u−ϕ has a strict max over Rn× [0, T] at (x0, T ). For each ε > 0, let ϕε(x , t) = ϕ(x , t)+ ε

T−t
for all (x , t) ∈ Rn × [0, T] . Show that for ε > 0 small enough, u − ϕε has a local max at
(xε, tε) ∈ Rn × (0, T ), and (xε, tε)→ (x0, T ) up to passing to a subsequence.
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Exercise 11. Let H = H(x , p) : Rn × Rn → R be a Hamiltonian satisfying that, there exists
C > 0 such that, for all x , y, p, q ∈ Rn,

¨

|H(x , p)−H(x , q)| ≤ C |p− q|,
|H(x , p)−H(y, q)| ≤ C(1+ |p|)|x − y|.

For i = 1, 2, let ui be the viscosity solution to
¨

ui
t +H(x , Dui) = 0 in Rn × (0,∞),

ui(x , 0) = g i(x) on Rn,
(1.24)

where g i ∈ BUC (Rn) is given. Use the comparison principle for (1.24) to show the following
L∞ contraction property: For any t ≥ 0,

sup
x∈Rn
|u1(x , t)− u2(x , t)| ≤ sup

x∈Rn
|g1(x)− g2(x)|.

7 Introduction to the classical Bernstein method

For ε > 0, consider the following viscous Hamilton–Jacobi equation
¨

uεt +H(x , Duε) = ε∆uε in Rn × (0,∞),
uε(x , 0) = u0(x) on Rn.

(1.25)

In this section, we introduce the classical Bernstein method to obtain a priori estimates for
uε. Our aim is to get that ‖uεt‖L∞ + ‖Duε‖L∞ ≤ C where C > 0 is independent of ε ∈ (0,1).
We put the following assumptions

u0(x) ∈ C2(Rn) and ‖u0‖C2(Rn) <∞, (1.26)

and
¨

H ∈ C2(Rn ×Rn), H, DpH ∈ BUC (Rn × B(0, R)) for each R> 0,

lim|p|→∞ infx∈Rn

�

1
2 H(x , p)2 + Dx H(x , p) · p

�

= +∞.
(1.27)

By classical results (see [3, 65], [101, Appendix] and the references therein), under (1.26)–
(1.27), (1.25) has a unique solution uε which is smooth enough and its gradient is bounded,
but of course, this bound might depend on ε. What is important in the following theorem
is that we obtain a gradient bound for uε that is independent of ε ∈ (0,1).

Theorem 1.21. Assume (1.26)–(1.27). For each ε ∈ (0, 1), let uε be the unique solution
to (1.25). Then, there exists a constant C > 0 independent of ε ∈ (0, 1) such that, for all
(x , t) ∈ Rn × [0,∞),

�

�uεt (x , t)
�

�+ |Duε(x , t)| ≤ C .

Proof. We divide the proof into two steps as following.

1. We first obtain the boundedness of uεt . Differentiate (1.25) in time,

(uεt )t + DpH(x , Duε) · Duεt = ε∆uεt =⇒ ϕt + DpH(x , Duε) · Dϕ = ε∆ϕ,
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where ϕ = uεt . This is a linear parabolic equation for ϕ, thus, by comparison principle
for parabolic equation, we have for all (x , t) ∈ Rn × [0,∞),

inf
x∈Rn

ϕ(x , 0)≤ ϕ(x , t)≤ sup
x∈Rn

ϕ(x , 0) =⇒ inf
x∈Rn

uεt (x , 0)≤ uεt (x , t)≤ sup
x∈Rn

uεt (x , 0).

Thus, we only need to bound uεt (·, 0). We build barriers to do this as following. For
C > 0 large enough, set

ψ±(x , t) = u0(x)± C t for all (x , t) ∈ Rn × [0,∞).

Since ‖u0‖C2(Rn) <∞, we can find C0 > 0 such that, for all ε ∈ (0, 1),

|H(x , Du0)− ε∆u0| ≤ |H(x , Du0)|+ |∆u0| ≤ C0.

Then, for C > C0 and ε ∈ (0,1),

ψ±t +H(x , Dψ±)− ε∆ψ± = ±C +H (x , Du0)− ε∆u0 ≷ 0 on Rn × [0,∞).

We conclude that ψ± are a supersolution and a subsolution to (1.25), respectively.
Therefore, ψ− ≤ uε ≤ψ+, which confirms that |uεt (x , 0)| ≤ C for all x ∈ Rn.

2. Next, we show the boundedness of Duε, which is independent of ε. Differentiate
(1.25) in xk, multiply the result by uεxk

, then sum them up over k = 1,2, . . . , n to
obtain

d
d t

�

1
2

n
∑

k=1

�

uεxk

�2
�

+ Dx H(x , Duε) · Duε + DpH(x , Duε) ·
� n
∑

k=1

Duεxk
uεxk

�

= ε
n
∑

k=1

∆uεxk
uεxk

.

(1.28)

Let ψ= 1
2

∑n
k=1

�

uεxk

�2
= 1

2 |Duε|2, we have

n
∑

k=1

Duεxk
uεxk
= D

�

1
2

n
∑

k=1

�

uεxk

�2
�

= Dψ and
n
∑

k=1

∆uεxk
uεxk
=∆ψ− |D2uε|2.

Thus, (1.28) becomes

ψt + Dx H(x , Duε) · Duε + DpH(x , Duε) · Dψ= ε∆ψ− ε|D2uε|2 ≤ ε∆ψ− ε
(∆uε)2

n
.

For each ε < 1
n , we have ε

n > ε
2. Combine this with |uεt | ≤ C to get

ψt + Dx H(x , Duε) · Duε + DpH(x , Duε) · Dψ≤ ε∆ψ−
�

ε∆uε
�2

= ε∆ψ−
�

uεt +H(x , Duε)
�2

≤ ε∆ψ−
�

1
2

H(x , Duε)2 − C
�

.

Therefore,
�

ψt+DpH(x , Duε)·Dψ−ε∆ψ
�

+

�

1
2

H(x , Duε)2+Dx H(x , Duε)·Duε−C

�

≤ 0. (1.29)

31



Fix any T > 0. Assume that

max
Rn×[0,T]

ψ(x , t) =ψ(x0, t0)

for some (x0, t0) ∈ Rn×[0, T]. If t0 = 0, then ‖Duε‖L∞ ≤ ‖Du0‖L∞ ≤ C , and the proof
is complete. If t0 > 0, then by the usual maximum principle, we have

Dψ(x0, t0) = 0, ψt(x0, t0)≥ 0, and ∆ψ(x0, t0)≤ 0.

Using these facts in (1.29) evaluated at (x0, t0), we obtain

�

ψt + DpH(x , Duε) · Dψ− ε∆ψ
�

︸ ︷︷ ︸

≥0

+

�

1
2

H(x , Duε)2 + Dx H(x , Duε) · Duε − C

�

≤ 0.

which implies that, at (x0, t0),

1
2

H(x , Duε)2 + Dx H(x , Duε) · Duε ≤ C =⇒ |Duε(x0, t0)| ≤ C ,

in light of assumption (1.27).

Thus, we get the existence of a constant C > 0 independent of ε ∈ (0,1) so that

‖uεt‖L∞(Rn×[0,∞)) + ‖Duε‖L∞(Rn×[0,∞)) ≤ C .

Remark 1.22. An important observation in the above proof is that as H is independent
of time, ϕ = uεt solves the linearized equation, which is a nice linear parabolic equation.
Therefore, boundedness of uεt follows rather straightforwardly. If H is time dependent, then
one needs to be careful in getting the bound for uεt (for example, one has to have good
control on Ht).

Remark 1.23. In the above proof, for each ε ∈ (0, 1) fixed, surely uεt , Duε, and ψ are
bounded, but in general, such a bound might depend on ε. The key point of the proof is
that we obtain a bound on uεt and Duε that is independent of ε ∈ (0,1). In the last part of
the proof, it might be the case that (x0, t0) does not exist. To overcome this difficulty, we
consider, for each δ > 0, the maximum point on Rn × [0, T] of

(x , t) 7→ψδ(x , t) =
�

ψ(x , t)−δ(1+ |x |2)1/2
�

,

and use the maximum principle for ψδ at this point. Then, we let δ → 0 to obtain the
desired result.

7.1 Problems

Exercise 12. Write down a detailed proof of the claim in Remark 1.23.
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Exercise 13. Let H = H(x , p) : Rn ×Rn→ R be a C2 Hamiltonian satisfying






H, DpH ∈ BUC (Rn × B(0, R)) for each R> 0,

lim
|p|→∞

inf
x∈Rn

�

1
2

H(x , p)2 + Dx H(x , p) · p
�

= +∞.
(1.30)

For ε ∈ (0, 1), consider the following static viscous Hamilton–Jacobi equation

uε +H (x , Duε) = ε∆uε in Rn. (1.31)

Let uε be the unique bounded, smooth solution to the above. Use the Bernstein method to show
that there exists a constant C > 0 independent of ε ∈ (0,1) such that ‖Duε‖L∞(Rn) ≤ C.

Let ε → 0 in the above and use the Arzelà–Ascoli theorem, we obtain the existence of a
Lipschitz viscosity solution to the corresponding static problem.

Corollary 1.24. Assume (1.30). Then, the static problem (1.12) has a Lipschitz viscosity
solution u.

8 Introduction to Perron’s method

8.1 Perron’s method for static problems

Recall the usual static problem

u+H(x , Du) = 0 in Rn. (1.32)

One simple observation we have is if u1, u2 are subsolution of (1.32) then so is max{u1, u2}.
We generalized this into the following result.

Lemma 1.25. Assume H ∈ C(Rn ×Rn). Let {ui}i∈I be a family of (continuous) subsolutions
to (1.32). Let

u(x) = sup
i∈I

ui(x) for all x ∈ Rn.

Assume that u is finite and continuous. Then, u is also a viscosity subsolution to (1.32).

It is worth noting here that the assumption that u is finite is natural, but the assumption
that u is continuous is not. We actually do not need it, but we put it here for simplicity. In
general, we only expect that u is bounded, and in fact, definition for viscosity subsolutions
to (1.32) can be given for upper semicontinuous functions in Rn, USC(Rn), naturally. The
result of Lemma 1.25 still holds true for u under the new definition, that is, u∗, its upper
semicontinuous envelope, is a viscosity subsolution to (1.32).

Proof. Take ϕ ∈ C1(Rn) such that u−ϕ has a max at x0 over Br(x0), and u(x0) = ϕ(x0). Let
ψ(x) = ϕ(x)+ |x − x0|2 then u−ψ has a strict max over Br(x0). By definition, we can find
a sequence (re-indexed) {un}n∈N ⊂ {ui}i∈I such that 0 ≤ u(x0)− un(x0) ≤

1
n for all n ∈ N.

For all x ∈ Br(x0), we have

un(x)−ψ(x)≤ u(x)−ϕ(x)− |x − x0|2 ≤ −|x − x0|2.
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By compactness, we can assume un −ψ has a max over Br(x0) at xn, and thus,

un(x0)−ϕ(x0)≤ un(xn)−ϕ(xn)− |xn − x0|2

≤ u(xn) −ϕ(xn)− |xn − x0|2 ≤ −|xn − x0|2.

From the above, we obtain |xn− x0|2 ≤
1
n . Let n→∞ to yield that xn→ x0, and therefore,

xn is actually a local max of un − ψ over Rn for n sufficiently large. As a consequence,
un(xn)−ϕ(xn)→ 0 as n→∞. For n large, as un is a subsolution of (1.32), the subsolution
test gives

un(xn) +H(xn,ϕ(xn))≤ 0 =⇒ ϕ(x0) +H(x0, Dϕ(x0))≤ 0

by letting n→∞. Thus, u is viscosity subsolution of (1.32).

The Perron method in the theory of viscosity solutions was first introduced by Ishii [82].
In the following, we give a variant of Ishii’s argument in [82]. Based on a coercivity as-
sumption, we construct directly a Lipschitz viscosity solution, which was not written down
explicitly by Ishii. Here is the assumption on H that we need

(

H ∈ BUC (Rn × B(0, R)) for all R> 0,

lim
|p|→∞

inf
x∈Rn

H(x , p) = +∞. (1.33)

Under this assumption, set C0 = supx∈Rn |H(x , 0)|. It is clear that C0 and −C0 are viscosity
supersolution and subsolution to (1.32), respectively. By coercivity of H, we are able to find
C1 > 0 such that

H(x , p)≤ C0 + 1 for some (x , p) ∈ Rn ×Rn =⇒ |p| ≤ C1.

Here is our main result in this section.

Theorem 1.26 (Perron’s method for (1.32)). Assume (1.33). Define

u(x) = sup
¦

v(x) : −C0 ≤ v ≤ C0, ‖Dv‖L∞(Rn) ≤ C1,

and v is a viscosity subsolution to (1.32)
©

. (1.34)

Then, u is a Lipschitz viscosity solution to (1.32).

Proof. Of course, u is well-defined as v ≡ −C0 itself is an admissible subsolution in the
above formula. Furthermore, it is clear that u is Lipschitz in Rn, and ‖Du‖L∞(Rn) ≤ C1.
By the stability of viscosity subsolutions (Lemma 1.25), we imply first that u is a viscosity
subsolution to (1.32).

Hence, we only need to show that u is a viscosity supersolution to (1.32). Assume by con-
tradiction that this is not the case. Then, there exist a smooth test function φ ∈ C1(Rn) and
a point x0 ∈ Rn such that

¨

u(x0) = φ(x0), u(x)> φ(x) for all x ∈ Rn \ {x0},
u(x0) +H(x0, Dφ(x0)) = φ(x0) +H(x0, Dφ(x0))< 0.
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There are two cases to be considered here. The first case is when u(x0) = C0. This means
that φ touches constant function C0, a supersolution to (1.32), from below at x0. By the
definition of viscosity supersolutions,

φ(x0) +H(x0, Dφ(x0))≥ 0,

which implies a contradiction immediately.
The second case is when u(x0)< C0. There exist r,ε > 0 sufficiently small such that



















u(x)< C0 − ε for all x ∈ B(x0, r),
φ(x)< u(x)− ε for all x ∈ ∂ B(x0, r),
φ(x) +H(x , Dφ(x))< −2ε for all x ∈ B(x0, r),
|Dφ(x)| ≤ C1 for all x ∈ B(x0, r).

Now, set

u(x) =

¨

max{u(x),φ(x) + ε} for all x ∈ B(x0, r),
u(x) for all x ∈ Rn \ B(x0, r).

It is quite clear that u is a viscosity subsolution to (1.32), and ‖Du‖L∞(Rn) ≤ C1. This again
leads to a contradiction. The proof is complete.

As included in the proof, we obtain immediately the existence of a Lipschitz viscosity solution
u to (1.32) under assumption (1.33). In fact, by Remark 1.17, we imply further that, under
(1.33), u is actually is the unique viscosity solution to (1.32). This is quite interesting,
and we completely bypass the need of the vanishing viscosity method to obtain a Lipschitz
solution here. Of course, when we do not have coercivity, we would not be able to impose
the Lipschitz constraint directly in the definition of u, and we will see that this is indeed the
case for Cauchy problem in the next section. Let us record what was discussed as a theorem
here for later use.

Theorem 1.27. Assume (1.33). Let u be defined as in Theorem 1.26. Then, u is the unique
Lipschitz viscosity solution to (1.32).

Let us now discuss further about solutions to (1.32) under (1.33). We show in the following
that if we have a bounded uniformly continuous solution, then it is indeed Lipschitz.

Lemma 1.28. Assume (1.33). Let u ∈ BUC (Rn) be a viscosity solution to (1.32). Then, u is
Lipschitz in Rn.

Proof. As u ∈ BUC (Rn), it is not hard to show that −C0 ≤ u ≤ C0 (this is being phrased as
Exercise 14). By coercivity and the viscosity subsolution test, we get

|p| ≤ C1 for all x ∈ Rn, p ∈ Du+(x).

We now show that u is Lipschitz with Lipschitz constant at most C1. Given ε > 0 and y ∈ Rn,
consider ϕ(x) = (C1 + ε)|x − y|, we have ϕ ∈ C∞ (Rn\{y}). Since u is bounded, we have
u−ϕ has a max at some xε ∈ Rn. If xε 6= y , then

Dϕ(xε) = (C1 + ε)
�

xε − y
|xε − y|

�

∈ D+u(xε) =⇒ |Dϕ(xε)|= C1 + ε ≤ C1,
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which is a contradiction. Thus xε = y , which means that for all x ∈ Rn,

u(x)− (C1 + ε)|x − y| ≤ u(y) =⇒ u(x)− u(y)≤ (C1 + ε)|x − y|.

By a symmetric argument, we obtain |u(x)−u(y)| ≤ (C1+ε)|x− y| for all x , y ∈ Rn. Finally,
let ε→ 0 to imply our claim.

In the above proof, there is one interesting point that if u ∈ BUC (Rn) satisfies

|p| ≤ C1 for all x ∈ Rn, p ∈ Du+(x),

then u is Lipschitz with Lipschitz constant at most C1. It is worth noting that we do not need
boundedness of u to have this result.

Lemma 1.29. Let u ∈ C(Rn) such that, for all p ∈ D+u(x) for all x ∈ Rn, we have |p| ≤ C1.
Then, u is Lipschitz with Lipschitz constant at most C1.

The proof of this is left as an exercise for the interested readers.

8.2 Problems

Exercise 14. Assume (1.33). Denote by C0 = supx∈Rn |H(x , 0)|. Let u ∈ BUC (Rn) be a
solution to (1.32). Show that

−C0 ≤ u≤ C0.

Exercise 15. Prove Lemma 1.29.

8.3 Perron’s method for Cauchy problems

Let us now focus on our usual Cauchy problem
¨

ut +H(x , Du) = 0 in Rn × (0,∞),
u(x , 0) = u0 on Rn.

(1.35)

In order to apply the Perron method, we need the following assumptions

• For H, we assume that it satisfies (1.33), that is,
(

H ∈ BUC (Rn × B(0, R)) for all R> 0,

lim
|p|→∞

inf
x∈Rn

H(x , p) = +∞.

• For initial data u0, we assume

u0 ∈ C1(Rn) and ‖u0‖C1(Rn) <∞. (1.36)

By assumptions (1.33) and (1.36), we have ‖Du0‖L∞(Rn) <∞, and |H(x , Du0(x))| ≤ C0 for
all x ∈ Rn for some constant C0 > 0. In particular

• ϕ1(x , t) = u0(x)− C0 t is a classical subsolution to (1.35).

• ϕ2(x , t) = u0(x) + C0 t is a classical supersolution to (1.35).
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Theorem 1.30 (Perron’s method for (1.35)). Assume (1.33) and (1.36). Denote by, for
(x , t) ∈ Rn × [0,∞),

u(x , t) = sup

¨

ϕ(x , t) ∈ C(Rn × (0,∞)) :

¨

ϕ1 ≤ ϕ ≤ ϕ2,

ϕ is a subsolution to (1.35)

«

.

Then, u is a viscosity solution of (1.35).

For the Cauchy problem, as there is the time variable t, we should think of the “overall
Hamiltonian" as

F : Rn ×Rn ×R→ R
(x , p, pn+1) 7→ F(x , p, pn+1) = pn+1 +H(x , p).

Here, pn+1 represents ut . It is clear that F is not coercive in p′ = (p, pn+1), and hence, we
cannot impose the a priori Lipschitz condition in the definition of u as in Theorem 1.26. In
fact, in this case for (1.35), u defined above might be discontinuous. Further discussion on
this and a priori estimates for u will be done in the next section.

Proof. For simplicity, we assume that u is continuous.

First of all, it is clear that u is a viscosity subsolution of (1.35). Now we prove that u is
a viscosity supersolution of (1.35). Let ψ ∈ C1(Rn × (0,∞)) be a test function such that
u(x , t) −ψ(x , t) has a strict min at (x0, t0) ∈ Rn × (0,∞), and u(x0, t0) = ψ(x0, t0). We
need to prove that

ψt(x0, t0) +H
�

x0, Dψ(x0, t0)
�

≥ 0. (1.37)

There are two cases to be considered here. The first case is when ψ(x0, t0) = u(x0, t0) =
ϕ2(x0, t0). In this case, ψ is touches ϕ2 from below at (x0, t0). The viscosity supersolution
test confirms that (1.37) is true.

The second case is when ψ(x0, t0) = u(x0, t0) < ϕ2(x0, t0). Assume by contradiction that
(1.37) does not hold, that is,

ψt(x0, t0) +H
�

x0, Dψ(x0, t0)
�

< 0.

We can find ε, r > 0 sufficiently small such that











u(x , t)< ϕ2(x , t)− ε (x , t) ∈ B
�

x0, r
�

×
�

t0 − r, t0 + r
�

,

ψ(x , t)< u(x , t)− ε (x , t) ∈ ∂
�

B
�

x0, r
�

×
�

t0 − r, t0 + r
��

,

ψt(x , t) +H(x , Dψ(x , t))< −ε (x , t) ∈ B
�

x0, r
�

×
�

t0 − r, t0 + r
�

.

Now, we define

ũ(x , t) =

(

max {u(x , t),ψ(x , t) + ε} if (x , t) ∈ B
�

x0, r
�

×
�

t0 − r, t0 + r
�

,

u(x , t) if (x , t) /∈ B
�

x0, r
�

×
�

t0 − r, t0 + r
�

.

It is not hard to check that ũ a viscosity subsolution to (1.35). This gives a contradiction as
ũ(x0, t0)> u(x0, t0). The proof is complete.
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Remark 1.31. Let us emphasize again that u defined in Theorem 1.30 might not be contin-
uous. Besides (1.33) and (1.36), if we require in additional condition (1.13), then we have
the comparison principle to (1.35), and hence, uniqueness of solutions to (1.35). Then,
as u∗ is a subsolution, and u∗ is a supersolution to (1.35), respectively, we get u∗ ≤ u∗.
Therefore, u= u∗ = u∗, which means that u is continuous.

In order to obtain Lipschitz bounds for u, we need a more complicated argument, since in
this case we need to prove ut is bounded first.

9 Lipschitz estimates for Cauchy problems using Perron’s
method

Let us continue focusing on the usual Cauchy problem
¨

ut(x , t) +H(x , Du(x , t)) = 0 in Rn × (0,∞),
u(x , 0) = u0(x) on Rn.

(1.38)

We assume here (1.33), (1.36), and (1.13) to get Lipschitz estimates for the unique viscosity
solution u to (1.38). Let us recall these assumptions here for clarity. Condition (1.13) is a
structural one to get uniqueness of solutions

¨

|H(x , p)−H(y, p)| ≤ C(1+ |p|)|x − y|,
|H(x , p)−H(x , q)| ≤ C |p− q|.

And conditions (1.33), (1.36) are for the use of Perron’s method










H ∈ BUC (Rn × B(0, R)) for any R> 0,

lim
|p|→∞

�

inf
x∈Rn

H(x , p)
�

= +∞,

u0 ∈ C1(Rn) and ‖u0‖C1(Rn) <∞.

Theorem 1.32. Assume (1.33), (1.36), and (1.13). Then, (1.38) has a unique viscosity so-
lution u, which is Lipschitz in both space and time. In particular, there exists a constant C > 0
such that

|ut(x , t)|+ |Du(x , t)| ≤ C a.e. on Rn × [0,∞). (1.39)

Proof. We show that u is Lipschitz in time, then coercivity of H implies that u is Lipschitz in
space right away.

STEP 1. We first show t 7→ u(x , t) is Lipschitz at t = 0. By Theorem 1.30, we have

u0(x)− C0 t ≤ u(x , t)≤ u0(x)− C0 t for all (x , t) ∈ Rn × [0,∞).

This implies that, for all x ∈ Rn,

−C0 ≤
u(x , t)− u(x , 0)

t
≤ C0 =⇒ sup

t≥0

�

�

�

�

u(x , t)− u(x , 0)
t

�

�

�

�

≤ C0.

STEP 2. We now show u is Lipschitz in time for all t ≥ 0 with constant C0. The key point
here is that H is independent of t, which means that it is translation invariant in time. In
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particular, for fixed s > 0, (x , t) 7→ v(x , t) = u(x , s + t) is still a solution to (1.38) with
different initial data v0(x) = v(x , 0) = u(x , s) for x ∈ Rn. As

v0 − ‖u0 − v0‖L∞(Rn) ≤ u0 ≤ v0 + ‖u0 − v0‖L∞(Rn),

the usual comparison principle for (1.38) implies that

v(x , t)− ‖u0 − v0‖L∞(Rn) ≤ u(x , t)≤ v(x , t) + ‖u0 − v0‖L∞(Rn).

Thus, for all (x , t) ∈ Rn × [0,∞) and s > 0,

u(x , t + s)− ‖u0 − v0‖L∞(Rn) ≤ u(x , t)≤ u(x , t + s) + ‖u0 − v0‖L∞(Rn),

which means
�

�

�

�

u(x , t + s)− u(x , t)
s

�

�

�

�

≤








u(·, s)− u(·, 0)
s









L∞(Rn)

≤ C0,

thanks to Step 1. Thus, u is Lipschitz in time with constant C0.
STEP 3. Finally, we claim that u is Lipschitz in space. As its proof is rather standard, we
omit it here and leave it as an exercise.

Remark 1.33. We have two following comments.

• We use crucially the point that H is time independent in the above proof. In fact, if H
is time dependent, then Step 2 above is completely broken. In such cases, in order to
obtain Lipschitz estimates, one needs to do it in a very different way.

• Let us now assume only (1.33) and (1.36). We aim at finding a priori estimates to
solution u of (1.38). By the above proof, we get first that ‖ut‖L∞ ≤ C0, which yields
H(x , Du) ≤ C0. Thus, we are able to find C > 0 such that ‖ut‖L∞ + ‖Du‖L∞ ≤ C . In
particular, information of H(x , p) for |p| ≥ C does not matter. Define a new Hamilto-
nian H̃ such that

H̃(x , p) =

¨

H(x , p) for all x ∈ Rn, |p| ≤ C ,

|p| for all x ∈ Rn, |p| ≥ 2C ,

and H̃ satisfies (1.33), (1.36), and (1.19). Recall that (1.19) is a replacement of
(1.13). Then the Cauchy problem

¨

wt(x , t) + H̃(x , Dw(x , t)) = 0 in Rn × (0,∞),
w(x , 0) = u0(x) on Rn,

has a unique Lipschitz viscosity solution w, and ‖wt‖L∞+‖Dw‖L∞ ≤ C . It is clear then
that w is a Lipschitz viscosity solution to (1.38). Then, Remark 1.17 implies that u= w
is the unique Lipschitz viscosity solution to (1.38). This is an extremely important
point as we are able to bypass the requirement of (1.13) (or (1.19)). Basically, we
use a priori estimates to get gradient bounds on the solution first, then we get rid of
(1.13) (or (1.19)) later. We record this important point in the following.

Theorem 1.34. Assume (1.33) and (1.36). Then, (1.38) has a unique viscosity solution u,
which is Lipschitz in both space and time. In particular, there exists a constant C > 0 such that

|ut(x , t)|+ |Du(x , t)| ≤ C a.e. on Rn × [0,∞). (1.40)

In fact, we only need to require that u0 ∈ BUC (Rn)∩ Lip (Rn) in the above theorem.
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9.1 Problems

Exercise 16. Give a detailed proof of Step 3 in the proof of Theorem 1.32.

Exercise 17. Write down a proof of Theorem 1.34.

10 Finite speed of propagation for Cauchy problems

Our main focus in this section is still the usual Cauchy problem

ut(x , t) +H(x , Du(x , t)) = 0 in Rn × (0,∞). (1.41)

We do not impose yet the initial condition of (1.41). We assume (1.13), which is a structural
condition to get uniqueness of solutions to (1.41). Let us recall it for clarity. There exists
C > 0 such that, for all x , y, p, q ∈ Rn,

¨

|H(x , p)−H(y, p)| ≤ C(1+ |p|)|x − y|,
|H(x , p)−H(x , q)| ≤ C |p− q|.

Here is the main result in this section on the finite speed of propagation of (1.41).

Theorem 1.35. Assume (1.13). Let u, v be a subsolution and a supersolution to (1.41), re-
spectively. Assume further that u(x , 0) ≤ v(x , 0) for all x ∈ B(0, R) for some given R > 0.
Then,

u(x , t)≤ v(x , t) for all x ∈ B(0, R− C t), and t ≤
R
C

.

To prove this theorem, we need the following preparation lemma.

Lemma 1.36. Assume (1.13). Let u, v be a subsolution and a supersolution to (1.41), respec-
tively. Let w= u− v. Then, w is a viscosity subsolution to

wt − C |Dw|= 0 in Rn × (0,∞). (1.42)

Proof. Take a smooth test functionϕ such that w−ϕ has a global strict maximum at (x0, t0) ∈
Rn × (0,∞), w(x0, t0) = ϕ(x0, t0), and w − ϕ tends to −∞ as |x | → ∞ or t →∞. We
consider the following auxiliary function Φ : Rn ×Rn × [0,∞)× [0,∞)→ R, where

Φ(x , y, t, s) = u(x , t)− v(y, s)−
|x − y|2 + |t − s|2

ε2
−ϕ(x , t).

It is clear that Φ achieves its maximum at some point (xε, yε, tε, sε) on Rn × [0,∞)2. By
following the same arguments as in the proof of Theorem 1.19, we are able to obtain that
(xε, yε, tε, sε)→ (x0, x0, t0, t0) as ε→ 0. Moreover,

lim
ε→0

|xε − yε|2 + |tε − sε|2

ε2
= 0. (1.43)

By using the viscosity subsolution and supersolution tests as usual (same way as in the proof
of Theorem 1.19), we get

ϕt(xε, tε) +
2(tε − sε)
ε2

+H
�

xε,
2(xε − yε)

ε2
+ Dϕ(xε, tε)

�

≤ 0,
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and
2(tε − sε)
ε2

+H
�

yε,
2(xε − yε)

ε2

�

≥ 0.

Combining the two inequalities above to imply

ϕt(xε, tε) +H
�

xε,
2(xε − yε)

ε2
+ Dϕ(xε, tε)

�

−H
�

yε,
2(xε − yε)

ε2

�

≤ 0.

We use (1.13) to deduce further that

ϕt(xε, tε)− C |Dϕ(xε, tε)| ≤ C |xε − yε|
�

1+
2|xε − yε|
ε2

�

≤ C |xε − yε|+
C |xε − yε|2

ε2
.

Let ε→ 0 in the above and use (1.43) to conclude.

To obtain Theorem 1.35, we now only need to show that w(x , t)≤ 0 for all x ∈ B(0, R−C t),
and t ≤ R

C .

Lemma 1.37. Let w be a viscosity subsolution (1.42). Assume that w(x , 0) ≤ 0 for all x ∈
B(0, R) for some given R> 0. Then,

w(x , t)≤ 0 for all x ∈ B(0, R− C t), and t ≤
R
C

.

Before giving a proof, let us mention here that (1.42) is in fact a first-order front propagation
problem, and is similar to what was discussed in Example 1.1. Another proof of this lemma
can be found later in Section 5.5 of Chapter 2.

Proof. Let T = R
C , and

M = max
B(0,R)×[0,T]

w.

We construct supersolutions to (1.42), and use the comparison principle to get the desired
conclusion. For each ε > 0 sufficiently small, we design a smooth cut-off function ξε : R→ R
such that ξε is nondecreasing, and

¨

ξε(s) = 0 for s ≤ R− ε,
ξε(s) = M for s ≥ R.

Denote by

ψε(x , t) = ξε(|x |+ C t) for x ∈ Rn, 0≤ t < Tε =
R− ε

C
.

We claim that ψε is a classical solution to (1.42) in Rn × (0, Tε). Indeed, ψε is smooth, and
at x = 0,

ψεt (0, t) = 0, Dψε(0, t) = 0 for all 0≤ t < Tε =
R− ε

C
,

so there is nothing to check here. For x 6= 0 and t ∈ (0, Tε), we compute

ψεt (x , t) = Cξ′
ε
(|x |+ C t), Dψε(x , t) = ξ′

ε
(|x |+ C t)

x
|x |

,

which immediately gives that

ψεt (x , t)− C |Dψε(x , t)|= Cξ′
ε
(|x |+ C t)− Cξ′

ε
(|x |+ C t) = 0.

41



Besides, from the definition of ψε and ξε,

w(x , t)≤ M =ψε(x , t) for all (x , t) ∈ ∂ B(0, R)× [0, Tε].

By the comparison principle for (1.42), we get that w ≤ ψε on B(0, R)× [0, Tε]. Let ε→ 0
to get the conclusion.

We are now ready to prove the main theorem in this section.

Proof of Theorem 1.35. Let w= u− v. By using Lemmas 1.36 and 1.37, we immediately get
the desired result.

11 Rate of convergence of the vanishing viscosity process
for static problems via the doubling variables method

Let us recall the vanishing viscosity procedure for the usual static problem

u(x) +H(x , Du(x)) = 0 in Rn. (1.44)

For each ε > 0, we consider

uε(x) +H(x , Duε(x)) = ε∆uε(x) in Rn. (1.45)

We assume that H satisfies (1.27), that is,
¨

H ∈ C2(Rn ×Rn), H ∈ BUC (Rn × B(0, R)) for each R> 0,

lim|p|→∞ infx∈Rn

�

1
2 H(x , p)2 − Dx H(x , p) · p

�

= +∞.

Under this assumption, we use the classical Bernstein method (same arguments as in The-
orem 1.21) to obtain that (1.45) has a unique smooth solution uε. Moreover, there exists a
constant C > 0 independent of ε ∈ (0,1) such that

‖uε‖L∞(Rn) + ‖Duε‖L∞(Rn) ≤ C for all ε ∈ (0, 1).

In light of this estimate, {uε}ε∈(0,1) is locally equicontinuous in Rn. By Arzelà-Ascoli’s theo-
rem, for each sequence {εk} ↘ 0, there exists a subsequence {εki

} ↘ 0 such that

uεk j → u locally uniformly in Rn as j→∞,

for some u satisfies ‖u‖L∞(Rn) + ‖Du‖L∞(Rn) ≤ C . Thus, we deduce that u is the unique
Lipschitz viscosity solution of (1.44). Because of the uniqueness of the limiting function u,
we imply that uε→ u locally uniformly as ε↘ 0.

It is actually very important to understand more about this vanishing viscosity process. A
pretty much open problem is to understand about the gradient shock structures of u, the
unique Lipschitz viscosity solution of (1.44). It is typically the case that u is Lipschitz, but
not C1, and the behaviors of the singularities of Du (e.g., the corners of the graph of u)
are determined by the viscosity sub/supersolution tests. However, we do not have a clear
knowledge about these singularities in general, especially when H is not convex in p, at this
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moment. This topic should be one of the most important directions to study in the field in
the future.

Another point, which is simpler, is to study the rate of convergence of {uε}ε>0 to u as ε→ 0.
There have been various interesting results in this direction, but still, the optimal rate for
general case is not yet known. Up to now, for the general cases, the best known convergence
rate is O(ε1/2).

Theorem 1.38. Assume that H satisfies (1.27). Assume further that H ∈ Lip (Rn × B(0, R))
for each R> 0. For each ε ∈ (0, 1), let uε be the unique smooth solution to (1.45). Let u be the
unique Lipschitz viscosity solution of (1.44). Then, there exists a constant C > 0 independent
of ε such that

‖uε − u‖L∞(Rn) ≤ C
p
ε.

This type of results with convergence rate O(ε1/2) was first obtained by Fleming [62] in the
1960s by using a differential game approach. Later on, within the framework of viscosity
solutions, Crandall and Lions [40] proved Theorem 1.38 by using the doubling variables
method. Of course, the approach of Crandall and Lions is quite general, and can be adapted
to many other situations. Another proof of Theorem 1.38 by using the nonlinear adjoint
method was introduced by Evans [50] and Tran [131].

We give here in this section a proof based on the ideas of Crandall, Lions [40]. The nonlinear
adjoint method will be introduced in the next section.

Proof. By using the doubling variables method, consider the following auxiliary function

Φδ(x , y) = uε(x)− u(y)−
|x − y|2

2α
−δ

�

µ(x) +µ(y)
�

,

where δ,α > 0 are to be chosen, and µ ∈ C2(Rn,R) satisfies1











µ(0) = 0, µ(x)≥ 0 for all x ∈ Rn,

lim
|x |→∞

µ(x) = +∞,

|Dµ(x)|+ |D2µ(x)| ≤ 1 in Rn.

Since uε and u are continuous and bounded, we can assume that

max
Rn×Rn

Φδ(x , y) = Φδ(xδ, yδ),

for some (xδ, yδ) ∈ Rn ×Rn.
STEP 1. Since x 7→ Φδ(x , yδ) has a max at xδ, x 7→ uε(x)−

�

|x−yδ|2

2α +δµ(x)
�

has a max at
xδ. Therefore,

uε(xδ) +H
�

xδ,
xδ − yδ
α

+δDµ(xδ)
�

≤ ε
�n
α
+δ∆µ(xδ)

�

≤ ε
�n
α
+δ

�

. (1.46)

STEP 2. As y 7→ Φδ(xδ, y) has a max at yδ, y 7→ u(y)−
�

− |xδ−y|2

2α −δµ(y)
�

has a min at yδ.
The supersolution test for (1.45) gives

u(yδ) +H
�

yδ,
xδ − yδ
α

−δDµ(yδ)
�

≥ 0. (1.47)

STEP 3. We have in the following some simple observations.
1An example for such a function like this is µ(x) = c

�p

1+ |x |2 − 1
�

for c > 0 small enough.
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• We use the fact that Φδ(xδ, xδ)≤ Φδ(xδ, yδ) to yield

|xδ − yδ|2

2α
≤ u(xδ)− u(yδ) +δ

�

µ(xδ)−µ(yδ)
�

.

• Similarly, Φδ(yδ, yδ)≤ Φδ(xδ, yδ) implies

|xδ − yδ|2

2α
≤ uε(xδ)− uε(yδ) +δ

�

µ(yδ)−µ(xδ)
�

.

Combine the above two inequalities to get

|xδ − yδ|2

α
≤ u(xδ)− u(yδ) + uε(xδ)− uε(yδ)≤ 2C |xδ − yδ|,

and therefore, |xδ − yδ| ≤ Cα.

STEP 4. By the assumption that H ∈ Lip(Rn × B(0, R)) for each R > 0, if we pick δ ∈ (0, 1),
then we have

H
�

yδ,
xδ − yδ
α

−δDµ(yδ)
�

−H
�

xδ,
xδ − yδ
α

−δDµ(yδ)
�

≤ C |xδ − yδ| ≤ Cα,

H
�

xδ,
xδ − yδ
α

−δDµ(yδ)
�

−H
�

xδ,
xδ − yδ
α

+δDµ(xδ)
�

≤ Cδ |Dµ(xδ) + Dµ(yδ)| ≤ Cδ.

Thus,

H
�

yδ,
xδ − yδ
α

−δDµ(yδ)
�

−H
�

xδ,
xδ − yδ
α

+δDµ(xδ)
�

≤ Cα+ Cδ. (1.48)

STEP 5. Combine the inequalities in (1.46), (1.47), and (1.48) to imply

uε(xδ)− u(yδ)≤ ε
�n
α
+δ

�

+H
�

yδ,
xδ − yδ
α

−δDµ(yδ)
�

−H
�

xδ,
xδ − yδ
α

+δDµ(xδ)
�

≤ ε
�n
α
+δ

�

+ Cα+ Cδ. (1.49)

Now, for any x ∈ Rn, we have Φδ(x , x)≤ Φδ(xδ, yδ)≤ uε(xδ)− u(yδ), and hence,

uε(x)− u(x)− 2δµ(x)≤ uε(xδ)− u(yδ)≤ ε
�n
α
+δ

�

+ Cα+ Cδ

by (1.49). Let δ→ 0 and C =max{n, C}, we obtain

uε(x)− u(x)≤ C
� ε

α
+α

�

.

Choose α =
p
ε, we then get uε(x)− u(x) ≤ C

p
ε for all x ∈ Rn. By repeating the above,

we obtain the other inequality in a similar way. The proof is complete.

Remark 1.39. In fact, Step 3 in the above proof is often used in the viscosity solution theory
to get a bound of |xδ− yδ|. Another way, which is quicker in this situation, to bound |xδ− yδ|
is already hidden in Step 1. Indeed, we note that

Duε(xδ) =
xδ − yδ
α

+δDµ(xδ) =⇒
|xδ − yδ|
α

≤ |Duε(xδ)|+δ ≤ C ,

for δ ∈ (0,1). Thus, Step 3 is obtained.
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12 Rate of convergence of the vanishing viscosity process
for static problems via the nonlinear adjoint method

12.1 General nonconvex Hamiltonians

We consider the same situation like in the previous section. We are interested in the van-
ishing viscosity procedure for the usual static problem

u(x) +H(x , Du(x)) = 0 in Rn. (1.50)

For each ε > 0, we consider

uε(x) +H(x , Duε(x)) = ε∆uε(x) in Rn. (1.51)

We aim at proving ‖uε − u‖L∞(Rn) ≤ C
p
ε by a different method via the nonlinear adjoint

method to be described soon. Here is the assumption that we require, which is quite similar
to (1.27)







H ∈ C∞(Rn ×Rn), H ∈ BUC (Rn × B(0, R)) for each R> 0,

|Dx H(x , p)| ≤ C(1+ |p|) for all (x , p) ∈ Rn ×Rn,

lim|p|→∞
H(x ,p)
|p| =∞ uniformly for x ∈ Rn,

(1.52)

for some given C > 0.

Then, by Bernstein’s method, (1.51) has a unique smooth solution uε, and there is a constant
C > 0 independent of ε ∈ (0, 1) such that

‖uε‖L∞(Rn) + ‖Duε‖L∞(Rn) ≤ C .

Everything is set for us to study the convergence rate of uε to u.

Let us now give a gentle introduction to the nonlinear adjoint method. For ε > 0, consider
the following operator

F ε : C2(Rn) −→ C(Rn)
ϕ(x) 7−→ F ε[ϕ](x) = ϕ(x) +H(x , Dϕ(x))− ε∆ϕ(x).

Then from (1.51), we have F ε[uε] = 0. The linearized operator Lε of F ε about the solution
uε is defined as, for ϕ ∈ C∞c (R

n),

Lε[ϕ] = lim
t→0

F ε[uε + tϕ]− F ε[uε]
t

,

which gives
Lε[ϕ](x) = ϕ(x) + DpH(x , Duε(x)) · Dϕ(x)− ε∆ϕ(x).

We denote by (Lε)∗ the adjoint operator of Lε, which means
∫

Rn

Lε[ϕ]σ d x =

∫

Rn

(Lε)∗[σ]ϕ d x for all σ ∈ C∞c (R
n).
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By integration by parts,
∫

Rn

Lε[ϕ]σ d x =

∫

Rn

�

ϕ + DpH(x , Duε) · Dϕ − ε∆ϕ
�

σ d x

=

∫

Rn

�

σ− div
�

DpH(x , Duε)σ
�

− ε∆σ
�

ϕ d x =

∫

Rn

(Lε)∗[σ]ϕ d x .

Thus,
(Lε)∗[σ] = σ− div

�

DpH(x , Duε)σ
�

− ε∆σ.

Based on the adjoint operator (Lε)∗, we consider the following adjoint equation: For each
x0 ∈ Rn,

σε − div (DpH(x , Duε)σε)− ε∆σε = δx0
in Rn. (1.53)

Here, δx0
is the Dirac delta at x0. Let σε be the unique solution to (1.53), which is basically

its fundamental solution. Then, we have the following properties.

1. σε ∈ C∞(Rn\{x0}),

2. σε > 0 in Rn \ {x0},

3.
∫

Rn σ
ε d x = 1.

Equation (1.53), introduced by Evans [50], Tran [131], is a new object in the study of viscos-
ity solutions. The goal now is to find new estimates by doing various kinds of linearizations
to the PDE (1.51), and then integrating by parts with σε.

Lemma 1.40. Assume (1.52). For each ε ∈ (0,1), let uε be the unique smooth solution to
(1.51), and let σε be the unique solution to (1.53) for fixed x0 ∈ Rn. Then, there exists a
constant C independent of ε such that

ε

∫

Rn

|D2uε|2σε d x ≤ C . (1.54)

Proof. Let ϕ = 1
2 |Duε|2. By doing computations similar to these in the classical Bernstein

method, we obtain from (1.51) that

2ϕ + Dx H(x , Duε) · Duε + DpH(x , Duε) · Dϕ = ε∆ϕ − ε|D2uε|2.

By the Bernstein method, 2ϕ = |Duε|2 ≤ C , thus from the assumption that |Dx H(x , p)| ≤
C(1+ |p|), we get

�

ϕ + DpH(x , Duε) · Duε − ε∆ϕ
�

+ ε|D2uε|2 = −
�

ϕ + Dx H(x , Duε) · Duε
�

︸ ︷︷ ︸

bounded

.

Multiplying both sides by σε, and taking integration over Rn to obtain
∫

Rn

�

ϕ + DpH(x , Duε)Duε − ε∆ϕ
�

σε d x + ε

∫

Rn

|D2uε|2σε d x

= −
∫

Rn

�

ϕ + Dx H(x , Duε)Duε
�

σε d x ≤ C .
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Using the adjoint equation, we obtain
∫

Rn

�

σε − div
�

DpH(x , Duε)σε
�

− ε∆σε
�

︸ ︷︷ ︸

δx0

ϕ d x + ε

∫

Rn

|D2uε|2σε d x ≤ C .

Thus,

ε

∫

Rn

|D2uε|2σε d x ≤ C −ϕ(x0)≤ C .

The proof is complete.

Remark 1.41. It is important noting that (1.54) is one of the new key estimates in the
development of the nonlinear adjoint method. Originally, if we look at (1.51), we are only
able to get that ε|∆uε| ≤ C , which means that |∆uε| ≤ O(1

ε ) in Rn. The new estimate
(1.54) gives better control of D2uε on the support of σε, where we have, roughly speaking,
|D2uε| ≤ O( 1p

ε
). This turns out to be quite useful in various situations.

We are ready to state and prove our rate of convergence result.

Theorem 1.42. Assume that H satisfies (1.52). For each ε ∈ (0,1), let uε be the unique
smooth solution to (1.51). Let u be the unique Lipschitz viscosity solution of (1.50). Then,
there exists a constant C > 0 independent of ε ∈ (0,1) such that

‖uε − u‖L∞(Rn) ≤ C
p
ε. (1.55)

Proof. We have that ε 7→ uε is smooth for ε > 0. Let us differentiate (1.51) with respect to
ε to get

uε
ε
+ DpH(x , Duε) · Duε

ε
=∆uε + ε∆uε

ε
.

Here, we write uε
ε
= ∂ uε

∂ ε . In terms of the linearized operator Lε, we can rewrite the above
equation as

Lε[uε
ε
] =∆uε =⇒

∫

Rn

Lε[uε
ε
]σε d x =

∫

Rn

∆uεσε d x

=⇒ uε
ε
(x0) =

∫

Rn

(Lε)∗ [σε]uε
ε

d x =

∫

Rn

∆uεσε d x .

Now using Lemma 1.40 and Hölder’s inequality, we obtain

�

�uε
ε
(x0)

�

�=

�

�

�

�

∫

Rn

∆uεσε d x

�

�

�

�

≤
�∫

Rn

|∆uε|2σε d x

�
1
2
�∫

Rn

σε d x

�
1
2

≤ C

�∫

Rn

|D2uε|2σε d x

�
1
2

≤
C
p
ε

.

The above inequality yields

|uε(x0)− u(x0)|=
�

�

�

�

∫ ε

0

∂ uδ(x0)
∂ δ

dδ

�

�

�

�

≤ C

∫ ε

0

C
p
δ

dδ = C
p
ε

by the fundamental theorem of calculus.
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12.2 Uniformly convex Hamiltonians

Next, we show that in the case where H is uniformly convex in p, then we have some further
estimates. In addition to (1.52), we assume that

¨

D2
ppH(x , p)≥ θ In for all (x , p) ∈ Rn ×Rn,

D2
x x H, D2

x pH, D2
ppH ∈ BUC (Rn × B(0, R)) for each R> 0,

(1.56)

for some given θ > 0. Here, In is the identity matrix of size n.

Theorem 1.43. Assume that H satisfies (1.52) and (1.56). Let r ∈ C∞c (R
n, [0,∞)) such

that
∫

Rn r(x) d x = 1. For each ε ∈ (0,1), let uε be the unique smooth solution to (1.51).
Let u be the unique Lipschitz viscosity solution of (1.50). Then, there exists a constant C > 0
independent of ε ∈ (0,1) such that, for every y ∈ Rn,

�

�

�

�

∫

Rn

(uε(x)− u(x))r(x + y) d x

�

�

�

�

≤ C
�

1+ ‖Dr‖L1(Rn)

�
1
2 ε. (1.57)

Before proving this theorem, let us give a new estimate in this uniformly convex setting.
For this case, we consider the following adjoint equation: For each y ∈ Rn, let σε be the
solution to

σε − div (DpH(x , Duε)σε)− ε∆σε = r(·+ y) in Rn. (1.58)

Note that we abuse the notions here as we use the same σε in (1.53) and (1.58). It is clear
that σε satisfies

1. σε ∈ C∞(Rn, (0,∞)),

2.
∫

Rn σ
ε d x = 1.

Lemma 1.44. Assume the settings in Theorem 1.43. Then, there exists a constant C > 0
independent of ε so that

∫

Rn

|D2uε|2σε d x ≤ C
�

1+ ‖Dr‖L1(Rn)

�

. (1.59)

Proof. Differentiate (1.51) twice with respect for x i for 1≤ i ≤ n to obtain

uεx i x i
+ DpH(x , Duε) · Duεx i x i

+Hx i x i
+ 2Hx i pk

uεx i xk
+Hpk pl

uεx i xk
uεx i x l

= ε∆uεx i x i
.

Thanks to (1.56),

Hpk pl
uεx i xk

uεx i x l
≥ θ |Duεx i

|2 and 2
�

�

�Hx i pk
uεx i xk

�

�

�≤
θ

2
|Duεx i

|2 + C .

Thus,

Lε[uεx i x i
] +
θ

2
|Duεx i

|2 ≤ C .

Multiply the above by σε and integrate to yield

θ

2

∫

Rn

|Duεx i
|2σε d x ≤ C −

∫

Rn

uεx i x i
(x)r(x + y) d x

= C +

∫

Rn

uεx i
(x)rx i

(x + y) d x ≤ C
�

1+ ‖Dr‖L1(Rn)

�

.

Sum the above inequality over i to complete the proof.
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We are now ready to prove Theorem 1.43.

Proof of Theorem 1.43. We proceed as in the first part of the proof of Theorem 1.42. We
have that ε 7→ uε is smooth for ε > 0. Differentiate (1.51) with respect to ε to get

uε
ε
+ DpH(x , Duε) · Duε

ε
=∆uε + ε∆uε

ε
.

Recall that uε
ε
= ∂ uε

∂ ε . In terms of the linearized operator Lε, we can rewrite the above
equation as

Lε[uε
ε
] =∆uε.

Multiply this by σε and integrate by parts, one has

�

�

�

�

∫

Rn

uε
ε
(x)r(x + y) d x

�

�

�

�

=

�

�

�

�

∫

Rn

∆uεσε d x

�

�

�

�

≤
�∫

Rn

|∆uε|2σε d x

�
1
2
�∫

Rn

σε d x

�
1
2

≤ C

�∫

Rn

|D2uε|2σε d x

�
1
2

≤ C
�

1+ ‖Dr‖L1(Rn)

�
1
2

We then use the fundamental theorem in calculus to deduce that

�

�

�

�

∫

Rn

(uε(x)− u(x))r(x + y) d x

�

�

�

�

=

�

�

�

�

∫ ε

0

∫

Rn

∂ uδ(x)
∂ δ

r(x + y) d xdδ

�

�

�

�

≤ C
�

1+ ‖Dr‖L1(Rn)

�
1
2 ε.

The proof is complete.

It is clear that (1.57) gives a better rate of convergence O(ε) compared to the rate O(
p
ε) in

(1.55). One technical point here that we would like to address is that (1.57) is an average
estimate, not a pointwise one like (1.55). This comes from the fact that in order to control
∫

Rn uεx i x i
(x)r(x + y) d x , we need to use integration by parts and ‖Dr‖L1(Rn). Nevertheless,

(1.57) is a natural estimate that one would expect in the uniformly convex setting.

12.3 Problems

Exercise 18. Give another proof of Theorem 1.42 by using directly the usual maximum prin-
ciple (without using the nonlinear adjoint method) for

ψ=
p
εuε
ε
+ |Duε|2.

Exercise 19. In the general nonconvex setting, is the convergence rate O(
p
ε) of uε to u in

Theorem 1.42 optimal?

Exercise 20. Is the convergence rate O(ε) in (1.57) of Theorem 1.43 optimal in the uniformly
convex setting?
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13 References

1. There have been many great textbooks in the study of viscosity solutions for Hamilton–
Jacobi equations written by Bardi and Capuzzo-Dolcetta [13], Barles [16], Cannarsa,
Sinestrari [26], Chapter 10 of Evans [49], Fabbri, Gozzi, Swiech [56], Fleming and
Soner [63], Isaacs [81], Koike [96], Lions [101], Melikyan [114]. Besides, the user’s
guide written by Crandall, Ishii, and Lions [38] is used extensively in the literature
for second-order equations.

2. Besides these books, there are many interesting lecture notes available. Let me list
few representative ones: Bressan [22], Calder [25], Crandall [36], Le, Mitake, Tran
[100].

3. The level set method was first introduced numerically by Osher, Sethian [122]. The
rigorous treatment was developed later by Evans, Spruck [55] and Chen, Giga, Goto
[32], independently. See the textbook of Giga [68] and the references therein for the
developments of this direction.

4. The G-equation is quite popular in the combustion science literature: see Markstein
[111], Sivashinsky [126], Yakhot [136], and Denet [43]. We refer the readers to
Cardaliaguet, Nolen, Souganidis [30], Xin, Yu [135], and Liu, Xin, Yu [106] for some
recent important mathematical developments.

5. Evans [46] first used the Minty trick to study the vanishing viscosity method and
gave first definitions of possibly weak solutions. Crandall and Lions [39] proved the
uniqueness of viscosity solutions to (1.1), thus, established the firm foundation for the
theory of viscosity solutions to first-order equations. In the literature, people often
call “the Crandall–Lions theory of viscosity solutions". The key new idea introduced
by Crandall and Lions is the doubling variables method, which was inspired by an
idea of Kružkov [98] in scalar conservation laws. Crandall and Lions chose the name
“viscosity solutions" in honor of the vanishing viscosity technique. See also Friedman
[65] for the vanishing viscosity process. We do not discuss the well-posedness of
second-order equations here.

6. Ishii [82] introduced the Perron method to the theory of viscosity solutions, and since
then, it has been used extensively in the literature to establish existence of viscosity
solutions. The advantage of this approach is that one does not need to go through the
vanishing viscosity method to get existence of solutions.

7. The nonlinear adjoint method was introduced first by Evans [50] to study the gradient
shock structures of Cauchy problem for nonconvex Hamiltonians. The static cases
were studied by Tran [131]. The result in Theorem 1.43 is new in the literature
although the ideas in its proof are already in [50, 131]. Recently, this method has
been developed much further to study large time behaviors, selection problems, and
dynamical properties of solutions to Hamilton–Jacobi equations in the convex setting.
For this, see the lecture notes by Le, Mitake, Tran [100]. We will employ this approach
later on in the study of weak KAM theory.
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8. For fundamental solutions of elliptic equations, see Littman, Stampacchia, Weinberger
[105]. For fundamental solutions of parabolic equations, see Chapter 1 of Friedman
[64].

9. We do not discuss viscosity solutions to boundary value problems here. See Appendix
(Section 4) for some very brief discussions on this.

10. We do not discuss weak Bernstein’s method, which is applicable directly to viscosity
solutions here. See Barles [15], Armstrong, Tran [5], and the references therein.
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CHAPTER 2
First-order Hamilton–Jacobi

equations with convex
Hamiltonians

Let H = H(x , p) : Rn×Rn→ R be a given Hamiltonian. Throughout this whole chapter, we
always assume that p 7→ H(x , p) is convex for any given x ∈ Rn. Usually, x represents the
spatial variable (location), and p represents the momentum variable of a moving particle
in Rn. One important remark on the convexity assumption is that it is actually “one-sided"
linearity. For each fixed x ∈ Rn, we can always write

H(x , p) = sup
α∈Ax

{aα(x) · p+ bα(x)} ,

where Ax is the collection of all planes p 7→ aα(x) · p+ bα(x) lie under the graph of H(x , ·).

1 Introduction to the optimal control theory

Example 2.1 (Classical mechanics Hamiltonian). In this case, we assume that the mass of
the particle is 1 (m= 1), and

H(x , p) =
1
2
|p|2 + V (x) for all (x , p) ∈ Rn ×Rn.

Basically, 1
2 |p|

2 is the kinetic energy, and V (x) is the potential energy. It is not hard to check
that

H(x , p) = sup
q∈Rn

§

p · q−
1
2
|q|2 + V (x)

ª

.

The infinite horizon problem. Let us consider the following ODE, which represents the
path of a moving person (or a particle)

¨

γ′(t) = b(γ(t), v(t)) t > 0,

γ(0) = x .
(2.1)

Here, we put the following assumptions.
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• V is a given compact metric space, which is the control set.

• The vector field b is a map b : Rn × V → Rn such that







b ∈ C(Rn × V ),
|b(x , v)| ≤ C for all (x , v) ∈ Rn × V,

|b(x1, v)− b(x2, v)| ≤ C |x1 − x2| for all x1, x2 ∈ Rn, v ∈ V,

for some C > 0.

• Every control v(·) is a measurable map v : [0,∞)→ V . In principle, we are able to
change this control as we wish.

Under the above assumptions, the ODE (2.1) has a unique solution, which is denoted by
yx ,v(·)(·). We write yx ,v(·)(·) to emphasize that the path starts at x with the control v(·). For
simplicity, we write yx(·) instead of yx ,v(·)(·) if there is no confusion. By being a solution to
(2.1) here, we mean that

yx(t) = x +

∫ t

0

b(yx(s), v(s)) ds for all t ≥ 0.

We have the following lemma about the Lipschitz property of the trajectory.

Lemma 2.1. The following claims hold.

(a) For t, s ≥ 0,
�

�yx ,v(·)(t)− yx ,v(·)(s)
�

�≤ C |t − s|.

(b) Let v(·) be a control, and yx(·), yz(·) are corresponding trajectories starting from x, z,
respectively. Then,

|yx(t)− yz(t)| ≤ eC t |x − z| for all t > 0.

Proof. Claim (a) is obvious. To prove (b), we define ϕ(s) = yx(s) − yz(s) for s ≥ 0.
Then, the Lipschitz continuity of b in the first variable gives |ϕ′(s)| ≤ C |ϕ(s)| for s ≥ 0. In
particular, for any t > 0,

|ϕ(t)|=

�

�

�

�

�

ϕ(0) +

∫ t

0

ϕ′(s) ds

�

�

�

�

�

≤ |ϕ(0)|+
∫ t

0

|ϕ′(s)| ds ≤ |x − z|+ C

∫ t

0

|ϕ(s)| ds.

By Gronwall’s inequality, we obtain

|ϕ(t)|= |yx(t)− yz(t)| ≤ eC t |x − z| for all t > 0,

and the proof is complete.
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Cost functional. Fix λ > 0. For a given path (yx(·), v(·)) of (2.1) we define the cost
functional

J(x , v(·)) =
∫ ∞

0

e−λs f (yx(s), v(s)) ds.

Here, f : Rn × V → R is the running cost function, which satisfies







f ∈ C(Rn × V ),
| f (x , v)| ≤ C for all (x , v) ∈ Rn × V,

| f (x1, v)− f (x2, v)| ≤ C |x1 − x2| for all x1, x2 ∈ Rn, v ∈ V,

for some C > 0.

The term e−λs is called the discount factor. Technically, the discount factor helps to keep
∫∞

0
e−λs f (yx(s), v(s)) ds finite as f is only bounded. More importantly, as we will see, this

discount factor gives the appearance of the term λu in the static equation (2.3).

Main question. How to minimize the cost functional J(x , v(·)) among all possible controls
v(·)? This type of questions appears a lot in Calculus of Variations. We define the cost value
function as following. For x ∈ Rn, set

u(x) = inf
v(·)

J(x , v(·)). (2.2)

Basically, u(x) is the minimum cost we must pay if we start at x . We now only study the
cost function u, and ignore the underlying dynamics.

The following result is one of our main aims in this chapter.

Theorem 2.2. Let u be defined as in (2.2). Then u is the unique viscosity solution to the
following static equation

λu+H(x , Du) = 0 in Rn. (2.3)

Here, the Hamiltonian H : Rn ×Rn→ R is determined by

H(x , p) = sup
v∈V

�

− b(x , v) · p− f (x , v)

�

. (2.4)

In order to prove the above theorem, we will obtain the following important identity for the
value function u, whose proof is provided in the next section.

Dynamic Programming Principle (DPP). For any x ∈ Rn and t > 0, we have

u(x) = inf
v(·)

�∫ t

0

e−λs f (yx ,v(·)(s), v(s)) ds+ e−λtu(yx ,v(·)(t))

�

.

We summarize some useful properties of H defined in (2.4) in the following theorem.

Theorem 2.3. Let H be defined as in (2.4). Then,

(a) H ∈ C(Rn ×Rn), and p 7→ H(x , p) is convex for each x ∈ Rn.
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(b) There exists C > 0 such that, for all x , y, p, q ∈ Rn,

¨

|H(x , p)−H(x , q)| ≤ C |p− q|,
|H(x , p)−H(y, p)| ≤ C(1+ |p|)|x − y|.

Proof. For v ∈ V , let us denote Hv(x , p) = −b(x , v) · p − f (x , v) for all (x , p) ∈ Rn × Rn.
Then, H(x , p) = supv∈V Hv(x , p), and of course, H is convex in p.

Next, for (x , p), (z, q) ∈ Rn ×Rn, one has

|Hv(x , p)−Hv(z, q)|=
�

�

�

b(x , v)− b(z, v)
�

· p+ b(z, v) ·
�

p− q
�

+ f (x , v)− f (z, v)
�

�

≤ C |p| · |x − z|+ C |p− q|+ C |x − z|.

Thus,
|H(x , p)−H(z, q)| ≤ C

�

1+ |p|
�

|x − z|+ C |p− q|.

The proof is complete.

2 Dynamic Programming Principle

Let us recall quickly our setting. For each control v(·) and starting point x ∈ Rn, the corre-
sponding ODE is

¨

y ′x(t) = b(yx(t), v(t)) t > 0,

yx(0) = x .
(2.5)

Then, the value function u is defined as

u(x) = inf
v(·)

J(x , v(·)) = inf
v(·)

∫ ∞

0

e−λs f (yx(s), v(s)) ds.

Remark 2.4. It is worth emphasizing a difference between PDE and dynamical system view-
points here.

• Dynamical system viewpoint: understand the behavior of minimizing paths.

• PDE viewpoint: forget about the underlying dynamics, only look at the value function
u, and find out a PDE that u solves.

Before finding the PDE which u solves, we prove the Dynamic Programming Principle first.

Theorem 2.5 (Dynamic Programming Principle (DPP)). Let u be defined as in (2.2). For any
x ∈ Rn and t > 0, we have

u(x) = inf
v(·)

�∫ t

0

e−λs f (yx(s), v(s)) ds+ e−λtu(yx(t))

�

. (2.6)
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Proof. Fix x ∈ Rn and t > 0. For each control v(·), let γ(·) = yx ,v(·) be the solution to

¨

γ′(s) = b(γ(s), v(s)) s > 0,

γ(0) = x .

Denote by η(s) = γ(s+ t), ṽ(s) = v(s+ t) for s ≥ 0. Then ṽ is an admissible control, and η
solves

¨

η′(s) = b(η(s), ṽ(s)) s > 0,

η(0) = γ(t).

We easily deduce the following formula

J(x , v(·)) =
∫ t

0

e−λs f (γ(s), v(s)) ds+ e−λt J
�

γ(t), ṽ(·)
�

≥
∫ t

0

e−λs f (γ(s), v(s)) ds+ e−λtu(γ(t)).

Taking inf over all controls v(·), by definition of u(x), we obtain LHS≥ RHS in (2.6).

Conversely, with the previous control v(·) we have chosen at the beginning of the proof,
given any ε > 0, let w(·) be a control such that

u(γ(t))> J(γ(t), w(·))− ε =
∫ ∞

0

e−λs f
�

yγ(t),w(·)(s), w(s)
�

ds− ε.

Our goal is connect two controls v(·) from [0, t] with w(·) on [t,∞) to form a new control.
Let us define z = yx ,v(·)(t) = γ(t), and

¨

v∗(s) = v(s) if s ∈ [0, t],
v∗(s) = w(s− t) if s ∈ [t,∞).

See Figure 2.1. Then, by the uniqueness of solution of (2.5), it is clear that

¨

yx ,v∗(·)(s)≡ yx ,v(·)(s) for all s ∈ [0, t],
yx ,v∗(·)(s)≡ yz,w(·)(s− t) for all s ∈ [t,∞).

Notice that
∫ t

0

e−λs f (yx ,v(·)(s), v(s)) ds =

∫ t

0

e−λs f (yx ,v∗(·)(s), v∗(s)) ds,

and

e−λtu(yx ,v(·)(t))≥ e−λt

∫ ∞

0

e−λs f
�

yγ(t),w(·)(s), w(s)
�

ds− e−λtε

=

∫ ∞

t

e−λζ f
�

yx ,v∗(·)(ζ), v∗(ζ)
�

dζ− e−λtε.
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Figure 2.1: Connecting two controls v(·) and w(·) to form a new control v∗(·).

Thus, by combining these facts, we obtain
∫ t

0

e−λs f (yx ,v(·)(s), v(s)) ds+ e−λtu(yx ,v(·)(t))≥
∫ ∞

0

e−λs f
�

yx ,v∗(·)(s), v∗(s)
�

ds− e−λtε

≥ u(x)− e−λtε.

Taking inf over all control v(·) we obtain RHS≥ LHS− e−λtε. Since this is true for all ε > 0,
we deduce that RHS≥ LHS, and the proof is complete.

Remark 2.6. It is worth noting that we require here that V is a compact metric space, and
b(x , v), f (x , v) are continuous, bounded, and Lipschitz in x . In particular, H is convex, and
has linear growth in p.
For example, if V = B(0, 1) ⊂ Rn, and b(x , v) = v, f (x , v) = f (x) for all (x , v) ∈ Rn × V
with f ∈ BUC (Rn), then

H(x , p) = sup
v∈B(0,1)

[−v · p− f (x)] = |p| − f (x).

We will come back to discuss this point, and relate the story between Lipschitz regularity of
the viscosity solution and compactness of V .

Remark 2.7. Why DPP is good?

• Using DPP, we can find the corresponding PDE for u(x).

• Using DPP, we are able to derive some first results on the regularity of u(x).

Theorem 2.8 (Regularity of the value function based on DPP). Let u be defined as in (2.2).
Setλ0 = ‖Dx b(·, ·)‖L∞(Rn×V ). Then, ‖u‖L∞(Rn) ≤

C
λ . Furthermore, we have the following results.

(a) If λ > λ0, then u ∈ C0,1(Rn) = Lip(Rn)∩ BUC (Rn).

(b) If λ= λ0, then u ∈ C0,α(Rn) for any 0< α < 1.

(c) If 0< λ < λ0, then u ∈ C0, λλ0 (Rn).

In particular, in all cases, u ∈ BUC (Rn).

The proof of this theorem is rather clear and interesting, and we leave it as an exercise for
the readers.
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2.1 Problems

Exercise 21. Prove Theorem 2.8 by using (2.6).

3 Static Hamilton–Jacobi equation for the value function

Let us recall the definition of the value function u. For x ∈ Rn,

u(x) = inf
v(·)

∫ ∞

0

e−λs f
�

yx ,v(·)(s), v(s)
�

ds.

Besides, the Dynamic Programming Principle (DPP) reads

u(x) = inf
v(·)

�∫ t

0

e−λs f
�

yx ,v(·)(s), v(s)
�

ds+ e−λtu
�

yx ,v(·)(t)
�

�

.

Remark 2.9. Recall that Theorem 2.8 gives us that u ∈ BUC (Rn). This enables us to fit u
well into the theory of continuous viscosity solutions.

Theorem 2.10. The value function u is a viscosity solution of the following static Hamilton–
Jacobi equation

λu+H(x , Du) = 0 in Rn, (S)

where, for (x , p) ∈ Rn ×Rn,

H(x , p) = sup
v∈V

�

− b(x , v) · p− f (x , v)

�

.

Proof. We divide the proof into two steps.

SUBSOLUTION TEST. Let ϕ ∈ C1(Rn) such that u−ϕ has a strict maximum at x0 ∈ Rn, and
u(x0) = ϕ(x0). Our goal is to show that

λu(x0) +H
�

x0, Dϕ(x0)
�

≤ 0. (2.7)

Pick a control v(·), and let γ(·) = yx0,v(·)(·) be the solution to γ′(s) = b(γ(s), v(s)) with
γ(0) = x0. For every t > 0 since u(γ(t))≤ ϕ(γ(t)), by DPP, we have

ϕ
�

γ(0)
�

= u(x0)≤
∫ t

0

e−λs f
�

γ(s), v(s)
�

ds+ e−λtu
�

γ(t)
�

≤
∫ t

0

e−λs f
�

γ(s), v(s)
�

ds+ e−λtϕ
�

γ(t)
�

.

By the fundamental theorem of calculus for s 7→ e−λsϕ(γ(s)), the above can be written as

−
∫ t

0

d
ds

�

e−λsϕ
�

γ(s)
�

�

ds = ϕ(γ(0))− e−λtϕ
�

γ(t)
�

≤
∫ t

0

e−λs f
�

γ(s), v(s)
�

ds,

which is equivalent to
∫ t

0

e−λs

�

λϕ(γ(s)) +
�

− b
�

γ(s), v(s)) · Dϕ(γ(s)
�

− f
�

γ(s), v(s)
�

�

�

ds ≤ 0.
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This holds for every control v(·) and every t > 0. Now pick the control v(·) ≡ v to be
constant for all time for some v ∈ V , then the above formula gives

1
t

∫ t

0

e−λs

�

λϕ(γ(s)) +
�

− b
�

γ(s), v) · Dϕ(γ(s)
�

− f
�

γ(s), v
�

�

�

ds ≤ 0.

Let t → 0+ to yield

λϕ(x0) +
�

− b(x0, v) · Dϕ(x0)− f (x0, v)
�

≤ 0.

Taking sup over all v ∈ V in the above inequality to get (2.7).

SUPERSOLUTION TEST. Let ψ ∈ C1(Rn) such that u −ψ has a strict minimum at x0 ∈ Rn,
and u(x0) =ψ(x0). We aim at proving that

λu(x0) +H
�

x0, Dψ(x0)
�

≥ 0. (2.8)

We note first that, for any t > 0,

ψ(x0) = u(x0) = inf
v(·)

�∫ t

0

e−λs f
�

yx0,v(·)(s), v(s)
�

ds+ e−λtu
�

yx0,v(·)(t)
�

�

≥ inf
v(·)

�∫ t

0

e−λs f
�

yx0,v(·)(s), v(s)
�

ds+ e−λtψ
�

yx0,v(·)(t)
�

�

.

Therefore,

0 ≥ inf
v(·)

�∫ t

0

e−λs f
�

yx0,v(·)(s), v(s)
�

ds+ e−λtψ
�

yx0,v(·)(t)
�

−ψ
�

yx0,v(·)(0)
�

�

= − sup
v(·)

Kt[v(·)],

where

Kt[v(·)]

=

∫ t

0

e−λs

�

λψ
�

yx0,v(·)(s)
�

+
�

−b
�

yx0,v(·)(s), v(s)
�

· Dψ
�

yx0,v(·)(s)
�

− f
�

yx0,v(·)(s), v(s)
��

�

ds

≤
∫ t

0

e−λs

�

λψ
�

yx0,v(·)(s)
�

+H
�

yx0,v(·)(s), Dψ
�

yx0,v(·)(s)
�

�

�

ds.

By Lemma 2.1, for any control v(·), one has
�

�yx0,v(·)(t)− x0

�

�≤ C t. (2.9)

Thus, for s ∈ [0, t],
�

�ψ
�

yx0,v(·)(s)
�

−ψ(x0)
�

�≤ C
�

�yx0,v(·)(s)− x0

�

�≤ Cs ≤ C t,

and similarly,
�

�H
�

yx0,v(·)(s), Dψ(yx0,v(·)(s))
�

−H(x0, Dψ(x0))
�

�≤ Cs ≤ C t
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as well. Hence,

Kt[v(·)]≤
∫ t

0

e−λs

�

λψ
�

yx0,v(·)(s)
�

+H
�

yx0,v(·)(s), Dψ
�

yx0,v(·)(s)
�

�

�

ds

≤
∫ t

0

e−λs

�

λψ(x0) +H
�

x0, Dψ(x0)
�

�

ds+ C t

∫ t

0

e−λs ds.

Combine this with the above to deduce that

0≤ lim
t→0+

�

1
t

sup
v(·)

Kt[v(·)]
�

≤ lim
t→0+

�

1
t

∫ t

0

e−λs

�

λψ(x0) +H
�

x0, Dψ(x0)
�

�

ds+ C

∫ t

0

e−λs ds

�

= λψ(x0) +H
�

x0, Dψ(x0)
�

.

The proof is complete.

4 Legendre’s transform

We consider the Hamiltonian H(x , p) : Rn ×Rn→ R satisfying














H ∈ C1(Rn ×Rn), H ∈ BUC (Rn × B(0, R)) for each R> 0,

p 7→ H(x , p) is convex for all x ∈ Rn,

H is superlinear in p, that is, lim
|p|→∞

�

inf
x∈Rn

H(x , p)
|p|

�

= +∞.
(2.10)

It is clear that superlinearity is stronger than coercivity.

Example 2.2. Consider H(x , p) = |p|m + V (x) for all (x , p) ∈ Rn ×Rn where V ∈ BUC (Rn).
Then H is convex in p if and only if m≥ 1.

• If m> 1, then H is superlinear in p.

• If m= 1, then H has linear growth. It is coercive, but not superlinear in p.

• If m > 2, we say that H is superquadratic in p. And if m < 2, we say that H is sub-
quadratic in p. Of course, if m= 2, then H is quadratic in p.

Definition 2.11 (Legendre’s transform). For the Hamiltonian H : Rn×Rn→ R, we define its
Legendre’s transform H∗ = L : Rn ×Rn→ R as

L(x , v) = sup
p∈Rn

�

p · v −H(x , p)
�

.

Some further deep characterizations of the Legendre transform are given in Appendix.

Remark 2.12.

• In physics, we regard x as the position of a particle, and v as its corresponding velocity.
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• We need to check the above definition is well-defined, that is, L(x , v) is indeed finite.

Example 2.3. For the classical mechanics Hamiltonian

H(x , p) =
1
2
|p|2 + V (x) for all (x , p) ∈ Rn ×Rn,

we have

L(x , v) = sup
p∈Rn

�

p · v −H(x , p)
�

= sup
p∈Rn

�

p · v −
1
2
|p|2

�

− V (x)

= sup
p∈Rn

�1
2
|v|2 −

1
2
|p− v|2

�

− V (x) =
1
2
|v|2 − V (x).

Thus, H∗(x , v) = L(x , v) = 1
2 |v|

2 − V (x). It is worth noting that in this case, H is the total
energy, and L is the difference between kinetic energy and potential energy. We also observe
that H∗∗ = L∗ = H.

We now have the following important result on convex duality via Legendre’s transform.

Theorem 2.13. Assume that H satisfies (2.10). Then, the followings hold.

(i) L(x , v) is well-defined (finite), and v 7→ L(x , v) is convex and superlinear.

(ii) L∗ = H∗∗ = H.

In fact, the above theorem holds without the assumption that H ∈ C1(Rn×Rn). We just put
it there to simplify our proof.

Proof. Let us proceed step by step.

(i) Fix x , v ∈ Rn. Since H is superlinear in p, as |p| →∞, we have

p · v −H(x , p) = |p|
�

p · v
|p|
−

H(x , p)
|p|

�

→−∞,

which means that supp∈Rn

�

p ·q−H(x , p)
�

=maxp∈Rn

�

p ·q−H(x , p)
�

<∞. It is clear
that v 7→ L(x , v) is convex as it is a supremum of a family of affine functions in v.

Now, we prove that L is superlinear in v. For v 6= 0, choose p = s v
|v| , then for any

s > 0, we have

L(x , v) = sup
p∈Rn

�

p · v −H(x , p)
�

≥
�

s
v
|v|

�

· v −H
�

x , s
v
|v|

�

≥ s|v| −max
|p|≤s

H(x , p).

Thus, for any fixed s > 0,

lim inf
|v|→∞

L(x , v)
|v|

≥ s− limsup
|v|→∞

�

1
|v|

max
|p|≤s

H(x , p)
�

= s =⇒ lim
|v|→∞

L(x , v)
|v|

= +∞

uniformly for x ∈ Rn.
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(ii) We proceed to show that L∗ = H. Note that

L(x , v) = sup
p∈Rn

�

p · v −H(x , p)
�

≥ p · v −H(x , p) for any p ∈ Rn.

This implies
H(x , p) + L(x , v)≥ p · v for all x , p, q ∈ Rn. (2.11)

In particular,
H(x , p)≥ sup

v∈Rn
(p · v − L(x , v)) = L∗(x , p).

Thus H ≥ L∗. Conversely, we have

L∗(x , p) = sup
v∈Rn

�

p · v − L(x , v)
�

= sup
v∈Rn

�

p · v − sup
r∈Rn

�

r · v −H(x , r)
��

= sup
v∈Rn

inf
r∈Rn

�

(p− r) · v +H(x , r)
�

.

Thus
L∗(x , p)≥ inf

r∈R

�

H(x , r)− (r − p) · v
�

for all v ∈ Rn.

Pick v = DpH(x , p). By the convexity of H in p,

H(x , r)− (r − p) · v = H(x , r)− (r − p) · DpH(x , p)≥ H(x , p) for all r ∈ Rn.

Therefore, L∗ ≥ H. We conclude that L∗ = H∗∗ = H.

Remark 2.14. We have some further comments about the convexity of H and L.

• (2.11) is an important inequality in the convex duality between H and L.

• In case that H is not C1, we can always pick v ∈ Rn such that v ∈ D−p H(x , p) =
∂pH(x , p), which is the subgradient set of H in p at (x , p), in the last step of the above
proof to finish.

• By Radamacher’s theorem, as p 7→ H(x , p) is convex for each x ∈ Rn, H(x , ·) is also
locally Lipschitz, hence is differentiable almost everywhere.

• Furthermore, by Alexandrov’s theorem, for each x ∈ Rn, H(x , ·) is twice differentiable
almost everywhere.

4.1 Problems

Exercise 22. Compute the Legendre transform L(x , v) of the Hamiltonian H : Rn ×Rn → R,
where

H(x , p) =
|p|m

m
+ V (x) for all (x , p) ∈ Rn ×Rn.

Here, m≥ 1 and V ∈ BUC (Rn).

Exercise 23. Find out when the equality in (2.11) holds.
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5 The optimal control formula from the Lagrangian
viewpoint

5.1 New representation formula for the solution of the static
equation based on the Lagrangian

We have the duality between H and L as following
¨

p 7→ H(x , p) is convex,

H(x , p) is superlinear in p,

Legendre’s transform
←→

¨

v 7→ L(x , v) is convex,

L(x , v) is superlinear in v.
.

Recall that
H(x , p) = sup

v∈Rn
(p · v − L(x , v)).

When p 7→ H(x , p) is convex, we are able to use Legendre’s transform obtain the Lagrangian
L, and get another representation formula (still optimal control formula) for the unique
viscosity solution to the corresponding static equation. The new formula is defined in term
of the Lagrangian, and not in term of the controls.

Theorem 2.15. Fix λ > 0. Consider the following static Hamilton–Jacobi equation

λu+H(x , Du) = 0 in Rn (2.12)

Assume that the Hamiltonian H satisfies














H ∈ C2(Rn ×Rn), H ∈ BUC (Rn × B(0, R)) for each R> 0,

p 7→ H(x , p) is convex for all x ∈ Rn,

lim
|p|→∞

�

inf
x∈Rn

H(x , p)
|p|

�

= +∞.
(2.13)

Then, the following function is a viscosity solution of (2.12)

u(x) = inf

�∫ ∞

0

e−λs L
�

γ(s),−γ′(s)
�

ds : γ(0) = x ,γ′(·) ∈ L1([0, T]) for any T > 0

�

.

(2.14)

We skip the proof of this theorem for now as it follows the same lines as that of Theorem
2.10. It is in fact interesting to go through its proof to compare the differences.

Remark 2.16. Some points are worth to be mentioned here.

• Where are the controls in (2.14)? In this representation formula, the controls are
included in the Lagrangian L(x , v), and they are basically the admissible velocities
γ′(·) of admissible curves.

In fact, this is the optimal control setting where V = Rn, which is not compact, and

b(x , v) = v, f (x , v) = L(x ,−v) for all (x , v) ∈ Rn ×Rn.

• Under the dynamical system viewpoint, we are interested in finding the optimal paths
γ so that

u(x) =

∫ ∞

0

e−λs L
�

γ(s),−γ′(s)
�

ds.

The existence of such minimizers comes from Calculus of Variations.
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5.2 The representation formula for the solution of the Cauchy
problem based on the Lagrangian

Consider the usual Cauchy problem
¨

ut(x , t) +H(x , Du) = 0 in Rn × (0,∞),
u(x , 0) = u0(x) on Rn.

(2.15)

For the Hamiltonian H, we assume that it satisfies (2.13), that is,














H ∈ C2(Rn ×Rn), H ∈ BUC (Rn × B(0, R)) for each R> 0,

p 7→ H(x , p) is convex for all x ∈ Rn,

lim
|p|→∞

�

inf
x∈Rn

H(x , p)
|p|

�

= +∞.

For the initial data u0, we assume as usual that u0 ∈ BUC (Rn). As usual, let L be the
Legendre transform of H, that is,

L(x , v) = sup
p∈Rn
(p · v −H(x , p)) for all (x , v) ∈ Rn ×Rn.

Lemma 2.17 (Properties of L). Assume (2.13). Then, L also satisfies














L ∈ BUC (Rn × B(0, R)) for each R> 0,

v 7→ L(x , v) is convex for all x ∈ Rn,

lim
|v|→∞

�

inf
x∈Rn

L(x , v)
|v|

�

= +∞.

Besides, there exists C > 0 such that

|ξ| ≤ C for all ξ ∈ D−v L(x , 0), x ∈ Rn.

Proof. We only need to check the last claim. For each fix x ∈ Rn, let ξ ∈ D−v L(x , 0). Then
for all v ∈ Rn,

L(x , v)≥ L(x , 0) + ξ · v.

Consider only v ∈ Rn with |v|= 1 to yield

|ξ|= sup
|v|=1

ξ · v ≤ sup
|v|=1

L(x , v)− L(x , 0)≤ 2sup

�

|L(x , v)| : x ∈ Rn, |v| ≤ 1

�

≤ C .

Remark 2.18. Let us note that under assumption (2.13), we actually have furthermore that
L ∈ C2(Rn ×Rn). In particular, D−v L(x , v) = {Dv L(x , v)} for all (x , v) ∈ Rn ×Rn. As we do
not need to use this fact here, we skip it.

We are now ready to define the following value function, which is of finite horizon type.

Definition 2.19. For each (x , t) ∈ Rn × [0,∞), we denote by

u(x , t) = inf

�∫ t

0

L(γ(s),γ′(s)) ds+ u0(γ(0)) : γ(t) = x ,γ′(·) ∈ L1([0, t])

�

. (2.16)
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Remark 2.20. It is very important noticing that γ′(·) is integrable on [0, t] is equivalent
to the fact that γ(·) is absolutely continuous on [0, t]. Thus, the value function u(x , t) is
chosen as the infimum value of the above cost functional among all absolutely continuous
paths γ(·) with endpoint γ(t) = x .

Similarly to the static case, we have the following Dynamic Programming Principle (DPP).

Theorem 2.21 (Dynamic Programming Principle). The value function u defined above satis-
fies, for (x , t) ∈ Rn × (0,∞),

u(x , t) = inf

�∫ t

s

L(γ(r),γ′(r)) dr + u(γ(s), s) : γ(t) = x ,γ′(·) ∈ L1([0, t])

�

, (2.17)

for all 0≤ s ≤ t.

Proof. Fix 0 ≤ s ≤ t. Let ξ(·) be a path on [s, t] with ξ(t) = x and ξ′(·) ∈ L1([s, t]). Let
γ(·) be an arbitrary path on [0, s] with γ(s) = ξ(s) and γ′(·) ∈ L1([0, s]). Then, define
ζ : [0, t]→ Rn as

ζ(r) =

¨

γ(r) r ∈ [0, s],
ξ(r) r ∈ [s, t].

It is clear that ζ(t) = x and ζ′(·) ∈ L1([0, t]). By definition of u, we have

u(x , t)≤
∫ t

0

L(ζ(r),ζ′(r)) dr + u(ζ(0), 0)

=

∫ t

s

L(ξ(r),ξ′(r)) dr +

∫ s

0

L(γ(r),γ′(r)) dr + u(γ(0), 0)

Taking the infimum in the above over all paths γ on [0, s] with γ(s) = ξ(s) and γ′(·) ∈
L1([0, s]) to imply

u(x , t)≤
∫ t

s

L(ξ(r),ξ′(r)) dr + u(ξ(s), s).

Then, taking infimum over all path ξ on [s, t] to obtain

u(x , t)≤ inf

�∫ t

s

L(γ(r),γ′(r)) dr + u(γ(s), s) : γ(t) = x ,γ′(·) ∈ L1([0, t])

�

.

Conversely, let γ be a path with γ(t) = x and γ(·) ∈ L1([0, t]). We decompose γ into
γ1(·) = γ(·)|[0,s] and γ2(·) = γ(·)|[s,t]. Then,

∫ t

0

L(γ(r),γ′(r)) dr + u(γ(0), 0)

=

∫ t

s

L(γ2(r),γ
′
2(r)) dr +

∫ s

0

L(γ1(r),γ
′
1(r)) r + u(γ1(0), 0)

≥
∫ t

s

L(γ2(r),γ
′
2(r)) dr + u(γ2(s), s)

≥ inf

�∫ t

s

L(γ2(r),γ
′
2(r)) dr + u(γ2(s), s) : γ2(t) = x ,γ′2(·) ∈ L1([s, t])

�

.
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Taking infimum over all path γ in [0, t] we obtain

u(x , t)≥ inf

�∫ t

s

L(γ(r),γ′(r)) dr + u(γ(s), s) : γ(t) = x ,γ′(·) ∈ L1([0, t])

�

.

Theorem 2.22. Assume (2.13). Let u be defined as in (2.16). Then, u is a viscosity solution
to (2.15).

The proof is omitted here as it follows the same lines as that of Theorem 2.10 by using the
Dynamic Programming Principle (2.17). It is in fact an interesting exercise for interested
readers.

5.3 Problems

Exercise 24. Prove Theorem 2.22.

Exercise 25. Assume (2.13). Let L be the Legendre transform of H. Prove that

L ∈ C2(Rn ×Rn).

Exercise 26. Assume (2.13). Let L be the Legendre transform of H. Fix R > 0. Show that
there exists CR > 0 such that

L(x , v) = max
|p|≤CR

(p · v −H(x , p)) for all (x , v) ∈ Rn × B(0, R).

5.4 The Hopf–Lax formula

We now consider the spatially homogeneous Hamiltonian H(x , p) = H(p) for (x , p) ∈ Rn ×
Rn. Here, by spatially homogeneous H, we mean that it does not depend of the spatial
variable (location) x .
We assume here that







p 7→ H(p) is convex,

lim
|p|→∞

H(p)
|p|

= +∞.
(2.18)

Let L = L(v) : Rn→ R be the corresponding Lagrangian, that is, L = H∗. Then clearly,






v 7→ L(v) is convex,

lim
|v|→∞

L(v)
|v|
= +∞.

Theorem 2.23 (The Hopf–Lax formula). Assume (2.18). Let u be the viscosity solution to
¨

ut(x , t) +H(Du) = 0 in Rn × (0,∞),
u(x , 0) = u0(x) on Rn.

Here, the initial data u0 ∈ BUC (Rn). Then, u has the following representation formula. For
(x , t) ∈ Rn × (0,∞),

u(x , t) = inf
y∈Rn

n

t L
� x − y

t

�

+ u0(y)
o

=min
y∈Rn

n

t L
� x − y

t

�

+ u0(y)
o

. (2.19)
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Formula (2.19) is known as the celebrated Hopf–Lax formula.

Proof. Fix (x , t) ∈ Rn × (0,∞). For each y ∈ Rn, let us consider the path γ as the straight
line segment connecting (y, 0) with (x , t), that is,

γ(s) = y + s
� x − y

t

�

for all s ∈ [0, t].

The optimal control formula (2.16) gives

u(x , t)≤
∫ t

0

L(γ′(s)) ds+ u0(γ(0)) = t L
� x − y

t

�

+ u0(y),

and thus,

u(x , t)≤ inf
y∈Rn

n

t L
� x − y

t

�

+ u0(y)
o

.

On the other hand, if γ is any admissible path with γ(t) = x , then by Jensen’s inequality,
we get

L

�

1
t

∫ t

0

γ′(s) ds

�

≤
1
t

∫ t

0

L(γ′(s)) ds.

For γ(0) = y , notice that

∫ t

0

γ′(s) ds = γ(t)− γ(0) = x − y,

and hence,

t L
� x − y

t

�

+ u0(y)≤
∫ t

0

L(γ′(s)) ds+ u0(γ(0)).

From this we get

inf
y∈Rn

n

t L
� x − y

t

�

+ u0(y)
o

≤ u(x , t).

Therefore,

u(x , t) = inf
y∈Rn

n

t L
� x − y

t

�

+ u0(y)
o

.

Finally, as u0 ∈ BUC (Rn), and L is superlinear, it is clear that inf on the right hand side
above holds at a point y ∈ Rn.

Example 2.4. We give here some well-known examples in the literature.

• If H(p) = |p|2

2 for p ∈ Rn, then L(v) = |v|2
2 for v ∈ Rn. Then, the Hopf–Lax formula for

solution u reads

u(x , t) = inf
y∈Rn

�

|x − y|2

2t
+ u0(y)

�

=min
y∈Rn

�

|x − y|2

2t
+ u0(y)

�

.
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• In one dimension, let us consider the famous inviscid Burger equation

¨

vt(x , t) + v(x , t)vx(x , t) = 0 in R× (0,∞),
v(x , 0) = v0(x) on R.

Here, initial data v0 is nice enough. Note that

vt + vvx = 0 ⇐⇒ vt +
�

v2

2

�

x
= 0.

Take u so that v = ux , then

ux t +

�

(ux)2

2

�

x

= 0 =⇒ ut +
(ux)2

2
= C

for some constant C. Let C = 0. Then we are able to use the Hopf–Lax formula for u to
obtain the formula for v as

v(x , t) =
d

d x

�

inf
y∈R

�

|x − y|2

2t
+ u0(y)

��

.

Here, u0(y) =
∫ y

0
v0(x) d x for all y ∈ R. This formula for v turns out to be the Lax–

Oleinik formula.

5.5 First-order front propagation problem

Let us now recall the first-order front propagation problem that was discussed in Example
1.1. The corresponding equation reads

¨

ut(x , t) + a(x)|Du| = 0 in Rn × (0,∞),
u(x , 0) = u0(x) on Rn.

(2.20)

Here, we assume that a : Rn → R is a given continuous function, and there exist α,β > 0
such that

α≤ a(x)≤ β for all x ∈ Rn.

For the initial data u0, we assume as usual that u0 ∈ BUC (Rn).

It is clear in this case that the Hamiltonian H(x , p) = a(x)|p| for (x , p) ∈ Rn ×Rn is convex
and uniformly coercive, but is not superlinear in p. Of course, (2.13) does not hold here.
Nevertheless, we are still able to write down a representation formula for solution u of
(2.20) based on the Lagrangian/optimal control formulation.
The Lagrangian L(x , v) can be computed as following

L(x , v) = sup
p∈Rn
(p · v −H(x , p)) = sup

p∈Rn
(p · v − a(x)|p|)

=

¨

0 if |v| ≤ a(x),
+∞ if |v|> a(x).
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Although L is singular in the above, it is still convex in v. Then, in this setting, formula
(2.16) is rewritten as

u(x , t) = inf

�∫ t

0

L(γ(s),γ′(s)) ds+ u0(γ(0)) : γ(t) = x ,γ′(·) ∈ L1([0, t])

�

.

= inf
�

u0(γ(0)) : γ(t) = x , |γ′(s)| ≤ a(γ(s)) for a.e. s ∈ [0, t]
	

.

It turns out that this formula still gives the unique viscosity solution u to (2.20) as stated in
the following theorem.

Theorem 2.24. Let u be the unique viscosity solution to (2.20) with given conditions on a
and u0 as stated in this section. Then, u has the following representation formula, for (x , t) ∈
Rn × (0,∞),

u(x , t) =min
�

u0(γ(0)) : γ(t) = x , |γ′(s)| ≤ a(γ(s)) for a.e. s ∈ [0, t]
	

.

The proof of this theorem is left as an exercise. It is worth noting that, because of symmetry,
by defining η(s) = γ(t − s) for all s ∈ [0, t], we can also write that

u(x , t) =min
�

u0(γ(0)) : γ(t) = x , |γ′(s)| ≤ a(γ(s)) for a.e. s ∈ [0, t]
	

=min
�

u0(η(t)) : η(0) = x , |η′(s)| ≤ a(η(s)) for a.e. s ∈ [0, t]
	

.

We now give an immediate consequence of the above theorem.

Corollary 2.25. Assume a(x) = α for all x ∈ Rn for some given α > 0, and u0 ∈ BUC (Rn).
Then, the unique viscosity solution u to (2.20) has the following representation formula, for
(x , t) ∈ Rn × (0,∞),

u(x , t) =min{u0(y) : |y − x | ≤ αt}=min{u0(y) : y ∈ B(x ,αt)}.

Theorem 2.24 and Corollary 2.25 sometimes appear in the literature under the framework
of reachable sets in front propagations.

5.6 Problems

Exercise 27. Prove Theorem 2.24 by writing down its corresponding Dynamic Programming
Principle.

Exercise 28. Let us consider the first-order front propagation problem that was discussed in
Example 1.1. Assume a(x) = α for all x ∈ Rn for some given α > 0, and Γ0 = ∂ ([−1,1]n).
Use Corollary 2.25 to describe the behavior of {Γt}t≥0.

6 A further hidden structure of convex first-order
Hamilton–Jacobi equations

6.1 A characterization of subsolutions of convex first-order
Hamilton–Jacobi equations

Fix λ≥ 0. We consider the following usual static problem

λu+H(x , Du) = 0 in Rn. (2.21)
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We assume throughout this section that










H ∈ BUC (Rn × B(0, R)) for all R> 0,

p 7→ H(x , p) is convex for all x ∈ Rn,

lim
|p|→∞

inf
x∈Rn

H(x , p) = +∞.
(2.22)

Remark 2.26. Under (2.22), for λ > 0, we apply the Perron method (Theorem 1.26) to
imply that (2.21) has a unique Lipschitz viscosity solution u ∈ Lip (Rn). Of course, this
means that u is differentiable a.e. in Rn.
If λ = 0, (2.21) is not monotone in u anymore, then anything can happen. For example, if
H(x , p)> 0 for all (x , p) ∈ Rn×Rn, then (2.21) does not have any solution. It could be also
the case that (2.21) has infinitely many solutions, and we will discuss this point later in the
book.

We focus here on viscosity subsolutions, and let us recall the following example.

Example 2.5. Recall the eikonal equation in one dimension
¨

|u′(x)| = 1 in (0,1),
u(0) = u(1) = 0.

(2.23)

Of course, here, H(p) = |p|, and λ = 0. The following graph describes various a.e. solutions
to (2.23). As discussed in Exercise 1, such a.e. solutions are actually viscosity subsolutions.
This fact can be checked quickly in a geometric way as following. Take one such a.e. solution
u, whose graph consists of line segments of slopes ±1 and corners from below and above. There
is nothing to check at the corners from below as we cannot touch them from above by smooth
functions. For the corners from above, every function that touches it from above there has slope
between −1 and 1, and thus, the viscosity subsolution test is satisfied.
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0.2

0.4

0.6

0

1
2

Our goal now is to show that the above observation holds true for general convex cases.
The following result is due to Barron and Jensen [18].
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Theorem 2.27. Assume λ≥ 0, and H satisfies (2.22). Then, the following claims are equiva-
lent

(i) u ∈ Lip (Rn) is viscosity subsolution of (2.21).

(ii) u ∈ Lip (Rn) is an almost everywhere subsolution of (2.21).

Proof. The implication (i) =⇒ (ii) was already done earlier.
For the converse, we need to smooth u up and use stability results of viscosity subsolutions.
We use the convolution trick as following. Take η to be the standard mollifier, that is,

η ∈ C∞c (R
n, [0,∞)), supp(η) ⊂ B(0, 1),

∫

Rn

η(x) d x = 1.

For ε > 0, denote by ηε(x) = ε−nη
�

x
ε

�

for all x ∈ Rn. Set

uε(x) = (ηε ? u) (x) =

∫

Rn

ηε(x − y)u(y) d y =

∫

B(x ,ε)

ηε(x − y)u(y) d y for x ∈ Rn.

Then uε ∈ C∞(Rn), and uε → u locally uniformly as ε→ 0. Since u ∈ Lip (Rn) is an almost
everywhere subsolution of (2.21), we multiply ηε to both sides of (2.21) and integrate on
Rn to yield

λuε(x) +

∫

B(0,ε)

H(x − y, Du(x − y))ηε(y) d y ≤ 0

We need to fix x instead of x − y in H(x − y, Du(x − y)). Denote ωR to be the modulus of
continuity of H on Rn × B(0, R) where R= ‖Du‖L∞(Rn) + 1. Then, a.e. in B(0,ε), we have

�

�H(x − y, Du(x − y))−H(x , Du(x − y))
�

�≤ωR(|y|)≤ωR(ε).

This gives

0≥ λuε(x) +

∫

B(0,ε)

H(x − y, Du(x − y))ηε(y) d y

≥ λuε(x) +

∫

B(0,ε)

(H(x , Du(x − y))−ωR(ε))ηε(y) d y

≥ λuε(x) +H

�

x ,

∫

B(0,ε)

Du(x − y)ηε(y) d y

�

−ωR(ε)

= λuε(x) +H (x , Duε(x))−ωR(ε).

We used Jensen’s inequality in the last inequality above. So, for each ε > 0, uε is a classical
(smooth) subsolution to

λuε(x) +H (x , Duε(x))≤ωR(ε) in Rn.

We then let ε → 0 and use stability results of viscosity subsolutions to conclude that u is a
viscosity subsolution of (2.21).
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Remark 2.28. We have some further observations.

• Convolution with a standard mollifier is very important in the above proof, and to
nonlinear PDEs in general. Whenever we need to find smooth approximations, this
standard technique should be considered.

• We need some insights to deal with nonlinear terms, or terms with variable coefficients
when doing convolutions. Many times, we need to handle the differences, and it is
typically the case that certain commutator estimates appear naturally.

6.2 Characterization of viscosity solutions of convex first-order
Hamilton–Jacobi equations

We now focus on viscosity subsolutions to (2.21).

Theorem 2.29. Assume λ≥ 0, and H satisfies (2.22). Then, the following claims are equiva-
lent

(i) u ∈ Lip (Rn) is viscosity solution of (2.21).

(ii) u ∈ Lip (Rn), and for all x ∈ Rn, p ∈ D−u(x),

λu(x) +H(x , p) = 0.

Proof. First of all, we have some elementary observations.

• If p 7→ H(x , p) is convex, then so is p 7→ H(x ,−p).

• We have q ∈ D+v(x) if and only if −q = p ∈ D−u(x) where v = −u.

Assume first that u is a Lipschitz viscosity solution of (2.21). For x ∈ Rn and p ∈ D−u(x),
by supersolution test, λu(x) +H(x , p)≥ 0. We need to show that λu(x) +H(x , p) = 0.

As u is a Lipschitz a.e. solution of (2.21), by Rademacher’s theorem, for v = −u, we have

−λv(x) +H(x ,−Dv(x)) = 0 a.e. in Rn ⇐⇒ K(x , Dv(x)) = 0 a.e. in Rn,

where K(x , p) = −λv(x) + H(x ,−p) for (x , p) ∈ Rn ×Rn. It is clear that K satisfies (2.22).
Theorem 2.27 with λ = 0 concludes that v is a viscosity subsolution to K(x , Dv(x)) = 0.
The viscosity subsolution test implies

−p ∈ D+v(x) =⇒ K(x ,−p)≤ 0

=⇒ −λv(x) +H(x , p)≤ 0

=⇒ λu(x) +H(x , p)≤ 0 =⇒ λu(x) +H(x , p) = 0.

Conversely, if u ∈ Lip(Rn) such that for any x ∈ Rn and p ∈ D−u(x) then λu(x)+H(x , p) = 0,
then clearly by definition u is viscosity supersolution of (2.21). By Rademacher’s theorem
again, u is differentiable a.e. in Rn, and thus

λu(x) +H(x , Du(x)) = 0 for a.e. x ∈ Rn.

Theorem 2.27 implies automatically that u is a viscosity subsolution of (2.21), and the proof
is complete.
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Figure 2.2: p ∈ D+u(0), no need to test. Figure 2.3: p ∈ D−u(1/2), and |p|< 1.

Remark 2.30. We have few further comments for first-order convex Hamilton–Jacobi equa-
tions.

1. There is no need to test for the supergradients D+u(x) for x ∈ Rn. See Figure 2.2.

2. Criterion (ii) in Theorem 2.29 is quite important and useful. For example, we can use
it to study the eikonal equation in one dimension again as following.

¨

|u′(x)| = 1 in (−1,1),
u(1) = u(−1) = 0

.

It is clear that the function on the left u(x) = 1−|x | (Figure 2.2) is the unique solution
to the above. Besides, the function on the right (Figure 2.3) is not a solution as it fails
(ii) at x = 1/2.

3. Theorems 2.27 and 2.29 only hold true for first-order equations in general. The similar
results do not hold for second-order case. We will address this in an exercise later. For
now, technically, we can see it as following. Let us consider

H(x , Du(x))−∆u(x) = 0 in Rn.

This is an elliptic type problem with max principle. If we let v = −u, then v solves

H(x ,−Dv(x)) +∆v(x) = 0 in Rn,

which is a wave type problem.

We have the following corollary, which is quite important for us to use later.

Corollary 2.31. Assume λ≥ 0, and H satisfies (2.22). Then, the followings hold.

(i) If u1, u2 are Lipschitz solutions to (2.21), then min{u1, u2} is also a solution to (2.21).

(ii) If {ui}i∈I is a family of Lipschitz solutions to (2.21), then u = infi∈I ui is also a solution
to (2.21) provided u is finite and continuous.

Note that normally (without convexity of H) we only have min{u1, u2} and infi∈I ui are
viscosity supersolutions to (2.21). It is important pointing out that the results of Theorems
2.27 and 2.29, and Corollary 2.31 hold naturally for Cauchy problems as well.
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6.3 Problems

Exercise 29. Prove Corollary 2.31.

Exercise 30. Show that the results of Theorems 2.27 and 2.29 still hold true if we replace the
convexity of H by the level-set quasiconvexity of H. Here, by level-set quasiconvexity of H, we
mean {p ∈ Rn : H(x , p)≤ s} is convex in Rn for all x ∈ Rn and s ∈ R.

Exercise 31. Consider the following viscous Hamilton-Jacobi equation in one dimensional
space

|u′|3 − u′′ − 1= 0 in R. (2.24)

Clearly, u1(x) = x and u2(x) = −x are two classical subsolutions of (2.24). They are actually
two classical solutions. Set

u3(x) =min{u1(x), u2(x)}= −|x | for x ∈ R.

Of course u3 is a supersolution of (2.24). Show however that u3 is not a subsolution of (2.24).

Exercise 32. Formulate corresponding versions of Theorems 2.27 and 2.29, and Corollary
2.31 for Cauchy problems and give the proofs.

6.4 The Hopf–Lax formula revisited

We revisit and give another interpretation of the Hopf–Lax formula in light of the corre-
sponding version of Corollary 2.31 for Cauchy problems. Assume the settings in Theorem
2.23, that is, the Hamiltonian H = H(p) : Rn → R is convex and superlinear. Let u be the
viscosity solution to

¨

ut(x , t) +H(Du) = 0 in Rn × (0,∞),
u(x , 0) = u0(x) on Rn.

(2.25)

We assume the initial data u0 ∈ BUC (Rn). Then, for (x , t) ∈ Rn × (0,∞), the Hopf–Lax
formula (Theorem 2.23) gives

u(x , t) = inf
y∈Rn

n

t L
� x − y

t

�

+ u0(y)
o

=min
y∈Rn

n

t L
� x − y

t

�

+ u0(y)
o

=min
y∈Rn

§

max
p∈Rn

t
� x − y

t
· p−H(p)

�

+ u0(y)
ª

=min
y∈Rn

max
p∈Rn
{u0(y) + (x − y) · p− tH(p)}=min

y∈Rn
max
p∈Rn

φ y,p(x , t).

Here, for (y, p) ∈ Rn ×Rn,

φ y,p(x , t) = u0(y) + (x − y) · p− tH(p) for (x , t) ∈ Rn × [0,∞).

Let us now give another way to look at the formula for u(x , t). It is clear that φ y,p is a
separable (special) solution to (2.25) with initial data φ y,p(x , 0) = u0(y)+(x− y) ·p, which
is affine, and φ y,p(y, 0) = u0(y). For y ∈ Rn, set

φ y(x , t) =max
p∈Rn

φ y,p(x , t) for (x , t) ∈ Rn × [0,∞).
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Of course, φ y(x , t) is finite for t > 0 because of the superlinearity of H. In fact, from the
definition, for (x , t) ∈ Rn × (0,∞),

φ y(x , t) = t L
� x − y

t

�

+ u0(y).

However, it is not hard to see that φ y(x , 0) is singular. More precisely,

φ y(x , 0) =

¨

u0(y) for x = y,

+∞ for x 6= y.

We see that φ y(x , 0) is a convex, singular function, which is finite only at y with value
u0(y). Let us assume that we still have the Hopf–Lax formula to (2.25) for this kind of
singular initial data. This assumption can be verified rigorously by approximating φ y(x , 0)
by nice and smooth functions. Then, φ y is a solution to (2.25) with initial data φ y(x , 0).
One can regard φ y as a “fundamental solution" to (2.25).

Therefore, by using the corresponding version of Corollary 2.31 for Cauchy problems,

u(x , t) = inf
y∈Rn

φ y(x , t) =min
y∈Rn

φ y(x , t), for (x , t) ∈ Rn × [0,∞),

is automatically a solution to (2.25). Moreover, by using the formula of φ y(x , 0), one au-
tomatically get that u(x , 0) = u0(x).

This interpretation does not give anything new, but indeed shows that the Hopf–Lax for-
mula is rather natural. It is quite intuitive to see that once we have understandings on
“fundamental solutions" to (2.25), we are able to understand all solutions thanks to the
infimum stability result (the corresponding version of Corollary 2.31 for Cauchy problems).
The following is an immediate corollary in this discussion.

Corollary 2.32. Assume the settings in Theorem 2.23. For a given compact set K ⊂ Rn, denote
by

uK
0 (x) =

¨

u0(x) for x ∈ K ,

+∞ for x /∈ K .

Then, the solution to (2.25) with initial data uK
0 is

uK(x , t) =min
y∈K
φ y(x , t) for (x , t) ∈ Rn × [0,∞).

Let us note that the above formula can also be seen directly from the Hopf–Lax formula as
well.

7 Maximal subsolutions and their representation
formulas

7.1 Maximal subsolutions and metric problems

We assume in this section that










H ∈ BUC (Rn × B(0, R)) for all R> 0,

p 7→ H(x , p) is convex for all x ∈ Rn,

lim
|p|→∞

inf
x∈Rn

H(x , p) = +∞.
(2.26)
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Our main object in this section is the maximal subsolution to the following equation
¨

H(x , Du) = µ in Rn \ {0},
u(0) = 0.

(2.27)

Here, µ ∈ R is a given constant. To make sure that (2.27) admits some Lipschitz subsolu-
tions, we define

µ∗ = inf {µ ∈ R : there exists a viscosity subsolution u ∈ Lip (Rn) to (2.27)} .

It is clear that (2.27) should only be considered for µ≥ µ∗.

Definition 2.33. Fix µ≥ µ∗. The maximal subsolution is denoted by, for x ∈ Rn,

mµ(x) = sup {u(x) : u ∈ Lip (Rn) is a viscosity subsolution to (2.27)} .

Since H is convex in p, in light of Theorem 2.27, the above definition is equivalent to

mµ(x) = sup {u(x) : u ∈ Lip (Rn) is an a.e. subsolution to (2.27)} .

Here is the first result concerning mµ.

Theorem 2.34. Assume (2.26). For µ ≥ µ∗ , mµ ∈ Lip (Rn) and mµ is a viscosity solution to
(2.27).

Proof. Since H is coercive in p uniformly in x , there exists Cµ > 0 such that, for every
u ∈ Lip (Rn) being a subsolution to (2.27),

‖Du‖L∞(Rn) ≤ Cµ.

By changing Cµ to be a bigger constant if necessary, we assume further that

H
�

x , Cµe
�

≥ µ+ 1 for all e ∈ Rn, |e|= 1. (2.28)

By definition of mµ, ‖Dmµ‖L∞(Rn) ≤ Cµ. In particular, mµ(0) = 0, and

mµ(x)≤ Cµ|x | for all x ∈ Rn.

Note that Cµ|x | is a supersolution to (2.27) thanks to (2.28). By the Perron method (see
Theorem 1.26), we conclude that mµ is a viscosity solution to (2.27). It is also clear that
mµ is the maximal solution to (2.27).

We have the following remark.

Remark 2.35. It is clear that if u ∈ Lip (Rn) is a viscosity subsolution to (2.27), then it is
also a global viscosity subsolution to

H(x , Dv) = µ in Rn. (2.29)

On the other hand, for any global subsolution v ∈ Lip (Rn) to (2.29), v − v(0) is a viscosity
subsolution to (2.27).

Here is an immediate corollary based on observations of the above remark.
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Corollary 2.36. Assume (2.26). For µ≥ µ∗ ,

mµ(x) = sup {v(x)− v(0) : v ∈ Lip (Rn) is a subsolution to (2.29)} .

In particular, mµ is also a global subsolution to (2.29).

Let us give one following explicit example to understand more about mµ.

Example 2.6. Assume that

H(x , p) = |p| for all (x , p) ∈ Rn ×Rn.

Of course, H satisfies (2.26). Since H ≥ 0, µ∗ ≥ 0. We can then see that µ∗ = 0 as u ≡ 0 is a
classical solution to (2.27) with µ= 0.

For µ≥ 0, it is not hard to see that

mµ(x) = µ|x | for all x ∈ Rn.

In particular, m1(x) = |x |, which is precisely the Euclidean distance from x to 0. It is worth
noting that m1 is not a global viscosity solution to

|Du|= 1 in Rn

as it fails the supersolution test at x = 0.

As pointed out in Corollary 2.36 and Example 2.6, in general, for µ ≥ µ∗, mµ is a global
viscosity subsolution but not a viscosity solution to (2.29). We discuss this point further in
the following specific scenario.

Proposition 2.37. Assume that H(x , p) = |p| − V (x) for all (x , p) ∈ Rn × Rn, and V ∈
BUC (Rn) with V ≥ 0. Then, for µ = 0, m0 is a viscosity solution to (2.29) if and only if
V (0) = 0.

Proof. We always fix µ = 0 in this proof. It is clear that 0 is a global subsolution to (2.29),
and hence, m0 ≥ 0 and m0(0) = 0. This also gives us that µ∗ ≤ 0.

We consider first the case that V (0) > 0. It is quite straightforward to show that m0 is not
a supersolution to (2.29) at x = 0 in this case. Indeed, φ ≡ 0 touches m0 from below at
x = 0, but

|Dφ(0)| − V (0) = −V (0)< 0.

Thus, m0 is not a solution to (2.29).

Next, we study the case that V (0) = 0 and show that m0 is a solution to (2.29). Since V ∈
BUC (Rn), there exists a modulus of continuity ω : [0,∞)→ [0,∞) with limr→0ω(r) = 0
such that, for each r > 0,

|V (x)− V (0)|= |V (x)| ≤ω(r) for all x ∈ B(0, r).

As m0 is a solution to (2.27), we use the above to yield that

|Dm0(x)| ≤ω(r) for a.e. x ∈ B(0, r).
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In particular, for each x ∈ B(0, r),

|m0(x)|= |m0(x)−m0(0)|=

�

�

�

�

�

∫ 1

0

Dm0(sx) · x ds

�

�

�

�

�

≤ω(r)|x | ≤ω(r)r.

This means that m0 is differentiable at 0 and Dm0(0) = 0. Therefore, m0 is a solution to
(2.29) at x = 0. This completes our proof.

In the general setting of H, it is much more complicated to determine whether mµ satisfies
the supersolution test at x = 0 or not.

Let us now discuss the metric problem for each fixed µ≥ µ∗.

Definition 2.38. Fix µ≥ µ∗. For x , y ∈ Rn, denote by

mµ(x , y) = sup {v(x)− v(y) : v ∈ Lip (Rn) is a subsolution to (2.29)} .

In particular, mµ(x , 0) = mµ(x) for x ∈ Rn. When there is no confusion, we will use mµ(x)
(instead of mµ(x , 0)) for short. In our notations here, we use the second slot in mµ(·, ·) as a
fixed vertex, and geometrically, x 7→ mµ(x , y) looks like a bending upward cone with vertex
y (see again Example 2.6 above). Sometimes, people would reverse the order of x and y
in the literature.

We record important properties of mµ(·, ·) below.

Theorem 2.39. Assume (2.26). For µ≥ µ∗ , the following properties hold.

(i) For each y ∈ Rn, x 7→ mµ(x , y) is Lipschitz and is the maximal solution to
¨

H(x , Du(x)) = µ in Rn \ {y},
u(y) = 0.

(2.30)

In particular, mµ(y, y) = 0.

(ii) For x , y, z ∈ Rn,
mµ(x , y) +mµ(y, z)≥ mµ(x , z). (2.31)

Equation (7.24) is sometimes called a metric problem in the literature. Property (ii) in the
above theorem means that mµ is subadditive. We will see in the next sections that mµ(x , y)
represents a certain metric distance between y and x , and (7.25) is nothing but the usual
triangle inequality for this metric.

Proof. First property (i) was already proved in Theorem 2.34.

Let us proceed to prove the second property. Fix y, z ∈ Rn, and denote by

w(x) = mµ(x , z)−mµ(y, z) for all x ∈ Rn.

It is clear that w ∈ Lip (Rn) is a global subsolution to (2.29) since mµ(y, z) is just a constant.
At x = y ,

w(y) = mµ(y, z)−mµ(y, z) = 0.

Hence, by the definition of mµ(·, y), for all x ∈ Rn,

mµ(x , y)≥ w(x)−w(y) = w(x) = mµ(x , z)−mµ(y, z).

The proof is complete.
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Remark 2.40. We want to highlight here that all results in this section (in particular, The-
orems 2.34, 2.39) still hold true if we replace the convexity of H in condition (2.26) by the
level-set quasiconvexity of H, that is, (2.26) is replaced by











H ∈ BUC (Rn × B(0, R)) for all R> 0,

p 7→ H(x , p) is level-set quasiconvex for all x ∈ Rn,

lim
|p|→∞

inf
x∈Rn

H(x , p) = +∞.
(2.32)

For Proposition 2.37, the conclusion is valid for the following general Hamiltonian

H(x , p) = K(p)− V (x) for all (x , p) ∈ Rn ×Rn.

Here, K : Rn → R satisfies that K(0) = 0, K is coercive, level-set quasiconvex, and there
exist α, R> 0 such that

K(p)≥ α|p| for all p ∈ B(0, R).

7.2 Representation formulas by using the Lagrangian

We intend to write down the optimal control formulation for mµ defined in the previous
section by using the Lagrangian. For this, we assume a bit more as following.















H ∈ BUC (Rn × B(0, R)) for all R> 0,

p 7→ H(x , p) is convex for all x ∈ Rn,

lim
|p|→∞

�

inf
x∈Rn

H(x , p)
|p|

�

= +∞.
(2.33)

Let L be the Lagrangian corresponding to this H. Here is the main result on the formula of
mµ in this section.

Theorem 2.41. Assume (2.33). For µ≥ µ∗ and x ∈ Rn,

mµ(x)

= inf

�∫ t

0

�

L(γ(s),γ′(s)) +µ
�

ds : γ ∈ AC ([0, t],Rn) for t > 0,γ(0) = 0,γ(t) = x

�

.

(2.34)

Proof. Denote by w the right hand side of (2.34). Our main goal is to show mµ = w.

STEP 1. Let u ∈ Lip (Rn) be a viscosity subsolution to (2.27). We first show that u ≤ w.
Since u is only Lipschitz, we need to smooth it up by using a standard mollifier η. For ε > 0,
denote by ηε(x) = ε−nη

�

x
ε

�

for all x ∈ Rn. Set

uε(x) = (ηε ? u) (x) =

∫

Rn

ηε(x − y)u(y) d y =

∫

B(x ,ε)

ηε(x − y)u(y) d y for x ∈ Rn.

Then uε ∈ C∞(Rn), and uε→ u locally uniformly as ε→ 0. By repeating similar steps as in
the proof of Theorem 2.27, we see that

H(x , Duε)≤ µ+ω(ε) in Rn,
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whereω(ε) is a modulus of continuity. By the Legendre transform and the above inequality,
∫ t

0

�

L(γ(s),γ′(s)) +µ
�

ds ≥
∫ t

0

�

L(γ(s),γ′(s)) +H(γ(s), Duε(γ(s)))−ω(ε)
�

ds

≥
∫ t

0

�

Duε(γ(s)) · γ′(s)−ω(ε)
�

ds

= uε(γ(t))− uε(γ(0))− tω(ε) = uε(x)− uε(0)− tω(ε).

Let ε→ 0+ in the above to imply that
∫ t

0

�

L(γ(s),γ′(s)) +µ
�

ds ≥ u(x)− u(0)≥ u(x),

which gives us further that u≤ w. Taking supremum over u to yield mµ ≤ w.

STEP 2. To finish the proof, we just need to show that w is a viscosity subsolution to (2.27)
as this will give use directly that w≤ mµ. It is straightforward that w(0) = 0. By the formula
of w, for x 6= 0 and r ∈ (0, |x |),

w(x) =

= inf

�∫ t

0

�

L(γ(s),γ′(s)) +µ
�

ds+w(γ(0)) : γ ∈ AC ([0, t],Rn),γ(0) ∈ ∂ B(x , r),γ(t) = x

�

.

This relation is precisely a Dynamic Programming Principle for w. We now use it to prove
the subsolution test. Let φ ∈ C∞(Rn) be a test function such that w−φ has a strict global
maximum at x and w(x) = φ(x). For any γ ∈ AC ([0, t],Rn) such that γ(0) ∈ ∂ B(x , r),
γ(t) = x , one has

φ(x) = w(x)≤
∫ t

0

�

L(γ(s),γ′(s)) +µ
�

ds+w(γ(0))

≤
∫ t

0

�

L(γ(s),γ′(s)) +µ
�

ds+φ(γ(0)).

For each non-zero vector e ∈ Rn, denote by

γe(s) = x − te+ se for 0≤ s ≤ t,

for t > 0 sufficiently small. Then, for this path γe, we see that

φ(x)≤
∫ t

0

(L(x − te+ se, e) +µ) ds+φ(x − te).

Hence,
φ(x)−φ(x − te)

t
≤

1
t

∫ t

0

(L(x − te+ se, e) +µ) ds.

Let t → 0+ in the above to imply that

Dφ(x) · e− L(x , e)≤ µ.

Maximize this inequality over e ∈ Rn to get

H(x , Dφ(x))≤ µ,

which confirms that w is a viscosity subsolution to (2.27). The proof is complete.
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Let us now give an application of Theorems 2.34 and 2.41.

Corollary 2.42. Let V ∈ BUC (Rn) be a given function such that V ≥ 0. Then, the maximal
viscosity solution v of the following equation

¨

|Du|= V (x) in Rn \ {0},
u(0) = 0,

(2.35)

has the formula

v(x) = inf

�∫ t

0

�

|γ′(s)|2

4
+ V (γ(s))

�

ds : γ ∈ AC ([0, t],Rn) for t > 0,γ(0) = 0,γ(t) = x

�

.

Proof. Although the Hamiltonian in (2.35) does not have superlinear growth in p, we can
rewrite (2.35) in an equivalent form to fix this issue. Indeed, (2.35) is equivalent to

¨

|Du|2 = V (x)2 in Rn \ {0},
u(0) = 0.

The Hamiltonian of this PDE is H(x , p) = |p|2− V (x)2, which satisfies (2.33), and its corre-
sponding Lagrangian is L(x , v) = |v|2

4 + V (x)2. We hence are able to apply Theorems 2.34
and 2.41 with µ= 0 to conclude.

Let us note that another representation formula of v will be given below in Remark 2.44.

7.3 Representation formulas for first-order front propagation
problems

Our equation of interest here is
¨

a(x)|Du|= 1 in Rn \ {0},
u(0) = 0.

(2.36)

Here, a : Rn→ R satisfies
¨

a ∈ BUC (Rn),
there exist α,β > 0 such that α≤ a(x)≤ β for all x ∈ Rn.

(2.37)

Note that (2.36) can be also written in the form of (2.35) with V (x) = a(x)−1. Our goal is
to write down an analog of Theorem 2.41 in the sense of front propagation problems.

It is clear in this case that the Hamiltonian H(x , p) = a(x)|p| for (x , p) ∈ Rn ×Rn is convex
and uniformly coercive, but is not superlinear in p. Of course, (2.33) does not hold here.
Recall that the Lagrangian L(x , v) is computed as following

L(x , v) = sup
p∈Rn
(p · v −H(x , p)) = sup

p∈Rn
(p · v − a(x)|p|)

=

¨

0 if |v| ≤ a(x),
+∞ if |v|> a(x).
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Although L is singular in the above, it is still convex in v. Then, in this particular setting,
formula (2.34) for µ= 1 becomes

m1(x) = inf

�∫ t

0

�

L(γ(s),γ′(s)) + 1
�

ds : γ ∈ AC ([0, t],Rn) for t > 0,γ(0) = 0,γ(t) = x

�

= inf
�

t : ∃γ ∈ AC ([0, t],Rn) s.t. γ(0) = 0,γ(t) = x , |γ′(s)| ≤ a(γ(s)) a.e.
	

.

Through the formula, we see that m1(x) is the minimal time to reach x from 0 under the
velocity constraint of the paths, which cannot exceed a at any given point. In the literature,
m1 is sometimes called the minimal time function in this setting. Let us now state the precise
result concerning maximal solution to (2.36).

Theorem 2.43. Assume (2.37). Then the maximal solution m1 to (2.36) has the following
representation formula, for x ∈ Rn,

m1(x) = inf
�

t : ∃γ ∈ AC ([0, t],Rn) s.t. γ(0) = 0,γ(t) = x , |γ′(s)| ≤ a(γ(s)) a.e.
	

.

The proof of this theorem is similar to that of Theorem 2.41, so it is left as an exercise here.

Remark 2.44. Let us notice that, by a simple change of variable, we have another formula
for m1 in Theorem 2.43 as following

m1(x) = inf

¨

∫ T

0

1
a(ξ(s))

ds : ξ ∈ AC ([0, T],Rn),ξ(0) = 0,ξ(T ) = x , |ξ′(s)| ≤ 1 a.e.

«

.

Basically, the only difference of this formula with the above in Theorem 2.43 is that we
change the constraint on the admissible paths ξ such that they have at most unit velocity.

7.4 Generalizations

The maximal subsolution problem (2.27) can be generalized to various different situations.
For example, it is reasonable sometimes to consider the problem in only a given bounded
smooth domain U ⊂ Rn. Another possibility is to consider the problem under a constraint
on a given closed set K ⊂ Rn as following

¨

H(x , Du) = µ in Rn \ K ,

u≤ 0 on K .
(2.38)

Here, µ ∈ R is a given constant. When K = {0}, (2.38) reduces to (2.27). We give some
discussions on (2.38) here in this section. Let us assume (2.26). It turns out that all of the
main results (Theorems 2.34, 2.41, and 2.43) still hold for this generalization when being
adjusted appropriately.

Firstly, denote by

µ∗(K) = inf {µ ∈ R : there exists a viscosity subsolution u ∈ Lip (Rn) to (2.38)} .

It is worth noting that µ∗(K) and µ∗ defined earlier might not be the same. If one assumes
further that K is compact, then µ∗(K)≤ µ∗.
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Definition 2.45. Fix µ≥ µ∗(K). The maximal subsolution of (2.38) is denoted by, for x ∈ Rn,

mµ(x , K) = sup
�

u(x) : u ∈ C(Rn)∩ C0,1(Rn \ K) is a viscosity subsolution to (2.38)
	

.

Again, the above definition is equivalent to

mµ(x , K) = sup
�

u(x) : u ∈ C(Rn)∩ C0,1(Rn \ K) is an a.e. subsolution to (2.38)
	

.

Here is the first main result concerning mµ(·, K).

Theorem 2.46. Assume (2.26). For µ ≥ µ∗(K) , mµ(·, K) ∈ C0,1(Rn \ K) and mµ(·, K) is a
viscosity solution to (2.38).

The proof of this theorem follows exactly that of Theorem 2.34, and hence, is omitted. We
next give representation formulas to mµ(·, K) in two different situations. The first one is
when H is superlinear in p.

Theorem 2.47. Assume (2.33). For µ≥ µ∗(K) and x ∈ Rn \ K,

mµ(x , K)

= inf

�∫ t

0

�

L(γ(s),γ′(s)) +µ
�

ds : γ ∈ AC ([0, t],Rn) for t > 0,γ(0) ∈ K ,γ(t) = x

�

.

The second one corresponds to the usual first-order front propagation problem.

Theorem 2.48. Assume that H(x , p) = a(x)|p| for all (x , p) ∈ Rn×Rn, and a satisfies (2.37).
Then the maximal solution m1(·, K) to (2.38) with µ = 1 has the following representation
formula, for x ∈ Rn \ K,

m1(x , K) = inf
�

t : ∃γ ∈ AC ([0, t],Rn) s.t. γ(0) ∈ K ,γ(t) = x , |γ′(s)| ≤ a(γ(s)) a.e.
	

.

Basically, m1(x , K) represents the minimal time to reach x from the given set K.

The proofs of Theorems 2.47 and 2.48 are also skipped here.

7.5 Problems

Exercise 33. Give a detailed proof of Theorem 2.43.

Exercise 34. Prove Remark 2.44.

8 References

1. The optimal control theory part can be found in many references. For example, the
readers can consult the books of Bardi, Capuzzo-Dolcetta [13], Barles [16], or Chapter
10 of Evans [49], or the book of Lions [101]. Lions [101] observed the connection
between the definition of viscosity solutions and the optimality conditions of optimal
control theory.
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2. The Hopf–Lax and Lax–Oleinik formulas are discussed in deep in Chapter 3 of Evans
[49]. We do not give much discussion on the Lax–Oleinik formula here as it is not in
the focus of the book.

3. Theorems 2.27 and 2.29 are due to Barron, Jensen [18].

4. Maximal subsolutions and their optimal control formulas were first discussed in the
book of Lions mainly for bounded domains (see [101, Chapter 5]). We only cover the
case of Rn here for simplicity.
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CHAPTER 3
First-order Hamilton–Jacobi

equations with possibly nonconvex
Hamiltonians

Let H = H(x , p) : Rn × Rn → R be a given Hamiltonian. In this chapter, we consider a
general setting where p 7→ H(x , p) might not be convex for given x ∈ Rn, and hence, the
theory developed in Chapter 2 is not applicable.

1 Introduction to two-player zero-sum differential games

1.1 Settings

We consider a zero-sum differential game played by two players I and II, who are both
rational. In the game, player I aims at maximizing while player II aims at minimizing a
certain payoff functional by controlling the dynamics of a particle in Rn, which represents
the location of the pair in the game.
Fix T > 0. Let A, B be two compact metric spaces. For t ∈ [0, T ), let

At = {a : [t, T]→ A : a is measurable} ,
Bt = {b : [t, T]→ B : b is measurable} ,

be the set of possible controls in time [t, T] of players I and II, respectively. We henceforth
identify any two controls which agree a.e.
Assume that the dynamics is given by an ordinary differential equation

¨

y ′x(s) = f (yx(s), a(s), b(s)) for s ∈ (t, T ),
yx(t) = x ∈ Rn,

(3.1)

for given controls a(·) ∈At of player I, and b(·) ∈Bt of player II. Here, f : Rn×A×B→ Rn

is a given vector field satisfying: there exists C > 0 such that






f ∈ C(Rn × A× B),
| f (x , a, b)| ≤ C for all x ∈ Rn, a ∈ A, b ∈ B,

| f (x1, a, b)− f (x2, a, b)| ≤ C |x1 − x2| for all x1, x2 ∈ Rn, a ∈ A, b ∈ B.
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Under the conditions on f , (3.1) has a unique solution. At any given time s ∈ (t, T ), yx(s)
represents the location of the pair in the game. Associated with this (3.1) is the payoff
functional

Cx ,t(a(·), b(·)) =
∫ T

t

h(yx(s), a(s), b(s)) ds+ g(yx(T )),

where h : Rn × A× B→ R and g : Rn→ R are given functions satisfying: there exists C > 0
so that







h ∈ C(Rn × A× B),
|h(x , a, b)| ≤ C for all x ∈ Rn, a ∈ A, b ∈ B,

|h(x1, a, b)− h(x2, a, b)| ≤ C |x1 − x2| for all x1, x2 ∈ Rn, a ∈ A, b ∈ B;

and
¨

|g(x)| ≤ C for all x ∈ Rn,

|g(x1)− g(x2)| ≤ C |x1 − x2| for all x1, x2 ∈ Rn.

The interpretation is that h is the running payoff and g is the terminal payoff. Of course,
the goal of player I is to maximize the payoff functional Cx ,t(a(·), b(·)). On the other hand,
player II wants to minimize it (or to maximize −Cx ,t(a(·), b(·))).

The set of strategies for player I beginning at time t is

Σt = {α : Bt →At non-anticipating} ,

where non-anticipating means that, for all b1(·), b2(·) ∈Bt and s ∈ [t, T],

b1(·) = b2(·) on [t, s) =⇒ α[b1](·) = α[b2](·) on [t, s).

Similarly, the set of strategies for player II beginning at time t is

Γt = {β : At →Bt non-anticipating} .

We call

V (x , t) = inf
β∈Γt

sup
a(·)∈At

Cx ,t(a(·),β[a](·)),

U(x , t) = sup
α∈Σt

inf
b(·)∈Bt

Cx ,t(α[b](·), b(·)),

the lower value and the upper values of the game, respectively.

1.2 Viscosity solutions to terminal value problems

In the previous chapters, we have already defined and worked with viscosity solutions to
initial value problems. In our current setting, it is more natural to work with the following
terminal value problem

¨

ut +H(x , Du) = 0 in Rn × (0, T ),
u(x , T ) = g(x) on Rn.

(3.2)

Here, H ∈ C(Rn ×Rn,R), and g ∈ BUC (Rn)∩ Lip (Rn) are given.
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Definition 3.1 (viscosity solutions of (3.2)). A function u ∈ BUC (Rn × [0, T]) is called

(a) a viscosity subsolution of (3.2) if for any ϕ ∈ C1(Rn × (0, T )) such that u(x0, t0) =
ϕ(x0, t0), and u−ϕ has a strict max at (x0, t0) ∈ Rn × (0, T ), then

ϕt(x0, t0) +H(Du(x0, t0))≥ 0,

and u(·, T )≤ g;

(b) a viscosity supersolution of (3.2) if for any ψ ∈ C1(Rn × (0, T )) such that u(x0, t0) =
ψ(x0, t0), and u−ψ has a strict min at (x0, t0) ∈ Rn × (0, T ), then

ψt(x0, t0) +H(Du(x0, t0))≤ 0,

and u(·, T )≥ g;

(c) a viscosity solution of (3.2) if it is both a viscosity subsolution and a viscosity supersolu-
tion.

Remark 3.2. It is worth noting that for terminal value problems, the inequalities in (a) and
(b) in the above definition for test functions are the reversed versions of those for initial
value problems.

1.3 Upper and lower Hamiltonians of the game

For (x , p) ∈ Rn ×Rn, denote by

H−(x , p) =max
a∈A

min
b∈B
{ f (x , a, b) · p+ h(x , a, b)} ,

H+(x , p) =min
b∈B

max
a∈A
{ f (x , a, b) · p+ h(x , a, b)} .

We say that H− and H+ are the lower and upper Hamiltonians of the game, respectively.

Lemma 3.3. Let H−, H+ be the functions defined above. Then,

(i) There exists C > 0 such that, for all x , y, p, q ∈ Rn,
¨

|H±(x , p)−H±(x , q)| ≤ C |p− q|,
|H±(x , p)−H±(y, p)| ≤ C(1+ |p|)|x − y|.

(ii) We always have that H− ≤ H+.

Proof. The proof of (i) is straightforward thanks to the properties of f , h, and hence is omit-
ted. Let us give a proof of (ii). Since

f (x , a, b) · p+ h(x , a, b)≤max
a∈A
{ f (x , a, b) · p+ h(x , a, b)} ,

we can take minimum over b ∈ B to yield that, for each a ∈ A,

min
b∈B
{ f (x , a, b) · p+ h(x , a, b)} ≤min

b∈B
max
a∈A
{ f (x , a, b) · p+ h(x , a, b)}= H+(x , p).

Finally, take maximum over a ∈ A in the above to conclude.
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We now state the main results for two-player zero-sum differential games.

Theorem 3.4. Let V, U , H−, H+ be the functions defined above. Then,

(i) V is the viscosity solution to the lower Isaacs equation

¨

Vt +H−(x , DV ) = 0 in Rn × (0, T ),
V (x , T ) = g(x) on Rn.

(3.3)

(ii) U is the viscosity solution to the upper Isaacs equation

¨

Ut +H+(x , DU) = 0 in Rn × (0, T ),
U(x , T ) = g(x) on Rn.

(3.4)

The proof of this theorem will be given in the next sections. Since H− ≤ H+, we get V ≤ U
by using the comparison principle.

Definition 3.5. We say that the two-player zero-sum differential game has a value if H− = H+,
that is,

max
a∈A

min
b∈B
{ f (x , a, b) · p+ h(x , a, b)}=min

b∈B
max
a∈A
{ f (x , a, b) · p+ h(x , a, b)} . (3.5)

We say that (3.5) is a minimax condition.

We have immediately the following corollary.

Corollary 3.6. Assume that (3.5) holds. Denote by

H(x , p) = H−(x , p) = H+(x , p) for all (x , p) ∈ Rn ×Rn.

Then, U = V solves

¨

ut +H(x , Du) = 0 in Rn × (0, T ),
u(x , T ) = g(x) on Rn.

Example 3.1. Let n= 2, and for p = (p1, p2) ∈ R2, consider

H(p) = H(p1, p2) = |p1| − |p2|.

Set A= B = [−1,1] ⊂ R. It is clear that

H(p) = |p1| − |p2|=max
|a|≤1
(ap1) +min

|b|≤1
(bp2)

=max
a∈A

min
b∈B
(a, b) · p =min

b∈B
max
a∈A
(a, b) · p.

Thus, in this specific situation, f (x , a, b) = (a, b), and h≡ 0, and the minimax condition (3.5)
holds true.
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1.4 Properties of the upper and lower values

We have the following Dynamic Programming Principles (DPP) for lower and upper values
V, U .

Theorem 3.7 (DPP for V and U). Let V, U be the functions defined above. Then, for each
0≤ t < t +σ ≤ T, and x ∈ Rn,

V (x , t) = inf
β∈Γt

sup
a(·)∈At

�∫ t+σ

t

h(yx(s), a(s),β[a](s)) ds+ V (yx(t +σ), t +σ)

�

,

U(x , t) = sup
α∈Σt

inf
b(·)∈Bt

�∫ t+σ

t

h(yx(s),α[b](s), b(s)) ds+ U(yx(t +σ), t +σ)

�

.

Proof. We only give the proof of the DPP for V , as the proof of the DPP for U is similar. Let

W (x , t) = inf
β∈Γt

sup
a(·)∈At

�∫ t+σ

t

h(yx(s), a(s),β[a](s)) ds+ V (yx(t +σ), t +σ)

�

.

Fix ε > 0. There exists δ ∈ Γt such that

W (x , t)> sup
a(·)∈At

�∫ t+σ

t

h(yx(s), a(s),δ[a](s)) ds+ V (yx(t +σ), t +σ)

�

− ε.

Besides, for each z ∈ Rn,

V (z, t +σ) = inf
β∈Γt+σ

sup
a(·)∈At+σ

Cz,t+σ(a(·),β[a](·)).

Thus, there exists δz ∈ Γt+σ so that

V (z, t +σ)≥ sup
a(·)∈At+σ

Cz,t+σ(a(·),δz[a](·))− ε.

We define β ∈ Γt as following. For each a(·) ∈At , set

β[a](s) =

¨

δ[a](s) for t ≤ s < t +σ,

δyx (t+σ)[a](s) for t +σ ≤ s ≤ T.

Then, for any a(·) ∈At ,

W (x , t)>

∫ T

t

h(yx(s), a(s),β[a](s)) ds+ g(yx(T ))− 2ε.

Hence,
W (x , t)≥ V (x , t)− 2ε. (3.6)

Let us now proceed to obtain a reversed inequality. There exists β ∈ Γt such that

V (x , t)> sup
a(·)∈At

¨

∫ T

t

h(yx(s), a(s),β[a](s)) ds+ g(yx(T ))

«

− ε.
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Surely, for this fixed β ,

W (x , t)≤ sup
a(·)∈At

�∫ t+σ

t

h(yx(s), a(s),β[a](s)) ds+ V (yx(t +σ), t +σ)

�

.

Consequently, there exists a1(·) ∈At such that

W (x , t)≤
∫ t+σ

t

h(yx(s), a1(s),β[a1](s)) ds+ V (yx(t +σ), t +σ) + ε.

Now, for each a(·) ∈At+σ, denote ã(·) ∈At by

ã(s) =

¨

a1(s) for t ≤ s < t +σ,

a(s) for t +σ ≤ s ≤ T.

Then, define β̃ ∈ Γt+σ as

β̃[a](s) = β[ã](s) for t +σ ≤ s ≤ T.

By definition of V , for z = yx(t +σ),

V (yx(t +σ), t +σ) = V (z, t +σ)≤ sup
a(·)∈At+σ

¨

∫ T

t+σ

h(yz(s), a(s), β̃[a](s)) ds+ g(yz(T ))

«

,

and so there exists a2(·) ∈At+σ for which

V (yx(t +σ), t +σ)≤
∫ T

t+σ

h(yz(s), a2(s), β̃[a2](s)) ds+ g(yz(T )) + ε.

Define a(·) ∈At as

a(s) =

¨

a1(s) for t ≤ s < t +σ,

a2(s) for t +σ ≤ s ≤ T.

Then, yx(s) = yz(s) for t +σ ≤ s ≤ T , and

W (x , t)≤
∫ T

t

h(yx(s), a(s),β[a](s)) ds+ g(yx(T )) + 2ε.

Therefore,
W (x , t)≤ V (x , t) + 3ε. (3.7)

Let ε→ 0 and combine (3.6)–(3.7) to conclude.

Next, we show that V, U are bounded and Lipschitz continuous on Rn × [0, T].

Proposition 3.8. Let V, U be the functions defined above. Then, there exists a constant C =
C(T )> 0 such that

‖V‖L∞(Rn×[0,T]) + ‖Vt‖L∞(Rn×[0,T]) + ‖DV‖L∞(Rn×[0,T]) ≤ C ,

and
‖U‖L∞(Rn×[0,T]) + ‖Ut‖L∞(Rn×[0,T]) + ‖DU‖L∞(Rn×[0,T]) ≤ C .
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Proof. We will only obtain the bounds for V . Since h and g are both bounded, it is clear
that

|Cx ,t(a(·), b(·))| ≤ C(T − t) + C ≤ C(T + 1),

which implies right away that ‖V‖L∞(Rn×[0,T]) ≤ C(T + 1). Let us now show that

‖DV‖L∞(Rn×[0,T]) ≤ C .

Fix x1, x2 ∈ Rn and t ∈ [0, T ). For each ε > 0, there exists δ ∈ Γt such that

V (x1, t)> sup
a(·)∈At

¨

∫ T

t

h(yx1
(s), a(s),δ[a](s)) ds+ g(yx1

(T ))

«

− ε.

For each a(·) ∈At , recall that yx1
solves

¨

y ′x1
(s) = f (yx1

(s), a(s),δ[a](s)) for s ∈ (t, T ),
yx1
(t) = x1.

Let yx2
be the solution to

¨

y ′x2
(s) = f (yx2

(s), a(s),δ[a](s)) for s ∈ (t, T ),
yx2
(t) = x2.

By Gronwall’s inequality, we have that

|yx2
(s)− yx1

(s)| ≤ C |x2 − x1| for all s ∈ [t, T].

Therefore,

V (x1, t)> sup
a(·)∈At

¨

∫ T

t

h(yx1
(s), a(s),δ[a](s)) ds+ g(yx1

(T ))

«

− ε

> sup
a(·)∈At

¨

∫ T

t

h(yx2
(s), a(s),δ[a](s)) ds+ g(yx2

(T ))− C |x2 − x1|

«

− ε

> V (x2, t)− C |x2 − x1| − ε.

Let ε→ 0 to yield

V (x2, t)− V (x1, t)≤ C |x2 − x1|.

By a symmetric argument, we deduce

|V (x2, t)− V (x1, t)| ≤ C |x2 − x1|.

Thus, ‖DV‖L∞(Rn×[0,T]) ≤ C . We skip the proof that ‖Vt‖L∞(Rn×[0,T]) ≤ C , and leave it as an
exercise.
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1.5 Proof of Theorem 3.4

Proof of Theorem 3.4. Let us provide the proof of the assertion for U only.

We first show that U is a viscosity subsolution to (3.4). Take φ ∈ C1(Rn × (0, T )) be a
test function such that U(x0, t0) = φ(x0, t0), and U −φ has a strict maximum at (x0, t0) ∈
Rn × (0, T ). We need to show that

φt(x0, t0) +H+(x0, Dφ(x0, t0))≥ 0.

Assume otherwise that there exists θ > 0 such that

φt(x0, t0) +H+(x0, Dφ(x0, t0))< −θ < 0. (3.8)

By the definition of H+ that

H+(x , p) =min
b∈B

max
a∈A
{ f (x , a, b) · p+ h(x , a, b)} ,

we can find b(·) ∈Bt0
and σ > 0 sufficiently small such that, for all α ∈ Σt0

,

∫ t0+σ

t0

�

h(yx0
(s),α[b](s), b(s)) + f (yx0

(s),α[b](s), b(s)) · Dφ(yx0
(s), s)

+φt(yx0
(s), s)

�

ds ≤ −
θσ

2
.

Note that y ′x0
(s) = f (yx0

(s),α[b](s), b(s)), and so

∫ t0+σ

t0

f (yx0
(s),α[b](s), b(s)) · Dφ(yx0

(s), s) +φt(yx0
(s), s) ds

=

∫ t0+σ

t0

y ′x0
(s) · Dφ(yx0

(s), s) +φt(yx0
(s), s) ds

= φ(yx0
(t0 +σ), t0 +σ)−φ(x0, t0)≥ U(yx0

(t0 +σ), t0 +σ)− U(x0, t0).

We combine this with the above inequality to yield

U(x0, t0)−
θσ

2
≥ sup
α∈Σt0

¨

∫ t0+σ

t0

h(yx0
(s),α[b](s), b(s)) ds+ U(yx0

(t0 +σ), t0 +σ)

«

,

which contradicts with the DPP for U that

U(x0, t0) = sup
α∈Σt0

inf
b(·)∈Bt0

¨

∫ t0+σ

t0

h(yx0
(s),α[b](s), b(s)) ds+ U(yx0

(t0 +σ), t0 +σ)

«

.

Hence, U is a viscosity subsolution to (3.4).

Next, we show that U is a viscosity supersolution to (3.4). Take φ ∈ C1(Rn × (0, T )) be a
test function such that U(x0, t0) = φ(x0, t0), and U −φ has a strict minimum at (x0, t0) ∈
Rn × (0, T ). We need to show that

φt(x0, t0) +H+(x0, Dφ(x0, t0))≤ 0.
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Assume otherwise that there exists θ > 0 such that

φt(x0, t0) +H+(x0, Dφ(x0, t0))> θ > 0. (3.9)

By the definition of H+, we can find α ∈ Σt0
and σ > 0 sufficiently small such that, for all

b(·) ∈Bt0
,

∫ t0+σ

t0

h(yx0
(s),α[b](s), b(s))+ f (yx0

(s),α[b](s), b(s))·Dφ(yx0
(s), s)+φt(yx0

(s), s) ds ≥
θσ

2
.

Note again that y ′x0
(s) = f (yx0

(s),α[b](s), b(s)), and so

∫ t0+σ

t0

f (yx0
(s),α[b](s), b(s)) · Dφ(yx0

(s), s) +φt(yx0
(s), s) ds

=

∫ t0+σ

t0

y ′x0
(s) · Dφ(yx0

(s), s) +φt(yx0
(s), s) ds

= φ(yx0
(t0 +σ), t0 +σ)−φ(x0, t0)≤ U(yx0

(t0 +σ), t0 +σ)− U(x0, t0).

We combine this with the above inequality to yield

U(x0, t0) +
θσ

2
≤ inf

b(·)∈Bt0

¨

∫ t0+σ

t0

h(yx0
(s),α[b](s), b(s)) ds+ U(yx0

(t0 +σ), t0 +σ)

«

,

which contradicts with the DPP for U . The proof is complete.

1.6 Problems

Exercise 35. Give an example to show that the minimax condition (3.5) does not hold in
general.

Exercise 36. Give the proof of the bound ‖Vt‖L∞(Rn×[0,T]) ≤ C in Proposition 3.8.

2 Representation formulas of solutions of
Hamilton–Jacobi equations

We use the results for upper and lower values of two-player zero-sum differential games
developed in the previous section to give representation formulas of solutions to Hamilton–
Jacobi equations.

2.1 Terminal value problems

We focus on the following problem
¨

ut +H(x , Du) = 0 in Rn × (0, T ),
u(x , T ) = g(x) on Rn.

(3.10)
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We put the following assumptions on H and g. Assume that there exists C > 0 such that,
for all x , y, p, q ∈ Rn,







|H(x , 0)| ≤ C ,

|H(x , p)−H(y, q)| ≤ C(|x − y|+ |p− q|),
lim|p|→∞ infx∈Rn H(x , p) = +∞;

(3.11)

and
‖g‖L∞(Rn) + ‖Dg‖L∞(Rn) ≤ C . (3.12)

By the results in Chapter 1 (e.g., Theorem 1.34), under assumptions (3.11)–(3.12), (3.10)
has a unique viscosity solution u ∈ Lip (Rn × [0, T]). Our goal is to find a representation
formula for u. To do so, we aim at writing H as the max-min of appropriate affine functions
first.

Lemma 3.9. Assume (3.11). Fix R > 0. Let A= B(0, R), and B = B(0,1). Then, for x ∈ Rn,
and p ∈ B(0, R),

H(x , p) =max
a∈A

min
b∈B
(H(x , a) + C(p− a) · b) .

Proof. Thanks to the Lipschitz assumption (3.11) on H, for x ∈ Rn, and p ∈ B(0, R),

H(x , p) =max
a∈A
(H(x , a)− C |p− a|) .

As −|p− a|=minb∈B(p− a) · b, we conclude that

H(x , p) =max
a∈A

min
b∈B
(H(x , a) + C(p− a) · b) .

We are now ready to state our result on a representation formula for u, solution to (3.10).

Theorem 3.10. Assume (3.11)–(3.12). Let u be the unique viscosity solution to (3.10). Pick
R > 0 such that ‖Du‖L∞(Rn×[0,T]) ≤ R. Let A = B(0, R), and B = B(0, 1). Then, for (x , t) ∈
Rn × (0, T ),

u(x , t) = inf
β∈Γt

sup
a(·)∈At

�

∫ T

t

(H(yx(s), a(s))− Ca(s) · β[a](s)) ds+ g(yx(T ))

�

.

Here, yx solves
¨

y ′x(s) = Cβ[a](s) for t < s < T,

yx(t) = x .

Proof. By Lemma 3.9, for x ∈ Rn, and p ∈ B(0, R),

H(x , p) =max
a∈A

min
b∈B
(H(x , a) + C(p− a) · b)

=max
a∈A

min
b∈B
(C b · p+H(x , a)− Ca · b) .

Thus, in terms of two-player zero-sum games, we have f (x , a, b) = C b, and h(x , a, b) =
H(x , a)− Ca · b. We then employ part (i) of Theorem 3.4 to conclude.

Remark 3.11. It is worth noting that in the specific situation of the above proof, a(·) ∈ At

means exactly that a(·) ∈ L∞([t, T],Rn) with ‖a‖L∞ ≤ R.
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2.2 Initial value problems

We focus on the following initial value problem

¨

ut +H(x , Du) = 0 in Rn × (0, T ),
u(x , 0) = u0(x) on Rn.

(3.13)

Like the previous section, we put the following assumptions on H and u0. Assume that there
exists C > 0 such that, for all x , y, p, q ∈ Rn,







|H(x , 0)| ≤ C ,

|H(x , p)−H(y, q)| ≤ C(|x − y|+ |p− q|),
lim|p|→∞ infx∈Rn H(x , p) = +∞;

(3.14)

and
‖u0‖L∞(Rn) + ‖Du0‖L∞(Rn) ≤ C . (3.15)

Under assumptions (3.14)–(3.15), (3.13) has a unique viscosity solution u ∈ Lip (Rn ×
[0, T]). We now give a representation formula for u.

Theorem 3.12. Assume (3.14)–(3.15). Let u be the unique viscosity solution to (3.13). Pick
R > 0 such that ‖Du‖L∞(Rn×[0,T]) ≤ R. Let A = B(0, R), and B = B(0, 1). Then, for (x , t) ∈
Rn × (0, T ),

u(x , t) = inf
β∈ΓT−t

sup
a(·)∈AT−t

�

∫ T

T−t

(−H(yx(s), a(s))− Ca(s) · β[a](s)) ds+ u0(yx(T ))

�

.

Here, yx solves
¨

y ′x(s) = Cβ[a](s) for T − t < s < T,

yx(T − t) = x .

Again, a(·) ∈AT−t means exactly that a(·) ∈ L∞([T − t, T],Rn) with ‖a‖L∞ ≤ R.

Proof. Denote by v(x , t) = u(x , T − t) for all (x , t) ∈ Rn × [0, T]. Let K(x , p) = −H(x , p)
for (x , p) ∈ Rn ×Rn. Then v solves

¨

vt + K(x , Dv) = 0 in Rn × (0, T ),
v(x , T ) = u0(x) on Rn.

By Lemma 3.9, for x ∈ Rn, and p ∈ B(0, R),

K(x , p) = −H(x , p) =max
a∈A

min
b∈B
(−H(x , a) + C(p− a) · b)

=max
a∈A

min
b∈B
(C b · p−H(x , a)− Ca · b) .

Thus, in terms of two-player zero-sum games, we have f (x , a, b) = C b, and h(x , a, b) =
−H(x , a)− Ca · b. We then employ part (i) of Theorem 3.4 to conclude.

97



3 The Hopf formula

We aim at deriving a formula of the solution to

¨

ut +H(Du) = 0 in Rn × (0, T ),
u(x , 0) = u0(x) on Rn.

(3.16)

Here, H = H(p) depends only on p. Assume that there exists C > 0 such that, for all
x , y, p, q ∈ Rn,

|H(p)−H(q)| ≤ C |p− q|, (3.17)

and
‖u0‖L∞(Rn) + ‖Du0‖L∞(Rn) ≤ C . (3.18)

Under assumptions (3.17)–(3.18), (3.16) has a unique viscosity solution u ∈ Lip (Rn ×
[0, T]). Theorem 3.12 already gives a representation formula for u. It turns out that, if
one has further that u0 is convex, then u has a simpler representation formula, the Hopf
formula.

Theorem 3.13 (The Hopf formula). Assume (3.17)–(3.18). Assume further that u0 is convex.
Let u be the unique viscosity solution to (3.16). Then, for (x , T ) ∈ Rn × (0,∞),

u(x , T ) = sup
z∈Rn

�

x · z − u∗0(z)− T H(z)
�

= sup
z∈Rn

inf
y∈Rn
(u0(y) + (x − y) · z − T H(z)) .

Here, u∗0 is the Legendre transform of u0.

Proof. Fix (x , T ) ∈ Rn × (0,∞). Let Z = {z ∈ Rn : u∗0(z)< +∞}. Of course, Z 6= ; and

sup
z∈Rn

�

x · z − u∗0(z)− T H(z)
�

= sup
z∈Z

�

x · z − u∗0(z)− T H(z)
�

.

For z ∈ Z , denote by

φz(x , t) = x · z − u∗0(z)− tH(z) for all (x , t) ∈ Rn × (0,∞).

Clearly, φz is a classical solution to (3.16), and in light of the Legendre transform,

φz(x , 0) = x · z − u∗0(z)≤ u0(x).

Hence, φz ≤ u, and in particular,

sup
z∈Z

�

x · z − u∗0(z)− T H(z)
�

= sup
z∈Z
φz(x , T )≤ u(x , T ).

We now prove the reverse inequality. Pick R > 0 such that ‖Du‖L∞(Rn×[0,T]) ≤ R. Let A =
B(0, R), and B = B(0, 1). By Theorem 3.12,

u(x , T ) = inf
β∈Γ0

sup
a(·)∈A0

�

∫ T

0

(−H(a(s))− Ca(s) · β[a](s)) ds+ u0(yx(T ))

�

.
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Here, yx solves
¨

y ′x(s) = Cβ[a](s) for 0< s < T,

yx(0) = x .

As u0 is convex, we use Jensen’s inequality to yield

u0(yx(T )) = u0

�

x +

∫ T

0

y ′x(s) ds

�

= u0

�

x +
1
T

∫ T

0

T y ′x(s) ds

�

≤
1
T

∫ T

0

u0(x + T y ′x(s)) ds.

Let β∗ ∈ Γ0 be such that β∗[a](s) = ϕ(a(s)) for a measurable function ϕ : A → B to be
chosen. Then,

u(x , T )≤ sup
a(·)∈A0

�

∫ T

0

[−H(a(s))− a(s) · Cϕ(a(s))] ds+ u0(yx(T ))

�

≤ sup
a(·)∈A0

�

1
T

∫ T

0

[−T H(a(s))− a(s) · T Cϕ(a(s)) + u0(x + T Cϕ(a(s)))] ds

�

.

Pick ϕ : A→ B measurable such that, for a ∈ A,

x + T Cϕ(a) ∈ D−u∗0(a) = ∂ u∗0(a).

This function is well-defined by changing C to be a larger constant if needed. Then,

−a(s) · T Cϕ(a(s)) + u0(x + T Cϕ(a(s))) = a(s) · x − u∗0(a(s)).

We combine this with the above inequality to deduce that

u(x , T )≤ sup
a(·)∈A0

�

1
T

∫ T

0

[−T H(a(s))− a(s) · T Cϕ(a(s)) + u0(x + T Cϕ(a(s)))] ds

�

= sup
a(·)∈A0

�

1
T

∫ T

0

�

−T H(a(s)) + a(s) · x − u∗0(a(s))
�

ds

�

= sup
|z|≤C

�

−T H(z) + z · x − u∗0(z)
�

≤ sup
z∈Rn

�

−T H(z) + z · x − u∗0(z)
�

.

Remark 3.14. Thus far, we have obtained some representation formulas for the viscosity
solution to (3.16) under assumptions (3.17)–(3.18). On the one hand, we always have a
two-player zero-sum differential game representation formula as stated in Theorem 3.12,
which is quite complicated and not easy to be analyzed. On the other hand, if we put an
additional convexity assumption on either H or u0, then we have furthermore the Hopf-Lax
formula or the Hopf formula, respectively.

We recall here the Hopf-Lax formula and the Hopf formula for comparison. If H is convex,
then the Hopf-Lax formula (Theorem 2.23) reads, for (x , t) ∈ Rn × (0,∞),

u(x , t) = inf
y∈Rn

n

t L
� x − y

t

�

+ u0(y)
o

= inf
y∈Rn

§

sup
z∈Rn

t
� x − y

t
· z −H(z)

�

+ u0(y)
ª

= inf
y∈Rn

sup
z∈Rn
{u0(y) + (x − y) · z − tH(z)}= inf

y∈Rn
sup
z∈Rn

φ y,z(x , t).
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Here, for (y, z) ∈ Rn ×Rn,

φ y,z(x , t) = u0(y) + (x − y) · z − tH(z),

which is an affine solution to (3.16). If u0 is convex, then the Lax formula (Theorem 3.13)
gives

u(x , t) = sup
z∈Rn

�

x · z − u∗0(z)− tH(z)
�

= sup
z∈Rn

inf
y∈Rn
(u0(y) + (x − y) · z − tH(z)) = sup

z∈Rn
inf

y∈Rn
φ y,z(x , t).

Basically, we can see that the Hopf-Lax formula is only different from the Lax formula in the
order of taking supremum and infimum. Both of the formulas are two-parameter envelopes
constructed from {φ y,z}y,z∈Rn .

4 Finite difference approximations

We consider the following first-order equation

F(x , u(x), Du(x)) = 0 in U . (3.19)

Here, U ⊂ Rn is a given open set, F : U ×R×Rn → R is a given continuous function, and
u : U → R is the unknown. Our aim is to provide a certain finite difference approximation
to approximate u, a solution to (3.19), based on stability results of viscosity solutions.

4.1 Monotone and consistent schemes

Our generalized approximation schemes consist of a sequence of pairs (Xk, Mk)k∈N such that
Xk ⊂ Rn is locally finite, and Mk : RXk → R. Here, RXk is the set of real-valued functions on
Xk. In this general setting, we do not yet assume that Xk is of grid form in Rn. We require
the following assumptions.

• Density condition: There exists a sequence {δk} → 0 such that, for k ∈ N,

sup
x∈U

dist (x , Xk ∩ U)< δk. (3.20)

• Locality condition: There exists a sequence {εk} → 0 such that, for k ∈ N,
¨

for u, v ∈ RXk , and x ∈ Xk ∩ U ,

if u= v on Xk ∩ B(x ,εk), then Mku(x) = Mkv(x).
(3.21)

• Monotonicity condition:
¨

for u, v ∈ RXk , and x ∈ Xk ∩ U ,

if u touches v from above at x , then Mku(x)≤ Mkv(x).
(3.22)

• Consistency condition: For any real sequence {sk} → 0,
¨

for ϕ ∈ C1(U) and x ∈ U , if xk ∈ Xk for k ∈ N, and limk→∞ xk = x ,

then limk→∞Mk(ϕ + sk)(xk) = F(x ,ϕ(x), Dϕ(x)).
(3.23)

100



The density condition (3.20) can be stated in an equivalent way as following. There exist a
sequence {δk} → 0 and a sequence of maps {πk} such that, for k ∈ N, πk : U → Xk∩U , and

sup
x∈U
|πk(x)− x |< δk. (3.24)

Theorem 3.15. Assume (3.20)–(3.23). Let {πk} be a sequence of maps as in (3.24). For each
k ∈ N, let uk ∈ RXk be a solution to Mkuk = 0 in Xk ∩ U. Assume that uk ◦ πk → u locally
uniformly in U for some u ∈ C(U). Then, u is a viscosity solution to (3.19).

Proof. We only show that u is a viscosity subsolution to (3.19).

Pick φ ∈ C1(U) such that u − φ has a strict maximum at y ∈ U and u(y) = φ(y). As
uk ◦ πk → u locally uniformly in U , for k ∈ N sufficiently large, we imply that uk − φ
has a local maximum over Xk ∩ U at xk ∈ Xk ∩ U , and limk→∞ xk = y . For k ∈ N, let
sk = uk(xk)−φ(xk). Clearly, limk→∞ sk = 0. Then, φ+ sk touches uk from above at xk ∈ Xk,
which yields

Mk(φ + sk)(xk)≤ Mkuk(xk) = 0.

Let k→∞ to get further that

F(y, u(y), Dφ(y)) = F(y,φ(y), Dφ(y)) = lim
k→∞

Mk(φ + sk)(xk)≤ 0.

The proof is complete.

4.2 Examples

In all the following examples, Xk are always chosen to be of grid form for all k ∈ N. We first
consider a simple transport equation.

Example 3.2 (Transport equation in one dimension).
¨

ut + cux = 0 in R× (0,∞),
u(x , 0) = u0(x) on R.

(3.25)

Here, c > 0 is a positive constant, and u0 ∈ BUC (R) ∩ C1(R) is a given function. It is
straightforward that the unique classical solution to (3.25) is u(x , t) = u0(x − c t) for all
(x , t) ∈ R× [0,∞). Let us consider a finite difference scheme for (3.25) despite this fact.

For each k ∈ N, fix mesh sizes ∆x ,∆t > 0. Denote by

Xk = {( j∆x , n∆t) : j ∈ Z, n≥ 0} .

It is clear that (3.20) holds provided that the mesh sizes tend to 0 as k→∞. For U ∈ RXk , we
write Un

j = U( j∆x , n∆t). To approximate ut , we take

ut ≈
Un+1

j − Un
j

∆t
.

For ux , we pick

ux ≈
Un

j − Un
j−1

∆x
.
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Our scheme is
Un+1

j − Un
j

∆t
+ c

Un
j − Un

j−1

∆x
= 0.

By our choices, (3.21) and (3.23) hold. The above can be rewritten as

Un+1
j =

�

1− c
∆t
∆x

�

Un
j + c

∆t
∆x

Un
j−1. (3.26)

In order to have (3.22), the monotonicity condition, we need to require that

c
∆t
∆x
≤ 1 ⇔

∆x
∆t
≥ c, (3.27)

which gives further that Un+1
j is a convex combination of Un

j and Un
j−1. The scheme (3.26) is

called an upwind scheme in the literature. If (3.27) does not hold, then 1− c ∆t
∆x < 0 in (3.26),

and the numerically computed solution might blow up.
It is worth noting furthermore that our scheme can be rewritten in another way as

Un+1
j − Un

j

∆t
+ c

Un
j+1 − Un

j−1

2∆x
=

c∆x
2

Un
j+1 − 2Un

j + Un
j−1

(∆x)2
,

which looks pretty much like a discretization of

ut + cux =
c∆x

2
ux x .

The term on the right hand side is called a numerical viscosity. It is clear that c > 0 is really
needed in this scheme.

Next, we study a first-order Hamilton–Jacobi equation in one dimension.

Example 3.3 (First-order Hamilton–Jacobi equation in one dimension).
¨

ut +H(ux) = 0 in R× (0,∞),
u(x , 0) = u0(x) on R.

(3.28)

Here, H ∈ Lip (R), and u0 ∈ BUC (R)∩ Lip (R) are given functions.
For each k ∈ N, fix mesh sizes ∆x ,∆t > 0. Set

Xk = {( j∆x , n∆t) : j ∈ Z, n≥ 0} .

Assume that λx =
∆t
∆x is fixed and is independent of k ∈ N. It is clear that (3.20) holds provided

that the mesh sizes tend to 0 as k →∞. For U ∈ RXk , we write Un
j = U( j∆x , n∆t). Our

scheme is
Un+1

j − Un
j

∆t
+H

�Un
j+1 − Un

j−1

2∆x

�

=
θ

λx

Un
j+1 − 2Un

j + Un
j−1

∆x
.

The constant θ > 0 will be chosen later. As above, based on the choice of our schemes, (3.21)
and (3.23) hold naturally. We only need to check carefully the monotonicity condition (3.22).
The above relation can be rewritten as

Un+1
j = Un

j −∆t H

�Un
j+1 − Un

j−1

2∆x

�

+ θ (Un
j+1 − 2Un

j + Un
j−1) (3.29)

= (1− 2θ )Un
j + θ (U

n
j+1 + Un

j−1)−∆t H

�Un
j+1 − Un

j−1

2∆x

�

.
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To have the monotonicity condition, we need to require that

0< θ <
1
2

and θ >
λx

2
‖H ′‖L∞(R),

which means that
λx

2
‖H ′‖L∞(R) < θ <

1
2

. (3.30)

Condition (3.30) can be achieved by first choosing θ ∈ (0, 1
2), and then λx > 0 small enough.

This scheme is analogous to the Lax-Friedrichs scheme for conservation laws.

In fact, the ideas in Example 3.3 can be generalized to multi dimensional settings rather
naturally. For simplicity of the presentation, we only consider a two dimensional example
below.

Example 3.4 (First-order Hamilton–Jacobi equation in two dimensions). Here, we write
(x , y) ∈ R2 as a variable. The equation of interests is

¨

ut +H(ux , uy) = 0 in R2 × (0,∞),
u(x , y, 0) = u0(x , y) on R2.

(3.31)

The Hamiltonian H ∈ Lip (R2), and the initial data u0 ∈ BUC (R2) ∩ Lip (R2) are given func-
tions.
For each k ∈ N, fix mesh sizes ∆x ,∆y,∆t > 0. Set

Xk = {( j∆x , l∆y, n∆t) : j, l ∈ Z, n≥ 0} .

Assume that λx =
∆t
∆x , λy =

∆t
∆y are fixed and are independent of k ∈ N. It is clear that

(3.20) holds provided that the mesh sizes tend to 0 as k → ∞. For U ∈ RXk , we write
Un

j,l = U( j∆x , l∆y, n∆t). Similar to the above, our scheme is

Un+1
j,l − Un

j,l

∆t
+H

�Un
j+1,l − Un

j−1,l

2∆x
,
Un

j,l+1 − Un
j,l−1

2∆y

�

=
θ

λx

Un
j+1,l − 2Un

j,l + Un
j−1,l

∆x
+
θ

λy

Un
j,l+1 − 2Un

j,l + Un
j,l−1

∆y
.

In order to have a monotone and consistent scheme, we need to require that

max

�

λx

2
‖Hx‖L∞(R2),

λy

2
‖H y‖L∞(R2)

�

< θ <
1
4

. (3.32)

Condition (3.32) can be achieved by first choosing θ ∈ (0, 1
4), and then λx ,λy > 0 small

enough.
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CHAPTER 4
Periodic homogenization theory for

Hamilton–Jacobi equations

1 Introduction to periodic homogenization theory

1.1 Introduction

Homogenization theory has been blossoming in last couple of decades in various different
directions for many kind of PDEs. In this chapter, we only focus on the periodic homoge-
nization theory for Hamilton–Jacobi equations. The equations of interest are as following.
For each ε > 0, we study

¨

uεt (x , t) +H
�

x
ε , Duε(x , t)

�

= 0 in Rn × (0,∞),
uε(x , 0) = u0(x) on Rn.

(4.1)

Here, the Hamiltonian H : Rn×Rn→ R is continuous and satisfies some appropriate condi-
tions to be addressed soon. We often assume that the initial data u0 ∈ BUC (Rn)∩ Lip (Rn)
unless otherwise specified.

In practice, ε > 0 is a fixed length scale, which is quite small. If we zoom in the system
to the scale ε, we see the whole microstructure, and this is represented in (4.1) by the
highly oscillatory variable x

ε . Of course, the Hamiltonian can be much more complex with
various different scales such as H = H(x , x

ε , x
εs1 , . . . , x

εsm , p) for given s1, . . . , sm > 0, a typical
multi-scale problem. We here focus on the simplest case H = H( x

ε , p). Yet, dealing with
this problem is already quite challenging, especially numerically as in order to be able to
compute/approximate the solution accurately, one needs to have approximation schemes of
sizes smaller than ε (or O(ε)). Otherwise, the microstructure will be missed.

Typically, the microstructure in the system is repeated somehow, and this gives hope for us to
see (nonlinear) averaging effects. In this entire chapter, we assume that the microstructure
is periodic, which is the most idealistic situation. Then, mathematically, we let ε → 0 in
(4.1), and we expect that uε converges to u as ε→ 0 in some sense, and u solves a certain
averaging (effective) equation, which is simpler somewhat.

The above gives a minimalistic introduction to homogenization theory. Basic questions of
interests are as follows.
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1. Qualitative theory: Find out the effective equation, and show convergence of uε to u
in some functional spaces.

2. Better understanding of the effective equation: Since the problem is nonlinear, it is
extremely important to analyze the effective equation in various aspects.

3. Quantitative theory: Quantify the convergence of uε to u, and if possible, find optimal
rate of convergence.

4. Numerics: Up to now, there have been very few results in this direction since the
equations are highly nonlinear.

1.2 Derivations

Our focus is on equation (4.1) for each ε > 0. And our goal is to let ε → 0 to observe a
certain nonlinear averaging behavior.

Basic assumptions. Throughout this chapter, we assume the following two assumptions.

y 7→ H(y, p) is Zn-periodic, that is, H(y, p) = H(y + k, p) for k ∈ Zn, (4.2)

and
lim
|p|→∞

H(y, p) = +∞ uniformly for y ∈ Rn. (4.3)

We can think about our current problem (4.1) as a multi-scale problem

• x is the macroscopic scale variable or low scale variable;

• y = x
ε is the microscopic scale variable or fast scale variable.

The relation x = ε y can be heuristically understood as when x changes a little bit of order
O(ε), we have y varies correspondingly a lot, that is, y sees the small changes in the envi-
ronment. Conversely, when y changes a little (of order O(1) or less), x does not see that
essentially. Microscopically, the system is very complicated, even in the case we can use the
optimal control representation formula as in the following example.

Example 4.1. Consider again the classical mechanics Hamiltonian

H(y, p) =
1
2
|p2|+ V (y) for all (y, p) ∈ Rn ×Rn,

where V ∈ C(Rn) is Zn-periodic. Let Tn = Rn/Zn be the usual flat n-dimensional torus. We
often write V ∈ C(Tn). Then the corresponding problem is

¨

uεt +
1
2 |Duε|2 + V

�

x
ε

�

= 0 in Rn × (0,∞)
uε(x , 0) = u0(x) on Rn.

Recall the Legendre transform L(y, v) = 1
2 |v|

2 − V (y) for all (y, v) ∈ Rn × Rn, we have the
optimal control representation formula

uε(x , t) = inf

�∫ t

0

�

1
2
|γ′(s)|2 − V

�

γ(s)
ε

��

ds : γ(t) = x ,γ′(·) ∈ L1([0, t])

�

.
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By change of variables,

uε(x , t) = inf

¨

ε

∫ t/ε

0

�

1
2
|ξ′(s)|2 − V (ξ(s))

�

ds : ξ(t/ε) = x ,ξ′(·) ∈ L1([0, t/ε])

«

.

This formula is extremely interesting and complicated at the same time. Basically, it is a large
time average of some action functionals of the type 1

T

∫ T

0
L(·) ds as T = ε−1 → +∞. And

since we go for large time, the admissible paths ξ are able to explore all possible locations in
the periodic environment, and thus, homogenization (large time average) should occur. It is
however not clear at all what is the limit if there is any. The nonlinear dependence is quite
twisted here in the formula between the two terms that makes it really hard to understand
deeper. We will revisit this optimal control viewpoint for convex Hamiltonians later.

Heuristic arguments. We introduce the following ansatz1 as an expansion of uε in ε

uε(x , t) = u0
�

x ,
x
ε

, t
�

+ εu1
�

x ,
x
ε

, t
�

+ ε2u2
�

x ,
x
ε

, t
�

+ . . .

= u0 (x , y, t) + εu1 (x , y, t) + ε2u2 (x , y, t) + . . .

Then,

uεt (x , t) = u0
t (x , y, t) + εu1

t (x , y, t) + ε2u2
t (x , y, t) + . . .

Dxuε(x , t) = Dxu0(x , y, t) +
1
ε

Dyu0(x , y, t) + εDxu1(x , y, t) + Dyu1(x , y, t) +O(ε).

Now, this is a crucial point. Think about x , y as independent variables, that is, x , y are
unrelated. Although it is not true from the heuristic setting x = ε y , but from the explanation
of separation of scales earlier (macroscopic variable x , and microscopic variable y), it sort
of makes sense.

Put the above expansions into (4.1) to get

u0
t +O(ε) +H

�

y, Dxu0 +
1
ε

Dyu0 + εDxu1 + Dyu1 +O(ε)
�

= 0. (4.4)

Heuristically, if |Dyu0| 6= 0 then 1
ε |Dyu0| →∞ as ε→ 0, thus it forces

H
�

y, Dxu0 +
1
ε

Dyu0 + εDxu1 + Dyu1 +O(ε)
�

→∞ as ε→ 0,

by the coercivity of H, and hence, (4.4) does not hold. Thus, we must have Dyu0 ≡ 0, that
is, u0 (x , y, t)≡ u0(x , t), and (4.4) becomes

u0
t +O(ε) +H

�

y, Dxu0 + Dyu1 +O(ε)
�

= 0.

Let ε→ 0 to yield further that

u0
t (x , t) +H

�

y, Dxu0(x , t) + Dyu1(x , y, t)
�

= 0.

1An ansatz means a formulation or an educated guess
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Since Dxu1, u1
t only play a role at O(ε) level of expansions, let us take u1(x , y, t) ≡ u1(y),

then we get
H
�

y, Dxu0(x , t) + Dyu1(y)
�

= −u0
t (x , t).

Recall that we have assumed that x and y are unrelated. Fix (x , t) ∈ Rn×[0,∞), and think
of y as the only running variable, then we arrive at an equation for y 7→ u1(y) as

H



y, Dxu0(x , t)
︸ ︷︷ ︸

p∈Rn

+Dyu1(y)



= −u0
t (x , t)

︸ ︷︷ ︸

c∈R

in Rn.

Let us recast it as following. Fix p ∈ Rn, we would like to solve

H(y, p+ Du1(y)) = c in Rn.

As H is periodic in y , we can think of the above problem in Tn as well. If it is solvable, and
if we are able to find a unique constant c ∈ R so that it has a solution u1, then denote by
H(p) = c. It is not trivial and clear at all if we are able to show this, but let us take it for
granted for now.

It is then clear from the ansatz that uε(x , t)≈ u0(x , t)+ εu1(y)→ u0(x , t) as ε→ 0, and u0

solves
¨

u0
t (x , t) +H

�

Du0(x , t)
�

= 0 in Rn × (0,∞),
u0(x , 0) = u0(x) on Rn.

This is an effective equation, and clearly, homogenization was achieved at the heuristic level.
Of course, there were many heuristic ideas in the above derivation (including the facts that
we have asymptotic expansions, we have x and y are unrelated, and we have the existence
and uniqueness of constant c above). We need somehow to verify these at the rigorous level,
and we will see that not all are that clear.

Remark 4.1. The above derivation also works well for the following general degenerate
viscous Hamilton–Jacobi equation

wεt(x , t) +H
� x
ε

, Dwε
�

= εtr
�

A
� x
ε

�

D2wε
�

in Rn × (0,∞).

Here, H satisfies (4.2) and (4.3). The diffusion matrix A(y) is a symmetric, nonnegative
definite matrix of size n for all y ∈ Rn. Besides, the map y 7→ A(y) is Zn-periodic, Lipschitz.
There are two points to note here. First, A(·) might be degenerate in some directions or all
directions at various locations, so the diffusion is not helpful in general. Second, as we put
the factor ε in front of the diffusion, its effect, if there is any, vanishes anyhow as ε→ 0. In
other words, in the limit, we should only see the effective equation of first-order type.

Following the above derivation, we think of

wε(x , t) = w0(x , t) + εw1(y) + . . . .

Then, for fixed p ∈ Rn, we solve

H(y, p+ Dw1(y))− tr (A(y)D2w1(y)) = c in Rn.

Here, c ∈ R is an unknown constant.
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2 Cell problems and periodic homogenization of static
Hamilton–Jacobi equations

Recall that, for (4.1), we introduced the ansatz uε(x , t) ≈ u0(x , t) + εu1(y) where y = x
ε .

Here, x is the macroscopic variable, and y is the microscopic variable. See Figure 4.1. Then,

u0
t (x , t) +H

�

y, Du0(x , t) + Du1(y)
�

= 0 in Rn × [0,∞).

Fix (x , t) ∈ Rn × [0,∞), and think of y as a variable. Let p = Du0(x , t) ∈ Rn, and −c =
u0

t (x , t) ∈ R. Then, we have the following PDE for u1

H(y, p+ Du1(y)) = c in Tn = Rn/Zn. (Ep)

We call (Ep) the cell problem corresponding to p ∈ Rn. In the literature, it is also called the
ergodic problem or the corrector problem corresponding to p ∈ Rn.

Figure 4.1: An example of graphs of uε and u= u0 near (x , t).

2.1 Cell problems

In this section, we discuss the cell problems, which were studied first by Lions, Papanicolaou,
and Varadhan [102].

Theorem 4.2. Assume that H satisfies (4.2) and (4.3). Fix p ∈ Rn. There exists a unique
constant c ∈ R such that the cell problem (Ep) has a viscosity solution v ∈ Lip(Tn).

Definition 4.3. Assume that H satisfies (4.2) and (4.3). For each p ∈ Rn, Theorem 4.2 gives
us the existence and uniqueness of a constant c ∈ R such that the cell problem (Ep) has a
viscosity solution v ∈ Lip(Tn). We denote by H(p) = c. We call H : Rn → R the effective
Hamiltonian.

It is worth noting right away that as (Ep) is nonlinear, behavior H is very complicated and
does not depend on H in a linear way. In particular, there is no explicit formula for H.
We will study properties of H soon. There are, however, many open questions along this
direction.
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Proof of theorem 4.2. For λ > 0, we consider the static equation

λvλ +H(y, p+ Dvλ) = 0 in Rn. (4.5)

By Theorem 1.27, we get that there exists a unique viscosity solution vλ ∈ Lip(Rn) of (4.5).
We prove that indeed vλ is Zn-periodic. For each k ∈ Zn,

λvλ(y+k)+H(y+k, p+Dvλ(y+k)) = 0 =⇒ λvλ(y+k)+H
�

y, p+Dvλ(y+k)
�

= 0

since y 7→ H(y, p) is Zn-periodic. Thus, y 7→ v(y + k) is also a (viscosity) solution to (4.5),
and hence, vλ(y + k) = vλ(y) for all k ∈ Zn by the uniqueness of solutions to (4.5). In
particular, we can think of vλ ∈ Lip (Tn) now.

Next, take C0 = maxy∈Tn |H(y, p)|. It is clear that C0
λ and − C0

λ are a viscosity supersolution
and subsolution of (4.5), respectively, thus by the comparison principle, we have

sup
y∈Tn
|λvλ(y)| ≤ C0.

Plug it into (4.5) again, recall that vλ ∈ Lip(Tn) thus it is differentiable a.e., then in the a.e.
sense (4.5) becomes

|H(y, p+ Dvλ(y))| ≤ C0 for a.e. y ∈ Tn.

By coercivity of H we deduce that ‖Dvλ‖L∞(Tn) ≤ C1 independent of λ > 0. Note that the
above estimates were already in Theorem 1.26. We redo them here for clarity.

For each λ > 0, denote by

wλ(y) = vλ(y)− vλ(0) for all y ∈ Tn.

Then, as the diameter of [0,1]n is
p

n,

‖wλ‖L∞(Tn) ≤
p

n‖Dvλ‖L∞(Tn) ≤ C , and ‖Dwλ‖L∞(Tn) = ‖Dvλ‖L∞(Tn) ≤ C .

In particular, {wλ}λ>0 is equi-continuous on Tn. By the Arzelà–Ascoli theorem, there exists
a subsequence {λ j} → 0 such that

¨

wλ j = vλ j(·)− vλ j(0)→ v(·) uniformly on Tn,

λ j v
λ j(0)→−c ∈ R

for some c ∈ R. It is clear that minTn v = 0 and ‖Dv‖L∞(Tn) ≤ C . Note that wλ solves the
following equation in the viscosity sense

λwλ(y) +H
�

y, p+ Dwλ(y)
�

= −λvλ(0) in Tn.

By stability results for viscosity solutions, one has that v solves

H(y, p+ Dv(y)) = c in Tn. (4.6)

Thus we obtain a pair (v, c) ∈ Lip (Tn)×R, which solves the cell problem.
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What is left is to prove that c is unique. Indeed, assume that (v1, c1), (v2, c2) ∈ C(Tn) × R
with c1 < c2 are both solutions to the cell problem. Then,

H(y, p+ Dv1(y)) = c1 < c2 = H(y, p+ Dv2(y)) in Tn.

Note that we have right away that v1, v2 ∈ Lip (Tn) by Lemma 1.28. Since v1, v2 are bounded
in Tn, we can find δ > 0 sufficiently small such that2

δv1(y) +H(y, p+ Dv1(y))<
c1 + c2

2
< δv2(y) +H(y, p+ Dv2(y)) in Tn.

Thus v1 and v2 are a subsolution and a supersolution to δw+H(y, p+Dw) = 1
2(c1+c2) in Tn,

respectively. By the usual comparison principle for this static problem we obtain v1 ≤ v2. As
(v1 + C , c1) is also a pair solution to the cell problem (4.6) for any C > 0, by repeating the
above steps, we also get v1 + C ≤ v2, which is a contradiction. Thus, we must have c1 = c2

and hence the constant c = H(p) is unique.

Remark 4.4. Some comments are in order.

1. It is worth noting first that (Ep) is not monotone in v, and solutions v ∈ Lip(Tn) to (Ep)
are not unique. In fact, if v ∈ Lip (Tn) is a solution, then so is v + C for any constant
C ∈ R. In many cases, there are other family of nontrivial solutions to (Ep). This is
a very important phenomenon, which deserves further and deeper analysis. For now,
the convex case is handled, but not so much is known for nonconvex cases.

2. As ‖Dvλ‖L∞(Tn) ≤ C independent of λ, and limλ→0λvλ(0) = −H(p), we get

λvλ(·)→−H(p) uniformly in Tn as λ→ 0.

In the following exercise, we can see that this convergence has rate O(λ). But it is
important pointing out that it does not give any detailed information about H.

3. In the above proof, we only achieve the convergence of vλ(·) − vλ(x0) → v(·) along
a subsequence {λ j} → 0. The question on whether or not one has this convergence
for the whole sequence λ→ 0 is extremely interesting, and it is basically a selection
problem on vanishing discount.

2.2 Problems

Exercise 37. Assume that H satisfies (4.2) and (4.3). Fix p ∈ Rn, and we look at (4.5). Show
that there exists a constant C > 0 independent of λ > 0 such that, for any λ > 0, we have



λvλ(·) +H(p)




L∞(Tn) ≤ Cλ.

Exercise 38. Let ψ ∈ C1(Tn) be given, and H(y, p) = p · (p−Dψ(y)) for (y, p) ∈ Tn×Rn. It
is clear that H satisfies (4.2) and (4.3). Find H(0) and various solutions to (Ep) with p = 0.

2Indeed, δ can be chosen such that δ
�

maxy∈Tn |v1(y)|,maxy∈Tn |v2(y)|
	

<
c2−c1

2 .
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2.3 Periodic homogenization of static Hamilton–Jacobi equations

Let us now prove the periodic homogenization of static Hamilton–Jacobi equations. This is
just a simple consequence of Theorem 4.2. Recall the discounted problem (4.5), which can
be viewed in terms of y = x

λ as

λvλ
� x
λ

�

+H
� x
λ

, p+ Dvλ
� x
λ

��

= 0 in Rn.

Let uλ(x) = λvλ
�

x
λ

�

, then Duλ(x) = Dvλ
�

x
λ

�

. The above equation becomes

uλ(x) +H
� x
λ

, p+ Duλ(x)
�

= 0 in Rn. (4.7)

Clearly, (4.7) is a homogenization problem for static Hamilton–Jacobi equations. We already
knew that uλ → −H(p) uniformly in Rn. But let us pretend that we do not have this, and
only expect that uλ→ u locally uniformly in Rn, and if homogenization holds, we have that
u solves

u+H(p+ Du) = 0 in Rn.

A bit of analysis shows that the unique solution to the above is u ≡ −H(p), and therefore,
everything is consistent. Let us record this here as a corollary.

Corollary 4.5. Assume that H satisfies (4.2) and (4.3). Fix p ∈ Rn, and we study the ho-
mogenization problem (4.7). As λ→ 0, uλ→ u ≡ −H(p) uniformly in Rn. In fact, there is a
constant C > 0 independent of λ such that

‖uλ +H(p)‖L∞(Rn) ≤ Cλ.

Thus, homogenization for (4.7) holds.

3 Periodic homogenization for Cauchy problems

Let us state right away the main result in this section, which was proved by Lions, Papani-
colaou, Varadhan [102], and Evans [48].

Theorem 4.6. Assume that H satisfies (4.2) and (4.3). Assume u0 ∈ BUC (Rn)∩Lip (Rn). For
each ε > 0, let uε be the unique viscosity solution of

¨

uεt (x , t) +H
�

x
ε , Duε(x , t)

�

= 0 in Rn × (0,∞),
uε(x , 0) = u0(x) on Rn.

(4.8)

Then, as ε→ 0, uε converges to u locally uniformly on Rn × [0,∞), and u solves the effective
equation

¨

ut +H(Du) = 0 in Rn × (0,∞),
u(x , 0) = u0(x) on Rn.

(4.9)

We here introduce the perturbed test function method of Evans [48] to prove the above
theorem. Roughly speaking, the perturbed test function method is a way to make the formal
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ansatz rigorous. One needs to be extremely careful here as if we recall, for p ∈ Rn, the
corresponding cell problem is

H(y, p+ Dv(y)) = H(p) in Tn. (4.10)

To make it clear the dependences, sometimes, we write v = v(y, p), and in fact, v depends
on p in a very nonlinear way. It is worth mentioning here that H : Rn→ R continuous and
coercive. To focus on the homogenization results, we postpone the proof of this fact until
the next section.

The ansatz we found was that for each p = Du(x , t), v(y, p) = v(y, Du(x , t)) is a corre-
sponding corrector, and our asymptotic expansion around (x , t) ∈ Rn × (0,∞) looks like

uε(x , t)≈ u(x , t) + εv(y, p) = u(x , t) + εv
� x
ε

, Du(x , t)
�

.

The last term in the above is quite problematic because of two issues. First, u is often
only Lipschitz, and not C1, which means that Du(x , t) is only defined a.e., and there is no
continuity property with respect to (x , t). Second, we do not know well the dependence
p 7→ v(y, p). Of course, these two issues come from the highly nonlinear feature of our PDE,
and they need to be handled appropriately.

3.1 A heuristic proof

We first give a heuristic proof of the homogenization result by the perturbed test function
method of Evans. As one will see, the first difficulty is handled by kicking the gradient
Du to the test functions as often seen in the theory of viscosity solutions. The proof is not
yet rigorous as we assume that solutions to (4.10) are smooth. We will also see why the
perturbed test function is needed.

A heuristic proof of Theorem 4.6. As usual, we break this heuristic proof into few steps.

1. We first obtain some a priori estimates for uε. By Theorem 1.34, we have the existence
of C > 0 independent of ε > 0 such that

‖uεt‖L∞(Rn×[0,∞)) + ‖Duε‖L∞(Rn×[0,∞)) ≤ C .

By the Arzelà–Ascoli theorem, there exists a subsequence {ε j} → 0 such that uε j → u
locally uniformly on Rn × [0,∞).

2. We now prove that u solves the effective equation (4.9).

First, we perform the subsolution test. If ϕ ∈ C1
�

Rn × (0,∞)
�

is such that u−ϕ has
strict max at (x0, t0), then we plan to show that ϕt(x0, t0) +H(Dϕ(x0, t0))≤ 0.

It is natural to try first the usual approach. As uε j → u locally uniformly onRn×[0,∞),
we may assume that uε j −ϕ has max at (x j, t j) and (x j, t j)→ (x0, t0) as j→∞. The
viscosity subsolution test gives

ϕt

�

x j, t j

�

+H

�

x j

ε j
, Dϕ

�

x j, t j

�

�

≤ 0.
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As j →∞ we have ϕt

�

x j, t j

�

→ ϕt (x0, t0), but we do not have information about

the second term H
�

x j

ε j
, Dϕ

�

x j, t j

�

�

since ϕ does not oscillate around (x0, t0).

In order to capture the oscillating behavior, we use Evans’s perturbed test function
method. Let us denote p = Dϕ(x0, t0), and consider

ψε(x , t) = ϕ(x , t) + εv
� x
ε

, p
�

where v ∈ Lip(Tn) is the viscosity solution of the cell problem (4.10) with this par-
ticular p. We assume here that v is smooth enough so that ψ ∈ C1. Note that ψε is
just a perturbation of ϕ, hence the name “perturbed test function method". We may
assume that uε j −ψε j has a local max at (xε j

, tε j
), and (xε j

, tε j
)→ (x0, t0) as j→∞.

By the viscosity subsolution test,

ψ
ε j
t

�

xε j
, tε j

�

+H

� xε j

ε j
, Dϕ

�

xε j
, tε j

�

+ Dv

� xε j

ε j

��

≤ 0. (4.11)

As Dϕ
�

xε j
, tε j

�

→ p as j→∞,

lim
j→∞

�

H

� xε j

ε j
, Dϕ

�

xε j
, tε j

�

+ Dv

� xε j

ε j

��

−H

� xε j

ε j
, p+ Dv

� xε j

ε j

���

= 0,

which means

lim
j→∞

�

H

� xε j

ε j
, Dϕ

�

xε j
, tε j

�

+ Dv

� xε j

ε j

��

−H(p)

�

= 0.

Combine this with (4.11) to conclude. The viscosity supersolution test follows in a
similar way.

3. As H is continuous and coercive, (4.9) has a unique Lipschitz solution u. Therefore,
we conclude that uε→ u locally uniformly in Rn × [0,∞) as ε→ 0.

Remark 4.7. In the above heuristic proof, Steps 1 and 3 are actually rigorous. The only
heuristic part is Step 2, in which we assume that y 7→ v(y, p) for p = Dϕ(x0, t0) is C1. This
is of course not realistic, and we need to fix it in our rigorous proof. Our goal of giving
this heuristic proof is to show clearly the key point of the perturbed test function method
without clouded technicalities.

The convergence of uε → u as ε→ 0 for full sequence is based on the fact that the limiting
equation (4.9) has a unique Lipschitz solution u. This is essentially a compactness step, and
it does not give a quantitative result on how fast uε converges to u. We will revisit this point
later.
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3.2 A rigorous proof by using Evans’s perturbed test function method

Let us now give a rigorous proof of the homogenization for the Cauchy problem.

Proof of Theorem 4.6. We reuse Steps 1 and 3 in the heuristic proof above. There exists a
subsequence {ε j} → 0 such that uε j → u locally uniformly on Rn× [0,∞). In fact, by abuse
of notions, we assume uε→ u locally uniformly on Rn× [0,∞) as ε→ 0. All we need to do
is to prove that u solves the effective equation (4.9).

We will perform only the subsolution test since the argument for supersolution test is similar.
For φ ∈ C1(Rn × (0,∞)) such that u−φ has a global strict max at (x0, t0) ∈ Rn × (0,∞),
we aim at proving

φt(x0, t0) +H(Dφ(x0, t0))≤ 0.

Let p = Dφ(x0, t0) ∈ Rn, and let v ∈ Lip(Tn) be the viscosity solution of (4.10) with this
particular p. Let us assume further that u(x0, t0) = φ(x0, t0), and for some r ∈ (0, t0/2),

u(x , t)−φ(x , t)< −(‖v‖L∞(Tn) + 1) for all (x , t) /∈ B(x0, r)× [t0 − r, t0 + r].

In order to overcome the lack of smoothness of v, we use the doubling variables method.
We divide the proof into several steps.

1. Fix T > 2t0. For each ε,η > 0 we consider the auxiliary function

Φη,ε(x , y, t) : Rn ×Rn × [0, T]→ R

(x , y, t) 7→ uε(x , t)−

 

φ(x , t) + εv (y) +

�

�y − x
ε

�

�

2

η

!

.

For ε > 0 sufficiently small, it is clear that Φη,ε has a max at
�

xηε, yηε, tηε
�

∈ B(x0, r)×
Rn×[t0−r, t0+r]. As η→ 0, by compactness

�

xηε, tηε
�

→ (xε, tε) up to a subsequence.
We claim that yηε →

xε
ε as η→ 0. Since Φη,ε

�

xηε,
xηε
ε , tηε

�

≤ Φη,ε
�

xηε, yηε, tηε
�

for all
η > 0, we obtain

1
η

�

�

�yηε −
xηε
ε

�

�

�

2

≤ 2ε ‖v‖L∞(Tn) =⇒ lim
η→0

yηε =
xε
ε

. (4.12)

2. As (x , t) 7→ Φη,ε
�

x , yηε, t
�

has max at
�

xηε, tηε
�

, we imply that uε −φ − 1
η

�

�yηε −
x
ε

�

�

2

has max at
�

xηε, tηε
�

. The subsolution test of (4.8) gives

φt

�

xηε, tηε
�

+H
� xηε
ε

, Dφ
�

xηε, tηε
�

+
2
ηε

� xηε
ε
− yηε

�

�

≤ 0. (4.13)

3. Next, y 7→ Φη,ε
�

xηε, y, tηε
�

has max at yηε, thus v(y)− −1
ηε

�

�y − xηε
ε

�

�

2
has min at yηε,

and hence, the supersolution test of the cell problem gives us

−H(p) +H
�

yηε, p+
2
ηε

� xηε
ε
− yηε

�

�

≥ 0. (4.14)

Besides, as v is Lipschitz, we get
�

�

�

�

2
ηε

� xηε
ε
− yηε

�

�

�

�

�

≤ C , (4.15)
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for some C > 0 independent of η,ε. By compactness, we can assume (up to passing
to a subsequence again) that

lim
η→0

2
ηε

� xηε
ε
− yηε

�

= pε ∈ Rn. (4.16)

4. Note that Φη,ε
�

x , x
ε , t
�

≤ Φη,ε
�

xηε, yηε, tηε
�

. Let η→ 0 in this relation and use (4.16)
to yield

uε(x , t)− εv
� x
ε

�

−φ(x , t)≤ uε (xε, tε)− εv
� xε
ε

�

−φ (xε, tε)

for all (x , t) ∈ Rn× [0, T]. That means (x , t) 7→ uε(x , t)− εv
�

x
ε

�

−φ(x , t) has max at
(xε, tε). Again, by passing to a subsequence if needed, (xε, tε)→ (x0, t0) as ε→ 0.

5. Let η→ 0 in (4.13) and (4.14) to get

φt (xε, tε) +H
� xε
ε

, Dφ (xε, tε) + pε
�

≤ 0,

and
−H(p) +H

� xε
ε

, p+ pε
�

≥ 0.

Combine the above two and let ε→ 0 to conclude that

φt(x0, t0) +H(p)≤ 0.

4 Some first properties of the effective Hamiltonian

4.1 Simple qualitative properties of H

We start with some preliminary properties of H.

Theorem 4.8. Assume H ∈ C(Rn × Rn) satisfies (4.2) and (4.3). Then H : Rn → R is also
continuous and coercive.
Furthermore, if p 7→ H(y, p) is Lipschitz for all y ∈ Tn with Lipschitz constant at most C > 0,
then p 7→ H(p) is also Lipschitz.

Proof. We present here the proof using the discounted approximation of the cell problem,
and the cell problem.

(a) We first show that H is coercive, which is rather simple. Let v ∈ Lip(Tn) be a solution
to (4.10), that is,

H(y, p+ Dv(y)) = H(p) in Tn.

Observe that since v ∈ C(Tn), it has maximum at some point x0 ∈ Tn and that this
point, we must have 0 ∈ D+v(x0), thus the subsolution test at x0 shows

min
Tn

H(y, p)≤ H(x0, p)≤ H(p),
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which implies

lim
|p|→∞

H(p) = lim
|p|→∞

�

min
y∈Tn

H(y, p)
�

= +∞.

Actually, it is useful to know that

min
y∈Tn

H(y, p)≤ H(p)≤max
y∈Tn

H(y, p) for all p ∈ Rn. (4.17)

(b) We now show that H is continuous. Pick an arbitrary sequence {pk} ⊂ Rn such that
{pk} → p and {H(pk)} → c ∈ R. We just need to show that H(p) = c. Let vk ∈ Lip (Tn)
be a solution to (4.10) with minTn vk = 0 and p = pk for all k ∈ N. Note first that, in
light of (4.17), we are able to find C > 0 such that, for all k ∈ N,

H(y, pk + Dvk(y)) = H(pk)≤max
y∈Tn

H(y, pk)≤ C in Tn.

Hence, coercivity of H yields the existence of C1 > 0 such that

‖Dvk‖L∞(Tn) ≤ C1.

By the Arzelà–Ascoli theorem, by passing to a subsequence if necessary, we get that
vk → v uniformly in Tn for some v ∈ Lip (Tn). The usual stability results imply that v
is a solution to

H(y, p+ Dv(y)) = c in Tn,

which means that H(p) = c.

(c) We now assume p 7→ H(y, p) is Lipschitz for all y ∈ Tn with Lipschitz constant at most
C > 0. Fix p, q ∈ Rn. For each λ > 0, let uλ, vλ ∈ Lip(Tn) be the solutions to

λuλ +H(y, q+ Duλ) = 0 in Tn, (4.18)

and
λvλ +H(y, p+ Dvλ) = 0 in Tn, (4.19)

respectively. We now use the comparison principle to obtain needed estimates. It is
not hard to see that uλ + C |p−q|

λ is a supersolution, and uλ − C |p−q|
λ is a subsolution to

(4.19). Therefore,

uλ −
C |p− q|
λ

≤ vλ ≤ uλ +
C |p− q|
λ

.

Multiply the above by λ and let λ→ 0 to deduce

H(q)− C |p− q| ≤ H(p)≤ H(q) + C |p− q|.

In fact, from part (c) in the above proof, we have the following immediate corollary.

Corollary 4.9. Assume H ∈ C(Rn ×Rn) satisfies (4.2) and (4.3). Assume further that p 7→
H(y, p) is locally Lipschitz uniformly in y ∈ Tn. Then p 7→ H(p) is also locally Lipschitz.

We now introduce some elementary representation formulas for H.
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Theorem 4.10. Assume H ∈ C(Rn ×Rn) satisfies (4.2) and (4.3). Then, for p ∈ Rn,

H(p) = inf {c ∈ R : ∃ v ∈ C(Tn) : H(y, p+ Dv(y))≤ c in Tn in viscosity sense}
= sup {c ∈ R : ∃ v ∈ C(Tn) : H(y, p+ Dv(y))≥ c in Tn in viscosity sense} .

Proof. Let us define

A= {c ∈ R : ∃ v ∈ C(Tn) : H(y, p+ Dv(y))≤ c in Tn in viscosity sense}
B= {c ∈ R : ∃ v ∈ C(Tn) : H(y, p+ Dv(y))≥ c in Tn in viscosity sense} .

Recall that from the cell problem there exists v ∈ Lip(Tn) solves (4.10), thus,

infA≤ H(p)≤ supB.

Next, we show that infA = H(p). The other part follows in a similar way. Assume by
contradiction that infA < H(p). Then, there exist some c1 ∈ A and v1 ∈ C(Tn) such that
infA < c1 < H(p), while H(y, p + Dv1(y)) ≤ c1 in Tn in the viscosity sense. Since v, v1 are
bounded, there exists δ > 0 so that

δv1 +H(y, p+ Dv1(y))<
c1 +H(p)

2
< δv +H(y, p+ Dv(y)) in Tn.

The usual comparison principle implies v1 ≤ v. By same steps, we obtain that v1 ≤ v − C
for any constant C > 0, which is absurd. Therefore, infA= H(p).

We can see that Theorems 4.8, 4.10, and Corollary 4.9 give us some good qualitative prop-
erties of the effective Hamiltonian H. Most of these were already covered by Lions, Pa-
panicolaou, Varadhan [102]. Thus, theoretically, we can claim that homogenization holds,
and we have certain understandings about H. In other words, well-posedness of periodic
homogenization of Hamilton–Jacobi equations is done.

Yet, for further understandings in both theoretical and numerical viewpoints, if we would
like to know more about H such as its shape, its formula, its differentiability, the above
results do not give us any hint. In fact, not so much is known about H if we are given a
general H which satisfies (4.2) and (4.3). It is therefore extremely important to go beyond
the well-posedness theory to understand better about H, about the limiting solution u, and
about the rate of convergence of uε to u.

So far, computing H numerically is extremely challenging. The cell problem (4.10) for
each p ∈ Rn is already highly nonlinear, and it takes much time to compute a single H(p).
It seems that there is not yet a way to relate H(p) with H(q) for p 6= q through the cell
problems. And hence, to get a good approximation of H, one needs to compute H(p) at
many different values of p, each of which is already costly, and uses interpolation to get
such approximation.

4.2 Large time average and H

We give in the following a large time average result, which is often used to compute H(p)
for each fixed p ∈ Rn. Although it is very simple, up to now, it seems to be the most effective
one to compute H in the general (possibly nonconvex) setting.
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Theorem 4.11. Assume that H satisfies (4.2) and (4.3). Fix p ∈ Rn. Consider the following
Cauchy problem

¨

wt +H(y, p+ Dw) = 0 in Tn × (0,∞),
w(y, 0) = 0 on Tn.

(4.20)

Let w(y, t) be the unique viscosity solution to (4.20). Then,

lim
t→∞

w(y, t)
t

= −H(p) uniformly for y ∈ Tn.

First proof. We give the first proof by using the cell problem (4.10). We simply construct a
separable subsolution and supersolution to (4.20), respectively, and use them to bound the
actual solution w(x , t).

Let v ∈ Lip(Tn) be a viscosity solution to (4.10). Define:

ϕ(x , t) = v(x)−H(p)t for (x , t) ∈ Tn × [0,∞).

It is clear that ϕ is a separable solution to (4.20) with initial data ϕ(·, 0) = v. Let C =
‖v‖L∞(Tn). Then ϕ(x , t)− C and ϕ(x , t) + C is a viscosity subsolution and supersolution to
(4.20), respectively. By the comparison principle,

v(x)−H(p)t − C ≤ w(x , t)≤ v(x)−H(p)t + C for (x , t) ∈ Tn × (0,∞).

Therefore,
v(x)− C

t
−H(p)≤

w(x , t)
t

≤
v(x) + C

t
−H(p),

which gives us the desired result. Moreover, the rate of convergence is O(1
t ), which is quite

good.

As seen many times throughout this chapter, one key point to grasp is that homogenization
is equivalent to large time average. In the proof above, we utilize strongly the cell problem.
A natural question to ask is what happens in case one does not have such cell problems. We
present next a second proof, which does not need to use the cell problems. This is based on
the ideas in Giga, Mitake, Ohtsuka, and Tran [70], which utilize subadditivity instead.

Second proof. In this second proof, we will show that there exists c ∈ R such that

lim
t→∞

w(y, t)
t

= c uniformly for y ∈ Tn.

It is clear that w is Lipschitz on Tn×[0,∞) with a Lipschitz constant at most C > 0. Denote
by M(t) = maxy∈Tn w(y, t) for each t ≥ 0. Then, |M(t)| ≤ C t. We claim that M(·) is
subadditive, that is,

M(t) +M(s)≥ M(t + s) for all s, t ≥ 0. (4.21)

Indeed, fix s ≥ 0. Set φ(y, t) = w(y, t+s)−M(s) for all (x , t) ∈ Tn×[0,∞). Then, φ solves
(4.20) with initial data φ(y, 0) = w(y, s) − M(s) ≤ 0 for x ∈ Tn. We use the comparison
principle to get that φ ≤ w. In particular,

M(t + s)−M(s) =max
y∈Tn

φ(y, t)≤max
y∈Tn

w(y, t) = M(t).
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Thus, (4.21) holds. By Fekete’s lemma, there exists c ∈ R such that

lim
t→∞

M(t)
t
= inf

t>0

M(t)
t
= c.

Finally, we use the Lipschitz regularity of w and the above to conclude.

This second proof to get large time average result is quite general, and is applicable to a lot
of different settings.

4.3 Problems

Exercise 39. Prove Corollary 4.9.

Exercise 40. Assume that H satisfies (4.2) and (4.3). Assume further that there exists k > 0
such that H is positively k-homogeneous in p, that is, H(y, sp) = skH(y, p) for all (y, p) ∈
Tn ×Rn, and s ≥ 0. Show that H is positively k-homogeneous as well.

5 Further properties of the effective Hamiltonian in the
convex setting

In this section, we always assume that p 7→ H(y, p) is convex for every y ∈ Tn.

5.1 The inf-sup formula

Theorem 4.12 (The inf-sup formula). Assume that H satisfies (4.2) and (4.3). Assume fur-
ther that p 7→ H(y, p) is convex for every y ∈ Tn. Then, for fixed p ∈ Rn, we have

H(p) = inf
φ∈C1(Tn)

max
y∈Tn

H (y, p+ Dφ(y)) . (4.22)

Proof. Pick any ϕ ∈ C1(Tn), by the representation formula in Theorem 4.10,

H(p)≤max
y∈Tn

H(y, p+ Dϕ(y)),

and hence,
H(p)≤ inf

φ∈C1(Tn)
max
y∈Tn

H (y, p+ Dφ(y)) .

Conversely, given θ > 0, we aim at proving that

H(p) + θ ≥ inf
φ∈C1(Tn)

max
y∈Tn

H (y, p+ Dφ(y)) .

Let v ∈ Lip(Tn) be a viscosity solution to (4.10), that is,

H(y, p+ Dv(y)) = H(p) in Tn.

It is clear that v is differentiable and solves the above a.e. in Tn. We need to smooth v up,
and we use the convolution trick as earlier. Take η to be the standard mollifier, that is,

η ∈ C∞c (R
n, [0,∞)), supp(η) ⊂ B(0, 1),

∫

Rn

η(x) d x = 1.

120



For ε > 0, denote by ηε(x) = ε−nη
�

x
ε

�

for all x ∈ Rn. Set

vε(x) = (ηε ? v) (x) =

∫

Rn

ηε(x − y)v(y) d y =

∫

B(x ,ε)

ηε(x − y)v(y) d y for x ∈ Rn.

Then vε ∈ C∞(Tn), and vε → v uniformly in Tn as ε → 0. We compute, for every fixed
x ∈ Tn,

H(p) =

∫

Rn

H
�

x − y, p+ Dv(x − y)
�

ηε(y) d y =

∫

B(0,ε)

H
�

x − y, p+ Dv(x − y)
�

ηε(y) d y

≥
∫

B(0,ε)

�

H
�

x , p+ Dv(x − y)
�

−ω(ε)
�

ηε(y) d y

=

∫

B(0,ε)

H
�

x , p+ Dv(x − y)
�

ηε(y) d y −ω(ε)

≥ H

�

x ,

∫

B(0,ε)

(p+ Dv(x − y))ηε(y) d y

�

−ω(ε) = H(x , p+ Dvε(x))−ω(ε).

Thus, vε satisfies
max
x∈Tn

H(x , p+ Dvε(x))≤ H(p) +ω(ε).

Pick ε > 0 sufficiently small so that ω(ε)< θ to conclude.

The following theorem is an immediate consequence of the inf-sup (or inf-max) formula.

Theorem 4.13. Assume that H satisfies (4.2) and (4.3). Assume further that p 7→ H(y, p) is
convex for every y ∈ Tn. Then, H is convex.

Proof. Fix p, q ∈ Rn. We need to show

H
�p+ q

2

�

≤
1
2

�

H(p) +H(q)
�

.

For ϕ,ψ ∈ C1(Tn), the convexity of p 7→ H(x , p) implies that, for x ∈ Tn,

H
�

x ,
p+ q

2
+ D

�

ϕ +ψ
2

�

(x)
�

≤
1
2
(H (x , p+ Dϕ(x)) +H (x , q+ Dψ(x))) ,

and so

max
x∈Tn

H
�

x ,
p+ q

2
+ D

�

ϕ +ψ
2

�

(x)
�

≤
1
2

�

max
x∈Tn

H(x , p+ Dϕ(x)) +max
x∈Tn

H(x , q+ Dψ(x))
�

.

The inf-sup formula (4.12) implies that H
� p+q

2

�

≤ 1
2

�

H(p) + H(q)
�

, and the proof is com-
plete.

It is worth pointing out that by using the idea of Barron, Jensen [18] in Theorem 2.27, we
have another formula for H in the convex setting.
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Corollary 4.14. Assume that H satisfies (4.2) and (4.3). Assume further that p 7→ H(y, p) is
convex for every y ∈ Tn. Then, for each p ∈ Rn,

H(p) = inf {c ∈ R : ∃ v ∈ Lip (Tn) : H(y, p+ Dv(y))≤ c a.e. in Tn} . (4.23)

One can then use this Corollary to give another quick proof of Theorem 4.13. This proof is
left as an exercise.

5.2 The large time average formula

We use Theorem 4.11 to give a large time average formula in the convex setting as following.
This result was obtained first by Concordel [33].

Theorem 4.15. Assume that H satisfies (4.2), p 7→ H(y, p) is convex and superlinear for each
y ∈ Tn. Fix p ∈ Rn. Then,

H(p) = lim
t→∞

sup
γ(·)

1
t

∫ t

0

�

p · γ′(s)− L(γ(s),γ′(s))
�

ds.

Proof. We just need to apply the result of Theorem 4.11 here. Let w be the solution to
(4.20), then we have that

lim
t→∞

w(y, t)
t

= −H(p) uniformly for y ∈ Tn.

The Lagrangian corresponding to H(·, p+ ·) is (x , v) 7→ L(x , v)− p · v. We apply the optimal
control formula for Cauchy problem to (4.20) to get that, for (y, t) ∈ Tn × (0,∞),

w(y, t) = inf
γ(t)=y

∫ t

0

�

L(γ(s),γ′(s))− p · γ′(s)
�

ds

Combine the two identities above to complete the proof.

Concordel [33, 34] used this formula to study properties of H, especially whether H has a
flat part or not. We will address this in the next section.

5.3 An one dimensional example

We give in the following an one dimensional example that was introduced by Lions, Pa-
panicolaou, Varadhan [102]. According to the paper, Tartar was the one who provided this
example.

Example 4.2. Assume that n= 1, and H(y, p) = |p|2−V (y), where V ∈ C(T) with minT V =
0. We intend to give a formula for H here.

For any 1-periodic integrable function φ, denote by 〈φ〉 its average, that is, 〈φ〉=
∫ 1

0
φ(y) d y.

We claim that

H(p) =

¨

0 for |p| ≤ 〈
p

V 〉,
λ for |p| ≥ 〈

p
V 〉, where λ≥ 0 is such that |p|= 〈

p
λ+ V 〉.

(4.24)

Note that this formula only holds in one dimension. There is no such formula in multi dimen-
sions.
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p

H(p)

Figure 4.2: Graph of H

Let us now prove the above formula.

Proof of formula (4.24). Pick y0 ∈ [0,1] such that V (y0) = 0. For |p| ≤ 〈
p

V 〉, we can find
y1 ∈ [y0, y0 + 1] such that

∫ y1

y0

�

−p+
Æ

V (s)
�

ds =

∫ y0+1

y1

�

p+
Æ

V (s)
�

ds,

which means that

p =

∫ y1

y0

Æ

V (s) ds−
∫ y0+1

y1

Æ

V (s) ds.

Let v : [y0, y0 + 1]→ R be such that

v′(y) =

¨

−p+
p

V (y) for y0 ≤ y < y1,

−p−
p

V (y) for y1 < y ≤ y0 + 1.

By the choice of y1, v(y0) = v(y0+ 1). Extend v to R in a periodic way. It is clear then that
v is a viscosity solution to

|p+ v′|2 − V (y) = 0 in T.

Indeed, v ∈ C1(T \ {y1}) and solves the equation in the classical sense in T \ {y1}. At y1, v
has a corner from above, so there is nothing to check. Thus, H(p) = 0 for |p| ≤ 〈

p
V 〉.

Now, for p > 〈
p

V 〉, we are able to find λ > 0 such that p = 〈
p
λ+ V 〉. Let v : [y0, y0+1]→

R be such that
v′(y) = −p+

Æ

λ+ V (y) for y0 ≤ y ≤ y0 + 1.

By the choice of λ, v(y0) = v(y0 + 1). Extend v to R in a periodic way. One can see that v
is a classical solution to

|p+ v′|2 − V (y) = λ in T,

which yields that H(p) = λ.

It is interesting to see that if V 6= 0, then H is not uniformly convex, and
�

H = 0
	

is a
symmetric line segment around 0. We will address this point more systematically in the
section about flat parts of H.
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5.4 Problems

Exercise 41. Use Corollary 4.14 to give another quick proof of Theorem 4.13.

Exercise 42. Assume that H satisfies (4.2) and (4.3). Assume further that p 7→ H(y, p) is
level-set quasiconvex for every y ∈ Tn. Show that the inf-sup formula still holds, that is, for
p ∈ Rn,

H(p) = inf
φ∈C1(Tn)

max
y∈Tn

H (y, p+ Dφ(y)) .

Exercise 43. Assume that H satisfies (4.2) and (4.3). Assume further that p 7→ H(y, p) is
level-set quasiconvex for every y ∈ Tn. Show that H is level-set quasiconvex.

5.5 Qualitative properties of H in the convex setting

We first show that evenness is preserved.

Theorem 4.16. Assume that H satisfies (4.2) and (4.3). Assume further that p 7→ H(y, p) is
convex and even for every y ∈ Tn. Then, p 7→ H(p) is also convex and even.

Proof. Of course, we only need to show that H is even. Using the inf-sup formula, we have

H(p) = inf
φ∈C1(Tn)

max
y∈Tn

H (y, p+ Dφ(y))

= inf
φ∈C1(Tn)

max
y∈Tn

H (y,−p+ D(−φ)(y)) = H(−p).

Since the inf-max formula still holds for the level-set quasiconvex case, we have the follow-
ing corollary, which is quite useful.

Corollary 4.17. Assume that H satisfies (4.2) and (4.3). Assume further that p 7→ H(y, p) is
level-set quasiconvex and even for every y ∈ Tn. Then, p 7→ H(p) is also level-set quasiconvex
and even.

Remark 4.18. It is important noting that evenness is not preserved in the nonconvex setting.
We will address this point later.

5.6 Flat parts of H

We come back to the classical mechanics Hamiltonian

H(y, p) =
1
2
|p|2 − V (y) for (y, p) ∈ Tn ×Rn.

Here V ∈ C(Tn) is a given potential energy. Of course, the corresponding effective Hamil-
tonian H is convex, but we want to know more about its behavior in this section.

Lemma 4.19. Assume that H(y, p) = 1
2 |p|

2 − V (y) for (y, p) ∈ Tn × Rn, where V ∈ C(Tn)
with minTn V = 0. Then minRn H = 0.
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Proof. Note first that, for p = 0 and φ ≡ 0, the inf-sup formula gives

H(0) = inf
φ∈C1(Tn)

max
y∈Tn

�

1
2
|Dφ(y)|2 − V (y)

�

≤max
y∈Tn
(−V (y))≤ 0.

On the other hand, for each p ∈ Rn, let v be a Lipschitz solution to (4.10), that is,

1
2
|p+ Dv|2 − V = H(p) in Tn.

Surely, v solves the above a.e. in Tn. Pick y0 such that V (y0) = 0. Then, we are able to find
a sequence {yk} → y0 such that v is differentiable at yk for k ∈ N, and classically,

1
2
|p+ Dv(yk)|2 − V (yk) = H(p).

Therefore,
H(p)≥ lim

k→∞
(−V (yk)) = 0.

We obtain that H(0) =minRn H = 0.

Let us give a clear definition for flat parts of H before we move on.

Definition 4.20. Assume that H satisfies (4.2) and (4.3). Assume further that p 7→ H(y, p)
is convex. If the set

�

p ∈ Rn : H(p) =minRn H
	

has nonempty interior, we say that H has a
flat part at its minimum value.

We now show that, in many situations, H corresponding to the classical mechanics Hamilto-
nian has a flat part at its minimum value. This is quite surprising as although we start with
a nice, uniformly convex Hamiltonian, the homogenization process gives back the effective
Hamiltonian with a flat part at its minimum value, and of course, is not uniformly convex
anymore. This tells us that there is a strong interplay between the kinetic and potential
energies, and the potential energy V plays a crucial role in forming the shape of H.

Let us state the first result along this line. By abuse of notions, we often identify Tn with
the unit cell Y = [0,1]n.

Theorem 4.21. Assume that H(y, p) = 1
2 |p|

2 − V (y) for (y, p) ∈ Tn ×Rn, where V ∈ C(Tn)
with minTn V = 0. Assume further that {V = 0} ⊂⊂ (0, 1)n. Then, H has a flat part at its
minimum value 0.

This result was first proved by Concordel [34]. Of course, one can state it in a bit more
general setting, but we choose to make it simple this way with the requirement that {V =
0} ⊂⊂ (0, 1)n. Geometrically, this means that {V = 0} is isolated in each cell of unit size
k + [0,1]n for k ∈ Zn, and this isolation is sort of a trapping effect. Here, we follow a
different approach by using the inf-sup formula (or equivalently, constructions of smooth
subsolutions). This was done by Mitake and Tran [115].

Proof. By Lemma 4.19, we already have

H(0) =min
Rn

H = 0.
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We identify Tn with the unit cell Y = [0,1]n. Denote by U0 = {V = 0} ⊂⊂ (0, 1)n. We are
able to find two open sets U1, U2 such that

U0 ⊂⊂ U1 ⊂⊂ U2 ⊂⊂ (0,1)n.

Let d =min {dist (U0,∂ U1), dist (U1,∂ U2)}> 0. By definition, we can find ε0 > 0 such that

V (y)> ε0 > 0 for all y ∈ Y \ U1.

For p ∈ Rn to be chosen, we define a smooth function φ : Y → R such that














φ(y) = −p · y for y ∈ U1,

φ(y) = 0 for y ∈ Y \ U2,

|Dφ(y)| ≤
C |p|

d
for y ∈ Y.

We compute that

1
2
|p+ Dφ(y)|2 − V (y) =







−V (y)≤ 0 for y ∈ U1,

≤
C |p|2

d2
− ε0 for y ∈ Y \ U1.

Hence, for |p| ≤ r = d
p
ε0

C ,

1
2
|p+ Dφ(y)|2 − V (y)≤ 0 in Tn,

which means that H(p)≤ 0 correspondingly. We thus derive that B(0, r) ⊂
�

H = 0
	

.

Remark 4.22. The proof of Concordel [34] is quite complicated, but geometrically intuitive.
Let us describe the key points of her proof here. We use the same setting as in the above
proof, and we assume further that, for any k, j ∈ Zn with k 6= j,

dist (k+ U1, j + U1)≥ d.

See Figure 4.3. We show H(p) = 0 for |p| ≤ r = d
p
ε0

C . By Theorem 4.15, we have the
formula

H(p) = lim
t→∞

sup
γ(·)

1
t

∫ t

0

�

p · γ′(s)−
1
2
|γ′(s)|2 − V (γ(s))

�

ds.

On one hand, we can pick γ1(s) = γ1(0) ∈ U0 for all s ≥ 0 to get that H(p) ≥ 0 always. On
the other hand, we need to show that H(p)≤ 0 for |p| ≤ r as well. The idea is to show that
an optimal path γ to the above formula is trapped in one of the copies of k+ U1 for k ∈ Zn.
Indeed, if γ travels outside of k+U1 for k ∈ Zn, the action functional is quite negative there.
More precisely, assume γ([t1, t2]) ⊂ Rn \

⋃

k∈Zn(k+ U1) for some t1 < t2, then
∫ t2

t1

�

p · γ′(s)−
1
2
|γ′(s)|2 − V (γ(s))

�

ds ≤
∫ t2

t1

�

p · γ′(s)−
1
2
|γ′(s)|2 − ε0

�

ds

≤
∫ t2

t1

�

−
1
2
|γ′(s)− p|2 +

1
2
|p|2 − ε0

�

ds ≤ −
1
2

∫ t2

t1

�

|γ′(s)− p|2 + ε0

�

ds,

which gives us the intuition why γ should not travel outside of k+U1 for k ∈ Zn. Of course,
one needs to be careful in the analysis here, but this is basically the heart of Concordel’s
arguments.
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Figure 4.3: Periodic structures and k+ U1 for k ∈ Zn

The condition that we put in the above theorem is in fact optimal. If it does not hold, that
is, {V = 0} is not trapped, then H might not have a flat part at its minimum value. Let us
give now a simple example to demonstrate this.

Example 4.3. Assume that n = 2, H(y, p) = 1
2 |p|

2 − V (y) for (y, p) ∈ T2 × R2. Again, we
identify T2 with [0,1]2, and T with [0,1]. For y = (y1, y2) ∈ T2, the potential energy V
satisfies that V (y1, y2) = Ṽ (y1), where minT Ṽ = 0 and {Ṽ = 0}=

�

1
2

	

. Then,

{V = 0}=
§

1
2

ª

× [0,1],

which is not compactly supported in (0, 1)2. Let us now find the formula for H. Let K be the
effective Hamiltonian corresponding to K(y1, p1) =

1
2 |p1|2− Ṽ (y1) for all (y1, p1) ∈ T×R. We

know that minR K = 0= K(0). Moreover, it is clear that

H(p1, p2) = K(p1) +
1
2
|p2|2 for all (p1, p2) ∈ R2.

In this case, H does not have a flat part at its 0 level-set.

We now give a more general result, in which case H does not have a flat part at its 0 level-set.
This is a result taken from Concordel [34].

Theorem 4.23. Assume that H(y, p) = 1
2 |p|

2 − V (y) for (y, p) ∈ Tn ×Rn, where V ∈ C(Tn)
with minTn V = 0. Assume that there exist a C1 curve ξ : [0,∞)→ Rn, a sequence {tm} →∞,
and a vector p0 6= 0 such that















|ξ′(s)|= 1 for all s ≥ 0,

V (ξ(s)) = 0 for all s ≥ 0,

lim
m→∞

ξ(tm)
tm

= p0 6= 0.

Then, H does not have a flat part at its 0 level-set.
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As it is clear in the statement of this theorem, the curve ξ makes the set {V = 0} not being
trapped in the unit cell, and one can use ξ to form the needed paths in the formula of H.

Proof. Fix λ > 0 and let p = λp0. We will show that H(p)> 0.

Let α= λ|p0|2 > 0, and denote by γ(s) = ξ(αs) for all s ≥ 0. Then, |γ′(s)|= α, and

1
t

∫ t

0

�

p · γ′(s)−
1
2
|γ′(s)|2 − V (γ(s))

�

ds = p ·
γ(t)− γ(0)

t
−

1
2
α2.

At tm =
tm
α for m ∈ N,

p ·
γ(tm)− γ(0)

tm

−
1
2
α2 = p ·

ξ(tm)− ξ(0)
tm
α

−
1
2
α2 −→ αλ|p0|2 −

1
2
α2 =

1
2
λ2|p0|4,

as m→∞. Therefore, by Theorem 4.15,

H(p) = lim
t→∞

sup
γ(·)

1
t

∫ t

0

�

p · γ′(s)−
1
2
|γ′(s)|2 − V (γ(s))

�

ds ≥
1
2
λ2|p0|4.

The proof is complete.

Remark 4.24. Assume that H(y, p) = 1
2 |p|

2 − V (y) for (y, p) ∈ Tn ×Rn, where V ∈ C(Tn)
with minTn V = 0. We first note that the formula of H(p) can be rewritten as

H(p) = lim
t→∞

sup
γ(·)

1
t

∫ t

0

�

p · γ′(s)−
1
2
|γ′(s)|2 − V (γ(s))

�

ds

=
1
2
|p|2 − lim

t→∞
inf
γ(·)

1
t

∫ t

0

�

1
2
|γ′(s)− p|2 + V (γ(s))

�

ds.

If we assume further that V ∈ C1,1(Tn), then for each finite time t > 0, an optimal path to
the minimizing problem

inf
γ(·)

1
t

∫ t

0

�

1
2
|γ′(s)− p|2 + V (γ(s))

�

ds

satisfies the Euler–Lagrange equation

−
d
ds
(γ′(s)− p) + DV (γ(s)) = 0 =⇒ γ′′(s) = DV (γ(s)).

In particular, s 7→ 1
2 |γ
′(s)|2−V (γ(s)) is constant, which gives the boundedness of the traveling

speed |γ′(s)| for s ≥ 0. Then, we have the following refined formula for H(p)

H(p) =
1
2
|p|2 − lim

t→∞
inf

v∈Rn

1
t

∫ t

0

�

1
2
|γ′(s)− p|2 + V (γ(s))

�

ds,

where for each v ∈ Rn, γ(·) is the solution to
¨

γ′′(s) = DV (γ(s)) for s > 0,

γ(0) = 0, γ′(0) = v.
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6 Some representation formulas of the effective
Hamiltonian in nonconvex settings

As we have seen above, even for the convex setting, we do not yet have much deep knowl-
edge about the shape of H. In this section, we present some new results on formulas of H.
The Hamiltonians considered in this section are always of separable forms of H(p)− V (y).
By abuse of notions, sometimes, we still write H(y, p) = H(p)− V (y), where H : Rn → R
is continuous and coercive, and V ∈ C(Tn). This is simply to avoid using too many notions.
The results here are taken from Qian, Tran, Yu [124].

6.1 The simplest case

The setting is this. Let H = H(p) : Rn→ R be a continuous, coercive Hamiltonian such that


















minRn H = 0;

there exists a bounded domain U ⊂ Rn such that {H = 0}= ∂ U;

H is even, that is, H(p) = H(−p) for all p ∈ Rn;

there exist H1, H2 ∈ C(Rn) such that H =max{H1, H2}.

(4.25)

Here, H1, H2 satisfy


















H1 is coercive, level-set quasiconvex, even,

and H1 = H in Rn \ U , H1 < 0 in U;

H2 is level-set quasiconcave, even,

and H2 = H in U , H2 < 0 in Rn \ U , lim|p|→∞H2(p) = −∞.

(4.26)

An example of H satisfying (4.25)–(4.26) is H(p) = (|p|2 − 2)2 as in Figure 4.4.
Below is the decomposition result for this simplest case.

Theorem 4.25. Let H ∈ C(Rn) be a Hamiltonian satisfying (4.25)–(4.26). Let V ∈ C(Tn) be
given such that minTn V = 0.

Assume that H is the effective Hamiltonian corresponding to H(p)− V (y). Assume also that
H i is the effective Hamiltonian corresponding to Hi(p)− V (y) for i = 1,2. Then,

H =max
�

H1, H2, 0
	

.

In particular, H is even.

We would like to point out that the evenness of H will be used later and is not obvious at
all although H is even. The nonconvex situation makes things much more complicated. See
the discussion in Section 6.6 for this subtle issue.

Proof. We proceed in few steps.

STEP 1. It is straightforward that 0 ≤ H(p) ≤ H(p) for all p ∈ Rn. Indeed, for each fixed
p ∈ Rn, the corresponding cell problem is (4.10). Pick y0 ∈ Tn such that minTn v = v(y0).
By the definition of viscosity supersolutions to (4.10), we get

H(p)≥ H(p)− V (y0)≥ H(p).
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Figure 4.4: An example where H(p) = (|p|2 − 2)2

On the other hand, as (4.10) holds in the almost everywhere sense, we take essential supre-
mum of its sides to imply

H(p) = ess sup
y∈Tn

(H(p+ Dv(y))− V (y))≥ ess sup
y∈Tn

(−V (y)) = 0.

In particular,
H(p) = 0 for all p ∈ ∂ U . (4.27)

Besides, as Hi ≤ H, we get H i ≤ H. Therefore,

H ≥max
�

H1, H2, 0
	

. (4.28)

It remains to prove the reverse inequality of (4.28) in order to get the conclusion.

STEP 2. Fix p ∈ Rn. Assume now that H1(p) ≥ max
�

H2(p), 0
	

. In particular, H1(p) ≥ 0.
We will show that H1(p)≥ H(p).

Since H1 is quasiconvex and even, we use the inf-sup (or inf-max) representation formula
for H1 (Exercise 42) to get that

H1(p) = inf
φ∈C1(Tn)

max
y∈Tn
(H1(p+ Dφ(y))− V (y))

= inf
φ∈C1(Tn)

max
y∈Tn
(H1(−p− Dφ(y))− V (y))

= inf
ψ∈C1(Tn)

max
y∈Tn
(H1(−p+ Dψ(y))− V (y)) = H1(−p).

Thus, H1 is even. Let v(y,−p) be a solution to the cell problem

H1(−p+ Dv(y,−p))− V (y) = H1(−p) = H1(p) in Tn. (4.29)
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Let w(y) = −v(y,−p). For any y ∈ Tn and q ∈ D+w(y), we have −q ∈ D−v(y,−p) and
hence, in light of (4.29) and the quasiconvexity of H1 (Exercise 30),

H1(p) = H1(−p− q)− V (y) = H1(p+ q)− V (y).

We thus get H1(p + q) = H1(p) + V (y) ≥ 0 as H1(p) ≥ 0, and therefore, H(p + q) =
H1(p+ q)≥ 0 in light of (4.26). This yields that w is a viscosity subsolution to

H(p+ Dw)− V (y) = H1(p) in Tn.

Hence, by Theorem 4.10 on a representation formula of H(p), we imply H(p)≤ H1(p).

STEP 3. Assume now that H2(p) ≥ max
�

H1(p), 0
	

. By employing similar arguments as
those in the previous step (except that we use v(y, p) directly here instead of v(y,−p) due
to the quasiconcavity of H2), we deduce that H2(p)≥ H(p).

STEP 4. What is left is the case that max
�

H1(p), H2(p)
	

< 0. We now show that H(p) = 0
in this case. Thanks to (4.27) in Step 1, we may assume that p /∈ ∂ U .

We now introduce an idea that is quite close to the continuation method. For σ ∈ [0, 1]
and i = 1,2, let H

σ
, H

σ

i be the effective Hamiltonians corresponding to H(p) − σV (y),
Hi(p)−σV (y), respectively. It is clear that

0≤ H
1
= H ≤ H

σ
for all σ ∈ [0,1]. (4.30)

By repeating Steps 2 and 3 above, we get

For p ∈ Rn and σ ∈ [0,1], if max
�

H
σ

1 (p), H
σ

2 (p)
	

= 0, then H
σ
(p) = 0. (4.31)

We only need consider the case p /∈ U here as the case p ∈ U is analogous. Let us notice
that

H(p) = H1(p) = H
0

1(p)> 0 and H1(p) = H
1

1(p)< 0.

By the continuity of σ 7→ H
σ

1 (p), there exists s ∈ (0,1) such that H
s

1(p) = 0. Note further-
more that, as p /∈ U , H

s

2(p)≤ H2(p)< 0. These, together with (4.31), yield that H
s
(p) = 0.

Combine this with (4.30) to finally get that H(p) = 0.

Remark 4.26. We emphasize that Step 4 in the above proof is extremely important. It
plays the role of a “patching" step, which helps glue H1 and H2 together. So far, this kind
of ideas has not been used so much in the theory of viscosity solutions, and probably it is
not needed in the well-posedness theory. Nevertheless, to go beyond the well-posedness
theory to understand more about H and properties of solutions, it is important to develop
this systematically.

Assumptions (4.25)–(4.26) are general and a bit complicated. A simple situation where
(4.25)–(4.26) hold is a radially symmetric case where H(p) =ψ(|p|), andψ ∈ C([0,∞),R)
satisfying

¨

ψ(0)> 0, ψ(1) = 0, limr→∞ψ(r) = +∞,

ψ is strictly decreasing in (0,1), and is strictly increasing in (1,∞).
(4.32)
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Let ψ1,ψ2 ∈ C([0,∞),R) be such that
¨

ψ1 =ψ on [1,∞), and ψ1 is strictly increasing on [0, 1],
ψ2 =ψ on [0, 1], ψ2 is strictly decreasing on [1,∞), and limr→∞ψ2(r) = −∞.

(4.33)
See Figure 4.5. Set Hi(p) =ψi(|p|) for p ∈ Rn, and for i = 1, 2. It is clear that (4.25)–(4.26)
hold true provided that (4.32)–(4.33) hold.

r1
ψ1

ψ2

ψ

Figure 4.5: Graphs of ψ,ψ1,ψ2

An immediate consequence of Theorem 4.25 is the following result.

Corollary 4.27. Let H(p) =ψ(|p|), Hi(p) =ψi(|p|) for i = 1, 2 and p ∈ Rn, whereψ,ψ1,ψ2

satisfy (4.32)–(4.33). Let V ∈ C(Tn) be a potential energy with minTn V = 0.

Assume that H is the effective Hamiltonian corresponding to H(p)− V (y). Assume also that
H i is the effective Hamiltonian corresponding to Hi(p)− V (y) for i = 1,2. Then

H =max
�

H1, H2, 0
	

.

Remark 4.28. A special case of Corollary 4.27 is when

H(p) =ψ(|p|) =
�

|p|2 − 1
�2

for p ∈ Rn,

which was studied first by Armstrong, Tran and Yu [6]. Of course, Armstrong, Tran and Yu
[6] dealt with stochastic (random) homogenization, but their results can be casted in term
of periodic homogenization as well. The method here is much simpler and more robust than
that in [6].
By using Corollary 4.27 and approximation, we get another representation formula for H
which will be used later.

Corollary 4.29. Assume that (4.32)–(4.33) hold. Set

ψ̃1(r) =max{ψ1, 0}=

¨

0 for 0≤ r ≤ 1,

ψ(r) for r > 1.
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Let H(p) = ψ(|p|), H̃1(p) = ψ̃1(p|) and H2(p) = ψ2(|p|) for p ∈ Rn. Let V ∈ C(Tn) be a
potential energy with minTn V = 0.

Assume that H, H̃1, H2 are the effective Hamiltonian corresponding to H(p)− V (y), H̃1(p)−
V (y), H2(p)− V (y), respectively. Then

H =max
¦

H̃1, H2

©

.

See Figure 4.6 for the graphs of ψ, ψ̃1,ψ2.

r1ψ̃1

ψ2

ψ

Figure 4.6: Graphs of ψ, ψ̃1,ψ2

When the oscillation of V is large enough, it turns out that H is level-set quasiconvex. This
is the content of the next result.

Corollary 4.30. Let H ∈ C(Rn) be a coercive Hamiltonian satisfying (4.25)–(4.26), except
that we do not require H2 to be quasiconcave. Assume that

oscTn V =max
Tn

V −min
Tn

V ≥max
U

H =max
Rn

H2.

Then
H =max

n

H1, −min
Tn

V
o

.

In particular, H is quasiconvex in this situation.

It is worth noting that the result of Corollary 4.30 is interesting in the sense that we do not
require any structure of H in U except that H > 0 there. In earlier results in this section,
we needed to assume that H is quasiconcave in U , but when oscTn V is large enough, we
do not need it. Roughly speaking, when oscTn V is large, V has enough power to iron out
all the ripples in the graph of H in U to get a nice H. It is, in fact, quite unexpected that
H behaves better than H. It is often known in the literature earlier that H always behaves
worse than H (see discussions in Section 5.6). This is one of the first instance showing that
it is otherwise provided that oscTn V is large.
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Proof. Without loss of generality, we assume that minTn V = 0. Choose an even, quasicon-
cave function H+2 ∈ C(Rn) such that







{H = 0}= {H+2 = 0}= ∂ U ,

H ≤ H+2 in U , and maxU H =maxRn H+2 ,

lim|p|→∞H+2 (p) = −∞.

Denote H+ ∈ C(Rn) as

H+(p) =max{H, H+2 }=

¨

H1(p) for p ∈ Rn\U ,

H+2 (p) for p ∈ U .

Let H
+

and H
+
2 be the effective Hamiltonians associated with H+(p)− V (y) and H+2 (p)−

V (y), respectively. Apparently,

max
�

H1, 0
	

≤ H ≤ H
+
. (4.34)

On the other hand, by Theorem 4.25, the representation formula for H
+

is

H
+
=max

¦

H1, H
+
2 , 0

©

=max{H1, 0}, (4.35)

where the second equality is due to the fact that

H
+
2 ≤max

Rn
H +

2 −max
Tn

V =max
U

H −max
Rn

V ≤ 0.

We combine (4.34) and (4.35) to get the conclusion.

6.2 A more general case

We now proceed to give an extension of Theorem 4.25 to a case which is a bit more general.
To avoid unnecessary technicalities, we only consider radially symmetric cases from now
on in this section. The results still hold true for general Hamiltonians (without the radially
symmetric assumption) under corresponding appropriate conditions, which are similar to
(4.25)–(4.26).

Let H : Rn→ R be such that


















H(p) = ϕ(|p|) for p ∈ Rn, where ϕ ∈ C([0,∞),R) satisfies

ϕ(0)> 0, ϕ(2) = 0, limr→∞ϕ(r) = +∞,

ϕ is strictly increasing on [0,1] and [2,∞),
and ϕ is strictly decreasing on [1, 2].

(4.36)

Now, we denote by Hi(p) = ϕi(|p|) for p ∈ Rn and 1≤ i ≤ 3, whereϕ1,ϕ2,ϕ3 ∈ C([0,∞),R)
are such that






ϕ1 = ϕ on [2,∞), ϕ1 is strictly increasing on [0,2],
ϕ2 = ϕ on [1,2], ϕ2 is strictly decreasing on [0,1] and [2,∞), limr→∞ϕ2(r) = −∞,

ϕ3 = ϕ on [0,1], ϕ3 is strictly increasing on [1,∞), and ϕ3 > ϕ in (1,∞).
(4.37)

See Figure 4.7.
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r1 2

ϕ3
ϕ2

ϕ1

ϕ

Figure 4.7: Graphs of ϕ,ϕ1,ϕ2,ϕ3

Lemma 4.31. Let H(p) = ϕ(|p|), Hi(p) = ϕi(|p|) for 1 ≤ i ≤ 3 and p ∈ Rn, where
ϕ,ϕ1,ϕ2,ϕ3 satisfy (4.36)–(4.37). Let V ∈ C(Tn) be a potential energy with minTn V = 0.
Assume that H is the effective Hamiltonian corresponding to H(p)− V (y). Assume also that
H i is the effective Hamiltonian corresponding to Hi(p)− V (y) for 1≤ i ≤ 3. Then

H =max
�

0, H1, K
	

=max
n

0, H1, min
n

H2, H3,ϕ(1)−max
Tn

V
oo

.

Here K is the effective Hamiltonian corresponding to K(p)−V (y), where K : Rn→ R is defined
as

K(p) =min{ϕ2(|p|),ϕ3(|p|)}=

¨

ϕ(|p|) if |p| ≤ 2,

ϕ2(|p|) if |p| ≥ 2.

In particular, both H and K are even.

We want to note that the proof below does not depend on the quasiconvexity of H3. As
H3 ≥ H, we only use the simple fact that H3 ≥ H. This point is essential for us to prove the
most general result later (see Theorem 4.32).

Proof. Considering −K(−p), thanks to the representation formula and evenness from The-
orem 4.25,

K =min
n

H2, H3,ϕ(1)−max
Tn

V
o

.

Define ϕ̃2 = min {ϕ2,ϕ(1)}. Let H̃2(p) = ϕ̃2(|p|) and H̃2 be the effective Hamiltonian
corresponding to H̃2(p)− V (y). Then, by Corollary 4.29, we have another representation
formula for K as following

K =min
¦

H̃2, H3

©

. (4.38)

Our goal is then to show that H =max
�

0, H1, K
	

. To do this, we again divide the proof into
few steps for clarity.
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STEP 1. First of all, it is clear that 0≤ H ≤ H. This implies further that

H(p) = 0 for all |p|= 2. (4.39)

Besides, as K , H1 ≤ H, we deduce furthermore that K , H1 ≤ H . Thus,

H ≥max
�

0, H1, K
	

(4.40)

We now show the reverse inequality of (4.40) to finish the proof.

STEP 2. Fix p ∈ Rn. Assume that H1(p)≥max
�

0, K(p)
	

. Since H1 is quasiconvex, we follow
exactly the same lines of Step 2 in the proof of Theorem 4.25 to deduce that H1(p)≥ H(p).

STEP 3. Assume that K(p) ≥ max
�

0, H1(p)
	

. Since K is not quasiconvex or quasiconcave,
we cannot directly use Step 2 or Step 3 in the proof of Theorem 4.25 to conclude. Instead,
there are two cases that need to be considered.

Firstly, we consider the case that K(p) = H̃2(p)≤ H3(p). Let v(y, p) be a solution to the cell
problem

H̃2(p+ Dv(y, p))− V (y) = H̃2(p)≥ 0 in Tn. (4.41)

Since H̃2 is quasiconcave, for any y ∈ Tn and q ∈ D+v(y, p), we have

H̃2(p+ q)− V (y) = H̃2(p)≥ 0,

which gives that H̃2(p + q) ≥ 0, and hence, H̃2(p + q) ≥ H(p + q). Therefore, v(y, p) is a
viscosity subsolution to

H(p+ Dv(y, p))− V (y) = H̃2(p) in Tn.

This, together with Theorem 4.10 on a representation formula of H(p), implies that K(p) =
H̃2(p)≥ H(p).

Secondly, assume that K(p) = H3(p) ≤ H̃2(p). Since ϕ3 ≥ ϕ, H3(p) ≥ H(p). Combining
with H(p)≥ K(p) in (4.40), we obtain K(p) = H(p) in this step.

STEP 4. Assume that 0 > max
�

H1(p), K(p)
	

. Our goal now is to show H(p) = 0. Thanks
to (4.39) in Step 1, we may assume that |p| 6= 2.

For σ ∈ [0,1], let H
σ
, H

σ

1 , K
σ

be the effective Hamiltonians corresponding to H(p) −
σV (y), H1(p)−σV (y), K(p)−σV (y), respectively. It is clear that

0≤ H
1
= H ≤ H

σ
for all σ ∈ [0, 1]. (4.42)

By repeating Steps 2 and 3 above, we get

For p ∈ Rn and σ ∈ [0, 1], if max
�

H
σ

1 (p), K
σ
(p)
	

= 0, then H
σ
(p) = 0. (4.43)

It is enough to consider the case |p|< 2 here as the case |p|> 2 is analogous. Notice that

H(p) = K(p) = K
0
(p)> 0 and K(p) = K

1
(p)< 0.

By the continuity ofσ 7→ K
σ
(p), there exists s ∈ (0, 1) such that K

s
(p) = 0. Note furthermore

that, as |p| < 2, H
s

1(p) ≤ H1(p) < 0. These, together with (4.42) and (4.43), yield the
desired result.
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6.3 General cases

By using induction, we are able to obtain min-max (max-min) formulas for H in case
H(p) = ϕ(|p|) where ϕ satisfies some certain conditions described below. The approach
is essentially the same as in the above two sections provided that we are careful enough
with the iterations.

We consider two such cases corresponding to Figures 4.8 and 4.9. Roughly speaking, in both
cases, the graph of ϕ has a finite number of oscillations starting from 0, and geometrically,
the magnitudes of oscillations of ϕ(s) increase as s increases.

r

ϕ

s1 s2 s2m

Figure 4.8: Graph of ϕ in first general case

In the first general case corresponding to Figure 4.8, we assume that


















ϕ ∈ C([0,∞),R) satisfies that

there exist m ∈ N and 0= s0 < s1 < . . . s2m <∞= s2m+1 such that

ϕ is strictly increasing in (s2i, s2i+1), and is strictly decreasing in (s2i+1, s2i+2),
ϕ(s0)> ϕ(s2)> . . .> ϕ(s2m), and ϕ(s1)< ϕ(s3)< . . .< ϕ(s2m+1) =∞.

(4.44)

Based on ϕ, we construct ϕ0, . . . ,ϕ2m as following.

• For 0≤ i ≤ m, let ϕ2i : [0,∞)→ R be a continuous, strictly increasing function such
that ϕ2i = ϕ on [s2i, s2i+1] and lims→∞ϕ2i(s) =∞. Besides, we construct so that
ϕ2i ≥ ϕ2i+2 for 0≤ i ≤ m− 1.

• For 0≤ i ≤ m−1, let ϕ2i+1 : [0,∞)→ R be a continuous, strictly decreasing function
such thatϕ2i+1 = ϕ on [s2i+1, s2i+2] and lims→∞ϕ2i+1(s) = −∞. Besides, we construct
so that ϕ2i+1 ≤ ϕ2i+3 for 0≤ i ≤ m− 2.

Define

Hm−1(p) =max {ϕ(|p|), ϕ2m−2(|p|)}=

¨

ϕ(|p|) for |p| ≤ s2m−1,

ϕ2m−2(|p|) for |p|> s2m−1
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and

km−1(s) =min{ϕ(s), ϕ2m−1(s)}=

¨

ϕ(s) for s ≤ s2m,

ϕ2m−1(s) for s > s2m.

Denote Hm−1, Hm, Km−1, Φ j as the effective Hamiltonians associated with the Hamiltoni-
ans Hm−1(p)− V (y), ϕ(|p|)− V (y), km−1(|p|)− V (y) and ϕ j(|p|)− V (y) for 0 ≤ j ≤ 2m,
respectively.

This is the main decomposition result of H in this section.

Theorem 4.32. Assume that (4.44) holds for some m ∈ N. Then,

Hm =max
n

Km−1, Φ2m, ϕ(s2m)−min
Tn

V
o

, (4.45)

and
Km−1 =min

n

Hm−1, Φ2m−1, ϕ(s2m−1)−max
Tn

V
o

. (4.46)

In particular, Hm and Km−1 are both even.

We stress again that the evenness of Hm and Km−1 is far from being obvious although Hm

and Km are both even. See the discussion in Section 6.6 for this subtle issue.

Proof. We prove by induction.
The base case is when m= 1. The two formulas (4.45) and (4.46) follow immediately from
Lemma 4.31 and Theorem 4.25.
Assume that (4.45) and (4.46) hold for m ∈ N. We need to verify these equalities for m+1.
Using similar arguments as those in the proof Lemma 4.31, and noting the statement right
before its proof, we first get that

Km =min
n

Hm, Φ2m+1, ϕ(s2m+1)−max
Tn

V
o

.

Then again, by basically repeating the proof of Lemma 4.31, we obtain

Hm+1 =max
n

Km, Φ2m+2, ϕ(s2m+2)−min
Tn

V
o

.

Remark 4.33. Two comments are in order.
(i) By approximation, we see that representation formulas (4.45) and (4.46) still hold true
if we relax (4.44) a bit, that is, we only require that ϕ satisfies

¨

ϕ is increasing in (s2i, s2i+1), and is decreasing in (s2i+1, s2i+2),
ϕ(s0)≥ ϕ(s2)≥ . . .≥ ϕ(s2m), and ϕ(s1)≤ ϕ(s3)≤ . . .< ϕ(s2m+1) =∞.

(ii) According to Corollary 4.30, if oscTn V = maxTn V −minTn V ≥ ϕ(s2m−1)−ϕ(s2m), then
H is quasiconvex and

H =max
n

Φ2m, ϕ(s2m)−min
Tn

V
o

.

The second general case corresponds to the case where H(p) = −km−1(|p|) for all p ∈ Rn

as described in Figure 4.9 after normalization by a constant. By changing the notations
appropriately, we obtain similar representation formulas as in Theorem 4.32. We omit the
details here.
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Figure 4.9: Graph of −km−1 in the second general case

6.4 Quasiconvexification effect

This quasiconvexification effect was discussed in the previous section already. We just want
to emphasize again clearly this very interesting phenomenon here.

By Corollary 4.30, if oscTn V = maxTn V −minTn V ≥ maxU H = maxRn H2, then H is qua-
siconvex, which means that H behaves better than the original Hamiltonian H before the
homogenization process. This goes against the earlier belief in the literature of homoge-
nization theory that H always behaves worse than H (see discussions in Section 5.6). In
fact, we have an explicit representation formula for H as

H =max
n

H1, −min
Tn

V
o

.

In case minTn V = 0, then we require that oscTn V =maxTn V ≥maxU H =maxRn H2 to have

H =max
�

H1, 0
	

.

Roughly speaking, when oscTn V is large, potential energy V has enough power to iron out
all the ripples in the graph of H in U to get a nice H. See Figures 4.10–4.11 for two one
dimensional examples of H and H. Note that H is not even in Figure 4.11.

This quasiconvexification phenomenon also holds for a more general setting in Theorem
4.32. Here, if H(p) = ϕ(|p|), and ϕ satisfies (4.44) (that is, ϕ has the graph as in Figure
4.8), and oscTn V =maxTn V −minTn V ≥ ϕ(s2m−1)−ϕ(s2m), then H is quasiconvex and

H =max
n

Φ2m, ϕ(s2m)−min
Tn

V
o

.

It is clear from Theorem 4.32 that ϕ(s2m−1)−ϕ(s2m) is the optimal lower bound for oscTn V
to see the quasiconvexification effect.

In general, if H(p) = ϕ(|p|) for some ϕ : [0,∞)→ R, which is coercive but does not neces-
sarily satisfy (4.44), then it is not clear yet whether this quasiconvexification phenomenon
happens or not. Some further analysis and discussions on this can be found in [124].
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p

H(p)

H(p)

Figure 4.10: Quasiconvexification of H in one dimension - first example.

p

H(p)

H(p)

Figure 4.11: Quasiconvexification of H in one dimension - second example.

6.5 Problems

Exercise 44. Assume that H satisfies (4.2) and (4.3). Let G(y, p) = −H(y,−p) for (y, p) ∈
Tn ×Rn. Show that G(p) = −H(−p) for all p ∈ Rn.

Exercise 45. Assume H(p) = −km−1(|p|) for all p ∈ Rn as described in Figure 4.9, and V ∈
C(Tn). Obtain the formula for H(p) of the Hamiltonian H(p)− V (y).

6.6 Loss of evenness and non-decomposable effective Hamiltonians

A natural question is whether we can extend Theorem 4.32 to other nonconvex H or not.
That is, if H can be decomposed into m nice quasiconvex/concave Hamiltonians Hi (1 ≤
i ≤ m), then can we have that H is given by a decomposition formula (e.g., min-max type)
involving H i, min V and max V :

H = G(H1, ..., Hm, min V, max V ) (4.47)

for any V ∈ C(Tn)? Here H and H i are effective Hamiltonians associated with H − V and
Hi − V , respectively.
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Note that for quasiconvex/concave function F : Rn→ R, using the inf-sup formula, it is easy
to see that the effective Hamiltonians associated with F(p)− V (y) and F(p)− V (−y) are
the same. Hence if such a decomposition formula indeed exists for a specific nonconvex H,
effective Hamiltonians associated with H(p)−V (y) and H(p)−V (−y) have to be identical
as well. In particular, if H is even in p, then we may assume that Hi (1 ≤ i ≤ m) are even
in p as well. The question of interest then is whether H is even too?

Although this is a simple and natural question, it has not been studied much in the literature.
In [102], it was briefly discussed that if H is even in p, then so is H. However, this turns out
to be false in some cases. We give below some answers and discussions to this simple point
following the results in [124].

1. If H is quasiconvex, the answer is of course affirmative due to the inf-sup formula

H(p) = inf
φ∈C1(Tn)

sup
y∈Tn
(H(p+ Dφ(y))− V (y))

as shown in the proof of Theorem 4.25.

2. For genuinely nonconvex H, if H can be written as a min-max formula involving ef-
fective Hamiltonians of even quasiconvex (or quasiconcave) Hamiltonians, then H is
still even (e.g., see Corollary 4.27, Lemma 4.31, and Theorem 4.32).

3. However, in general, the evenness is lost as presented in [107, Remark 1.2]. Let us
quickly recall the setting there.

We consider the one dimensional case (n = 1), and choose H(p) = ϕ(|p|) for p ∈ R,
where ϕ satisfies



















ϕ ∈ C([0,∞), [0,∞)), and there exist 0< r1 < r2 so that

ϕ(0) = 0,ϕ(r1) =
1
2 ,ϕ(r2) =

1
3 , limr→∞ϕ(r) = +∞,

ϕ is strictly increasing on [0, r1] and [r2,∞),
ϕ is strictly decreasing on [r1, r2].

See Figure 4.12 below. Fix s ∈ (0,1), and set Vs(y) = min
� y

s , 1−y
1−s

	

for y ∈ [0,1].
Extend V to R in a periodic way. Then H is not even unless s = 1

2 . In particular, this
implies that a decomposition formula for H of the form (4.47) does not exist. This
lack of evenness is natural if we think of the fact that viscosity solutions select gradient
jumps in a non-symmetric way. Nevertheless, this also means that much needs to be
studied in order to have more systematic understandings of this kind of Hamiltonians.

4. It is extremely interesting if we can point out some further general requirements on
H and V in the genuinely nonconvex setting, under which H is even. The interplay
between H and V plays a crucial role here as we have seen many times in this section
and the earlier ones.
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Figure 4.12: Graphs of ϕ

7 Rates of convergence

7.1 The method of Capuzzo-Dolcetta and Ishii

We now address the results by Capuzzo-Dolcetta and Ishii [27]. Assume that H satisfies
(4.2) and (4.3). Our goal here is to show that the rate of convergence of uε to u is O(ε1/3).
Capuzzo-Dolcetta and Ishii [27] studied homogenizations for static Hamilton–Jacobi equa-
tions, but their approach can be easily adjusted to handle the Cauchy problem as well. Here
is the main result.

Theorem 4.34. Assume that H ∈ C1(Rn ×Rn) satisfies (4.2) and (4.3). Let H be the corre-
sponding effective Hamiltonian of H. Assume u0 ∈ BUC (Rn)∩ Lip (Rn). For each ε > 0, let uε

be the unique viscosity solution of
¨

uεt (x , t) +H
�

x
ε , Duε(x , t)

�

= 0 in Rn × (0,∞),
uε(x , 0) = u0(x) on Rn.

(4.48)

And let u be the unique solution to the effective equation
¨

ut +H(Du) = 0 in Rn × (0,∞),
u(x , 0) = u0(x) on Rn.

(4.49)

Then, for each T > 0, there exists a constant C > 0 dependent on H, u0, and T such that

‖uε − u‖L∞(Rn×[0,T]) ≤ Cε1/3. (4.50)

We first make some observations and reductions. Under our assumptions, we can find C > 0,
which depends only on H and u0, such that

‖uεt‖L∞(Rn×[0,∞)) + ‖Duε‖L∞(Rn×[0,∞)) + ‖ut‖L∞(Rn×[0,∞)) + ‖Du‖L∞(Rn×[0,∞)) ≤ C .

Therefore, behavior of H(y, p) for |p|> C + 1 does not matter. We thus can modify H(y, p)
for |p| > C + 1 so that H is always Lipschitz in p. In other words, we impose the following
additional assumption in this section from now on: There exists C > 0 such that

|H(y, p)−H(y, q)| ≤ C |p− q| for all y ∈ Tn, p, q ∈ Rn. (4.51)
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And of course, this additional condition does not change any generality of Theorem 4.34.

For each p ∈ Rn, we first look back at the discount approximation of cell problem (4.10) as
following. For each λ > 0, we consider the static equation

λvλ +H(y, p+ Dvλ) = 0 in Tn. (4.52)

To make it clear, we write the unique solution to the above as vλ = vλ(y, p). Let us summa-
rize some needed results here, which were covered already in Corollary 4.5 and part (c) of
the proof of Theorem 4.8.

Lemma 4.35. Assume that H satisfies (4.2), (4.3), and (4.51). Then, the following claims
hold.

(i) There exists C > 0 independent of λ > 0 such that, for all p, q ∈ Rn,

λ|vλ(y, p)− vλ(y, q)| ≤ C |p− q| for all y ∈ Tn.

In particular, |H(p)−H(q)| ≤ C |p− q|.

(ii) For each R > 0, there exists a constant C = C(R) > 0 independent of λ > 0 such that,
for all p ∈ B(0, R),

|λvλ(y, p) +H(p)| ≤ Cλ for all y ∈ Tn.

Proof. Part (i) is quite straightforward as we see that vλ(y, q)± C
λ |p−q| are a supersolution

and a subsolution to (4.52), respectively, thanks to (4.51). Therefore,

vλ(·, q)−
C
λ
|p− q| ≤ vλ(·, p)≤ vλ(·, q) +

C
λ
|p− q|.

Then, let λ→ 0 to get |H(p)−H(q)| ≤ C |p− q|.

To prove (ii), let v be a solution to (4.10) with minTn v = 0, that is, v solves

H(y, p+ Dv(y)) = H(p) in Tn.

Fix R > 0. For |p| < R, H(p) ≤ H(0) + CR. This, together with the coercivity of H, implies
that there exists C = C(R) such that ‖Dv‖L∞(Tn) ≤ C(R). Hence,

‖v‖L∞(Tn) =max
Tn

v ≤min
Tn

v +
p

n‖Dv‖L∞(Tn) ≤ C(R).

We now note that −H(p)
λ + v ± ‖v‖L∞(Tn) are a supersolution and a subsolution to (4.52),

respectively. The usual comparison principle gives

−
H(p)
λ
+ v − ‖v‖L∞(Tn) ≤ vλ ≤ −

H(p)
λ
+ v + ‖v‖L∞(Tn),

which means
‖λvλ +H(p)‖L∞(Tn) ≤ 2λ‖v‖L∞(Tn) ≤ C(R)λ.
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We are now ready to prove the O(ε1/3) rate of convergence.

Proof of Theorem 4.34. Again, by the reduction step, we assume also (4.51).

We consider the following auxiliary function

Φ(x , y, t, s) = uε(x , t)− u(y, s)− εvλ
� x
ε

,
x − y
εβ

�

−
|x − y|2 + |t − s|2

2εβ
− K(t + s)

where λ = εθ , and β ,θ ∈ (0, 1) and K > 0 are to be chosen later. Assume that Φ admits a
strict global maximum at ( x̂ , ŷ , t̂, ŝ) on R2n × [0, T]2 for simplicity (for rigorous proof, we
need to add the term −γ|x |2 to Φ for γ > 0 (see [27, Theorem 1.1]).

Let us consider first the case that t̂, ŝ > 0. We claim that if 0 < θ < 1− β , then there exists
C > 0 such that

| x̂ − ŷ|+ | t̂ − ŝ| ≤ Cεβ .

Indeed, the fact that Φ( x̂ , x̂ , t̂, t̂) ≤ Φ( x̂ , ŷ , t̂, ŝ), together with Lipschitz property of u and
Lemma 4.35, implies

| x̂ − ŷ|2 + | t̂ − ŝ|2

2εβ
≤ u( ŷ , ŝ)− u( x̂ , t̂) + ε

�

vλ
�

x̂
ε

,
x̂ − ŷ
εβ

�

− vλ
�

x̂
ε

, 0
��

+ K(ŝ− t̂)

≤ C(| x̂ − ŷ|+ | t̂ − ŝ|) + Cε
1
λ

| x̂ − ŷ|
εβ

≤ C(| x̂ − ŷ|+ | t̂ − ŝ|)

as λ= εθ with 0< θ < 1− β . Thus, our claim holds true.

Notice that (x , t) 7→ Φ(x , t, ŷ , ŝ) has a maximum at ( x̂ , t̂). For α > 0, set

ψ(x ,ξ, z, t) = uε(x , t)− εvλ
�

ξ,
z − ŷ
εβ

�

−
|x − ŷ|2 + |t − ŝ|2

2εβ
−
|x − εξ|2 + |x − z|2

2α
− K t.

Assumeψ has a maximum at (xα,ξα, zα, tα) and we can assume by passing to a subsequence
if necessary that (xα,ξα, zα, tα) → ( x̂ , x̂/ε, x̂ , t̂) as α → 0. By the definition of viscosity
solutions, we have

K +
tα − ŝ
εβ

+H
�

xα
ε

,
xα − ŷ
εβ

+
(xα − εξα) + (xα − zα)

α

�

≤ 0,

and

λvλ
�

ξα,
zα − ŷ
εβ

�

+H
�

ξα,
zα − ŷ
εβ

+
xα − εξα
α

�

≥ 0.

Besides, since ψ(xα,ξα, zα, tα)≥ψ(xα,ξα, xα, tα),

|xα − zα|2

2α
≤ ε

�

vλ
�

ξα,
xα − ŷ
εβ

�

− vλ
�

ξα,
zα − ŷ
εβ

��

≤ ε1−θ−β |xα − zα|,

which yields |xα−zα|
α ≤ Cε1−θ−β . We now combine this with the two above inequalities on the

sub/supersolution tests and let α→ 0+ to deduce that

K +
t̂ − ŝ
εβ
≤ λvλ

�

x̂
ε

,
x̂ − ŷ
εβ

�

+ Cε1−θ−β ≤ −H
�

x̂ − ŷ
εβ

�

+ Cεθ + Cε1−θ−β ,
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and hence,

K +
t̂ − ŝ
εβ
+H

�

x̂ − ŷ
εβ

�

≤ Cεθ + Cε1−θ−β . (4.53)

Next, we use the fact that (y, s) 7→ Φ( x̂ , t̂, y, s) has a maximum at ( ŷ , ŝ), and perform a
similar procedure to the above to obtain

−K +
t̂ − ŝ
εβ
+H

�

x̂ − ŷ
εβ

�

+ Cεθ + Cε1−θ−β ≥ 0. (4.54)

Combine (4.53) and (4.54) to imply

2K ≤ C(εθ + ε1−θ−β).

Choose θ = β = 1
3 and K = K1ε

1/3 for K1 sufficiently large to get a contradiction. Therefore,
either t̂ = 0 or ŝ = 0. Then, either uε( x̂ , t̂) = u0( x̂) or u( ŷ , ŝ) = u0( ŷ), and

Φ( x̂ , ŷ , t̂, ŝ)≤ uε( x̂ , t̂)− u( ŷ , ŝ)− εvλ
�

x̂
ε

,
x̂ − ŷ
εβ

�

≤ Cε1/3.

In particular, Φ(x , x , t, t)≤ Cε1/3, which infers

uε(x , t)− u(x , t)≤ Cε1/3 + εvλ
�

x̂
ε

, 0
�

+ 2K1ε
1/3 t ≤ C(1+ T )ε1/3.

By a symmetric argument, we get the desired result. It is worth noting here that the constant
C depends on T in a linear way.

Remark 4.36. Few comments are in order.

1. Firstly, as uε and u are not smooth enough, it is natural to use the doubling variables
method. However, as this is a homogenization problem, one needs to take a cor-
responding corrector into account and also use the perturbed test function method
together with the doubling variables method. Here, we use εvλ

�

x
ε , p

�

with λ = εθ

and p = x−y
εβ

. The choice of this p is suitable with the doubling variables as intuitively
speaking

p =
x − y
εβ

= Duε(x , t).

2. We do not deal directly with the cell problems and their solutions in the proof. The
reason is that (4.10) has many solutions in general, and we do not know if we can have
a good selection of solution v(y, p) for y ∈ Tn and p ∈ Rn so that v(y, p) depends on p
in a nice way (see also Remark 4.4). We will discuss the nonuniqueness phenomenon
in the following section. Instead, we work indirectly with vλ for λ = εθ , which has
good regularity and stability estimates as stated in Lemma 4.35. Of course, as we
introduce two new parameters θ ,β ∈ (0,1) in the proof, we need to optimize them,
and as the result, we only get rate of convergence O(ε1/3). It seems that this rate
O(ε1/3) is not optimal. Nevertheless, this method of Capuzzo-Dolcetta and Ishii is
quite general, and it works for various different situations.

3. Based on the formal asymptotic expansion, the optimal rate of convergence should
be O(ε). This is, however, extremely challenging to be obtained. We will discuss this
point later.
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7.2 An improvement

Next, we show that if we have a bit better understanding of solutions to cell problems, then
we have better rate of convergence of our homogenization problem.

¨

For each p ∈ Rn, we are able to pick a solution v(y, p) of (4.10) such that

p 7→ v(·, p) is Lipschitz.
(4.55)

Condition (4.55) is however a very strong and restrictive requirement. We will see that this
does not hold in some examples later.

Theorem 4.37. Assume that H ∈ C1(Rn × Rn) satisfies (4.2) and (4.3). Let H be the cor-
responding effective Hamiltonian of H. Assume further that (4.55) holds. Assume u0 ∈
BUC (Rn) ∩ Lip (Rn). For ε > 0, let uε be the unique solution to (4.48). Also let u be the
unique solution to (4.49). Then for each T > 0, there exists C > 0 dependent on H, u0, and T
such that

‖uε − u‖L∞(Rn×[0,T]) ≤ Cε1/2. (4.56)

Proof. Thanks to (4.55), we use directly the correctors in our test function. We consider the
auxiliary function

Φ(x , y, t, s) = uε(x , t)− u(y, s)− εv
� x
ε

,
x − y
εβ

�

−
|x − y|2 + |t − s|2

2εβ
− K(t + s)

where β ∈ (0, 1) and K > 0 to be chosen later. Note that this auxiliary function looks pretty
much like that in the proof of Theorem 4.34, but we use v instead of vλ for λ = εθ . This
way, we introduce only one parameter β ∈ (0,1) in our auxiliary function instead of two.

Assume that Φ admits a global maximum at ( x̂ , ŷ , t̂, ŝ) on R2n × [0, T]2 for simplicity (for
rigorous proof, we need to add the term −γ|x |2 to Φ for γ > 0 (see [27, Theorem 1.1]).

Consider first the case that t̂, ŝ > 0. By using the fact that Φ( x̂ , ŷ , t̂, ŝ) ≥ Φ( x̂ , x̂ , t̂, t̂), we
deduce that

| x̂ − ŷ|2 + | t̂ − ŝ|2

2εβ
≤
�

u( x̂ , t̂)− u( ŷ , ŝ)
�

+ ε
�

v
�

x̂
ε

, 0
�

− v
�

x̂
ε

,
x̂ − ŷ
εβ

��

+ K( t̂ − ŝ)

≤ C
�

| x̂ − ŷ|+ | t̂ − ŝ|
�

+ Cε
| x̂ − ŷ|
εβ

≤ C
�

| x̂ − ŷ|+ | t̂ − ŝ|
�

.

Therefore,
| x̂ − ŷ|+ | t̂ − ŝ| ≤ Cεβ . (4.57)

Notice that (x , t) 7→ Φ(x , t, ŷ , ŝ) has a maximum at ( x̂ , t̂). For α > 0, set

ψ(x ,ξ, z, t) = uε(x , t)− εv
�

ξ,
z − ŷ
εβ

�

−
|x − ŷ|2 + |t − ŝ|2

2εβ
−
|x − εξ|2 + |x − z|2

2α
− K t.

Assumeψ has a maximum at (xα,ξα, zα, tα) and we can assume by passing to a subsequence
if necessary that (xα,ξα, zα, tα)→ ( x̂ , x̂/ε, x̂ , t̂) as α→ 0.
By using (4.55) and the fact that ψ(xα,ξα, zα, tα)≥ψ(xα,ξα, xα, tα),

|xα − zα|2

2α
≤ ε

�

v
�

ξα,
xα − ŷ
εβ

�

− v
�

ξα,
zα − ŷ
εβ

��

≤ Cε1−β |xα − zα|,
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and hence
|xα − zα| ≤ Cαε1−β . (4.58)

The same argument for ψ(xα,ξα, zα, tα)≥ψ(xα, xα/ε, xα, tα) gives further

|xα − εξα| ≤ Cα. (4.59)

By definition of viscosity solutions,

K +
tα − ŝ
εβ

+H
�

xα
ε

,
xα − ŷ
εβ

+
(xα − εξα) + (xα − zα)

α

�

≤ 0, (4.60)

and

H
�

ξα,
zα − ŷ
εβ

+
xα − εξα
α

�

≥ H
�

zα − ŷ
εβ

�

. (4.61)

Combining (4.58)–(4.61) and letting α→ 0 to yield that

K +
t̂ − ŝ
εβ
+H

�

x̂ − ŷ
εβ

�

− Cε1−β ≤ 0. (4.62)

By a similar procedure,

−K +
t̂ − ŝ
εβ
+H

�

x̂ − ŷ
εβ

�

+ Cε1−β ≥ 0. (4.63)

Putting (4.62) and (4.63) together to get

K ≤ Cε1−β .

Choose β = 1/2 and K = K1ε
1/2 for K1� 1 to get a contradiction.

Thus, either t̂ = 0 or ŝ = 0. The proof is hence completed by following the last step in the
proof of Theorem 4.34.

7.3 Problems

Exercise 46. Let n= 1, and H(y, p) = |p|−V (y) for some V ∈ C(T). Show that (4.55) holds
in this case.

Exercise 47. Let n = 1. Is it true that (4.55) always holds for H that satisfies (4.2), (4.3),
and (4.51)?

8 Nonuniqueness of solutions to the cell problems

Let us recall the cell problem (4.10) at a given p ∈ Rn

H(y, p+ Dv(y)) = H(p) in Tn.

We have already shown that H(p) is unique, and there exists a solution v ∈ Lip (Tn) to the
above. In this section, we discuss the nonuniqueness of v in various situations.

First of all, as already pointed out in Remark 4.4, if v is a solution to the above, then v + C
is also a solution for any given C ∈ R. Thus, (4.10) always has infinitely many viscosity
solutions. A natural question then is whether we have uniqueness for solutions to (4.10)
up to additive constants or not. In the following assorted collection of examples, we show
that nonuniqueness (even up to additive constants) still appears.
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Example 4.4. Assume that

H(y, p) = p · (p− Dϕ(y)) for all (y, p) ∈ Tn ×Rn,

where ϕ ∈ C1(Tn) is a given function and ϕ 6= 0. The cell problem at 0 reads

Dv · (Dv − Dϕ) = H(0) in Tn. (4.64)

It is not hard to see that H(0) = 0 as v = C1 for a given constant C1 ∈ R is a corresponding
solution to the above. Besides, v = ϕ + C2 for each C2 ∈ R is also a classical solution. These
are two different families of solutions to (4.64).

Moreover, as H is convex in p, Corollary 2.31 yields further that v =min{C1,ϕ+C2} is another
solution to (4.64) for each fixed C1, C2 ∈ R. Thus, (4.64) has infinity many solutions of
different types. It is worth noting that (4.64) might have other solutions that are not listed
here as well.

If H is convex in p, the minimum stability result in Corollary 2.31 allows us to create new
solutions out of given solutions as seen above. This means that in general, the structures of
solutions to cell problems are very complicated, and it is not easy to characterize all possible
solutions even in the convex setting. The problem of characterization of all solutions is of
course much harder in the nonconvex settings. Here is another example where we have
different families of solutions.

Example 4.5. Assume that n= 1, and

H(y, p) = |p| − V (y) for all (y, p) ∈ T×R,

where V ∈ C(T) such that

V (y) = 1− cos(4πy) for y ∈ [0,1].

As usual, we identify T as [0,1]. It is clear that V (y) = 0 for y = 0, 1
2 .

Figure 4.13: Graph of V .

The cell problem at 0 reads
|v′| − V (y) = H(0) in T. (4.65)
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We claim that H(0) = 0 by constructing solutions to (4.65). Denote by

v1(y) =

¨
∫ y

0
V (x) d x = y − sin(4πy)

4π for y ∈ [0, 1
2],

−
∫ y

0
V (x) d x = −y + sin(4πy)

4π for y ∈ [−1
2 , 0].

Extend v1 to R in the periodic way. It is not hard to check that v1 is C1. It is hence straightfor-
ward that v1 is a solution to (4.65) with H(0) = 0.

Besides, set

v2(y) = v1

�

y +
1
2

�

for all y ∈ R.

Since V (y) = V
�

y + 1
2

�

for y ∈ R, we deduce that v2 is also a solution to (4.65) with H(0) = 0.
Finally, because of the convexity of H in p,

v3 =min{v1 + C1, v2 + C2}

solves (4.65) with H(0) = 0 as well for any given C1, C2 ∈ R.

Next is an example of nonuniqueness of the cell problem at p 6= 0.

Example 4.6. We consider the same settings of Example 4.65. Then, 〈V 〉 =
∫ 1

0
V (y) d y = 1.

Let us fix p ∈ (0,1). The corresponding cell problem is

|p+ v′| − V = H(p) in T. (4.66)

We claim that H(p) = 0 by constructing solutions to the above. Pick ȳ ∈ (1
2 , 1) such that

p =

∫ ȳ

0

V (y) d y −
∫ 1

ȳ

V (y) d y.

Denote by

v1(y) =

¨
∫ y

0
V (x) d x − p y for y ∈ [0, ȳ],

−
∫ y

0
V (x) d x − p y for y ∈ [ ȳ − 1, 0].

Extend v1 to R in the periodic way. It is clear that v1 ∈ C1(T \ { ȳ}) and v1 has a corner from
above at ȳ. Therefore, v1 is a viscosity solution to (4.66) with H(p) = 0.

By the same logic as in the previous example,

v2(y) = v1

�

y +
1
2

�

for all y ∈ R

is also a solution to (4.66) with H(p) = 0. Lastly,

v3 =min{v1 + C1, v2 + C2}

solves (4.66) as well for any given C1, C2 ∈ R.
We now show that, in the situation in Example 4.65, if H(p) > 0 = minRn H, then the
corresponding cell problem has a unique solution (up to additive constants). This is quite
easy to show, and we include it here to have a clear picture of this specific one dimensional
convex case.
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Proposition 4.38. Assume that n= 1, and

H(y, p) = |p| − V (y) for all (y, p) ∈ T×R,

where V ∈ C(T) such that minT V = 0. Let 〈V 〉 =
∫ 1

0
V (y) d y. Then, H has the following

formula

H(p) =

¨

0 for |p| ≤ 〈V 〉,
|p| − 〈V 〉 for |p| ≥ 〈V 〉.

(4.67)

Moreover, for |p| ≥ 〈V 〉, the corresponding cell problem (4.10) has a unique solution (up to
additive constants).

Proof. We skip the proof of the representation formula of H in (4.67) as it is quite similar
to that of formula (4.24) earlier. We leave it as an exercise.

Fix p ∈ R such that |p| ≥ 〈V 〉. Without loss of generality, assume p ≥ 〈V 〉. The correspond-
ing cell problem is

|p+ v′(y)| − V (y) = p− 〈V 〉 in T.

Of course v is differentiable a.e. and this equation holds also in the a.e. sense. Integrate it
over T and use the usual triangle inequality to yield

p =

∫

T
|p+ v′(y)| d y ≥

�

�

�

�

∫

T
(p+ v′(y)) d y

�

�

�

�

= p.

Thus, equality in the above must appear, and therefore, p + v′(y) ≥ 0 for a.e. y ∈ T. This
allows us to conclude that in fact p+ v′(y)≥ 0 for all y ∈ T, and

v′(y) = V (y)− 〈V 〉 in T.

In particular, v is unique up to additive constants.

8.1 Problems

Exercise 48. Give a proof of the representation formula of H in (4.67).

Exercise 49. Assume that n= 1, and

H(y, p) = |p| − V (y) for all (y, p) ∈ T×R,

where V ∈ C(T) such that minT V = 0, and {V = 0} = {z} for a given point z ∈ T. Check to
see whether the cell problem at each p ∈ R has a unique solution (up to additive constants) or
not.
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CHAPTER 5
Almost periodic homogenization

theory for Hamilton–Jacobi
equations

1 Introduction to almost periodic homogenization theory

1.1 Introduction

As in Chapter 4, our objects of interests are the same. The equations of interest are as
following. For each ε > 0, we study

¨

uεt (x , t) +H
�

x
ε , Duε(x , t)

�

= 0 in Rn × (0,∞),
uε(x , 0) = u0(x) on Rn.

(5.1)

Here, the Hamiltonian H : Rn×Rn→ R is continuous and satisfies some appropriate condi-
tions to be addressed soon. We often assume that the initial data u0 ∈ BUC (Rn)∩ Lip (Rn)
unless otherwise specified. Our goal is to let ε→ 0+ and we hope to see that the homoge-
nization effect happens, that is, uε converges to u locally uniformly on Rn × [0,∞), and u
solves a (simpler) effective equation

¨

ut +H(Du) = 0 in Rn × (0,∞),
u(x , 0) = u0(x) on Rn.

(5.2)

To have this in the previous chapter, we assume that H(y, p) is Zn-periodic in y , and uni-
formly coercive in p. As we have seen, coercivity of H gives us good uniform Lipschitz
estimates on uε for all ε > 0, and we will keep this assumption in this chapter. The period-
icity of H might be viewed as a bit too restrictive. One might argue that we do see repeated
structures in practice, but it is often the case that these repeated structures are not as per-
fect as the periodic structure. This is often the case in composite materials. For example,
we may have that H(y, p) = |p|2 + V (y), where V is the sum of many functions which are
periodic of different periods, that is,

V (y) = V1(y) + V2(y) + · · ·+ Vk(y) for y ∈ Rn.
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Here, for 1≤ i ≤ k, Vi is (siZ)n-periodic where si > 0 is a given number. In this case, we say
that V is quasi periodic.

As such, our goal in this chapter is to study homogenization under a slightly more general
assumption that y 7→ H(y, p) is almost periodic. This was first studied by Ishii [84], and we
will follow his approach here to obtain homogenization results. Of course, Ishii’s result was
for the static case, and we adapt it to the Cauchy problem.

1.2 Derivations

Let us first give a definition of almost periodic function.

Definition 5.1. Let f ∈ BUC (Rn). We say that f is almost periodic if the family of functions

{ f (·+ z) : z ∈ Rn}

is relatively compact in BUC (Rn).

Example 5.1. Let us give few elementary examples of almost periodic functions below.

1. If V ∈ BUC (Rn) is Zn-periodic, then V is also almost periodic. Indeed, for any sequence
{zk} ⊂ Rn, we write zk = rk + sk where rk ∈ Zn and sk ∈ [0,1)n. Then,

V (·+ zk) = V (·+ sk) for all k ∈ N.

Moreover, there exists a subsequence {sk j
} of {sk} that converges to s ∈ [0, 1]n as j→∞.

Thus, as j→∞,

V (·+ zk j
) = V (·+ sk j

)→ V (·+ s) in BUC (Rn).

2. Assume that V is the sum of finitely many functions which are periodic of different periods,
that is,

V (y) = V1(y) + V2(y) + · · ·+ Vk(y) for y ∈ Rn.

Here, for 1 ≤ i ≤ k, Vi is (siZ)n-periodic where si > 0 is a given number. Then, by using
a similar argument as the above one, we also get that V is almost periodic.

Next, to make things precise, we give a definition for almost periodic Hamiltonians.

Definition 5.2. Let H = H(y, p) ∈ C(Rn ×Rn). We say that H is almost periodic in y if for
each R> 0, the family of functions

{H(·+ z, ·) : z ∈ Rn}

is relatively compact in BUC (Rn × B(0, R)).

Basic assumptions. Throughout this chapter, we assume the following two assumptions.

H is almost periodic in y in the sense of Definition 5.2, (5.3)

and
lim
|p|→∞

H(y, p) = +∞ uniformly for y ∈ Rn. (5.4)
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Example 5.2. Let n= 1, and

H(y, p) = |p| − (2− cos y − cos(
p

2y)) for all (y, p) ∈ R×R.

Then H is coercive in p, and quasi periodic hence almost periodic in y. Surely, H satisifies
(5.3)–(5.4). We will investigate this example further in Theorem 5.7.
Formally, one can repeat the whole derivations as done in the previous chapter to obtain ho-
mogenization results. Let us give a minimalistic recap here. Recall that x is the macroscopic
variable, and y = x

ε is the microscopic variable. A correct ansatz for asymptotic expansion
of uε around (x , t) is

uε(x , t)≈ u(x , t) + εv
� x
ε

�

= u(x , t) + εv(y).

It is important noting that εv
�

x
ε

�

is a small perturbation term, and we will need to pay
attention to this point later. Let us remark it here that we need

lim
ε→0
εv
� x
ε

�

= 0. (5.5)

Anyway, plug this expansion to (5.1) to get

ut(x , t) +H(y, Du(x , t) + Dv(y)) = 0.

As usual, we assume that x and y are unrelated. Fix (x , t) ∈ Rn × (0,∞), denote by
p = Du(x , t) ∈ Rn, and c = −ut(x , t) ∈ R, we arrive at the usual cell problem

H(y, p+ Dv(y)) = c in Rn. (5.6)

Of course, a key different between this cell problem and the earlier one in the periodic
setting is that it is defined in the whole Rn, and in general, it cannot be reduced to the
n-dimensional torus. It is not hard to see that (5.5) can be reformulated as

lim
|y|→∞

v (y)
|y|

= 0, (5.7)

which means that v is sublinear in Rn. Hence, our task is to find c ∈ R so that (5.6) has
a sublinear viscosity solution v. Formally, if there exists such a unique constant c ∈ R, we
denote by H(p) = c, and thus, H is well-defined. Let us now proceed to identify H in a
rigorous way.

2 Vanishing discount problems and identification of the
effective Hamiltonian

As in the previous chapter, we use the vanishing discount problems to identify H. Fix p ∈ Rn.
For λ > 0, consider the following static equation

λvλ(y) +H(y, p+ Dvλ(y)) = 0 in Rn. (5.8)

Our goal is to let λ→ 0+ to obtain H. We have first the following proposition.
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Proposition 5.3. Assume (5.3) and (5.4). Fix p ∈ Rn. For λ > 0, let vλ be the viscosity
solution to (5.8). Then,

lim
λ→0+

�

λ sup
y∈Rn
|vλ(y)− vλ(0)|

�

= 0. (5.9)

Proof. We argue by contradiction. Suppose that there are δ > 0, {λ j} → 0, and {y j} ⊂ Rn

such that
λ j|vλ j(y j)− vλ j(0)| ≥ δ for all j ∈ N.

In light of (5.3), we may assume that there exists a function G ∈ C(Rn × Rn) such that
H(·+ y j, ·)→ G uniformly on Rn × B(0, R) for all R> 0.

Besides, set C = ‖H(·, p)‖L∞(Rn). Then, ± C
λ are a viscosity supersolution and subsolution to

(5.8), respectively. Thus,

−
C
λ
≤ vλ ≤

C
λ

.

Then, the coercivity of H gives us that ‖Dvλ‖L∞(Rn) ≤ C for some C > 0 independent of
λ > 0. Thus, for R = C + |p| + 1, one has |p| + ‖Dvλ‖L∞(Rn) ≤ R, and for j, k ∈ N large
enough

|H(y + y j, p)−H(y + yk, p)| ≤
δ

4
for all y ∈ Rn, p ∈ B(0, R). (5.10)

By relabeling {y j} if needed, assume that the above holds for all j, k ∈ N. For j ∈ N, denote
by

w j(y) = vλ j(y + y j − y1) for all y ∈ Rn.

In light of (5.10), for y ∈ Rn,

λ jw j(y)+H(y, p+Dw j(y))≤ λ j v
λ j(y+ y j− y1)+H(y+ y j− y1, p+Dvλ j(y+ y j− y1))+

δ

4
=
δ

4
,

and

λ jw j(y)+H(y, p+Dw j(y))≥ λ j v
λ j(y+y j−y1)+H(y+y j−y1, p+Dvλ j(y+y j−y1))−

δ

4
= −

δ

4
.

Hence, by the usual comparison principle,

λ jw j(y)−
δ

4
≤ λ j v

λ j(y)≤ λ jw j(y) +
δ

4
for y ∈ Rn.

Let y = 0 in the above to infer

λ j|vλ j(y j − y1)− vλ j(0)| ≤
δ

4
.

We then use the Lipschitz bound on vλ j and the above inequality to imply further

λ j|vλ j(y j)− vλ j(0)| ≤
δ

4
+λ jC |y1|<

δ

2
,

for j sufficiently large. Thus, we get a contradiction. The proof is complete.
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Remark 5.4. It is extremely important for us to get (5.9) in the above proof. One can see
clearly that the almost periodic assumption is essentially a compactness assumption that
allows us to control nicely the oscillation of λvλ as λ → 0. The proof is of course a proof
by contradiction proof, and we have no control on {y j} ⊂ Rn. In particular, it is unclear if
there is any quantitative version of (5.9).

Theorem 5.5. Assume (5.3) and (5.4). Fix p ∈ Rn. There is a unique constant c ∈ R such
that for each δ > 0, we are able to find a solution w ∈ BUC (Rn) such that w solves

c −δ ≤ H(y, p+ Dw(y))≤ c +δ in Rn. (5.11)

Proof. We first prove the existence of c. For each λ > 0, let vλ be the viscosity solution to
(5.8). By the proof of Proposition 5.3, one has |λvλ(0)| ≤ C and (5.9). Thus, there exist a
sequence {λ j} → 0 and c ∈ R such that

lim
j→∞

λ j v
λ j(y) = −c uniformly for y ∈ Rn.

Now, for each δ > 0, pick j ∈ N sufficiently large so that ‖λ j v
λ j + c‖L∞(Rn) ≤

δ
2 . Let w= vλ j .

It is clear that w ∈ BUC (Rn), and w solves (5.11). The existence of c ∈ R is confirmed.

Next, we show the uniqueness of c, which is quite a standard step. Assume otherwise that
there exist two such constants c1, c2 ∈ R with c1 < c2. Fix δ ∈ (0, 1

4(c2 − c1)). There exist
w1, w2 ∈ BUC (Rn) such that

H(y, p+ Dw1(y))≤ c1 +δ < c2 −δ ≤ H(y, p+ Dw2(y)) in Rn.

As w1 and w2 are both bounded, there exists λ > 0 sufficiently small such that

λw1 +H(y, p+ Dw1)<
c1 + c2

2
< λw2 +H(y, p+ Dw2) in Rn.

By the usual comparison principle, w1 ≤ w2. By the same steps, w1+C ≤ w2 for any C > 0,
which is absurd. Hence, the uniqueness of c is guaranteed.

Definition 5.6. Assume (5.3) and (5.4). For each p ∈ Rn, let c be the unique constant in
Theorem 5.5. Denote by H(p) = c. For each δ > 0, let w ∈ BUC (Rn) be a solution to (5.11),
that is, w solves

H(p)−δ ≤ H(y, p+ Dw(y))≤ H(p) +δ in Rn. (5.12)

We say that w is a δ-approximate corrector of the cell problem

H(y, p+ Dv(y)) = H(p) in Rn. (5.13)

The definition of H is essentially the same as that in the periodic case. However, it is very
important noting here that we have not discussed about the correctors, solutions to (5.13).
In the above definition, we introduce a new object, δ-approximate correctors, for δ > 0.
Although a δ-approximate corrector w does not solve precisely (5.13), it is enough to be
employed for arguments with certain room to play with by choosing δ > 0 sufficiently small.
Furthermore, w ∈ BUC (Rn), hence is obvious sublinear, that is, w satisfies (5.7).
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3 Nonexistence of sublinear correctors

Let us now discuss the correctors, solutions to (5.13). In order for it to be useful, we need to
require that correctors satisfy (5.7), that is, they are sublinear. This requirement is clearly
needed for us to obtain homogenization result as discussed earlier in the derivations. Fur-
thermore, without sublinearity requirement, the problem might be strange as in the follow-
ing example.

Example 5.3. Assume that H(y, p) = H(p), where H : Rn→ R is coercive. Let us study (5.13)
for p = 0, which is

H(Dv(y)) = c in Rn.

Then, for any q ∈ Rn, vq(y) = q · y for y ∈ Rn is a solution to the above with c = H(q). Thus,
if we do not require sublinearity of v, then c is not unique.

Of course, among all those vq, only v0 is sublinear, and therefore, it is natural to see that the if
we put forth the sublinearity assumption, c = H(0) should be the unique constant.
Let us now discuss a simple situation where we cannot expect to have sublinear correctors.

Theorem 5.7. Assume that n= 1, and

H(y, p) = |p| − (2− cos y − cos(
p

2y)) for all (y, p) ∈ R×R.

Then, H(0) = 0, and (5.13) for p = 0 does not admit any sublinear solution.

Proof. It is clear that H satisfies (5.3) and (5.4). Let us first compute H(0). For each λ > 0,
we consider

λvλ + |Dvλ| − (2− cos y − cos(
p

2y)) = 0 in R.

As the above also holds in the a.e. sense, we imply

λvλ(y)≤ 2− cos y − cos(
p

2y) for all y ∈ R,

and in particular, λvλ(0)≤ 0. Let λ→ 0+ to yield that H(0)≥ 0.

On the other hand, for η > 0, as vλ is bounded,

y 7→ vη(y) +η(|y|2 + 1)1/2

has a minimum at yη ∈ R. By the supersolution test,

λvλ(yη)≥ −η
|yη|

(|yη|2 + 1)1/2
+ (2− cos yη − cos(

p
2yη))≥ −η.

Let η→ 0, and λ→ 0 in this order to obtain that H(0) ≤ 0. Combine the two inequalities
to get H(0) = 0.

Now, let us look at the cell problem at p = 0

|v′(y)|= 2− cos y − cos(
p

2y) =: V (y) for all y ∈ R.

This is a convex Hamilton–Jacobi equation. Let v be a viscosity solution to the above. Here,
V ≥ 0 always, and V (y) = 0 if and only if y = 0. Therefore, geometrically, the graph of v
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cannot have corners from below at points y 6= 0. This implies further that the graph of v
cannot have more than two corners from above for y > 0. In particular, there exists y0 ∈ R
such that v′(y) does not change sign for y > y0. That is, either v′(y) = V (y) for all y > y0

or v′(y) = −V (y) for all y > y0. Hence, for y >max{y0, 1},

|v(y)|
|y|

≥
1
|y|

�

∫ y

y0

V (s) ds− |v(y0)|

�

≥ 2−
C
|y|

,

which means that v is not sublinear.

This result demonstrates that in general, we cannot hope for existence of sublinear correc-
tors, and thus, cannot use them to prove homogenization results. As it turns out, to obtain
homogenization, it is enough for us to use approximate correctors.

4 Homogenization for Cauchy problems

Here is our main result.

Theorem 5.8. Assume that H satisfies (5.3) and (5.4). Assume u0 ∈ BUC (Rn)∩Lip (Rn). For
each ε > 0, let uε be the unique viscosity solution of

¨

uεt (x , t) +H
�

x
ε , Duε(x , t)

�

= 0 in Rn × (0,∞),
uε(x , 0) = u0(x) on Rn.

(5.14)

Then, as ε→ 0, uε converges to u locally uniformly on Rn × [0,∞), and u solves the effective
equation

¨

ut +H(Du) = 0 in Rn × (0,∞),
u(x , 0) = u0(x) on Rn.

(5.15)

We present a proof of this theorem, which is basically a small modification to that of Theorem
4.6. Nevertheless, it is important to present it here for the sake of clarity and completeness.

Proof. We will show later in the next section that H is continuous and coercive. Hence,
(5.15) has a unique Lipschitz solution u. As far as (5.14) is concerned, we have, as usual,
the existence of a constant C > 0 independent of ε > 0 such that

‖uεt‖L∞(Rn×[0,∞)) + ‖Duε‖L∞(Rn×[0,∞)) ≤ C .

There exists a subsequence {ε j} → 0 such that uε j → u locally uniformly on Rn × [0,∞)
thanks to the Arzelà–Ascoli theorem. In fact, by abuse of notions, we assume uε→ u locally
uniformly on Rn × [0,∞) as ε→ 0. All we need to do to finish the proof is to prove that u
solves the effective equation (5.15).

We perform only the subsolution test since the argument for supersolution test is similar.
For φ ∈ C1(Rn × (0,∞)) such that u−φ has a global strict max at (x0, t0) ∈ Rn × (0,∞)
with u(x0, t0) = φ(x0, t0), we aim at proving

φt(x0, t0) +H(Dφ(x0, t0))≤ 0.
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Let p = Dφ(x0, t0) ∈ Rn. We prove the above by contradiction. Assume that there exists
α > 0 such that

φt(x0, t0) +H(p)> α.

Let v ∈ BUC (Rn) ∩ Lip(Rn) be a δ-approximate corrector of (5.12) with this particular p
where δ = α

2 .

For each ε,η > 0 we consider the auxiliary function

Φη,ε(x , y, t) : Rn ×Rn × [0, T]→ R

(x , y, t) 7→ uε(x , t)−

 

φ(x , t) + εv (y) +

�

�y − x
ε

�

�

2

η

!

.

For ε > 0 sufficiently small, it is clear that Φη,ε has a max at
�

xηε, yηε, tηε
�

∈ B(x0, r)×Rn×
(t0 − r, t0 + r) for some fixed r > 0. As η→ 0, by compactness

�

xηε, tηε
�

→ (xε, tε) up to a
subsequence. We claim that yηε→

xε
ε asη→ 0. SinceΦη,ε

�

xηε,
xηε
ε , tηε

�

≤ Φη,ε
�

xηε, yηε, tηε
�

for all η > 0, we obtain

1
η

�

�

�yηε −
xηε
ε

�

�

�

2

≤ 2ε ‖v‖L∞(Rn) =⇒ lim
η→0

yηε =
xε
ε

. (5.16)

As (x , t) 7→ Φη,ε
�

x , yηε, t
�

has max at
�

xηε, tηε
�

, we imply that uε−φ− 1
η

�

�yηε −
x
ε

�

�

2
has max

at
�

xηε, tηε
�

. The subsolution test of (5.14) gives

φt

�

xηε, tηε
�

+H
� xηε
ε

, Dφ
�

xηε, tηε
�

+
2
ηε

� xηε
ε
− yηε

�

�

≤ 0. (5.17)

Next, y 7→ Φη,ε
�

xηε, y, tηε
�

has max at yηε, thus v(y) − −1
ηε

�

�y − xηε
ε

�

�

2
has min at yηε, and

hence, the supersolution test gives us

H
�

yηε, p+
2
ηε

� xηε
ε
− yηε

�

�

≥ H(p)−δ. (5.18)

Besides, as v is Lipschitz, we infer
�

�

�

�

2
ηε

� xηε
ε
− yηε

�

�

�

�

�

≤ C , (5.19)

for some C > 0 independent of η,ε. By compactness, we can assume (up to passing to a
subsequence again) that

lim
η→0

2
ηε

� xηε
ε
− yηε

�

= pε ∈ Rn. (5.20)

Note that Φη,ε
�

x , x
ε , t
�

≤ Φη,ε
�

xηε, yηε, tηε
�

. Let η → 0 in this relation and use (5.20) to
yield

uε(x , t)− εv
� x
ε

�

−φ(x , t)≤ uε (xε, tε)− εv
� xε
ε

�

−φ (xε, tε)

for all (x , t) ∈ Rn × [0,∞). That means (x , t) 7→ uε(x , t) − εv
�

x
ε

�

− φ(x , t) has max at
(xε, tε). Again, by passing to a subsequence if needed, (xε, tε)→ (x0, t0) as ε→ 0.
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Let η→ 0 in (5.17) and (5.18) to get

φt (xε, tε) +H
� xε
ε

, Dφ (xε, tε) + pε
�

≤ 0,

and
H
� xε
ε

, p+ pε
�

≥ H(p)−δ.

Combine the above two and let ε→ 0 to conclude that

φt(x0, t0) +H(p)≤ δ =
α

2
,

which is absurd. The proof is complete.

Remark 5.9. In the above proof, we use strongly the fact that δ-approximate corrector v
is bounded and Lipschitz. Without the boundedness of v, we need to be extremely careful
with handling the auxiliary function Φη,ε and obtaining (5.16). The Lipschitz estimate of v
was used to get (5.19) and (5.20).

5 Properties of the effective Hamiltonians

5.1 Basic properties of H

We first present the following representation formulas of H, which is an analog of Theorem
4.10 in the periodic setting.

Theorem 5.10. Assume that H satisfies (5.3) and (5.4). Let H be its corresponding effective
Hamiltonian. Then, for p ∈ Rn,

H(p) = inf {c ∈ R : ∃ v ∈ BUC (Rn) : H(y, p+ Dv(y))≤ c in Rn in viscosity sense}
= sup {c ∈ R : ∃ v ∈ BUC (Rn) : H(y, p+ Dv(y))≥ c in Rn in viscosity sense} .

One can adapt the proof of Theorem 4.10 to this setting in a natural way. As H is coercive
in p, one of the above formulas can also be written as

H(p) = inf {c ∈ R : ∃ v ∈ BUC (Rn)∩ Lip (Rn) : H(y, p+ Dv(y))≤ c in Rn in viscosity sense} .

Proof. Let us define

A= {c ∈ R : ∃ v ∈ BUC (Rn) : H(y, p+ Dv(y))≤ c in Rn in viscosity sense}
B= {c ∈ R : ∃ v ∈ BUC (Rn) : H(y, p+ Dv(y))≥ c in Rn in viscosity sense} .

Thanks to Theorem 5.5, we have the existence of δ-approximate correctors for all δ > 0,
and hence,

infA≤ H(p)≤ supB.

Next, we show that infA = H(p). The other part follows in an analogous way. Assume
by contradiction that infA < H(p). Then, there exist some c1 ∈ A and v1 ∈ BUC (Rn)
such that infA < c1 < H(p), while H(y, p + Dv1(y)) ≤ c1 in Rn in the viscosity sense. Let
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δ = H(p)−c1
4 > 0, and v ∈ BUC (Rn) be a δ-approximate corrector. Since v, v1 are bounded

on Rn, there exists λ > 0 small enough so that

λv1 +H(y, p+ Dv1(y))<
c1 +H(p)

2
< λv +H(y, p+ Dv(y)) in Rn.

The usual comparison principle implies v1 ≤ v. By same steps, we obtain that v1 ≤ v − C
for any constant C > 0, which is absurd. Therefore, infA= H(p).

A consequence of Theorem 5.10 is the following.

Corollary 5.11. Assume that H satisfies (5.3) and (5.4). Let H be its corresponding effective
Hamiltonian. Then, for each p ∈ Rn,

inf
y∈Rn

H(y, p)≤ H(p)≤ sup
y∈Rn

H(y, p).

In particular, H is coercive.

Proof. Take φ ≡ 0, then φ is a classical solution to

inf
y∈Rn

H(y, p)≤ H(y, p+ Dφ)≤ sup
y∈Rn

H(y, p) in Rn.

We apply Theorem 5.10 to conclude.

Theorem 5.12. Assume that H satisfies (5.3) and (5.4). Let H be its corresponding effective
Hamiltonian. Then, H is continuous.

Proof. Fix R > 0, and p, q ∈ B(0, R). For each δ ∈ (0,1), let w ∈ BUC (Rn) ∩ Lip (Rn) be a
δ-approximate corrector of

H(p)−δ ≤ H(y, p+ Dw(y))≤ H(p) +δ in Rn.

The coercivity of H implies that there exists C = C(R) > 0 such that ‖Dw‖L∞(Rn) ≤ C(R).
Therefore, by the fact that H ∈ BUC (Rn×B(0, R+C(R)+1)), there is a modulus of continuity
ωR such that w is also a subsolution to

H(y, q+ Dw(y))≤ H(p) +δ+ωR(|p− q|) in Rn.

This implies
H(q)≤ H(p) +δ+ωR(|p− q|).

Let δ→ 0 and use a symmetric argument to deduce that
�

�H(p)−H(q)
�

�≤ωR(|p− q|).

It is clear from the above proof that the following corollary holds.

162



Corollary 5.13. Assume that H satisfies (5.3) and (5.4). Assume further that for each R> 0,
there exists CR > 0 such that

|H(y, p)−H(y, q)| ≤ CR|p− q| for all y ∈ Rn, p, q ∈ B(0, R).

Let H be its corresponding effective Hamiltonian. Then, H is locally Lipschitz.

Next is the usual large time average result to compute H(p).

Theorem 5.14. Assume that H satisfies (5.3) and (5.4). Fix p ∈ Rn. Consider the following
Cauchy problem

¨

wt +H(y, p+ Dw) = 0 in Rn × (0,∞),
w(y, 0) = 0 on Rn.

(5.21)

Let w(y, t) be the unique viscosity solution to (5.21). Then,

lim
t→∞

w(y, t)
t

= −H(p) uniformly for y ∈ Rn.

The proof of this theorem is similar to that of Theorem 4.11 by using δ-approximate cor-
rectors (instead of actual correctors). We therefore leave it as an exercise.

5.2 Representation formula of H in the convex setting

In this section, we always assume that p 7→ H(y, p) is convex for every y ∈ Rn.

Theorem 5.15 (The inf-sup formula). Assume that H satisfies (5.3) and (5.4). Assume fur-
ther that p 7→ H(y, p) is convex for every y ∈ Rn. Then, for fixed p ∈ Rn, we have

H(p) = inf
φ∈C1(Rn)∩BUC (Rn)

sup
y∈Rn

H (y, p+ Dφ(y)) . (5.22)

Proof. Pick any ϕ ∈ C1(Rn)∩ BUC (Rn), by the representation formula in Theorem 5.10,

H(p)≤ sup
y∈Rn

H(y, p+ Dϕ(y)),

and hence,
H(p)≤ inf

φ∈C1(Rn)∩BUC (Rn)
sup
y∈Rn

H (y, p+ Dφ(y)) .

Conversely, given θ > 0, we aim at proving that

H(p) + θ ≥ inf
φ∈C1(Rn)∩BUC (Rn)

sup
y∈Rn

H (y, p+ Dφ(y)) .

Let v ∈ Lip(Rn)∩ BUC (Rn) be a (θ/2)-approximate corrector to (5.12), that is,

H(p)−
θ

2
≤ H(y, p+ Dv(y))≤ H(p) +

θ

2
in Rn.

It is clear that ‖Dv‖L∞(Rn) ≤ C , v is differentiable and solves the above a.e. in Rn. As usual,
we smooth v up by using the convolution trick. Take η to be the standard mollifier, that is,

η ∈ C∞c (R
n, [0,∞)), supp(η) ⊂ B(0, 1),

∫

Rn

η(x) d x = 1.
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For ε > 0, denote by ηε(x) = ε−nη
�

x
ε

�

for all x ∈ Rn. Set

vε(x) = (ηε ? v) (x) =

∫

Rn

ηε(x − y)v(y) d y =

∫

B(x ,ε)

ηε(x − y)v(y) d y for x ∈ Rn.

Then vε ∈ C∞(Rn)∩BUC (Rn), and vε→ v uniformly inRn as ε→ 0. For every fixed x ∈ Rn,
we compute that

H(p) +
θ

2
≥
∫

Rn

H
�

x − y, p+ Dv(x − y)
�

ηε(y) d y

≥
∫

B(0,ε)

�

H
�

x , p+ Dv(x − y)
�

−ω(ε)
�

ηε(y) d y

=

∫

B(0,ε)

H
�

x , p+ Dv(x − y)
�

ηε(y) d y −ω(ε)

≥ H

�

x ,

∫

B(0,ε)

(p+ Dv(x − y))ηε(y) d y

�

−ω(ε) = H(x , p+ Dvε(x))−ω(ε).

Thus, vε satisfies

sup
x∈Rn

H(x , p+ Dvε(x))≤ H(p) +
θ

2
+ω(ε).

Pick ε > 0 sufficiently small so that ω(ε)< θ
2 to conclude.

Here is an immediate consequence of the inf-sup formula above.

Corollary 5.16. Assume that H satisfies (5.3) and (5.4). Assume further that p 7→ H(y, p) is
convex for every y ∈ Rn. Then, for each p ∈ Rn,

H(p) = inf {c ∈ R : ∃ v ∈ Lip (Rn)∩ BUC (Rn) : H(y, p+ Dv(y))≤ c a.e. in Rn} . (5.23)

By using the above corollary, we deduce that H is also convex.

Theorem 5.17 (Convexity of H). Assume that H satisfies (5.3) and (5.4). Assume further
that p 7→ H(y, p) is convex for every y ∈ Rn. Then, H is convex.
Another immediate consequence of the inf-sup formula is as following.

Corollary 5.18. Assume that H satisfies (5.3) and (5.4). Assume further that p 7→ H(y, p) is
convex and even for every y ∈ Rn. Then, H is also even.

5.3 Problems

Exercise 50. Give another example of a Hamiltonian H satisfying (5.3) and (5.4) so that
(5.13) does not admit a sublinear solution for some p ∈ Rn.

Exercise 51. Give a detailed proof of Theorem 5.14.

Exercise 52. Give a quick proof of Theorem 5.17.
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6 References

1. Almost periodic homogenization for Hamilton–Jacobi equations was studied first by
Ishii [84].

2. The result on nonexistence of sublinear correctors was pointed out by Lions and
Souganidis [104].

3. So far, there has not been any quantitative result on the rate of convergence of uε to u
in this almost periodic setting. Besides, deeper properties of H are not yet explored.
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CHAPTER 6
First-order convex Hamilton–Jacobi

equations in a torus

In this chapter, we revisit first-order convex Hamilton–Jacobi equations in the flat n-dimensional
torus Tn. We always assume that the Hamiltonian H = H(y, p) ∈ C(Tn ×Rn), and







lim
|p|→∞

�

min
y∈Tn

H(y, p)
�

= +∞,

p 7→ H(y, p) is convex for all y ∈ Tn.
(6.1)

Later on, further assumptions on the smoothness of H and uniform convexity of H will
be put based on topics that we deal with. Our aim here is to study further properties of
solutions to the discount problems and the cell problems.

1 New representation formulas for solutions of the
discount problems

Fix λ > 0. The focus of this section is the following discount problem

λvλ +H(y, Dvλ) = 0 in Tn. (6.2)

Of course, this equation has been one of the central objects of all previous chapters. In light
of (6.1), (6.2) has a unique Lipschitz solution vλ ∈ Lip (Tn). Let us recall some estimates on
vλ. First, the comparison principle gives

−max
y∈Tn
|H(y, 0)| ≤ λvλ ≤max

y∈Tn
|H(y, 0)|.

Then, the coercivity of H infers the existence of C > 0 independent of λ > 0 such that

‖Dvλ‖L∞(Tn) ≤ C .

Besides, if H is superlinear in p, that is,

lim
|p|→∞

�

min
y∈Tn

H(y, p)
|p|

�

= +∞,

167



then vλ has an optimal control formula based on the Lagrangian L = L(y, v), the Legendre
transform of H. For y ∈ Tn,

vλ(y) = inf

�∫ ∞

0

e−λs L(γ(s),−γ′(s)) ds : γ ∈ AC ([0,∞),Tn), γ(0) = y

�

.

We here aim at getting another representation formula for vλ based on a duality method.
We will compare the two formulas later.

1.1 Reduction to optimal control with a compact control set

Before stating the formula for vλ, let us do some reductions/simplifications first. From the
a priori estimates on vλ, information of H(y, p) for |p| > C does not matter. Let us now
provide a modification of H as following.

Pick two constants h0, h1 ∈ R such that h0 < h1 and

¨

H(y, p)> h0 for all (y, p) ∈ Tn ×Rn,

H(y, p)< h1 for all (y, p) ∈ Tn × B(0, C + 1).

Denote by H0 : Rn→ R such that

H0(p) = h0 + (h1 − h0)(|p| − C) for p ∈ Rn.

It is clear that H0(p) ≤ h0 for |p| ≤ C , and H0(p) ≥ h1 for |p| ≥ C + 1. Set H̃ : Tn ×Rn→ R
as

H̃(y, p) =

¨

max {H(y, p), H0(p)} for y ∈ Tn, |p| ≤ C + 1,

H0(p) for y ∈ Tn, |p| ≥ C + 1.

Then, H̃ is continuous, convex in p, and H̃(y, p) = H(y, p) for |p| ≤ C . This means that we
can replace H by H̃ in the study of (6.2) without changing anything. The key point of using
H̃ is that it has a linear growth rate in p as |p| →∞. More precisely, for h = h1 − h0 > 0,
we are able to write

H̃(y, p) =max
|v|≤h

�

p · v − L̃(y, v)
�

for all (y, p) ∈ Tn ×Rn, (6.3)

where L̃ is continuous on Tn × Bh and is given by

L̃(y, v) = sup
p∈Rn

�

p · v − H̃(y, p)
�

for all (y, v) ∈ Tn × Bh.

The point of (6.3) is that we are now in the situation of optimal control with compact control
set Bh, which is convenient to use. Without loss of generality, we now assume H also has
this form, that is,

H(y, p) =max
|v|≤h
(p · v − L(y, v)) for all (y, p) ∈ Tn ×Rn, (6.4)

where L ∈ C(Tn × Bh).
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1.2 New representation formula

By the reduction step, we may assume H satisfies (6.3) for L ∈ C(Tn × Bh) for some fixed
h> 0 as discussed above. For any φ ∈ C(Tn × Bh), we also denote by

Hφ(y, p) =max
|v|≤h
(p · v −φ(y, v)) for all (y, p) ∈ Tn ×Rn.

Of course, Hφ satisfies (6.1). Define Fλ ⊂ C(Tn × Bh)× C(Tn) as

Fλ =
�

(φ, u) ∈ C(Tn × Bh)× C(Tn) : u solves λu+Hφ(y, Du)≤ 0 in Tn
	

.

Lemma 6.1. For λ > 0, the set Fλ is convex.

For (z,λ) ∈ Tn × (0,∞), we define the evaluation cone Gz,λ ⊂ C(Tn × Bh) by

Gz,λ = {φ −λu(z) : (φ, u) ∈ Fλ} .

Lemma 6.2. For (z,λ) ∈ Tn × (0,∞), Gz,λ is a convex cone in C(Tn × Bh) with vertex at the
origin.

Denote by R the space of Radon measures on Tn×Bh, and P the space of Radon probability
measures on Tn × Bh. The Riesz representation theorem ensures us that the dual space of
C(Tn × Bh) identified with R. In this aspect, we write

〈µ, f 〉=
∫

Tn×Bh

f (y, v) dµ(y, v) for f ∈ C(Tn × Bh),µ ∈ R.

Let G′z,λ denote the dual cone of Gz,λ, that is,

G′z,λ =
�

µ ∈ R : 〈µ, f 〉 ≥ 0 for all f ∈ Gz,λ

	

.

Let us remark that measures in G′z,λ are nonnegative measures. Indeed, pick any µ ∈ G′z,λ.

For every φ ∈ C(Tn × Bh) such that φ ≥ 0, we have (φ, 0) ∈ Fλ, and so, 〈µ,φ〉 ≥ 0, which
gives us that µ is a nonnegative measure.

Here is the new representation formula for vλ.

Theorem 6.3. Assume (6.4) for some h > 0 and L ∈ C(Tn × Bh). For λ > 0, let vλ be the
unique solution to (6.2). Then, for z ∈ Tn,

λvλ(z) = min
µ∈P∩G′z,λ

∫

Tn×Bh

L(y, v) dµ(y, v). (6.5)

Let us now proceed to prove the preparatory lemmas and this theorem. After our prepara-
tions in previous chapter, Lemmas 6.1 and 6.2 are not so hard to prove. Nevertheless, let us
give complete proofs here.

Proof of Lemma 6.1. Pick (φ1, u1), (φ2, u2) ∈ Fλ. For i = 1,2, as Hφi
satisfies (6.1), ui is

Lipschitz in Tn. Moreover, in light of Theorem 2.27, ui ∈ Lip (Tn) is a viscosity solution to

λui +Hφi
(y, Dui)≤ 0 in Tn
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if and only if ui ∈ Lip (Tn) is an a.e. solution to the above. Thus, for a.e. y ∈ Tn.

λ
u1(y) + u2(y)

2
+H φ1+φ2

2

�

y,
Du1(y) + Du2(y)

2

�

= λ
u1(y) + u2(y)

2
+max
|v|≤h

�

Du1(y) + Du2(y)
2

· v −
φ1(y, v) +φ2(y, v)

2

�

≤
1
2

�

(u1(y) +max
|v|≤h
(Du1(y) · v −φ1(y, v)) + (u2(y) +max

|v|≤h
(Du2(y) · v −φ2(y, v)))

�

≤ 0.

Hence,
�

φ1+φ2
2 , u1+u2

2

�

∈ Fλ, which means that Fλ is convex. The proof is complete.

Next, we show that Gz,λ is a convex cone with vertex at the origin.

Proof of Lemma 6.2. First of all, it is clear that Gz,λ is a convex set in C(Tn × Bh) as Fλ is
convex by Lemma 6.1.

Next, as (0, 0) ∈ Fλ, we infer that 0 ∈ Gz,λ. Finally, we need to show that Gz,λ is a cone.
Pick any (φ, u) ∈ Fλ. It is not hard to see that s(φ, u) ∈ Fλ as well for any s ≥ 0. Thus, if
φ −λu(z) ∈ Gz,λ, then s(φ −λu(z)) ∈ Gz,λ for all s ≥ 0. The proof is done.

The convex cone structure of Gz,λ is extremely important for us to use later on. We are now
ready to prove our main result in this section.

Proof of Theorem 6.3. Firstly, as vλ is the solution to (6.2), (L, vλ) ∈ Fλ. In particular, L −
λvλ(z) ∈ Gz,λ. By the definition of the dual cone G′z,λ,

〈µ, L −λvλ(z)〉 ≥ 0 for all µ ∈ G′z,λ,

which gives

λvλ(z)≤ min
µ∈P∩G′z,λ

∫

Tn×Bh

L(y, v) dµ(y, v).

To conclude, we need to obtain the converse inequality. We prove this by contradiction.
Assume otherwise that there exists ε > 0 such that

λvλ(z) + ε < min
µ∈P∩G′z,λ

∫

Tn×Bh

L(y, v) dµ(y, v). (6.6)

Since Gz,λ is a convex cone with vertex at the origin, we deduce that

inf
f ∈Gz,λ

〈µ, f 〉=

¨

0 if µ ∈ P∩G′z,λ,

−∞ if µ ∈ P \G′z,λ.

Accordingly,

inf
µ∈P∩G′z,λ

〈µ, L〉= inf
µ∈P

�

〈µ, L〉 − inf
f ∈Gz,λ

〈µ, f 〉
�

= inf
µ∈P

sup
f ∈Gz,λ

〈µ, L − f 〉.

Observe that P is a compact convex subset of R with topology of weak convergence of
measures, and Gz,λ is a convex subset of C(Tn × Bh). Our functional µ 7→ 〈µ, L − f 〉 is
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continuous and linear on R with topology of weak convergence of measures for any fixed
f ∈ C(Tn×Bh), and f 7→ 〈µ, L− f 〉 is continuous and affine on C(Tn×Bh) for any µ ∈ R. By
Sion’s minimax theorem, we are able to interchange the order of infimum and supremum
in the above, that is,

inf
µ∈P

sup
f ∈Gz,λ

〈µ, L − f 〉= sup
f ∈Gz,λ

inf
µ∈P
〈µ, L − f 〉.

See Appendix for a proof of Sion’s minimax theorem. Combine this with (6.6) to imply that

λvλ(z) + ε < inf
µ∈P
〈µ, L −φ +λu(z)〉

for some (φ, u) ∈ Fλ. Since the Dirac delta measure δ(y,v) ∈ P for each (y, v) ∈ Tn × Bh, we
deduce further that

λvλ(z) + ε < L(y, v)−φ(y, v) +λu(z) for all (y, v) ∈ Tn × Bh.

Thus, for all (y, p) ∈ Tn ×Rn,

H(y, p) = sup
|v|≤h
(p · v − L(y, v))≤ sup

|v|≤h
(p · v −φ(y, v)) +λ(u− vλ)(z)− ε

= Hφ(y, p) +λ(u− vλ)(z)− ε.

In particular, we infer that vλ solves

λvλ +Hφ(y, Dvλ) +λ(u− vλ)(z)− ε ≥ 0 in Tn.

In other words, w= vλ + (u− vλ)(z)− ε/λ is a supersolution to

λw+Hφ(y, Dw) = 0 in Tn.

As u is a subsolution to the above, the comparison principle gives that w ≥ u. At z, w(z) ≥
u(z) implies −ε/λ > 0, which is absurd. Therefore,

λvλ(z) = min
µ∈P∩G′z,λ

∫

Tn×Bh

L(y, v) dµ(y, v).

Remark 6.4. It is now time to compare this newly obtained formula with the classical op-
timal control formula. Each one has its own advantages.

On the one hand, the optimal control formula allows us to go further to investigate the opti-
mal paths, which minimize the action functional. But as we deal with paths in AC ([0,∞),Tn),
we need to be careful with issues related to compactness and stability of these curves. Note
further that as

∫ ∞

0

λe−λs ds = 1,

we are able to write
∫ ∞

0

λe−λs L(γ(s),−γ′(s)) ds =

∫

Tn×Rn

L(y, v) dµγ(y, v)
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for a corresponding probability measure µγ ∈ P.

On the other hand, the new formula (6.7) deals with minimizing the action functional
against probability measures in the convex cone G′z,λ, which does not give any understand-
ing of the optimal paths. But as P is a compact convex subset of R with topology of weak
convergence of measures, it is quite convenient to be used when studying compactness and
stability problems. We will see this aspect in the next section.

2 New representation formula for the effective
Hamiltonian and applications

2.1 New representation formula for H(0)

We are still interested in studying (6.2). As usual, we assume (6.1). By the reduction step,
we may assume that (6.4) holds true.

Let vλ ∈ Lip (Tn) be the unique solution to (6.2), that is,

λvλ +H(y, Dvλ) = 0 in Tn.

By Corollary 4.5 (or Lemma 4.52), we know that λvλ→−H(0), and furthermore,

‖λvλ +H(0)‖L∞(Tn) ≤ Cλ,

for some constant C > 0 independent of λ > 0. Let us now give a new representation
formula for H(0) based on the duality method in the previous section.

As it turns out, most of the frameworks in the previous section can be repeated for λ = 0.
Define F0 ⊂ C(Tn × Bh)× C(Tn) as

F0 =
�

(φ, u) ∈ C(Tn × Bh)× C(Tn) : u solves Hφ(y, Du)≤ 0 in Tn
	

.

Then, define the cone G0 ⊂ C(Tn × Bh) by

G0 = {φ : (φ, u) ∈ F0} .

The following result is quite straightforward, and we omit its proof.

Lemma 6.5. The set F0 is convex. Besides, G0 is a convex cone in C(Tn × Bh) with vertex at
the origin.
Let G′0 denote the dual cone of G0, that is,

G′0 = {µ ∈ R : 〈µ, f 〉 ≥ 0 for all f ∈ G0} .

By using a same argument as in the previous section, we get that G′0 contains only nonneg-
ative measures. Here is the new representation formula for H(0).

Theorem 6.6. Assume (6.4) for some h> 0 and L ∈ C(Tn × Bh). Then,

min
µ∈P∩G′0

∫

Tn×Bh

L(y, v) dµ(y, v) = −H(0). (6.7)
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The proof of this is quite similar to that of Theorem 6.3. Let us sketch it here.

Proof. Firstly, let w ∈ Lip (Tn) be a solution to the cell problem

H(y, Dw) = H(0) in Tn. (6.8)

Then, (L +H(0), w) ∈ F0, and L +H(0) ∈ G0. By the definition of the dual cone G′0,

−H(0)≤ min
µ∈P∩G′0

∫

Tn×Bh

L(y, v) dµ(y, v).

We now prove the converse inequality to conclude by contradiction. Assume otherwise that
there exists ε > 0 such that

−H(0) + ε < min
µ∈P∩G′0

∫

Tn×Bh

L(y, v) dµ(y, v). (6.9)

Since G0 is a convex cone with vertex at the origin, we deduce that

inf
f ∈G0

〈µ, f 〉=

¨

0 if µ ∈ P∩G′0,

−∞ if µ ∈ P \G′0.

Accordingly,

inf
µ∈P∩G′0

〈µ, L〉= inf
µ∈P

�

〈µ, L〉 − inf
f ∈G0

〈µ, f 〉
�

= inf
µ∈P

sup
f ∈G0

〈µ, L − f 〉.

We again apply Sion’s minimax theorem to interchange the order of infimum and supremum
in the above

inf
µ∈P

sup
f ∈G0

〈µ, L − f 〉= sup
f ∈G0

inf
µ∈P
〈µ, L − f 〉.

Combine this with (6.9) to imply that

−H(0) + ε < inf
µ∈P
〈µ, L −φ〉

for some (φ, u) ∈ F0. Since the Dirac delta measure δ(y,v) ∈ P for each (y, v) ∈ Tn × Bh, we
deduce further that

−H(0) + ε < L(y, v)−φ(y, v) for all (y, v) ∈ Tn × Bh.

Thus, for all (y, p) ∈ Tn ×Rn,

H(y, p) = sup
|v|≤h
(p · v − L(y, v))≤ sup

|v|≤h
(p · v −φ(y, v))− ε = Hφ(y, p)− ε.

In particular, we infer that

Hφ(y, Dw)≥ ε > 0≥ Hφ(y, Du) in Tn.
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By the usual trick of adding a small monotone term, we use the comparison principle to
imply that w≥ u. By the same steps, we obtain as well that w−C ≥ u for any C > 0, which
gives a contradiction. Hence,

min
µ∈P∩G′0

∫

Tn×Bh

L(y, v) dµ(y, v) = −H(0).

We show that measures in G′0 has a further nice property.

Proposition 6.7. Let µ ∈ G′0. Then,
∫

Tn×Bh

v · Dψ(y) dµ(y, v) = 0 for all ψ ∈ C2(Tn). (6.10)

Proof. Fix ψ ∈ C2(Tn). Let φ(y, v) = v · Dψ(y) for (y, v) ∈ Tn × Bh, then it is clear that
(φ,ψ) ∈ F0. It is also clear that (−φ,−ψ) ∈ F0 as well. Therefore, ±φ ∈ G0, and

〈µ,±φ〉 ≥ 0,

which gives us the conclusion.

We will see later on that (6.10) essentially says that µ is a holonomic measure. Next we
show that we have stability of measures in the cones G′z,λ as λ→ 0.

Lemma 6.8. Fix z ∈ Tn. Let {λ j} ⊂ (0,∞) be a sequence convergent to 0. For each j ∈ N,
pick µ j ∈ G′z,λ j

. Assume that µ j → µ weakly in the sense of measures for some µ ∈ R. Then,
µ ∈ G′0.

Proof. Pick any (φ, u) ∈ F0. Then, (φ +λ ju, u) ∈ Fλ j
, which means that

〈µ j,φ +λ j(u− u(z))〉 ≥ 0.

Thus,
〈µ,φ〉= lim

j→∞
〈µ j,φ〉 ≥ lim

j→∞
λ j〈µ j, u(z)− u〉= 0.

Hence, µ ∈ G′0.

2.2 Applications

We now use the new representation formulas obtained above to study the vanishing discount
problem, that is, the asymptotic behavior of vλ as λ → 0. As noted much earlier (see
for example Remark 4.4), in general, for fixed x0 ∈ Tn, we only have that there exists a
subsequence {λ j} → 0 such that

vλ j − vλ j(x0)→ w uniformly in Tn,

and w is a solution to the cell problem (6.8). As (6.8) often has many solutions as discussed
in Chapter 4, it is not clear whether we have the convergence of the whole family vλ−vλ(x0)
as λ→ 0 or not. This is called a selection problem.

We show that we do have convergence of the whole family of vλ (after appropriate normal-
izations) in the convex setting.
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Theorem 6.9. Assume (6.1). For λ > 0, let vλ ∈ Lip (Tn) be the unique solution to (6.2).
Then, the family

�

vλ +λ−1H(0)
	

λ>0
is convergent in C(Tn) as λ→ 0.

Proof. By subtracting to a constant from H, we assume first without loss of generality that
H(0) = 0. Again, by the reduction step earlier, we may assume further that H satisfies (6.4)
for some h> 0 and L ∈ C(Tn × Bh).

Since H(0) = 0, we have that

‖vλ‖L∞(Tn) + ‖Dvλ‖L∞(Tn) ≤ C .

Let U be the set of accumulation points in C(Tn), as λ→ 0, of {vλ}λ>0. Obviously, U 6= ;.
To complete our theorem, we need to show that U is a singleton. Pick any u, w ∈ U. We aim
at showing that u(z) ≥ w(z) for each z ∈ Tn. There exist {λ j} → 0 and {δ j} → 0 such that
vλ j → u and vδ j → w in C(Tn) as j →∞. By Theorem 6.3, we are able to find a sequence
of measures {µ j} ⊂ P such that, for j ∈ N, µ j ∈ P∩G′z,λ j

, and

λ j v
λ j(z) =

∫

Tn×Bh

L(y, v) dµ j(y, v) = min
µ∈P∩G′z,λ

∫

Tn×Bh

L(y, v) dµ(y, v).

We may assume by passing to a subsequence of {µ j} that µ j → µ weakly in the sense of
measures for some µ ∈ P. By Lemma 6.8, µ ∈ G′0. Let j→∞ in the above to obtain

0=

∫

Tn×Bh

L(y, v) dµ(y, v) = min
µ∈P∩G′0

∫

Tn×Bh

L(y, v) dµ(y, v).

Next, we combine (L − δ j v
δ j , vδ j) ∈ F0 and (L + λ jw, w) ∈ Fλ j

with the above identities to
yield

0≤ 〈µ, L −δ j v
δ j〉= −δ j〈µ, vδ j〉,

and
0≤ 〈µ j, L +λ jw−λ jw(z)〉= λ j(v

λ j(z)−w(z)) +λ j〈µ j, w〉.

Therefore,
〈µ, vδ j〉 ≤ 0 and vλ j(z)−w(z) + 〈µ j, w〉 ≥ 0.

Let j→∞ to deduce further that

〈µ, w〉 ≤ 0 and u(z)−w(z) + 〈µ, w〉 ≥ 0,

which implies u(z)≥ w(z). The proof is complete.

In fact, we are able to characterize the limit of vλ +λ−1H(0) as λ→ 0 as well. We provide
here another version of Theorem 6.9 with this characterization, which might be helpful for
further analysis later. Denote by M0 the set of all measures µ ∈ P∩G′0 such that

∫

Tn×Bh

L(y, v) dµ(y, v) = −H(0).

We say that M0 is the set of minimizing measures corresponding to the cell problem (6.8).
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Theorem 6.10. Assume (6.1). For λ > 0, let vλ ∈ Lip (Tn) be the unique solution to (6.2).
Then, the family

�

vλ +λ−1H(0)
	

λ>0
is convergent in C(Tn) as λ→ 0 to v0, where

v0 = sup
v∈E

v.

Here, E denotes the family of subsolutions v to the cell problem (6.8) such that

〈µ, v〉 ≤ 0 for all µ ∈M0.

It is quite interesting to notice that although v0 is a subsolution to (6.8) by stability of
viscosity solutions, it is not clear at all from the definition whether v0 is a solution to (6.8)
or not. This nice and subtle point is included the the proof of this theorem, which shares a
same philosophy as that of Theorem 6.9. We give a complete proof of Theorem 6.10 here
as we believe that it gives another viewpoint of this vanishing discount problem.

Proof. By subtracting to a constant from H, we assume first without loss of generality that
H(0) = 0. Again, by the reduction step earlier, we may assume further that H satisfies (6.4)
for some h> 0 and L ∈ C(Tn × Bh).

Since H(0) = 0, we have that

‖vλ‖L∞(Tn) + ‖Dvλ‖L∞(Tn) ≤ C .

Let U be the set of accumulation points in C(Tn), as λ→ 0, of {vλ}λ>0. Obviously, U 6= ;.
We aim at showing that U= {v0} to conclude.

Pick any u ∈ U. There exist {λ j} → 0 such that vλ j → u. We first show that u ≤ v0. Indeed,
(L −λ j v

λ j , vλ j) ∈ F0 for all j ∈ N. For every µ ∈M0, we use the definition of M0 to imply

0≤ 〈µ, L −λ j v
λ j〉= −λ j〈µ, vλ j〉.

Thus, 〈µ, vλ j〉 ≤ 0. Let j→∞ to get that 〈µ, u〉 ≤ 0 for all µ ∈M0. Therefore, u≤ v0.

Next, we show that u ≥ v0 by showing that u ≥ v for any v ∈ E. Fix z ∈ Tn. By Theorem
6.3, we are able to find a sequence of measures {µ j} ⊂ P such that, for j ∈ N, µ j ∈ P∩G′z,λ j

,
and

λ j v
λ j(z) =

∫

Tn×Bh

L(y, v) dµ j(y, v) = min
µ∈P∩G′z,λ

∫

Tn×Bh

L(y, v) dµ(y, v).

We may assume by passing to a subsequence of {µ j} that µ j → µ0 weakly in the sense of
measures for some µ0 ∈ P. By Lemma 6.8, µ0 ∈ G′0. Let j→∞ in the above to obtain

0=

∫

Tn×Bh

L(y, v) dµ0(y, v) = min
µ∈P∩G′0

∫

Tn×Bh

L(y, v) dµ(y, v).

Thus, µ0 ∈M0. Next, we combine (L +λ j v, v) ∈ Fλ j
with the above identities to yield

0≤ 〈µ j, L +λ j v −λ j v(z)〉= λ j(v
λ j(z)− v(z)) +λ j〈µ j, v〉.

Therefore,
vλ j(z)− v(z) + 〈µ j, v〉 ≥ 0.
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Let j→∞ to deduce further that

u(z)≥ v(z)− 〈µ0, v〉 ≥ v(z).

We use the fact that 〈µ0, v〉 ≤ 0 in the last inequality above as v ∈ E and µ0 ∈ M0. Thus,
u≥ v for any v ∈ E, which gives further that u≥ v0. The proof is complete.

Although Theorem 6.9 and Theorem 6.10 give the same convergence result, they are quite
different their approaches and each has its own advantages. In particular, the proof of
Theorem 6.9 is simpler in a way, and there is no need of using the minimizing measures
M0. The proof of Theorem 6.10 is a bit more complicated (and seemingly ad hoc), but it
gives a nice characterization of the limit v0. In practice, depending on the situations, one
can be flexible in using either one of these two theorems.

2.3 Problems

Exercise 53. Formulate and give a proof for an analogous result to Theorem 6.9 (or Theorem
6.10) for the family

�

vλ − vλ(0)
	

λ>0
in place of

�

vλ +λ−1H(0)
	

λ>0
.

3 Cell problems, backward characteristics, and
applications

We recall the cell problems of interests here. For each p ∈ Rn, let v ∈ Lip (Tn) be a viscosity
solution to the cell problem (4.10), that is,

H(y, p+ Dv(y)) = H(p) in Tn. (6.11)

Whenever needed, we write v = vp or v = v(·, p) to demonstrate clear dependence on p.
We aim at studying backward characteristics of solutions to (6.11).

In this section, we assume a stronger condition that
¨

H ∈ C2(Tn ×Rn),
there exists θ > 0 such that θ In ≤ D2

ppH(y, p)≤ θ−1In for all (y, p) ∈ Tn ×Rn.
(6.12)

Here, In is the identity matrix of size n. We say that H is C2 and is uniformly convex in p.
Let L = L(y, v) be the usual Lagrangian. Then, L ∈ C2(Tn × Rn) and L is also uniformly
convex in v.

3.1 Backward characteristics

Here is our result on backward characteristics.

Theorem 6.11. Assume (6.12). For a fixed p ∈ Rn, let v ∈ Lip (Tn) be a solution to (6.11).
Then, for every x ∈ Tn, there exists a C1 curve ξ : (−∞, 0]→ Rn such that ξ(0) = x, and

p · ξ(t1) + v(ξ(t1))− p · ξ(t2)− v(ξ(t2)) =

∫ t1

t2

�

L(ξ(t),ξ′(t)) +H(p)
�

d t (6.13)

for all t2 < t1 ≤ 0.

We say that ξ is a backward characteristic of v starting from x.
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Proof. For simplicity of notions, let us assume p = 0.

We consider the following Cauchy problem
¨

ut +H(y, Du) = 0 in Rn × (0,∞),
u(y, 0) = v(y) on Rn.

The unique solution to the above is u(y, t) = v(y)−H(0)t for (y, t) ∈ Rn × [0,∞).

We construct ξ by on [−k,−k+1] iteratively for k ∈ N as following. Of course, we are given
that ξ(0) = x . For k ∈ N, by the optimal control formula,

u(ξ(−k+1), 1) = inf

¨

∫ 1

0

L(γ(s),γ′(s)) ds+ v(γ(0)) : γ ∈ AC ([0, 1],Rn),γ(1) = ξ(−k+ 1)

«

.

Since L is C2 and is uniformly convex in v, there exists a C1 minimizer η ∈ C1([0, 1],Rn)
with η(1) = ξ(−k+1) to the above. See Appendix for a detailed proof of this point. Denote
by

ξ(−k+ s) = η(s) for s ∈ [0, 1].

By this iteration, we get that ξ is defined on (−∞, 0], ξ(0) = x . It is clear that ξ is C1, and
‖ξ′‖L∞((−∞,0]) ≤ C . Furthermore, by the Dynamic Programming Principle,

v(ξ(−k+1))−H(0) =

∫ 1

s

L(ξ(r),ξ′(r)) dr+v(ξ(−k+s))−H(0)s for all k ∈ N, s ∈ [0,1].

Thus, for all t2 < t1 ≤ 0,

v(ξ(t1))− v(ξ(t2)) =

∫ t1

t2

�

L(ξ(t),ξ′(t)) +H(0)
�

d t.

3.2 Problems

Exercise 54. Give another proof of Theorem 6.11 by constructing optimal paths ξk : [−k, 0]→
Rn with ξk(0) = x to the Cauchy problem for k ∈ N. Then, use compactness of {ξk} and a
diagonal argument to pass to the limit to get a backward characteristic.

3.3 Large time average of backward characteristics

We are now concerned with the behavior of ξ(t)t as t → −∞, where ξ is a backward char-
acteristic of v, solution to (6.11).

Theorem 6.12. Assume (6.12). For a fixed p ∈ Rn, let v ∈ Lip (Tn) be a solution to (6.11).
Fix x ∈ Tn, and let ξ be a backward characteristic of v starting from x. Then, there exist a
subsequence {tk} → −∞ and a vector q ∈ D−H(p) such that

lim
k→∞

ξ(tk)
tk
= q ∈ D−H(p).
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We need to do some preparations before proving this theorem. But let us give a quick
comment first. As H satisfies (6.12), we have that H is convex and coercive. Therefore, for
each p ∈ Rn, D−H(p) 6= ;. Of course, if H is differentiable at p, then D−H(p) = {DH(p)},
and we have the following direct consequence of the above theorem.

Corollary 6.13. Assume (6.12). For a fixed p ∈ Rn, let v ∈ Lip (Tn) be a solution to (6.11).
Assume further that H is differentiable at p. Fix x ∈ Tn, and let ξ be a backward characteristic
of v starting from x. Then,

lim
t→−∞

ξ(t)
t
= DH(p).

The following is an important lemma toward proving Theorem 6.12.

Lemma 6.14. Assume (6.12). For a fixed p ∈ Rn, let v ∈ Lip (Tn) be a solution to (6.11). Let
γ : (−∞, 0]→ Rn be an arbitrary Lipschitz curve. Then, for every T > 0,

∫ 0

−T

�

L(γ(t),γ′(t)) +H(p)
�

d t ≥ p · (γ(0)− γ(−T )) + v(γ(0))− v(γ(−T )).

Heuristically, if everything is smooth, then this result is not hard to prove. Indeed,
∫ 0

−T

�

L(γ(t),γ′(t)) +H(p)
�

d t =

∫ 0

−T

�

L(γ(t),γ′(t)) +H(γ(t), p+ Dv(γ(t))
�

d t

≥
∫ 0

−T

γ′(t) · (p+ Dv(γ(t))) d t = p · (γ(0)− γ(−T )) + v(γ(0))− v(γ(−T )).

Of course, as v is only Lipschitz, we need to be careful. As usual, to overcome this difficulty,
we perform a convolution trick to smooth v up.

Proof. Take η to be the standard mollifier, that is,

η ∈ C∞c (R
n, [0,∞)), supp(η) ⊂ B(0, 1),

∫

Rn

η(x) d x = 1.

For ε > 0, denote by ηε(x) = ε−nη
�

x
ε

�

for all x ∈ Rn. Set

vε(x) = (ηε ? v) (x) =

∫

Rn

ηε(x − y)v(y) d y =

∫

B(x ,ε)

ηε(x − y)v(y) d y for x ∈ Rn.

Then vε ∈ C∞(Tn), and vε→ v uniformly in Tn as ε→ 0. As H ∈ C2(Tn×Rn), by repeating
the proof of Theorem 2.27, we infer that vε satisfies

H(y, p+ Dvε(y))≤ H(p) + Cε in Tn.

We can now perform a similar computation as the heuristic one above
∫ 0

−T

�

L(γ(t),γ′(t)) +H(p)
�

d t ≥
∫ 0

−T

�

L(γ(t),γ′(t)) +H(γ(t), p+ Dvε(γ(t))− Cε
�

d t

≥ − C Tε +

∫ 0

−T

γ′(t) · (p+ Dvε(γ(t)) d t

= − C Tε + p · (γ(0)− γ(−T )) + vε(γ(0))− vε(γ(−T )).

Let ε→ 0 in the above to conclude.
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Remark 6.15. In fact, Lemma 6.14 holds if we only require that v ∈ Lip (Tn) to be a subso-
lution to (6.11) instead of a solution. This can be seen directly from the proof above as we
only use the subsolution property.

We utilize the above lemma to prove Theorem 6.12.

Proof of Theorem 6.12. To make it clear, we write vp to denote a solution to (6.11).

As ξ is a backward characteristic of v = vp starting from x , for every t < 0,

p · (ξ(0)− ξ(t)) + vp(ξ(0))− vp(ξ(t)) =

∫ 0

t

�

L(ξ(s),ξ′(s)) +H(p)
�

ds.

On the other hand, for any p̃ ∈ Rn, let vp̃ ∈ Lip (Tn) be a solution to the corresponding cell
problem with minTn vp̃ = 0. Lemma 6.14 gives that

p̃ · (ξ(0)− ξ(t)) + vp̃(ξ(0))− vp̃(ξ(t))≤
∫ 0

t

�

L(ξ(s),ξ′(s)) +H(p̃)
�

ds

Thus, for p̃ ∈ B(p, 1),

H(p̃)−H(p)≥ (p̃− p) ·
ξ(t)− ξ(0)

t
−

C
|t|

. (6.14)

Besides, the fact that ‖ξ′‖L∞((−∞,0]) ≤ C implies
�

�

�

�

ξ(t)− ξ(0)
t

�

�

�

�

≤ C for all t < 0.

Therefore, there exists a sequence {tk} → −∞ such that ξ(tk)
tk
→ q ∈ Rn as k →∞ with

|q| ≤ C . Plug this into (6.14) to yield

H(p̃)−H(p)≥ (p̃− p) · q for all p̃ ∈ B(p, 1),

which means that q ∈ D−H(p).

Remark 6.16. Of course, the above proof is a qualitative proof based on a compactness
argument. It is not clear at this moment if H is not differentiable at p, that is, D−H(p) is not
a singleton, then whether one can find two different sequences {tk} → −∞ and {sk} → −∞
such that

lim
k→∞

ξ(tk)
tk
= q1 6= q2 = lim

k→∞

ξ(sk)
sk

or not.

It is surely important to quantify, if possible, the rate of convergence of ξ(t)
t to DH(p) as

t →−∞ in case that H is differentiable at p. In general, this is not a simple question as we
do not have much information about H as discussed earlier in previous chapters.

As H is convex, it is twice differentiable almost everywhere, thanks to Alexandrov’s theo-
rem. It turns out that if H is twice differentiable at p, then we are able to obtain a rate of
convergence O(|t|−1/2) of ξ(t)t to DH(p) as t →−∞. Here is a precise statement.
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Theorem 6.17. Assume (6.12). Fix p ∈ Rn, and assume H is twice differentiable at this p.
Let v ∈ Lip (Tn) be a solution to (6.11). Fix x ∈ Tn, and let ξ be a backward characteristic of
v starting from x. Then, there exists a constant C = C(p)> 0 depending on H, H, p such that

�

�

�

�

ξ(t)
t
− DH(p)

�

�

�

�

≤
C
|t|1/2

for all t < 0.

Proof. This is essentially a quantitative version of Theorem 6.12. It is enough to prove the
result for t < −1. Let

w=
ξ(t)− ξ(0)

t
− DH(p).

Recall that we have (6.14), that is, for p̃ ∈ B(p, 1),

H(p̃)−H(p)≥ (p̃− p) ·
ξ(t)− ξ(0)

t
−

C
|t|

.

Since H is twice differentiable at p, there is a constant C = C(p) > 0 such that, for p̃ ∈
B(p, 1),

H(p̃)≤ H(p) + DH(p) · (p̃− p) + C |p̃− p|2.

Combine the two inequalities to deduce that, for p̃ ∈ B(p, 1),

C |p̃− p|2 ≥ (p̃− p) ·
�

ξ(t)− ξ(0)
t

− DH(p)
�

−
C
|t|

.

If w= 0, then there is nothing to prove. Else, choose p̃ = p+ 1
|t|1/2

w
|w| to conclude.

Here is an immediate corollary.

Corollary 6.18. Assume (6.12). Fix p ∈ Rn, and assume H is linear in a neighborhood of p.
Let v ∈ Lip (Tn) be a solution to (6.11). Fix x ∈ Tn, and let ξ be a backward characteristic of
v starting from x. Then, there exists a constant C = C(p)> 0 depending on H, H, p such that

�

�

�

�

ξ(t)
t
− DH(p)

�

�

�

�

≤
C
|t|

for all t < 0.

Proof. It is enough to prove the result for t < −1. Let

w=
ξ(t)− ξ(0)

t
− DH(p).

Again, for p̃ ∈ B(p, 1),

H(p̃)−H(p)≥ (p̃− p) ·
ξ(t)− ξ(0)

t
−

C
|t|

.

Since H is linear in a neighborhood of p, we can find r ∈ (0, 1) so that, for p̃ ∈ B(p, r),

H(p̃)−H(p) = DH(p) · (p̃− p).

Combine the two above to infer that, for p̃ ∈ B(p, r),

C
|t|
≥ (p̃− p) ·

�

ξ(t)− ξ(0)
t

− DH(p)
�

.

If w= 0, then there is nothing to prove. Otherwise, pick p̃ = p+ r w
|w| to finish the proof.
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4 Optimal rate of convergence in periodic
homogenization theory

We now apply what we just developed to study the rate of convergence problem in periodic
homogenization theory under an additional assumption that H is convex in p. It is enough
to assume (6.1) here. Nevertheless, for simplicity, we assume that H satisfies (6.12) in this
section. Let us recall quickly the homogenization problem.

For each ε > 0, we study
¨

uεt (x , t) +H
�

x
ε , Duε(x , t)

�

= 0 in Rn × (0,∞),
uε(x , 0) = u0(x) on Rn.

(6.15)

We often assume that the initial data u0 ∈ BUC (Rn) ∩ Lip (Rn) unless otherwise specified.
Our goal is to let ε → 0+ and quantify the rate of convergence of uε to u, which solves a
(simpler) effective equation

¨

ut +H(Du) = 0 in Rn × (0,∞),
u(x , 0) = u0(x) on Rn.

(6.16)

4.1 The general case

Here is the main result of this section.

Theorem 6.19. Assume (6.12) and u0 ∈ BUC (Rn)∩Lip (Rn). For ε > 0, let uε be the viscosity
solution to (6.15). Let u be the viscosity solution to (6.16). Then, there exists a constant C > 0
dependent only on H and ‖Du0‖L∞(Rn) such that the following claims hold.

(i) The lower bound is always optimal, that is,

uε(x , t)≥ u(x , t)− Cε for all (x , t) ∈ Rn × [0,∞). (6.17)

(ii) For fixed (x , t) ∈ Rn× (0,∞), if u is differentiable at (x , t) and H is twice differentiable
at p = Du(x , t), then

uε(x , t)≤ u(x , t) + Cp

p
tε + Cε. (6.18)

Here Cp > 0 is a constant depending on H, H, p and ‖Du0‖L∞(Rn).

If we further assume that the initial data u0 ∈ C2(Rn) with ‖u0‖C2(Rn) <∞, then

uε(x , t)≤ u(x , t) + eCp tε + Cε. (6.19)

Here eCp is a constant depending on H, H, p and ‖u0‖C2(Rn).

It is worth noting that if u0 ∈ C2(Rn) with ‖u0‖C2(Rn) <∞, then the upper bound in the
theorem is only conditionally optimal. As u is Lipschitz in (x , t), it is differentiable almost
everywhere. Also H is twice differentiable almost everywhere because of the convexity of
H. It is therefore natural to require that u is differentiable or H is twice differentiable at a
particular point. However, it is quite restrictive if we require that u is differentiable at (x , t),
and H is twice differentiable at exactly p = Du(x , t).

Before presenting a proof of the above theorem, let us recall various important facts that
we need in the following.
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4.1.1 Preparations

By the comparison principle, it is straightforward that

‖uεt‖L∞(Rn×[0,∞)) + ‖Duε‖L∞(Rn×[0,∞)) ≤ C0.

Here C0 > 0 is a constant depending only on H and ‖Du0‖L∞(Rn). Same bound holds for u.
By (6.12), we can make θ > 0 smaller if needed to have

θ

2
|p|2 − K0 ≤ H(y, p)≤

1
2θ
|p|2 + K0 for all (y, p) ∈ Tn ×Rn, (6.20)

for some K0 > 1. Then, we also have that

θ

2
|p|2 − K0 ≤ H(p)≤

1
2θ
|p|2 + K0 for all p ∈ Rn. (6.21)

We use (6.20) and (6.21) to get that, for each vp ∈ Lip (Tn) solving (6.11),

‖Dvp‖L∞(Tn) ≤ C(|p|+ K0).

In particular,
max
Tn

vp −min
Tn

vp ≤ C
p

n(|p|+ K0) = C(|p|+ K0). (6.22)

Let L(y, v) and L(v) be the Lagrangians (Legendre transforms) of the Hamiltonians H(y, p)
and H(p), respectively. It is clear that

θ

2
|v|2 − K0 ≤ L(y, v)≤

1
2θ
|v|2 + K0 for all (y, v) ∈ Tn ×Rn, (6.23)

and
θ

2
|v|2 − K0 ≤ L(v)≤

1
2θ
|v|2 + K0 for all q ∈ Rn.

For (x , t) ∈ Rn × (0,∞), the optimal control formula for the solution to (6.15) implies

uε(x , t) = inf
εη(0)=x

η∈AC ([−ε−1 t,0])

¨

u0

�

εη
�

−ε−1 t
��

+ ε

∫ 0

−ε−1 t

L(η(s),η′(s)) ds

«

. (6.24)

4.1.2 Proof of Theorem 6.19

We divide the proof into two parts. We first derive the lower bound (6.17), which is of
course optimal.

Proof of optimal lower bound (6.17). To get this, we only need u0 ∈ BUC (Rn)∩ Lip (Rn).

By scaling and translation, it suffices to prove that (6.17) holds for (x , t) = (0,1). In other
words, we aim at showing

uε(0,1)− u(0,1)≥ −Cε. (6.25)

Without loss of generality, we may assume that u0(0) = 0 by considering ũ0 = u0 − u0(0).
Hence, the Lipschitz of u0 gives

|u0(x)| ≤ C |x | for all x ∈ Rn. (6.26)
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The optimal control formula (6.24) gives us that

uε(0,1) = inf
η(0)=0

η∈AC ([−ε−1,0])

¨

u0

�

εη
�

−ε−1
��

+ ε

∫ 0

−ε−1

L(η(t),η′(t)) d t

«

.

Due to (6.23) and Jensen’s inequality,

ε

∫ 0

−ε−1

L(η(t),η′(t)) d t ≥ ε
∫ 0

−ε−1

�

θ
|η′(t)|2

2
− K0

�

d t ≥
θ

2
ε2
�

�η(−ε−1)
�

�

2 − K0.

Combine this with (6.26) to imply that there exists C > 0 such that minimization in the
formula of uε(0, 1) happens when ε

�

�η(−ε−1)
�

�≤ C , that is,

uε(0,1) = inf
η(0)=0,

ε|η(−ε−1)|≤C

¨

u0

�

εη
�

−ε−1
��

+ ε

∫ 0

−ε−1

L(η(t),η′(t)) d t

«

. (6.27)

Clearly, there exists C1 > 0 such that for any |v| ≤ C ,

L(v) = sup
p∈Rn

�

p · v −H(p)
	

= sup
|p|≤C1

{p · v −H(p)}. (6.28)

This is important as it means that we only need to deal with |p| ≤ C1. For p ∈ Rn, let
vp ∈ Lip (Tn) be a viscosity solution to (6.11) such that vp(0) = 0. Then for any Lipschitz
continuous curve η : [−ε−1, 0]→ Rn, Lemma 6.14 gives

∫ 0

−ε−1

�

L(η(t),η′(t)) +H(p)
�

d t ≥ p ·η(0)− p ·η
�

−ε−1
�

+ vp(η(0))− vp

�

η
�

−ε−1
��

.

Therefore, if we assume further that η(0) = 0 and ε
�

�η(−ε−1)
�

� ≤ C , then we are able to
combine the above with (6.22) and (6.28) to yield

ε

∫ 0

−ε−1

(L(η(t),η′(t)) d t ≥ sup
p∈Rn

�

p ·
�

−εη
�

−ε−1
��

−H(p) + εvp(0)− εvp

�

η
�

−ε−1
��	

≥ sup
|p|≤C1

�

p ·
�

−εη
�

−ε−1
��

−H(p) + εvp(0)− εvp

�

η
�

−ε−1
��	

≥ L
�

−εη
�

−ε−1
��

− Cε.

Plug this into (6.27) to imply

uε(0,1)≥ inf
η(0)=0,

ε|η(−ε−1)|≤C

�

u0

�

εη
�

−ε−1
��

+ L
�

−εη
�

−ε−1
��	

− Cε

≥ inf
y∈Rn

�

u0(y) + L(−y)
	

− Cε

= u(0,1)− Cε.

The last equality in the above holds thanks to the Hopf–Lax formula for u.

We now proceed to prove upper bounds (6.18) and (6.19). Again, this is just a conditionally
optimal upper bound. The following lemma is a key step toward proving (6.18) and (6.19).
Once it is proved, we can combine it with Theorem 6.17 to conclude right away.
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Lemma 6.20. Fix (x , t) ∈ Rn × (0,∞). Assume that u is differentiable at (x , t) and H is
differentiable at p for p = Du(x , t). Suppose that there exist a viscosity solution vp ∈ Lip (Tn)
of (6.11) and a backward characteristic ξ : (−∞, 0] → Rn of vp such that, for some given
Cp > 0 and α ∈ (0,1],

�

�

�

�

ξ(s)− ξ(0)
s

− DH(p)

�

�

�

�

≤
Cp

|s|α
for all s < 0.

Then
uε(x , t)≤ u(x , t) + CCp t1−αεα + Cε. (6.29)

If we further assume that the initial data u0 ∈ C2(Rn) with M = ‖D2u0‖C(Rn) <∞, then the
above bound can be improved to

uε(x , t)≤ u(x , t) +MC2
p t2(1−α)ε2α + Cε. (6.30)

Proof. Note that ‖Du‖L∞(Rn×[0,∞)) ≤ ‖Du0‖L∞(Rn). It suffices to prove the above for (x , t) =
(0, t). By the Hopf–Lax formula,

u(0, t) =min
y∈Rn

�

u0(y) + t L(−t−1 y)
	

= u0(y0) + t L(−t−1 y0)

for some y0 ∈ Rn. Then p = Du(0, t) ∈ ∂ L(−t−1 y0). The Legendre transform also tells us
that −t−1 y0 = DH(p), and

t L(−t−1 y0) = −y0 · p− tH(p).

Let vp and ξ be the viscosity solution and its backward characteristic from the assumption.
By periodicity, we may assume that ξ(0) ∈ Y = [0, 1]n. By our assumption,

|y0 − εξ(−ε−1 t) + εξ(0)| ≤ Cp t1−αεα,

and hence
|y0 − εξ(−ε−1 t)| ≤ Cp t1−αεα + Cε.

We use the above and optimal control formula of uε(0, t) to compute that

uε(0, t)≤ uε(εξ(0), t) + Cε ≤ u0

�

εξ
�

−ε−1 t
��

+ ε

∫ 0

−ε−1 t

L(ξ(s),ξ′(s)) ds+ Cε

= u0

�

εξ
�

−ε−1 t
��

− tH(p) + p ·
�

−εξ
�

−ε−1 t
��

+ p · (εξ(0))
− εvp

�

ξ
�

−ε−1 t
��

+ εvp(ξ(0)) + Cε

≤ u0(y0) + (−y0) · p− tH(p) + CCp t1−αεα + Cε

= u(0, t) + CCp t1−αεα + Cε.

Next we prove (6.30). If u0 ∈ C2(Rn), then p = Du0(y0). Accordingly, we are able to refine
the above calculation as following
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uε(0, t)≤ u0

�

εξ
�

−ε−1 t
��

− tH(p) + p ·
�

−εξ
�

−ε−1 t
��

+ p · (εξ(0))
− εvp

�

ξ
�

−ε−1 t
��

+ εvp(ξ(0)) + Cε

≤ u0

�

εξ
�

−ε−1 t
��

+ Du0(y0) ·
�

−εξ
�

−ε−1 t
��

− tH(p) + Cε

≤ u0(y0) + Du0(y0) · (−y0) +
M
2
|y0 − εξ(−ε−1 t)|2 − tH(p) + Cε

≤ u0(y0) + p · (−y0)− tH(p) +MC2
p t2(1−α)ε2α + Cε

= u(0, t) +MC2
p t2(1−α)ε2α + Cε.

Since ‖Du‖L∞(Rn×[0,∞)) = ‖Du0‖L∞(Rn) and u is differentiable a.e. in Rn×(0,∞), by Lemma
6.20 and approximations, we have the following corollary.

Corollary 6.21. Assume that H ∈ C1(Rn). Assume further that for every |p| ≤ ‖Du0‖L∞(Rn),
there exist a viscosity solution vp ∈ Lip (Tn) of (6.11) and a backward characteristic ξ :
(−∞, 0]→ Rn of vp such that, for some C > 0 independent of p,

�

�

�

�

ξ(s)− ξ(0)
s

− DH(p)

�

�

�

�

≤
C
|s|

for all s < 0.

Then
uε(x , t)≤ u(x , t) + Cε for all (x , t) ∈ Rn × [0,∞). (6.31)

We are now ready to obtain (6.18) and (6.19).

Proof of upper bounds (6.18) and (6.19). Inequalities (6.18) and (6.19) follow immediately
from Lemma 6.20 and Theorem 6.17.

4.2 The one dimensional setting

In one dimension, we have unconditional optimal convergence rate O(ε) as in the following
theorem.

Theorem 6.22. Let n = 1. Assume (6.12) and u0 ∈ BUC (R) ∩ Lip (R). For ε > 0, let uε be
the viscosity solution to (6.15). Let u be the viscosity solution to (6.16). Then, there exists a
constant C > 0 dependent only on H and ‖Du0‖L∞(R) such that

‖uε − u‖L∞(R×[0,∞)) ≤ Cε. (6.32)

Proof. Thanks to (6.17), the lower bound is always optimal, that is,

uε(x , t)≥ u(x , t)− Cε for all (x , t) ∈ R× [0,∞).

Here, C > 0 dependent only on H and ‖Du0‖L∞(R).

We now prove the optimal upper bound. In one dimension, H has an explicit formula. In
particular, we have that H ∈ C1(R) (see Exercise 55 or [20]). Thanks to Corollary 6.21 and
Lemma 6.23 right below, we get the desired conclusion.
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As discussed above, H ∈ C1(R). We now show that the assumption in Corollary 6.21 holds.

Lemma 6.23. For p ∈ R, let v be a viscosity solution to

H(y, p+ v′) = H(p) in T.

Then, for every backward characteristic ξ : (−∞, 0]→ R of v, we have
�

�

�

�

ξ(t)− ξ(0)
t

−H
′
(p)

�

�

�

�

≤
1
|t|

for all t < 0. (6.33)

Proof. Fix p ∈ R. There are two cases to be considered.

CASE 1. H(p) =min H. Then H
′
(p) = 0.

Let ξ be a backward characteristic of v with ξ(0) = 0. Since ξ cannot intersect itself, we
have either ξ((−∞, 0]) ⊂ [0,∞) or ξ((−∞, 0]) ⊂ (−∞, 0]. Without loss of generality,
we assume that ξ((−∞, 0]) ⊂ [0,∞), that is, ξ is nonincreasing on (−∞, 0]. It is clear
that we utilize much the one dimensional structure here. Note that, ξ satisfies

ξ′(t) = DpH(ξ(t), p+ v′(ξ(t))) for all t ≤ 0.

We claim that
ξ((−∞, 0]) ⊂ [0, 1). (6.34)

Assume otherwise that (6.34) does not hold. Then ξ(T ) = 1 for some T < 0, and we deduce
also that v ∈ C1(T). By periodicity, ξ(mT ) = m for all m ∈ N. Therefore,

lim
t→−∞

ξ(t)
t
=

1
T
6= 0= H

′
(p),

which is a contradiction with our assumption. Thus, (6.34) holds, which means that ξ is a
bounded orbit. Surely, (6.33) holds true.

CASE 2. H(p)>min H.

Without loss of generality, we assume H
′
(p) > 0. Let ξ be a backward characteristic of v

with ξ(0) = 0. Then ξ((−∞, 0]) ⊂ (−∞, 0], v ∈ C1,1(T) and

ξ′(t) = DpH(ξ(t), p+ v′(ξ(t)))> 0 for all t ≤ 0.

Then, by changing of variables x = ξ(s), we imply

|t|=
∫ 0

t

ds =

∫ 0

t

ξ′(s)
ξ′(s)

ds =

∫ 0

ξ(t)

1
F1(x)

d x ,

where F1(x) = DpH(x , p + v′(x)) for x ∈ R. Of course, F1 is 1-periodic (or we write F1 ∈
C(T)). Accordingly, for t < 0,

t
ξ(t)

=
1
|ξ(t)|

∫ 0

ξ(t)

1
F1(x)

d x =
�

1+
Et

ξ(t)

�

∫ 1

0

1
F1(x)

d x ,
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where Et is an error term satisfying |Et | ≤ 1 thanks to Lemma 6.24 below. Then
�

�

�

�

�

ξ(t)
t
−

�

∫ 1

0

1
F1(x)

d x

�−1�
�

�

�

�

=
|Et |
|t|
≤

1
|t|

.

The proof is complete and we get in addition that

H
′
(p) =

�

∫ 1

0

1
F1(x)

d x

�−1

.

Lemma 6.24. Assume that f ∈ C(T, [0,∞)) and L > 0 are given. Then
�

�

�

�

�

∫ L

0

f d y − L

∫ 1

0

f d y

�

�

�

�

�

≤
∫ 1

0

f d y. (6.35)

We can view this lemma as a quantitative version of the ergodic theorem for periodic func-
tions in one dimension. It is also not so hard to see that inequality (6.35) is sharp.

Proof. For a given real number s ∈ R, denote by [s] its integer part. We have
�

�

�

�

�

∫ L

0

f d y − L

∫ 1

0

f d y

�

�

�

�

�

=

�

�

�

�

�

∫ [L]

0

f d y +

∫ L

[L]

f d y − L

∫ 1

0

f d y

�

�

�

�

�

=

�

�

�

�

�

([L]− L)

∫ 1

0

f d y +

∫ L

[L]

f d y

�

�

�

�

�

≤ max

¨

(L − [L])
∫ 1

0

f d y,

∫ L

[L]

f d y

«

≤
∫ 1

0

f d y.

We use the fact that f ≥ 0 in the last line above.

Remark 6.25. It is worth noting that (6.33) is sharp, and 1
|t| is the best possible bound that

we can obtain. This can been seen rather clearly from the proof of Lemma 6.23.

Besides, the proof of Lemma 6.23 gives us another way to obtain some properties of H in
one dimension.

4.3 The two dimensional setting

Here is our main result in two dimensions.

Theorem 6.26. Let n= 2. Assume (6.12) and g ∈ BUC (R2)∩ Lip (R2). Assume further that
H is positively homogeneous of degree k in p for some k ≥ 1, that is, H(y,λp) = λkH(y, p) for
all (λ, y, p) ∈ [0,∞)×T2 ×R2. Then,

|uε(x , t)− u(x , t)| ≤ Cε for all (x , t) ∈ R2 × [0,∞). (6.36)

Here C > 0 is a constant depending only on H and ‖Dg‖L∞(R2).
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Of course, when k = 1, H is positively homogeneous of degree 1, which corresponds to a
front propagation problem that has been discussed few times in the book. This is probably
one of the most physically relevant situations in the homogenization theory.

The proof of Theorem 6.26 is rather involved, and is outside of the scope of this book. As a
matter of fact, one needs to use two dimensional Aubry–Mather theory here. We therefore
skip its proof, and refer the readers to Mitake, Tran, Yu [118] for details.

4.4 Problems

Exercise 55. Let n= 1. Assume (6.12). Show that H ∈ C1(R).

5 Equivalent characterizations of Lipschitz viscosity
subsolutions

5.1 Characterizations of Lipschitz subsolutions

Let us now give characterizations of Lipschitz subsolutions to the cell problems. This is
an upgraded version of Theorem 2.27. We note that the problem can be phrased in a more
general domain (Rn or bounded domain U) as well. Similar characterizations hold for static
problems and Cauchy problems (see the exercises below). The problem of interest is (6.11),
that is,

H(y, p+ Dv(y)) = H(p) in Tn.

Theorem 6.27. Assume (6.12). Fix p ∈ Rn. Let v ∈ Lip (Tn). Then, the following claims are
equivalent

(i) v is a viscosity subsolution to (6.11);

(ii) v is an a.e. subsolution to (6.11);

(iii) for any arbitrary Lipschitz curve γ : [−T, 0]→ Tn for some T > 0,
∫ 0

−T

�

L(γ(t),γ′(t)) +H(p)
�

d t ≥ p · (γ(0)− γ(−T )) + v(γ(0))− v(γ(−T )).

Proof. We note first that (i) and (ii) are equivalent thanks to Theorem 2.27. The new point
here is characterization (iii).

It is clear that Lemma 6.14 and Remark 6.15 give us that “(i)=⇒ (iii)". To finish off the proof,
we need to show that “(iii) =⇒ (ii)". Indeed, fix a point x ∈ Tn which is a differentiable
point of v. Fix a direction e ∈ Rn, and denote by

γ(s) = x + se for all s ≤ 0.

By the hypothesis in (iii), for each T > 0,
∫ 0

−T

�

L(x + te, e) +H(p)
�

d t ≥ T p · e+ v(x)− v(x − Te).
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Divide both sides of the above by T and let T → 0+ to infer

L(x , e) +H(p)≥ p · e+ Dv(x) · e,

which means that
e · (p+ Dv(x))− L(x , e)≤ H(p).

Take the supremum of the above over e ∈ Rn to conclude that

H(x , p+ Dv(x))≤ H(p).

The proof is complete.

Remark 6.28. Let us recall that if v ∈ C(Tn) is a subsolution to (6.11), then Lemma 1.28
implies immediately that v ∈ Lip (Tn). This is just to show that the assumption that v ∈
Lip (Tn) in the above theorem is not quite needed for viscosity subsolutions. Nevertheless,
it is needed for (ii) and (iii) in the theorem.

5.2 Problems

Exercise 56. Formulate and give a proof for an analogous result to Theorem 6.27 for the
discount problem

λvλ +H(y, Dvλ) = 0 in Rn.

Here, λ > 0 is given.

Exercise 57. Formulate and give a proof for an analogous result to Theorem 6.27 for the
Cauchy problem

¨

ut +H(y, Du) = 0 in Rn × (0,∞),
u(y, 0) = u0(y) on Rn.

Here, u0 ∈ BUC (Rn)∩ Lip (Rn) is given.
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the result for first-order convex Hamilton–Jacobi equations. Mitake, Tran [116] used

190
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lecture notes of Ishii [85].

5. Rate of convergence of large time average of backward characteristics was taken from
Gomes [71], Mitake, Tran, Yu [118]. This is still a largely unexplored topic, and not
so much is known.

6. The section on optimal rate of convergence in periodic homogenization theory was
taken from Mitake, Tran, Yu [118]. See [118] for the proof of Theorem 6.26 that we
do not cover here. Other aspects and open problems are also discussed in [118]. For
a more complicated situation with multi-scales in one dimension, see the work of Tu
[133].

7. Although quite simple, the equivalent characterizations of Lipschitz viscosity subsolu-
tions in Theorem 6.27 are quite useful in various situations. Of course, similar char-
acterizations hold for static problems and Cauchy problems. It should be noted that
the results are still valid for a general domain U ⊂ Rn.
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CHAPTER 7
Introduction to weak KAM theory

1 Introduction

In this chapter, we always assume that
¨

H ∈ C2(Tn ×Rn),
there exists θ > 0 such that θ In ≤ D2

ppH(y, p)≤ θ−1In for all (y, p) ∈ Tn ×Rn.
(7.1)

Let L = L(y, v) be the corresponding Lagrangian. By changing θ > 0 to be smaller if needed,
we may also assume that
¨

L ∈ C2(Tn ×Rn),
there exists θ > 0 such that θ In ≤ D2

vv L(y, v)≤ θ−1In for all (y, v) ∈ Tn ×Rn.
(7.2)

Let us give a minimalistic type introduction to this subject. We are concerned with the
following Hamiltonian system

¨

x ′(t) = DpH(x(t), p(t)),
p′(t) = −Dx H(x(t), p(t)).

(7.3)

In general, this Hamiltonian system is complicated to be studied deeply, and a natural idea is
to find generating functions and do canonical changes of variables to arrive at an integrable
system, which is solvable. Heuristically, the generating functions and canonical changes
of variables are strongly tied to the cell problems that we discussed in previous chapters.
Recall that, for P ∈ Rn, our cell problem is

H(x , P + Dv(x , P)) = H(P) in Tn. (7.4)

Assume for now that both v(x , P) and H(P) are smooth functions. Then, if the relation
¨

X = x + DP v(x , P),
p = P + Dx v(x , P),

defines a smooth and invertible change of variables, then we can transform (7.3) into the
following integrable system

¨

X ′(t) = DH(P(t)),
P ′(t) = 0.

(7.5)
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In terms of mechanics, P is called an action, and X is called an angle or rotation variable.

However, in general, this classical procedure cannot be carried out because of various rea-
sons. First of all, (7.4) does not have smooth solutions v(x , P) in general. In fact, v(·, P) is
often only Lipschitz in x . The dependence of v on P is even worse, and we will see later that
there are cases that this dependence is even discontinuous. Second of all, H is convex be-
cause of the convexity of H in assumption (7.1), but it is not known to be smooth. Of course,
there are examples that H is not C1. To date, very little is known about deep properties of
H as explained in previous chapters. Finally, the canonical transformation (x , p) 7→ (X , P),
even if can be defined locally, is not usually globally defined.

Nevertheless, there is a rich underlying structure in (7.4), and it is extremely important
to come up with weak interpretations of the classical program briefly mentioned above.
Various great works of Aubry [9], Mather [112, 113], Mañé [109], Fathi [58, 59], E [44],
Evans, Gomes [53] show that some solutions of (7.3), which correspond to appropriate
minimizers of the action functionals, see some kind of “integrable structures" within the
full dynamics. Weak KAM theory, which was named by Fathi, is an attempt to bring PDE
techniques to analyze more (7.4) and their underlying dynamics in multi dimensions.

It is important emphasizing that weak KAM is different from conventional KAM theory as
it is not a perturbative theory. Here, our Hamiltonian H is not a perturbation of an inte-
grable Hamiltonian. As already explained, we see that solutions v(x , P) of (7.4) are only
Lipschitz in x , and are not dependent in P in a nice way, and so, we need to be careful with
interpretations and usages of these viscosity (generalized) solutions.

One final point is that in dimension three or higher, the minimizing trajectories might occupy
just a small part of the torus, and hence, might not give us much information.

There are often two kinds of approaches to study weak KAM: the Lagrangian (dynamical sys-
tem) methods, and the nonlinear PDE methods. Let us go first into the Lagrangian method.

2 Lagrangian methods in weak KAM theory

This section is inspired by the book of Fathi [59]. Many of the results are taken from there.
Some are presented in a different way that are more of my personal taste.

2.1 The weak KAM theorem

Given γ ∈ AC ([0, T],Tn) for some T > 0, we define the action functional corresponding to
γ to be

AT [γ] =

∫ T

0

L(γ(s),γ′(s)) ds.

Definition 7.1. Let ξ ∈ AC ([0, T],Tn) for some given T > 0. We say that ξ is a minimizer of
AT [·] if

AT [ξ]≤ AT [γ]

for all γ ∈ AC ([0, T],Tn) with γ(0) = ξ(0), γ(T ) = ξ(T ).
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Lemma 7.2. Assume (7.1). Let ξ ∈ AC ([0, T],Tn) be a minimizer of AT [·]. Then, there exists
CT > 0 such that

max
t∈[0,T]

|ξ′(t)| ≤ CT .

Proof. It is clear that ξ satisfies an Euler–Lagrange equation

d
d t

�

Dv L(ξ(t),ξ′(t))
�

= Dx L(ξ(t),ξ′(t)) for all t ∈ [0, T].

Denote by x(t) = ξ(t), and p(t) = Dv L(ξ(t),ξ′(t)) for t ∈ [0, T]. Then (x , p) solves the
following Hamiltonian system

¨

x ′(t) = DpH(x(t), p(t)),
p′(t) = −Dx H(x(t), p(t)),

for t ∈ [0, T].

As H ∈ C2(Tn ×Rn), we get that x ∈ C2([0, T]), which means ξ ∈ C2([0, T]).

Furthermore, it is worth noting here that we have conservation of energy, that is, t 7→
H(x(t), p(t)) is constant on [0, T]. This can be easily checked as

d
d t

H(x(t), p(t)) = Dx H(x(t), p(t)) · x ′(t) + DpH(x(t), p(t)) · p′(t) = 0.

In particular, this allows us to get that H(x(t), p(t)) ≤ CT , which implies |p(t)| ≤ CT , and
also |ξ′(t)| ≤ CT for all t ∈ [0, T].

For given u0 ∈ C(Tn), we consider the usual Cauchy problem
¨

ut +H(x , Du) = 0 in Rn × (0,∞),
u(x , 0) = u0(x) on Rn.

The optimal control formula for u gives, for (x , t) ∈ Tn × [0,∞),

u(x , t) = inf

�∫ t

0

L(γ(s),γ′(s)) ds+ u0(γ(0)) : γ ∈ AC ([0, t],Tn),γ(t) = x

�

= inf {At[γ] + u0(γ(0)) : γ ∈ AC ([0, t],Tn),γ(t) = x} .

Definition 7.3. We define

T−t u0(x) = u(x , t) = inf

�∫ t

0

L(γ(s),γ′(s)) ds+ u0(γ(0)) : γ ∈ AC ([0, t],Tn),γ(t) = x

�

.

We call {T−t }t≥0 the Lax–Oleinik semigroup.

As shown in Section 2 in Appendix, u(x , t) = T−t u0(x) admits a minimizer in the formula,
that is, there exists ξ ∈ AC ([0, t],Tn) such that ξ(t) = x , and

u(x , t) = T−t u0(x) =

∫ t

0

L(ξ(s),ξ′(s)) ds+ u0(ξ(0)).

As we have developed the theory for viscosity solutions of Cauchy problem, various proper-
ties of the Lax–Oleinik semigroup {T−t }t≥0 hold accordingly. Let us record them here.

195



Lemma 7.4 (Properties of the Lax–Oleinik semigroup). Assume (7.1). Then, the following
properties hold.

• {T−t }t≥0 is a semigroup, that is, T−t+s = T−t ◦ T−s for all t, s ≥ 0.

• For v, w ∈ C(Tn) with v ≤ w, T−t v ≤ T−t w for all t ≥ 0.

• For v ∈ C(Tn) and c ∈ R, T−t (v + c) = T−t v + c for all t ≥ 0.

• For v ∈ C(Tn), limt→0+ T−t v = v in C(Tn).

• For v ∈ C(Tn), t 7→ T−t v is uniformly continuous.

Here is the weak KAM theorem that was done by Fathi [59] via the method of finding a fixed
point for the Lax–Oleinik semigroup.

Theorem 7.5 (Weak KAM theorem). Assume (7.1). There exists a function v− ∈ C(Tn) and
a constant c ∈ R such that

T−t v− + c t = v− for all t ≥ 0.

In fact, this theorem can be derived quickly from the cell problems, and it already appears
in previous chapters (in the proof of Theorem 6.11 for example). Let us recall it here for
clarity.

Proof. Let P = 0, and v = v(x , 0) ∈ Lip (Tn) be a solution of the corresponding cell problem
(7.4), that is,

H(x , Dv(x)) = H(0) in Tn.

Then, u(x , t) = T−t v(x) = v(x)− H(0)t for all (x , t) ∈ Tn × [0,∞). The proof is complete
with v− = v and c = H(0).

Let us now proceed to understand further about properties of v. Recall the backward char-
acteristics of v that we develop in the previous chapter. By Theorem 6.11, for every x ∈ Tn,
there exists a C1 backward characteristic ξ : (−∞, 0]→ Tn such that ξ(0) = x , and

v(ξ(t1))− v(ξ(t2)) =

∫ t1

t2

�

L(ξ(t),ξ′(t)) +H(0)
�

d t (7.6)

for all t2 < t1 ≤ 0. We show that v is differentiable at ξ(t) for t < 0.

Theorem 7.6. Assume (7.1). Let P = 0, and v = v(x , 0) ∈ Lip (Tn) be a solution of the
corresponding cell problem (7.4). For x ∈ Tn, let ξ be a backward characteristic of v starting
from x. Then, v is differentiable at ξ(t) for all t < 0, and

Dv(ξ(t)) = Dv L(ξ(t),ξ′(t)).

Proof. Fix z ∈ Tn, and let ξ be a backward characteristic of v starting from z. Fix t < 0,
and denote by y = ξ(t). We aim at showing that v is differentiable at y , and Dv(y) =
Dv L(ξ(t),ξ′(t)).
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For every x ∈ Tn, define ξx : [2t, t]→ Tn as

ξx(s) = ξ(s) +
2t − s

t
(x − y) for s ∈ [2t, t].

Then we have that ξx(2t) = ξ(2t), and ξx(t) = ξ(t) + (x − y) = x . Set

φ(x) = v(ξ(2t)) +

∫ t

2t

L(ξx(s),ξ
′
x(s)) ds

= v(ξ(2t)) +

∫ t

2t

L
�

ξ(s) +
2t − s

t
(x − y),ξ′(s)−

x − y
t

�

ds

It is clear that φ is smooth, and by Lemma 6.14, φ ≥ v, and φ(y) = v(y). In other words,
φ touches v from above at y . By computations and the Euler–Lagrange equations, we see
that

Dφ(y) =

∫ t

2t

�

2t − s
t

Dx L(ξ(s),ξ′(s))−
1
t

Dv L(ξ(s),ξ′(s))
�

ds

=

∫ t

2t

�

2t − s
t

d
ds

�

Dv L(ξ(s),ξ′(s))
�

−
1
t

Dv L(ξ(s),ξ′(s))
�

ds

=

∫ t

2t

d
ds

��

2−
s
t

�

Dv L(ξ(s),ξ′(s))
�

ds = Dv L(ξ(t),ξ′(t)).

Next, for x ∈ Tn, define ξx : [t, 0]→ Tn as

ξx(s) = ξ(s) +
s
t
(x − y) for s ∈ [t, 0].

By abuse of notions, we still use ξx here. Note that ξx(t) = x , and ξx(0) = ξ(0). Set

ψ(x) = v(ξ(0))−
∫ 0

t

L(ξx(s),ξ
′
x(s)) ds

= v(ξ(0))−
∫ 0

t

L
�

ξ(s) +
s
t
(x − y),ξ′(s) +

x − y
t

�

ds

Again, we see that ψ is smooth, and by Lemma 6.14, ψ ≤ v, and ψ(y) = v(y). In other
words, ψ touches v from below at y . A similar computation to the above gives

Dψ(y) = Dv L(ξ(t),ξ′(t)).

Thus, v is differentiable at y and Dv(y) = Dv L(ξ(t),ξ′(t)).

Remark 7.7. It is important to see that v is differentiable ξ(t) for t < 0. Of course, we
want to study further the properties of these backward characteristics ξ(t) as t → −∞.
By Theorem 6.12 and Corollary 6.13, we know that if H is differentiable at P, then for a
backward characteristic v of (7.4),

lim
t→−∞

ξ(t)
t
= DH(P).
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If H is not differentiable at P, then we only have that there exists a sequence {tk} → −∞
so that

lim
k→∞

ξ(tk)
tk
= q ∈ D−H(P).

There are several weaknesses here. First, we do not know precisely what is q in general.
Second, we do not know if different subsequences of ξ(t)t converge to different limits yet.
Finally, a natural question to ask is that if we are given a vector V ∈ Rn, then is there any ξ
such that

lim
t→−∞

ξ(t)
t
= V?

However, in general, the answer to this question is negative. This is shown by a famous
example of Hedlund [79]. See also Bangert [12], E [44], Mitake, Tran, Yu [118]. We will
discuss this matter later.

Therefore, this is a strong need to relax this question a bit to study further. In the following,
we introduce one such relaxation.

2.2 Flow invariance and another characterization of H(0)

Let us now consider the initial-value problem for the Euler–Lagrange equation
¨

d
d t (Dv L(x(t), x ′(t))) = Dx L(x(t), x ′(t)),
x(0) = x , x ′(0) = v.

(7.7)

Let v(t) = x ′(t) for t ∈ R. Define the flow map {Φt}t∈R as

Φt(x , v) = (x(t), v(t)) for all t ∈ R.

Definition 7.8. A Radon probability measure µ ∈ P(Tn ×Rn) is said to be flow invariant if
∫

Tn×Rn

ψ(Φt(x , v)) dµ(x , v) =

∫

Tn×Rn

ψ(x , v) dµ(x , v)

for every bounded continuous function ψ.

Here is another characterization of H(0).

Theorem 7.9. Assume (7.1). Then,

H(0) = − inf

�∫

Tn×Rn

L(x , v) dµ(x , v) : µ ∈ P(Tn ×Rn) is flow invariant

�

. (7.8)

This result is of course quite similar to Theorem 6.6 in the previous chapter. We will go back
to this point later.

Proof. Take v− to be a solution to (7.4) with P = 0. Or in other words, v− is taken from
Theorem 7.5. By Lemma 6.14, for x(·) solves (7.7),

v−(x(1))− v−(x(0))≤
∫ 1

0

�

L(x(s), x ′(s)) +H(0)
�

ds.
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Integrate this inequality with respect to µ ∈ P(Tn ×Rn) which is flow invariant to imply

0=

∫

Tn×Rn

(v−(x(1))− v−(x))) dµ(x , v)≤
∫ 1

0

∫

Tn×Rn

�

L(x(s), x ′(s)) +H(0)
�

dµ(x , v)ds,

which yields further that

−H(0)≤
∫

Tn×Rn

L(x , v) dµ(x , v).

Take infimum over all such µ to get

−H(0)≤ inf

�∫

Tn×Rn

L(x , v) dµ(x , v) : µ ∈ P(Tn ×Rn) is flow invariant

�

.

We now prove the converse. Fix x ∈ Tn, and take ξ to be a backward characteristic of v−
starting from x . We have that, for t < 0,

v−(ξ(0))− v−(ξ(t)) =

∫ 0

t

�

L(ξ(s),ξ′(s)) +H(0)
�

ds.

Define µt ∈ P(Tn ×Rn) as

〈µt ,ψ〉=
1
|t|

∫ 0

t

ψ(ξ(s),ξ′(s)) ds

for every bounded continuous function ψ. It is very important noting that spt(µt) ⊂ Tn ×
B(0, C) for C > 0 sufficiently large because of the fact that ‖ξ′‖L∞((−∞,0]) ≤ C . Then,

v−(x)− v−(ξ(t))
|t|

= 〈µt , L〉+H(0).

By compactness, we are able to find a sequence {tk} →∞ such that µtk
→ µ ∈ P(Tn ×Rn)

weakly in the sense of measures, and spt(µ) ⊂ Tn × B(0, C). The above equality infers that

−H(0) = 〈µ, L〉=
∫

Tn×Rn

L(x , v) dµ(x , v).

We only need to verify that µ is flow invariant to complete the proof. Indeed, for each
bounded continuous function ψ and each t > 0,

∫

Tn×Rn

ψ(Φt(x , v)) dµ(x , v) = lim
k→∞

1
|tk|

∫ 0

tk

ψ ◦Φt(ξ(s),ξ
′(s)) ds

= lim
k→∞

1
|tk|

∫ 0

tk

ψ(ξ(s+ t),ξ′(s+ t)) ds

= lim
k→∞

1
|tk|

�

∫ 0

tk

ψ(ξ(s),ξ′(s)) ds+

∫ t

0

ψ(ξ(s),ξ′(s)) ds−
∫ tk+t

tk

ψ(ξ(s),ξ′(s)) ds

�

= lim
k→∞

1
|tk|

∫ 0

tk

ψ(ξ(s),ξ′(s)) ds =

∫

Tn×Rn

ψ(x , v) dµ(x , v).
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Remark 7.10. In the later part of the above proof, we construct minimizing measure µ
as a large time average (via a subsequence) of the uniform distribution on the trajectory
{(ξ(s),ξ′(s)) : s ∈ (−∞, 0]}. Automatically, spt(µ) is a subset of the α-limit set of this tra-
jectory.

3 Mather measures and Mather set

We are now ready to define Mather measures and Mather set based on the minimization
problem (7.8).

Definition 7.11. Each measure µ that minimizes (7.8) is called a Mather measure. Denote
the Mather set by

fM0 =
⋃

µ

spt(µ),

where the union above is over all minimizing measures. Let π be the natural projection from
Tn ×Rn to Tn, that is, π(x , v) = x for all (x , v) ∈ Tn ×Rn. Then, the projected Mather set is
defined as

M0 = π(fM0).

We have the following property of fM0.

Lemma 7.12. Assume (7.1). Let u ∈ Lip (Tn) be a subsolution to (7.4) for P = 0. Pick
(x , v) ∈fM0. Then, for each t ≤ t ′,

u(π(Φt ′(x , v)))− u(π(Φt(x , v))) =

∫ t ′

t

�

L(Φs(x , v)) +H(0)
�

ds.

Proof. Let (x , v) ∈ spt(µ) for a minimizing measure µ. Firstly, by Remark 6.15,

u(π(Φt ′(x , v)))− u(π(Φt(x , v)))≤
∫ t ′

t

�

L(Φs(x , v)) +H(0)
�

ds. (7.9)

Integrate the above over dµ(x , v), use the invariant property and the minimizing measure
property to infer

0=

∫

Tn×Rn

u ◦π dµ−
∫

Tn×Rn

u ◦π dµ=

∫

Tn×Rn

(u(π(Φt ′(x , v)))− u(π(Φt(x , v)))) dµ(x , v)

≤
∫ t ′

t

∫

Tn×Rn

�

L(Φs(x , v)) +H(0)
�

dµ(x , v)ds = 0.

Thus, the above inequality (7.9) must be an equality, which concludes our proof.

It is not hard to see that in fact fM0 lies in the energy level H(0) of the Hamiltonian.

Lemma 7.13. Assume (7.1). Then,

fM0 ⊂
�

(x , v) ∈ Tn ×Rn : H(x , Dv L(x , v)) = H(0)
	

.
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Proof. Let u ∈ Lip (Tn) be a solution to (7.4) with P = 0. We use Lemma 7.12 and repeat
Theorem 7.6 to see that, for (x , v) ∈ fM0, u is differentiable at x , and Du(x) = Dv L(x , v).
Therefore,

H(x , Du(x)) = H(x , Dv L(x , v)) = H(0).

Let us now show that M0 serves as a uniqueness set for the cell problem (7.4) with P = 0.
Note again that (7.4) may have infinitely many solutions (see Chapter 4, and Le, Mitake,
Tran [100, Chapter 6] for such examples), and it is therefore important to obtain that M0

is a uniqueness set for (7.4) with P = 0.

Theorem 7.14 (Uniqueness set for (7.4) with P = 0). Assume (7.1). Let u1, u2 ∈ Lip (Tn) be
two solutions to (7.4) with P = 0. Assume that u1 = u2 on M0. Then u1 = u2.

Proof. Fix x ∈ Tn. Let ξ be a backward characteristic of u1 starting from x . Then, for any
t < 0,

u1(x)− u1(ξ(t)) =

∫ 0

t

�

L(ξ(s),ξ′(s)) +H(0)
�

ds,

and

u2(x)− u2(ξ(t))≤
∫ 0

t

�

L(ξ(s),ξ′(s)) +H(0)
�

ds.

Combine these two to infer that

u2(x)− u1(x)≤ u2(ξ(t))− u1(ξ(t)) for all t ≤ 0.

Let us now use the construction in the later part of the proof of Theorem 7.9 to construct a
Mather measure µ to conclude. By the construction, for each µt ∈ P(Tn ×Rn) for t < 0, it
is clear that

u2(x)− u1(x)≤ 〈µt , (u2 − u1) ◦π〉=
1
|t|

∫ 0

t

(u2 − u1)(π ◦ (ξ(s),ξ′(s))) ds.

As µtk
→ µ weakly in the sense of measures as k →∞, and µ is a Mather measure, we

deduce that

u2(x)− u1(x)≤ 〈µ, (u2 − u1) ◦π〉=
∫

Tn×Rn

(u2 − u1)(x) dµ(x , v) = 0,

by our hypothesis. Thus, u2(x) ≤ u1(x). By a symmetric argument, u1(x) ≤ u2(x), and
hence, u1(x) = u2(x).

3.1 Lipschitz graph theorem

Theorem 7.15. Assume (7.1). Let u ∈ Lip (Tn) be a subsolution to (7.4) for P = 0. There
exists C > 0 depending only on H such that, for all x ∈M0 and h ∈ Rn,

|u(x + h) + u(x − h)− 2u(x)| ≤ C |h|2.
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Proof. Let (x , v) ∈ fM0. For t ∈ R, write Φt(x , v) = (x(t), x ′(t)) for clarity. Of course,
x(0) = x . By Lemma 7.12,

u(x(1))− u(x(0)) =

∫ 1

0

�

L(x(s), x ′(s)) +H(0)
�

ds, (7.10)

and

u(x(0))− u(x(−1)) =

∫ 0

−1

�

L(x(s), x ′(s)) +H(0)
�

ds. (7.11)

Let us obtain first the lower bound. By Lemma 6.14,

u(x(1))− u(x(0) + h)≤
∫ 1

0

�

L(x(s) + (1− s)h, x ′(s)− h) +H(0)
�

ds,

and

u(x(1))− u(x(0)− h)≤
∫ 1

0

�

L(x(s)− (1− s)h, x ′(s) + h) +H(0)
�

ds.

Combine these two inequalities with (7.10) to get

u(x + h) + u(x − h)− 2u(x)

≥
∫ 1

0

�

2L(x(s), x ′(s))− L(x(s) + (1− s)h, x ′(s)− h)− L(x(s)− (1− s)h, x ′(s) + h)
�

ds

≥ − C |h|2. (7.12)

On the other hand, use Lemma 6.14 again to yield

u(x(0) + h)− u(x(−1))≤
∫ 0

−1

�

L(x(s) + (1+ s)h, x ′(s) + h) +H(0)
�

ds,

and

u(x(0)− h)− u(x(−1))≤
∫ 0

−1

�

L(x(s)− (1+ s)h, x ′(s)− h) +H(0)
�

ds.

The above two inequalities, together with (7.11), imply

u(x + h) + u(x − h)− 2u(x)

≤
∫ 1

0

�

L(x(s) + (1+ s)h, x ′(s) + h)− L(x(s)− (1+ s)h, x ′(s)− h)− 2L(x(s), x ′(s))
�

ds

≤ C |h|2. (7.13)

The lower bound (7.12) and the upper bound (7.13) give us the desired result.

The following Lipschitz graph theorem is due to Mather.

Theorem 7.16. Assume (7.1). Let u ∈ Lip (Tn) be a subsolution to (7.4) for P = 0. Then,
there exists C > 0 depending only on H such that
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(i) for all x ∈M0 and y ∈ Tn,

|u(y)− u(x)− Du(x) · (y − x)| ≤ C |y − x |2;

(ii) For all x , y ∈M0,
|Du(x)− Du(y)| ≤ C |x − y|.

Proof. Let (x , v) ∈fM0. Note that u is differentiable at x and Du(x) = Dv L(x , v). We utilize
various inequalities and identities in the above proof to prove (i) first. Fix h ∈ Tn. On one
hand,

u(x + h)− u(x)≥
∫ 1

0

�

L(x(s), x ′(s))− L(x(s) + (1− s)h, x ′(s)− h)
�

ds

≥
∫ 1

0

�

Dx L(x(s), x ′(s)) · (s− 1)h+ Dv L(x(s), x ′(s)) · h
�

ds− C |h|2

=

∫ 1

0

�

d
ds

�

Dv L(x(s), x ′(s))
�

· (s− 1)h+ Dv L(x(s), x ′(s)) · h
�

ds− C |h|2

=

∫ 1

0

d
ds

�

Dv L(x(s), x ′(s)) · (s− 1)h
�

ds− C |h|2

= Dv L(x(0), x ′(0)) · h− C |h|2 = Du(x) · h− C |h|2.

On the other hand,

u(x + h)− u(x)≤
∫ 0

−1

�

L(x(s) + (1+ s)h, x ′(s) + h)− L(x(s), x ′(s))
�

ds

≤
∫ 0

−1

�

Dx L(x(s), x ′(s)) · (s+ 1)h+ Dv L(x(s), x ′(s)) · h
�

ds+ C |h|2

=

∫ 0

−1

�

d
ds

�

Dv L(x(s), x ′(s))
�

· (s+ 1)h+ Dv L(x(s), x ′(s)) · h
�

ds+ C |h|2

=

∫ 0

−1

d
ds

�

Dv L(x(s), x ′(s)) · (s+ 1)h
�

ds+ C |h|2

= Dv L(x(0), x ′(0)) · h+ C |h|2 = Du(x) · h+ C |h|2.

Thus,
|u(x + h)− u(x)− Du(x) · h| ≤ C |h|2,

which completes part (i). For part (ii), note that, for x , y ∈M0,

|u(y)− u(x)− Du(x) · (y − x)| ≤ C |y − x |2,

and
|u(x)− u(y)− Du(y) · (x − y)| ≤ C |y − x |2.

Combine these two and use triangle inequality to conclude.

From the above theorem, we see that the map π|
fM0

: fM0→M0 is injective, and its inverse
is Lipschitz.
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3.2 A relaxed problem

A disadvantage of the flow invariant property (Definition 7.8) is that it is a nonlinear con-
straint that depends on L (and hence H). For this reason, Mañé [109] proposed a relaxed
problem as following

min
ν∈F

∫

Tn×Rn

L(x , v) dν(x , v),

where

F =

�

ν ∈ P(Tn ×Rn) :

∫

Tn×Rn

v · Dϕ(x) dν(x , v) = 0 for every ϕ ∈ C1(Tn)

�

.

Measures belonging to F are called holonomic measures. Of course, the constraint in F is a
linear constraint, and it is independent of L and H. We first show that F is a bigger class
than flow invariant probability measures.

Lemma 7.17. Assume (7.1). Then, if µ ∈ P(Tn ×Rn) is a flow invariant measure, µ ∈ F.

Proof. Let µ ∈ P(Tn×Rn) be a flow invariant measure. Fixϕ ∈ C1(Tn). By the flow invariant
property,

∫

Tn×Rn

ϕ(π ◦Φt(x , v)) dµ(x , v) =

∫

Tn×Rn

ϕ(x) dµ(x , v).

Thus,
d
d t

∫

Tn×Rn

ϕ(π ◦Φt(x , v)) dµ(x , v) = 0.

Note that d
d tϕ(x(t)) = Dϕ(x(t)) · x ′(t). Let t = 0 in the above relation to deduce

∫

Tn×Rn

v · Dϕ(x) dµ(x , v) = 0,

which implies that µ ∈ F.

We now show that although F is bigger than the class of flow invariant probability measures,
we still have the same result in the minimization problem as in Theorem 7.9

Theorem 7.18. Assume (7.1). Then,

H(0) = −min
ν∈F

∫

Tn×Rn

L(x , v) dν(x , v). (7.14)

Roughly speaking, this is very close to Theorem 6.6 in the previous chapter.

Proof. Let u ∈ Lip (Tn) be a solution to (7.4) with P = 0. Let η be a standard mollifier, and
for ε > 0, let ηε(x) = ε−nη

�

x
ε

�

for x ∈ Rn. Denote by

uε(x) = (ηε ∗ u)(x) for x ∈ Tn.

Then, uε ∈ C∞(Tn), uε→ u uniformly in Tn as ε→ 0, and uε satisfies

H(x , Duε(x))≤ H(0) + Cε in Tn.
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By the Legendre transform,

v · Duε(x)− L(x , v)≤ H(x , Duε(x))≤ H(0) + Cε for all x ∈ Tn, v ∈ Rn.

Integrate this with respect to dν for any ν ∈ F to get

∫

Tn×Rn

L(x , v) dν(x , v)≥ −H(0)− Cε.

Let ε→ 0 to imply first that

min
ν∈F

∫

Tn×Rn

L(x , v) dν(x , v)≥ −H(0).

The reverse inequality follows immediately from the later part of the proof of Theorem 7.9
as F is bigger than the class of flow invariant probability measures. Nevertheless, let us still
repeat the construction here as it is quite important and natural. Fix x ∈ Tn, and take ξ to
be a backward characteristic of u starting from x . We have that, for t < 0,

u(ξ(0))− u(ξ(t)) =

∫ 0

t

�

L(ξ(s),ξ′(s)) +H(0)
�

ds.

Define µt ∈ P(Tn ×Rn) as

〈µt ,ψ〉=
1
|t|

∫ 0

t

ψ(ξ(s),ξ′(s)) ds

for every bounded continuous function ψ. It is very important noting that spt(µt) ⊂ Tn ×
B(0, C) for C > 0 sufficiently large because of the fact that ‖ξ′‖L∞((−∞,0]) ≤ C . Then,

u(x)− u(ξ(t))
|t|

= 〈µt , L〉+H(0).

By compactness, we are able to find a sequence {tk} →∞ such that µtk
→ µ ∈ P(Tn ×Rn)

weakly in the sense of measures, and spt(µ) ⊂ Tn × B(0, C). The above equality infers that

−H(0) = 〈µ, L〉=
∫

Tn×Rn

L(x , v) dµ(x , v).

Let us verify quickly that µ ∈ F. For ϕ ∈ C1(Tn), let ψ(x , v) = v · Dϕ(x), and note that

∫

Tn×Rn

v · Dϕ(x) dµ(x , v) = lim
k→∞

1
|tk|

∫ 0

tk

ξ′(s) · Dϕ(ξ(s)) ds

= lim
k→∞

1
|tk|
(ϕ(ξ(0))−ϕ(ξ(tk))) = 0.
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Theorem 7.19. Assume (7.1). Let ν ∈ F be such that

H(0) = −
∫

Tn×Rn

L(x , v) dν(x , v).

Then, ν is a Mather measure.

The proof of this is actually quite complicated. Let us give here an outline of the proof. We
need the following results.

Lemma 7.20. Assume (7.1). Let ν ∈ F. Then, for each f ∈ C1(Tn),

t 7→
∫

Tn×Rn

f (π(Φt(x , v)) dν(x , v) is constant.

Proof. We note that

d
d t
( f (π(Φt(x , v)))) |t=0 =

d
d t
( f (x(t))) |t=0 = D f (x(0)) · x ′(0) = D f (x) · v.

As ν ∈ F, we get the desired conclusion.

Theorem 7.21. Assume the settings in Theorem 7.19. Let u ∈ Lip (Tn) be a solution to (7.15).
Then, for (x , v) ∈ spt(ν), we have u is differentiable at x and Du(x) = Dv L(x , v). Moreover, ν
is supported on a Lipschitz graph in Tn ×Rn.

Proof. By using Lemma 7.20 and approximations, we see that it stills hold for f ∈ C(Tn),
and in particular,

t 7→
∫

Tn×Rn

u(π(Φt(x , v)) dν(x , v) is constant.

Let (x , v) ∈ spt(ν), then we use the above to imply that Lemma 7.12 holds for (x , v). Then,
repeat Theorem 7.6 to deduce further that u is differentiable at x , and Du(x) = Dv L(x , v),
which means v = DpH(x , Du(x)). By abuse of notions, we write v(x) = DpH(x , Du(x)) for
(x , v) ∈ spt(ν).

Next, repeating the results in Section 3.1, we obtain that ν is also supported on a Lipschitz
graph. Indeed, for (x , v(x)), (y, v(y)) ∈ spt(ν),

|Du(x)− Du(y)| ≤ C |x − y|,

which also means that
|Dv(x)− Dv(y)| ≤ C |x − y|.

We are now ready to prove that ν is a Mather measure thanks to the graph theorem above.
This proof is taken from Evans [52].

Sketch of proof of Theorem 7.19. Let u ∈ Lip (Tn) be a solution to (7.15).
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So far, we have been working with configuration space of (x , v)-variables. For this proof, it
is simpler to work with state space of (x , p)-variables. Let µ ∈ P(Tn ×Rn) be such that

∫

Tn×Rn

ψ(x , v) dν(x , v) =

∫

Tn×Rn

ψ(x , DpH(x , p)) dµ(x , p)

for all bounded continuous functions ψ. We need to show that µ is flow invariant, that is,
∫

Tn×Rn

{ψ, H} dµ(x , p) = 0

for all smooth bounded functions ψ. Here, {ψ, H} denotes the Poisson bracket between ψ
and H, that is,

{ψ, H}= Dpψ(x , p) · Dx H(x , p)− Dxψ(x , p) · DpH(x , p).

Let φ(x) = ψ(x , Du(x)). Then, φ is Lipschitz on the support of µ. Let us assume φ is C1

for simplicity (else, do the usual convolution trick). As we are only concerned with φ and
its first-order derivative on spt(µ), everything is fine.

We have Dφ(x) = Dxψ+ DpψD2u. Besides, as H(x , Du(x)) = H(0), one gets further that
Dx H + DpHD2u= 0. Thus,

0=

∫

Tn×Rn

DpH(x , p) · Dφ dµ(x , p) =

∫

Tn×Rn

DpH · (Dxψ+ DpψD2u) dµ(x , p)

=

∫

Tn×Rn

(DpH · Dxψ− Dpψ · Dx H) dµ(x , p).

The proof is complete.

4 Nonlinear PDE methods in weak KAM theory

One key point that we see from weak KAM theory is the appearance of Mather measures.
We show now that, at least heuristically, Mather measures give rise to a new PDE, which is
coupled with our usual cell problem. Recall the cell problem (7.4) at P = 0

H(x , Du(x)) = H(0) in Tn. (7.15)

Let u ∈ Lip (Tn) be a solution to the above. Let µ ∈ P(Tn×Rn) be a Mather measure, andσ =
π◦µ, its projection to Tn. Of course, µ ∈ F. For (x , v) ∈ spt(µ), we know from the previous
section that u is differentiable at x , and Du(x) = Dv L(x , v). Thus, v = DpH(x , Du(x)), and
for any test function ϕ ∈ C1(Tn),

0=

∫

Tn×Rn

v · Dϕ(x) dµ(x , v)

=

∫

Tn×Rn

DpH(x , Du(x)) · Dϕ(x) dµ(x , v) =

∫

Tn

DpH(x , Du(x)) · Dϕ(x)dσ(x).
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This means that the measure σ is a weak solution of the following transport type equation

−div(DpH(x , Du(x))σ) = 0 in Tn. (7.16)

Therefore, to think about weak KAM theory, a correct way is to think of a system of two
equations (7.15) and (7.16). Moreover, let us point out here that this is closely related
to the nonlinear adjoint method. Indeed, assuming that u is smooth, then the linearized
operator of (7.15) around u is

L[φ](x) = DpH(x , Du(x)) · Dφ(x) for all φ ∈ C1(Tn).

Then, (7.16) is nothing but the adjoint equation to this linearized operator L. Surely, we
need to be extremely careful with smoothness issues when handling and interpreting this
system, but this important viewpoint, observed by Evans, Gomes [53], allows us to introduce
nonlinear PDE methods to weak KAM theory to read off more information.

There have been many different ways to approximate (7.15) and (7.16) and pass to the
limits to obtain Mather measures rigorously. We will employ the nonlinear adjoint method
here to introduce few such approximations. As this is an introductory chapter, we only
introduce some approaches here and do not go too deeply into further aspects of weak KAM
theory.

4.1 Vanishing viscosity approximations

Here, we aim at approximating (7.15) by adding a small viscosity term. For each ε > 0, we
consider

H(x , Duε(x)) = ε∆uε +H
ε
(0) in Tn. (7.17)

In the equation above, the pair of unknown is
�

uε, H
ε
(0)
�

∈ C(Tn)×R.

Theorem 7.22. Assume (7.1). For every ε > 0, there exists a unique constant H
ε
(0) ∈ R

such that (7.17) has a solution uε ∈ C(Tn). In fact, uε is smooth, and is unique up to additive
constants. Furthermore, as ε→ 0,

lim
ε→0

H
ε
(0) = H(0),

and there exists a subsequence {εk} → 0 such that

uεk −min
Tn

uεk → u in C(Tn),

for some u ∈ C(Tn), which solves (7.15).

Proof. The existence and uniqueness of H
ε
(0) are similar to those of H(0). Let us present

only the existence of H
ε
(0) here as its uniqueness proof follows exactly the same lines of

that for H(0).

Fix ε > 0. For λ > 0, we consider

λvλ +H(x , Dvλ) = ε∆vλ in Tn.

It is clear that the above has a unique smooth solution vλ, and the comparison principle
gives

−‖H(·, 0)‖L∞(Tn) ≤ λvλ ≤ ‖H(·, 0)‖L∞(Tn).
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Let us now obtain bound for Dvλ via the classical Bernstein method. Let wλ = |Dvλ|2
2 , then

wλ satisfies

2λwλ + DpH(x , Dvλ) · Dwλ + Dx H(x , Dvλ) · Dvλ = ε∆wλ − ε|D2vλ|2.

Pick x0 ∈ Tn such that wλ(x0) =maxTn wλ ≥ 0. Then, by the maximum principle, at x0,

2λwλ + ε|D2vλ|2 + Dx H · Dvλ ≤ 0.

For ε < n−1, note that

ε|D2vλ|2 ≥ (ε∆vλ)2 = (λvλ +H(x , Dvλ))2 ≥
1
2

H(x , Dvλ)2 − C .

Combine the above two inequalities to yield, at x0,

1
2

H(x0, Dvλ)2 + Dx H · Dvλ ≤ C .

Employ (7.1) to imply that |Dvλ(x0)| ≤ C . Thus,

‖λvλ‖L∞(Tn) + ‖Dvλ‖L∞(Tn) ≤ C .

By the Arzelà–Ascoli theorem, we obtain a sequence {λk} → 0 and uε ∈ Lip (Tn) such that,
as k→∞,

¨

vλk − vλk(0)→ uε in C(Tn),
λkvλk(0)→−c ∈ R.

By stability of viscosity solutions, uε solves

H(x , Duε) = ε∆uε + c in Tn.

As explained, we get further that c is unique, and we denote by H
ε
(0) = c. Of course, uε

is smooth, unique up to additive constants, and moreover, ‖Duε‖L∞(Tn) ≤ C . For H
ε
(0), we

have a clear bound
−‖H(·, 0)‖L∞(Tn) ≤ H

ε
(0)≤ ‖H(·, 0)‖L∞(Tn).

Let us now let ε → 0 to get the second part of the theorem. By the Arzelà–Ascoli theorem
again, we obtain a sequence {εk} → 0 and u ∈ Lip (Tn) such that, as k→∞,

¨

uεk −minTn uεk → u in C(Tn),
H
ε
(0)→−c ∈ R.

Use stability of viscosity solutions again to yield that u solves

H(x , Du) = c in Tn.

Thus, c = H(0), which is unique. This means that H
ε
(0) → H(0) as ε → 0 for a full

sequence.
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The linearized operator of (7.17) around uε is

Lε[φ] = DpH(x , Duε) · Dφ − ε∆φ for all φ ∈ C2(Tn).

This allows us to consider the adjoint equation to this linearized operator as

(Lε)∗[σε] = −div(DpH(x , Duε)σε)− ε∆σε = 0 in Tn. (7.18)

It is quite clear that 0 is the principal eigenvalue of (Lε)∗, and so, (7.18) admits a unique
nonnegative solution σε with

∫

Tn

σε(x) d x = 1.

Denote by µε ∈ P(Tn ×Rn) the unique measure such that
∫

Tn×Rn

ψ(x , p) dµε(x , p) =

∫

Tn

ψ(x , Duε)σε d x

for all bounded continuous functionsψ. Note that it is more convenient here for us to work
with measures on phase space of (x , p)-variables. Our goal is to let ε→ 0 to obtain Mather
measures. Since ‖Duε‖L∞(Tn) ≤ C , we get spt(µε) ⊂ Tn × B(0, C). So, by compactness,
there exists a sequence {εk} → 0 such that µεk → µ ∈ P(Tn × Rn) weakly in the sense of
measures. Of course, spt(µ) ⊂ Tn × B(0, C). To switch from state space of (x , p)-variables
to configuration space of (x , v)-variables, we let ν ∈ P(Tn ×Rn) be such that

∫

Tn×Rn

ψ(x , p) dµ(x , p) =

∫

Tn×Rn

ψ(x , Dv L(x , v)) dν(x , v)

for all bounded continuous functions ψ.

Theorem 7.23. Assume (7.1). Let ν ∈ P(Tn×Rn) be defined as in the procedure above. Then,
ν is a Mather measure.

Proof. We first show that ν ∈ F. Multiply (7.18) by a test functionφ ∈ C2(Tn) and integrate
to have

ε

∫

Tn

∆φσε d x =

∫

Tn

DpH(x , Duε) · Dφ(x)σε(x) d x =

∫

Tn×Rn

DpH(x , p) · Dφ(x) dµε(x , p).

Let ε = εk and k→∞ to yield further that

0=

∫

Tn×Rn

DpH(x , p) · Dφ(x) dµ(x , p) =

∫

Tn×Rn

v · Dφ(x) dν(x , v).

By approximations, we get that the above holds for all φ ∈ C1(Tn). Thus, ν ∈ F. We show
next that

∫

Tn×Rn

L(x , v) dν(x , v) = −H(0).

Multiply (7.18) by uε and integrate to have

ε

∫

Tn

∆uεσε d x =

∫

Tn

DpH(x , Duε) · Duεσε(x) d x =

∫

Tn×Rn

DpH(x , p) · p dµε(x , p).
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Next, multiply (7.17) by σε and integrate

H
ε
(0) =

∫

Tn

(H(x , Duε)− ε∆uε)σε(x) d x =

∫

Tn×Rn

H(x , p) dµε(x , p)−
∫

Tn

ε∆uεσε(x) d x .

Combine the two above to imply
∫

Tn×Rn

(DpH(x , p) · p−H(x , p)) dµε(x , p) = −H
ε
(0).

Note that H
ε
(0)→ H(0) as ε→ 0. By letting ε = εk and k→∞, we deduce that

−H(0) =

∫

Tn×Rn

(DpH(x , p) · p−H(x , p)) dµ(x , p) =

∫

Tn×Rn

L(x , v) dν(x , v).

We have furthermore the following estimate. This is a L2 version of the Lipschitz graph
theorem.

Lemma 7.24. Assume (7.1). Then, there exists C > 0 independent of ε such that
∫

Tn

|D2uε|2σε d x ≤ C .

Proof. For each 1≤ i ≤ n, differentiate (7.17) with respect to x i twice to get

DpH · Duεx i x i
+Hpk pl

uεxk x i
uεx l x i

+Hx i x i
+ 2Hx i pk

uεxk x i
= ε∆uεx i x i

.

By the uniform convexity of H in p (assumption (7.1)), we simplify the above as

Lε[uεx i x i
] +
θ

2
|Duεx i

|2 ≤ C .

Multiply this inequality with σε and integrate over Tn to deduce

θ

2

∫

Tn

|Duεx i
|2σε d x ≤ C .

Sum this over i = 1,2, . . . , n to conclude.

4.2 Large time average approximations and applications

We present here another way to obtain Mather measures and give an application.

Let u ∈ Lip (Tn) be a solution to (7.15). Our aim is to use large time average of solutions to
derive Mather measures. Consider

¨

ϕt +H(x , Dϕ) = 0 in Tn × (0,∞),
ϕ(x , 0) = u(x) on Tn.
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Then, ϕ(x , t) = u(x)−H(0)t is the unique solution to the above. Instead of letting t →∞
directly in the above, we rescale the problem as w(x , t) = ϕ(x , t

ε ) for (x , t) ∈ Tn × [0,∞)
and ε > 0. Then, w solves

¨

εwt +H(x , Dw) = 0 in Tn × (0,∞),
w(x , 0) = u(x) on Tn.

(7.19)

It is clear that w(x , t) = u(x)− H(0)t
ε for (x , t) ∈ Tn× [0,∞). Our goal is to let ε→ 0 to see

the large time average of ϕ to get Mather measures. For simplicity, let us normalize to have
H(0) = 0 always in this section. Then, w(x , t) = u(x) for (x , t) ∈ Tn × [0,∞).
As u is not smooth, we first smooth it up as usual. Let ρ ∈ C∞c (R

n, [0,∞)) be a standard
mollifier. For δ > 0, let ρδ(x) = δ−nρ(δ−1 x) for all x ∈ Rn. Denote by uδ = ρδ ∗ u. Then,

‖uδ − u‖L∞(Tn) ≤ Cδ,

and
‖Duδ‖L∞(Tn) +δ‖D2uδ‖L∞(Tn) ≤ C .

Let us consider the following Cauchy problems
¨

εwεt +H(x , Dwε) = ε4∆wε in Tn × (0, 1),
wε(x , 0) = uε

4
(x) on Tn,

(7.20)

and
¨

εφεt +H(x , Dφε) = ε4∆φε in Tn × (0,1),
φε(x , 0) = u(x) on Tn.

(7.21)

Here, uε
4

is uδ with δ = ε4. As ‖uε4 − u‖L∞(Tn) ≤ Cε4, it is straightforward that

‖wε −φε‖L∞(Tn×[0,1]) ≤ Cε4.

The next result concerns gradient bound of wε.

Lemma 7.25. Assume (7.1). There is a constant C > 0 independent of ε > 0 such that

ε‖wεt‖L∞(Tn×[0,1]) + ‖Dwε‖L∞(Tn×[0,1]) ≤ C .

Proof. Denote by

ϕ±(x , t) = wε(x , 0)±
C
ε

t for all (x , t) ∈ Tn × [0, 1].

Then, ϕ−,ϕ+ are, respectively, a subsolution, and a supersolution to (7.20). Hence, by the
comparison principle,

ϕ− ≤ wε ≤ ϕ+ =⇒ ‖wε(·, s)−wε(·, 0)‖L∞ ≤
Cs
ε

.

Note next that both wε and wε(·, · + s) solve (7.20) with initial data wε(·, 0) and wε(·, s),
respectively. By the comparison principle,

‖wε(·, ·+ s)−wε‖L∞ ≤ ‖wε(·, s)−wε(·, 0)‖L∞ ≤
Cs
ε

=⇒ ε‖wεt‖L∞(Tn) ≤ C .
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To prove the spatial gradient bound, we use the usual Bernstein method. Letψ(x , t) = |Dwε |2
2 .

Then ψ satisfies

εψt + DpH · Dψ+ Dx H · Dwε = ε4∆ψ− ε4|D2wε|2.

Assume that maxTn×[0,1]ψ = ψ(x0, t0). If t0 = 0, then we are done. If t0 > 0, then by the
maximum principle,

Dx H · Dwε + ε4|D2wε|2 ≤ 0 at (x0, t0).

For ε < n−1, we have

ε4|D2wε|2 ≥ (ε4∆wε)2 = (εwεt +H(x , Dwε))2 ≥
1
2

H(x , Dwε)2 − C .

Therefore,
1
2

H(x , Dwε)2 + Dx H · Dwε ≤ C at (x0, t0),

which, together with (7.1), yields the desired result.

Lemma 7.26. Assume (7.1). Normalize so that H(0) = 0. We have

‖wε − u‖L∞(Tn×[0,1]) + ‖φε − u‖L∞(Tn×[0,1]) ≤ Cε.

The proof of this is similar to that of Theorem 1.38. As we have not presented such proofs
for Cauchy problems, let us give it here.

Proof. We only need to show that ‖wε −u‖L∞(Tn×[0,1]) ≤ Cε. Let us first get an upper bound
for wε − u. Define an auxiliary function

Φ(x , y, t) = wε(x , t)− u(y)−
|x − y|2

2ε2
− Kεt for (x , y, t) ∈ Tn ×Tn × [0,1],

where K > 0 is to be chosen. Pick (xε, yε, tε) ∈ Tn ×Tn × [0, 1] so that

Φ(xε, yε, tε) = max
Tn×Tn×[0,1]

Φ.

If Φ(xε, yε, tε)≤ 0, then we are done as

wε(x , t)− u(x) = Φ(x , x , t) + Kεt ≤ Kε.

Therefore, we can assume Φ(xε, yε, tε)> 0. This gives that wε(xε, tε)> u(yε).
Let us consider first the case that tε > 0. Since wε and u are Lipschitz in space with constant
C , by comparing Φ(xε, yε, tε) with Φ(yε, yε, tε), we deduce first that

|xε − yε| ≤ Cε2.

By the viscosity subsolution and supersolution tests, we have

Kε2 +H
�

xε,
xε − yε
ε2

�

≤ ε4 n
ε2
= nε2,

and
H
�

yε,
xε − yε
ε2

�

≥ 0.
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Combine these two inequalities, and use (7.1) to imply

Kε2 ≤ nε2 +H
�

yε,
xε − yε
ε2

�

−H
�

xε,
xε − yε
ε2

�

≤ nε2 + C |yε − xε| ≤ (C + n)ε2.

By picking K = C + n+ 1, we conclude that tε cannot be positive. Thus, tε = 0, and

Φ(xε, yε, tε)≤ uε
4
(xε)− u(yε)≤ Cε4 + C |xε − yε| ≤ Cε2.

Then, for (x , t) ∈ Tn × [0,1],

wε(x , t)− u(x) = Φ(x , x , t) + Kεt ≤ Cε2 + Kε ≤ Cε.

To get the other bound, we need to get an upper bound of u − wε. This can be done by
repeating the above steps carefully for another auxiliary function

Ψ(x , y, t) = u(x)−wε(y, t)−
|x − y|2

2ε2
− Kεt for (x , y, t) ∈ Tn ×Tn × [0, 1],

where K > 0 is to be chosen. We omit the proof of this part here.

Remark 7.27. All the above steps are mainly to show that instead of working with (7.19)
directly, we can work with (7.20), which has the unique smooth solution wε for each ε > 0.
The fact that wε stays close to u means that there is no complication here, and as we let
ε→ 0, we are able to obtain Mather measures for (7.15) via the nonlinear adjoint method
described below.

The linearized operator of (7.20) about the solution wε is

Lε[φ] = εφt + DpH(x , Dwε) · Dφ − ε4∆φ.

The corresponding adjoint equation is
¨

−εσεt − div(DpH(x , Dwε)σε) = ε4∆σε in Tn × (0, 1),
σε(x , 1) = δx0

.
(7.22)

Here, δx0
is the Dirac delta measure at x0 ∈ Tn. It is clear thatσε > 0 in Tn×(0, 1). Basically,

σε is the fundamental solution to the above backward parabolic equation in Tn × (0,1).

Lemma 7.28. The following holds
∫

Tn

σε(x , t) d x = 1 for all t ∈ (0,1).

Proof. For t ∈ (0,1), integrate (7.22) on Tn to yield

ε
d
d t

∫

Tn

σε d x =

∫

Tn

−div (DpH(x , wε, Dwε)σε)− ε4∆σε d x = 0,

which gives the result.
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For each σε, there exists a unique measure µε ∈ P(Tn ×Rn) satisfying

∫ 1

0

∫

Tn

ψ(x , Duε)σε(x , t) d xd t =

∫

Tn×Rn

ψ(x , p) dµε(x , p)

for all bounded continuous functions ψ. By a priori estimates, spt(µε) ⊂ Tn × B(0, C).
We are able to pick a subsequence {ε j} → 0 such that µε j → µ as j → ∞ weakly in the
sense of measures. Surely, µ ∈ P(Tn ×Rn) and spt(µ) ⊂ Tn × B(0, C). Then, as above, let
ν ∈ P(Tn ×Rn) be such that

∫

Tn×Rn

ψ(x , p) dµ(x , p) =

∫

Tn×Rn

ψ(x , Dv L(x , v)) dν(x , v)

for all bounded continuous functions ψ.

Theorem 7.29. Assume (7.1). Normalize so that H(0) = 0. Let ν be constructed as above.
Then, ν is a Mather measure.

Proof. The proof is quite similar to that of Theorem 7.23. First, we prove ν ∈ F. Multiply
(7.22) with φ ∈ C2(Tn) and integrate to imply

ε

∫

Tn

φ(x)σε(x , 0) d x − εφ(x0) +

∫ 1

0

∫

Tn

DpH(x , Dwε) · Dφ(x)σε(x , t) d xd t

= ε4

∫ 1

0

∫

Tn

∆φ(x)σε(x , t) d xd t.

Let ε = ε j and j→∞, then

0=

∫

Tn×Rn

DpH(x , p) · Dφ(x) dµ(x , p) =

∫

Tn×Rn

v · Dφ(x) dν(x , v).

We then use usual approximations to get that the above holds for all φ ∈ C1(Tn), and so,
ν ∈ F.

Next, multiply (7.20) by σε, multiply (7.22) by wε, combine them and integrate to infer

εwε(x0, 1)− ε
∫

Tn

wε(x , 0)σε(x , 0) d x

=

∫ 1

0

∫

Tn

(DpH(x , Dwε) · Dwε −H(x , Dwε))σε(x , t) d xd t.

Again, let ε = ε j and j→∞, then

0=

∫

Tn×Rn

(DpH(x , p) · p−H(x , p)) dµ(x , p) =

∫

Tn×Rn

L(x , v) dν(x , v).
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We see that Mather measures were constructed quite naturally through the above two differ-
ent viewpoints. It is surely the case that one needs to handle approximations carefully and
rigorously, but other than that, the nonlinear adjoint method gives Mather measures quite
straightforwardly in the limits. Since this chapter is of introductory type, we will not go
deeper to study further properties of approximated solutions and corresponding measures.
Instead, we present here a quick application of this PDE approach.

Theorem 7.30. Assume (7.1). Normalize so that H(0) = 0. Let u, ū ∈ Lip (Tn) be two solu-
tions to (7.15). Assume further that

∫

Tn×Rn

ū dν(x , v)≤
∫

Tn×Rn

u dν(x , v)

for all Mather measures ν. Then, ū≤ u.
This theorem is a variant of Theorem 7.14. As we see right away in the proof below, the
approach here is quite different. This uniqueness result is taken from Mitake, Tran [117].

Proof. Consider (7.20) and (7.22) as above with solutions wε and σε, respectively. Let w̄ε

be the solution to (7.20) with initial data w̄ε(x , 0) = ūε
4
. Compare w̄ε with wε and use

convexity of H to get that
Lε[w̄ε −wε]≤ 0.

Multiply this by σε and integrate to yield

d
d t

∫

Tn

(w̄ε −wε)σε d x ≤ 0.

Thus,

(w̄ε −wε)(x0, 1)≤
∫ 1

0

∫

Tn

(w̄ε −wε)σε d xd t.

Let ε = ε j and j→∞, we obtain

ū(x0)− u(x0)≤
∫

Tn×Rn

(ū− u) dν(x , v)≤ 0.

Hence, ū(x0)≤ u(x0). As x0 is arbitrary, ū≤ u.

5 The projected Aubry set

5.1 The PDE viewpoint

We now use the maximal subsolutions to define the projected Aubry set and study its prop-
erties. Maximal subsolutions were already studied in Section 7 of Chapter 2 in the general
convex setting in Rn. We here focus on the periodic setting, that is, our equations and
maximal subsolutions are considered in Tn.

Let us recall the cell problem (7.4) at P = 0

H(x , Du(x)) = H(0) in Tn. (7.23)
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For x , y ∈ Tn, denote by

S(x , y) = sup {v(x)− v(y) : v ∈ Lip (Tn) is a subsolution to (7.23)} .

We use S here instead of mµ earlier. In our notations, we use the second slot in S(·, ·) as a
fixed vertex, and geometrically, x 7→ S(x , y) looks like a bending upward cone with vertex
y for x close to y . Of course, x 7→ S(x , y) does not look like a global cone as it is periodic
in x . Sometimes, people would reverse the order of x and y in the literature.

Let us recall the results in Theorem 2.39.

Theorem 7.31. Assume (7.1). The following properties hold.

(i) For each y ∈ Tn, x 7→ S(x , y) is Lipschitz and is the maximal solution to
¨

H(x , Du(x)) = H(0) in Tn \ {y},
u(y) = 0.

(7.24)

In particular, S(y, y) = 0.

(ii) For x , y, z ∈ Tn,
S(x , y) + S(y, z)≥ S(x , z). (7.25)

Of course, we have also discussed that x 7→ S(x , y) needs not be a solution to (7.23) and
it might fail the viscosity supersolution test at the vertex y . This leads us to the following
definition.

Definition 7.32 (Projected Aubry set). Denote by

A= {y ∈ Tn : x 7→ S(x , y) is a solution to (7.23)} .

We say that A is the projected Aubry set corresponding to P = 0.

Roughly speaking, A contains all the good vertices y at which the viscosity supersolution
test for S(x , y) holds. We first need to show that A is not empty.

Proposition 7.33. Assume (7.1). Then, A 6= ;.

We use some ideas of the Perron method in the proof.

Proof. Assume by contradiction that A = ;. Then, for each y ∈ Tn, the viscosity supersolu-
tion test for S(x , y) fails at x = y . This means that we can find a smooth test function φ
with φ(y) = 0, x 7→ S(x , y)−φ(x) has a strict minimum at y , and

H(y, Dφ(y))< H(0).

There exist r,εy > 0 sufficiently small such that
¨

φ(x)< S(x , y)− εy for all x ∈ ∂ B(y, r),
H(x , Dφ(x))< H(0)− εy for all x ∈ B(y, r).

Denote by

ψy(x) =

¨

max
�

S(x , y),φ(x) + εy

	

for all x ∈ B(y, r),
S(x , y) for all x ∈ Tn \ B(y, r)
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Clearly, ψy ∈ Lip (Tn), ψy is a subsolution to (7.23), and there exists ry ∈ (0, r) such that

H(x , Dψy(x))< H(0)− εy for all x ∈ B(y, ry). (7.26)

Of course,
Tn ⊂

⋃

y∈Tn

B(y, ry).

By the compactness of Tn, we are able to find y1, . . . , yk ∈ Tn such that

Tn ⊂
k
⋃

i=1

B(yi, ryi
).

We then set

ψ=
1
k

k
∑

i=1

ψyi
, ε =

1
k

min
1≤i≤k

εyi
.

In light of (7.26) and the convexity of H in p, we have that

H(x , Dψ(x))≤ H(0)− ε in Tn,

which gives a contradiction to the representation formula of H(0) in Theorem 4.10. We
therefore conclude that A 6= ;.

Remark 7.34. We give some comments about the proof of Proposition 7.33. One can see
the ideas of the Perron method used in the construction ofψy for y ∈ Tn above quite clearly.
We then use the compactness of Tn crucially in the next step.

In term of assumptions on H, we actually do not need to assume (7.1) fully. We only need
that H ∈ C(Tn ×Rn), and p 7→ H(x , p) is convex, and coercive uniformly for x ∈ Tn.

Theorem 7.35. Assume (7.1). Then, A is a nonempty, compact subset of Tn.

Proof. By Proposition 7.33, we already have that A is not empty.

To finish off, we only need to show that A is closed, which is a rather straightforward from
the stability of viscosity solutions. Indeed, pick a sequence {yk} ⊂ A ⊂ Tn. There exists a
subsequence {yk j

} of {yk} that converges to some y ∈ Tn. We have that S(·, yk j
) is a viscosity

solution of (7.23) and S(yk j
, yk j
) = 0. By the coercivity of H, we can find a constant C > 0

independent of j ∈ N such that

‖S(·, yk j
)‖L∞(Tn) + ‖DS(·, yk j

)‖L∞(Tn) ≤ C .

By the usual Arzelà-Ascoli theorem, by passing to another subsequence if necessary, we
might assume that S(·, yk j

) converges to some w ∈ Lip (Tn) uniformly as j→∞. It is clear
that w(y) = 0 and w is a viscosity solution of (7.23). Moreover, as

S(x , yk j
)≥ S(x , y)− S(yk j

, y),

we let j →∞ to deduce that w(x) ≥ S(x , y) for all x ∈ Tn. By the definitions of S(·, y)
and the projected Aubry set, we see that w = S(·, y) and also that y ∈ A. The proof is
complete.
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Let us now give one example in which we know precisely what is the projected Aubry set.

Example 7.1. Assume that

H(x , p) = |p| − V (x) for all (x , p) ∈ Tn ×Rn,

where V ∈ C(Tn) is given such that minTn V = 0. This Hamiltonian does not satisfy (7.1), but
it is enough here as p 7→ H(x , p) is convex, and coercive uniformly for x ∈ Tn.

We have shown that H(0) = 0. By Proposition 2.37, S(·, y) is a viscosity solution of (7.23) if
and only if V (y) = 0. It is therefore clear that

A=
n

y ∈ Tn : V (y) =min
Tn

V = 0
o

.

We have another characterization of A as following.

Proposition 7.36. Assume (7.1). Then, for y ∈ Tn, y /∈ A if and only if there exists a
subsolution w ∈ Lip (Tn) to (7.23) which is strict at y, that is, there exists q ∈ D−w(y) such
that H(y, q)< H(0).

Proof. Firstly, if y /∈A, then by the first part of the proof of Proposition 7.33, we let w=ψy

to conclude.

Let us now assume that there is a subsolution w ∈ Lip (Tn) to (7.23) which is strict at y
for some given y ∈ Tn. Then, there exists q ∈ D−w(y) such that H(y, q) < H(0). By the
definition of S(·, y), we see that

S(x , y)≥ w(x)−w(y) for all y ∈ Tn,

which yields that q ∈ D−S(y, y). This means that S(·, y) is not a solution to (7.23), and
therefore, y /∈A.

Next, we show that we are able to construct a subsolution to (7.23) which is strict outside
of the projected Aubry set.

Proposition 7.37. Assume (7.1). Then, there exists a subsolution w ∈ Lip (Tn) to (7.23)
which is strict in Tn\A. More precisely, for each open set U such that U ⊂⊂ Tn\A, there exists
εU > 0 such that

H(x , Dw(x))≤ H(0)− εU in U .

Proof. Part of the proof here was already done in the proof of Proposition 7.33. For each
y ∈ Tn \A, there are ψy ∈ Lip (Tn) and ry ,εy > 0 such that ψy is a subsolution to (7.23),
and B(y, ry) ⊂ Tn \A, and

H(x , Dψy(x))< H(0)− εy for all x ∈ B(y, ry).

Since
Tn \A ⊂

⋃

y∈Tn\A
B(y, ry),

we are able to find a sequence {yk}k∈N ⊂ Tn \A such that

Tn \A ⊂
∞
⋃

i=1

B(yi, ryi
).
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Set

w(x) =
∞
∑

i=1

2−iψyi
(x) for x ∈ Tn.

It is straightforward that w ∈ Lip (Tn) is a viscosity subsolution to (7.23) which is strict in
Tn \A.

We are now ready to present another comparison result for solutions to (7.23). In a way,
this is quite similar to Theorems 7.14 and 7.30.

Theorem 7.38. Assume (7.1). Let u1, u2 ∈ Lip (Tn) be a subsolution and a supersolution to
(7.23), respectively. Assume further that u1 ≤ u2 on A. Then, u1 ≤ u2.

Proof. To obtain the result, we show that u1 ≤ u2 +δ for each given δ > 0.

Let ū2 = u2 + δ, and w be as in Proposition 7.37. Since u1 ≤ u2 on A, there exists an open
set U such that U ⊂⊂ Tn \A such that

u1 ≤ u2 +
δ

4
= ū2 −

3δ
4

on Tn \ U .

For s ∈ (0, 1), denote by ū1 = su1 + (1− s)w. For s quite close to 1, we have that

ū1 ≤ ū2 −
δ

2
on Tn \ U . (7.27)

Besides,

H(x , Dū1(x))≤ sH(x , Du1(x)) + (1− s)H(x , Dw(x))≤ H(0)− (1− s)εU in U . (7.28)

Thanks to (7.27) and (7.28), we can find λ > 0 sufficiently small such that

λū1 +H(x , Dū1)≤ λū2 +H(x , Dū2) in Tn.

Thus, ū1 ≤ ū2 in light of the usual comparison principle for this static Hamilton–Jacobi
equation. Let s→ 1 and δ→ 0 in this order to conclude.

5.2 A representation formula for solutions to (7.23)

We have shown in Theorem 7.38 that A is a uniqueness set for (7.23). Let us now proceed
further to give a new representation formula to solutions to (7.23) based on data on A.

Theorem 7.39. Let u ∈ Lip (Tn) be a solution to (7.23). Then, for every x ∈ Tn,

u(x) =min
y∈A
(u(y) + S(x , y)) .

Proof. Let v(x) =miny∈A (u(y) + S(x , y)) for x ∈ Tn. As x 7→ u(y)+S(x , y) is a solution to
(7.23) for each y ∈A, we imply that v is also a solution to (7.23) thanks to Corollary 2.31.

Moreover, by the definition of S(x , y), we see that

u(x)− u(y)≤ S(x , y),

which means
u(x)≤min

y∈A
(u(y) + S(x , y)) = v(x).

In particular, for x ∈A, as u(x) + S(x , x) = u(x), we deduce that u(x) = v(x). Thus,

u= v on A.

By Theorem 7.38, we conclude that u= v.
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5.3 The Lagrangian viewpoint

We use the representation formula for S(x , y) studied in Section 7 of Chapter 2 to discuss the
Lagrangian viewpoint of the projected Aubry set A. Let L be the Lagrangian corresponding
to this H. Here is the formula of S(x , y) thanks to Theorem 2.41.

Theorem 7.40. Assume (7.1). For x , y ∈ Tn,

S(x , y)

= inf

�∫ t

0

�

L(γ(s),γ′(s)) +H(0)
�

ds : γ ∈ AC ([0, t],Tn) for t > 0,γ(0) = y,γ(t) = x

�

.

(7.29)

In the weak KAM theory literature, S is also called the critical Mañé potential. We give the
following equivalent characterization of points in the Aubry set. This characterization is
rather important geometrically.

Theorem 7.41. Assume (7.1). Then, y ∈A if and only if

inf

�∫ t

0

�

L(γ(s),γ′(s)) +H(0)
�

ds : γ ∈ AC ([0, t],Tn) for t > δ,γ(0) = γ(t) = y

�

= 0

(7.30)
for any fixed δ > 0.

Proof. This proof is rather long and we divide it into two steps.

STEP 1. We first assume that (7.30) holds for each δ > 0 and show that y ∈A. Assume by
contradiction that y /∈ A. Then by the first part of the proof of Proposition 7.33, there are
ψy ∈ Lip (Tn) and ry ,εy > 0 such that ψy is a subsolution to (7.23), and B(y, ry) ⊂ Tn \A,
and

H(x , Dψy(x))< H(0)− εy for all x ∈ B(y, ry).

Fix δ = 1. For each ε > 0, there exist T > 1 and ξ ∈ AC ([0, T],Tn) such that

inf

¨

∫ T

0

�

L(γ(s),γ′(s)) +H(0)
�

ds : γ ∈ AC ([0, T],Tn),γ(0) = γ(T ) = y

«

=

∫ T

0

�

L(ξ(s),ξ′(s)) +H(0)
�

ds ≤ ε.

By Theorem A.9 in Appendix, we see that ξ ∈ C2([0, T],Tn) and there exists C > 0 inde-
pendent of T > 1 such that ‖ξ′‖L∞ ≤ C . In particular,

ξ(s) ∈ B(y, ry) for all s ∈ [0, ry/C]. (7.31)

In the following computations, we assume ψy is smooth enough for simplicity. To make
things rigorous, we just need to do the usual trick of convolution with the standard mollifier.
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We use (7.31) to compute that

ε ≥
∫ T

0

�

L(ξ(s),ξ′(s)) +H(0)
�

ds

=

∫

ry
C

0

�

L(ξ(s),ξ′(s)) +H(0)
�

ds+

∫ T

ry
C

�

L(ξ(s),ξ′(s)) +H(0)
�

ds

≥
∫

ry
C

0

�

L(ξ(s),ξ′(s)) +H(ξ(s), Dψy(ξ(s))) + εy

�

ds

+

∫ T

ry
C

�

L(ξ(s),ξ′(s)) +H(ξ(s), Dψy(ξ(s)))
�

ds

=

∫ T

0

�

L(ξ(s),ξ′(s)) +H(ξ(s), Dψy(ξ(s)))
�

ds+
εy ry

C

≥
∫ T

0

ξ′(s) · Dψy(ξ(s))) ds+
εy ry

C
=ψy(ξ(T ))−ψy(ξ(0)) +

εy ry

C
=
εy ry

C
.

We then get a contradiction by simply choosing ε =
εy ry

2C . Thus, y ∈A, and the proof of the
first claim is complete.

STEP 2. Next, we assume that y ∈ A. We need to show that (7.30) holds for each δ > 0.
Assume by contradiction that (7.30) fails for some δ > 0. Take γ(s) = y for all s ∈ [0,δ+1],
we see that L(y, 0) +H(0)> 0. By the Legendre transform, this gives

min
p∈Rn

H(y, p)< H(0).

Thus, there is q ∈ Rn such that H(y, q) < H(0). Then, there exist two constants C , r > 0
such that







S(x , y)< 1 for all x ∈ B(y, r),
H(x , q)< H(0) for all x ∈ B(y, r),
L(x , v)≤ C for all (x , v) ∈ B(y, r)× B(0, r).

(7.32)

Let r1 ∈ (0, r) be a radius to be fixed later. Pick x ∈ B(y, r1) \ {y}. Pick a path γ ∈
AC ([0, t],Tn) such that γ(0) = y,γ(t) = x , and

∫ t

0

�

L(γ(s),γ′(s)) +H(0)
�

ds ≤ 1.

By using the fact that L(x , v)≥ θ
2 |v|

2 − C , we deduce

∫ t

0

|γ′(s)|2 ds ≤ C(1+ t).

Then, by the usual Cauchy-Schwarz inequality,

∫ t

0

|γ′(s)| ds ≤
�∫ t

0

|γ′(s)|2 ds

�1/2�∫ t

0

1 ds

�1/2

≤ C t1/2(1+ t)1/2. (7.33)
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Let σ = r2/C . Thanks to (7.33), if t ≤ σ, then γ(s) ∈ B(y, r) for all s ∈ [0, t]. By adjusting
σ, we might assume that δ = kσ for some k ∈ N. Note then that

k inf

¨

∫ T

0

�

L(γ(s),γ′(s)) +H(0)
�

ds : γ ∈ AC ([0, T],Tn), T ≥ σ,γ(0) = γ(T ) = y

«

≥ inf

¨

∫ T

0

�

L(γ(s),γ′(s)) +H(0)
�

ds : γ ∈ AC ([0, T],Tn), T ≥ δ,γ(0) = γ(T ) = y

«

> 0,

we see that there exists a > 0 such that

inf

¨

∫ T

0

�

L(γ(s),γ′(s)) +H(0)
�

ds : γ ∈ AC ([0, T],Tn), T ≥ σ,γ(0) = γ(T ) = y

«

> a.

We now consider two cases. The first case is when t ≤ σ. Then, as noted above, γ(s) ∈
B(y, r) for all s ∈ [0, t], and

∫ t

0

�

L(γ(s),γ′(s)) +H(0)
�

ds ≥
∫ t

0

�

L(γ(s),γ′(s)) +H(γ(s), q)
�

ds

≥
∫ t

0

γ′(s) · q ds = q · (x − y).

The second case is when t > σ. We use γ to create a loop starting from y as following. Let
η : [0, t + |x − y|/r]→ Tn be such that

η(s) =

¨

γ(s) for s ∈ [0, t],
x + (s− t)r y−x

|y−x | for s ∈ [t, t + |x − y|/r].

Then,

a <

∫ t+|x−y|/r

0

�

L(η(s),η′(s)) +H(0)
�

ds

=

∫ t

0

�

L(γ(s),γ′(s)) +H(0)
�

ds+

∫ t+|x−y|/r

t

�

L
�

η(s), r
y − x
|y − x |

�

+H(0)
�

ds

≤
∫ t

0

�

L(γ(s),γ′(s)) +H(0)
�

ds+
C |x − y|

r

≤
∫ t

0

�

L(γ(s),γ′(s)) +H(0)
�

ds+
C r1

r

We now choose r1 such that C r1
r ≤

a
2 to deduce that

∫ t

0

�

L(γ(s),γ′(s)) +H(0)
�

ds ≥
a
2

.

Combining the two cases, we yield that, for x ∈ B(y, r1) \ {y},

S(x , y)≥min
n

q · (x − y),
a
2

o

. (7.34)

Thanks to (7.34), we have that q ∈ D−S(y, y). However, as H(y, q) < H(0), the supersolu-
tion test for S(x , y) fails at the vertex x = y . This gives that y /∈A, which is absurd.
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Remark 7.42. One important point in the second step of the proof above is if δ = kσ for
some k ∈ N, then

k inf

¨

∫ T

0

�

L(γ(s),γ′(s)) +H(0)
�

ds : γ ∈ AC ([0, T],Tn), T ≥ σ,γ(0) = γ(T ) = y

«

≥ inf

¨

∫ T

0

�

L(γ(s),γ′(s)) +H(0)
�

ds : γ ∈ AC ([0, T],Tn), T ≥ δ,γ(0) = γ(T ) = y

«

.

This is quite clear to see as for any given path γ in the admissible class of the left hand side
above, we let γ̄ be the curve γ with multiplicity k, then γ̄ is in the admissible class of the
right hand side above.

Thus, we see that (7.30) holds for all δ > 0 if and only if (7.30) holds for some δ > 0.

We are now ready to give an equivalent definition of the projected Aubry set.

Definition 7.43 (An equivalent definition of the projected Aubry set). For y ∈ Tn, we say
that y ∈A if

inf

�∫ t

0

�

L(γ(s),γ′(s)) +H(0)
�

ds : γ ∈ AC ([0, t],Tn) for t > δ,γ(0) = γ(t) = y

�

= 0

(7.35)
for some fixed δ > 0.

Roughly speaking, this definition gives a nice geometric interpretation of points in the pro-
jected Aubry set as following. Fix δ > 0. Then, a point y ∈ Tn is in the projected Aubry
set if one is able to find loops containing y with length at least δ such that it costs almost
nothing (with the precise cost functional in (7.35)) to travel on these loops.

We next show that the projected Mather set is a subset of the projected Aubry set. Again,
we always fix P = 0 here.

Theorem 7.44. Assume (7.1). Then
M0 ⊂A.

Proof. We use some ideas in the proof of Theorem 7.9 and Remark 7.10.

Let u ∈ Lip (Tn) be a solution to (7.23) and y ∈ M0. Let ξ be a backward characteristic
of u starting from y . Then, as y ∈M0, y is in the α-limit set of the trajectory {ξ(s) : s ∈
(−∞, 0]}. In other words, there exists a sequence {sk} → −∞ such that ξ(sk)→ y , and

u(y)− u(ξ(sk)) =

∫ 0

sk

�

L(ξ(s),ξ′(s)) +H(0)
�

ds

We use ξ to create a loop starting from y as following. For each k ∈ N, denote by ηk :
[sk − |ξ(sk)− y|, 0]→ Tn the following curve

ηk(s) =

¨

ξ(s) for s ∈ [sk, 0],
y + (s− sk + |ξ(sk)− y|) ξ(sk)−y

|ξ(sk)−y| for s ∈ [sk − |ξ(sk)− y|, sk].
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It is then clear that

lim
k→∞

∫ 0

sk−|ξ(sk)−y|

�

L(ηk(s),η
′
k(s)) +H(0)

�

ds = 0,

which gives us that y ∈A.

In the following, we show that if y ∈A, then S(x , y) is differentiable at y .

Proposition 7.45. Assume (7.1) and y ∈A. Then, x 7→ S(x , y) is differentiable at y.

Proof. As y ∈A, we are able to find a sequence of C2 curves γn : [0, tn]→ Tn such that
¨

γn(0) = γn(tn) = y, tn→∞,‖γ′n‖L∞([0,tn]) ≤ C ,
∫ tn

0

�

L(γn(s),γ′n(s)) +H(0)
�

ds→ 0.
(7.36)

Note that γn is an orbit of the Euler-Lagrange flow for each n ∈ N. By extracting a subse-
quence if necessary, we may assume that {γn} converges to γ : [0,∞) → Tn locally uni-
formly in the C1 topology.

Fix t ∈ (0,∞). For n ∈ N sufficiently large such that tn > t, let dn = |γn(t) − γ(t)|.
Similar to the construction of ηk in the proof of Theorem 7.44 above, we construct a curve
γ̃n : [t−dn, tn]→ Tn from γ(t) to y by joining together a unit speed line segment from γ(t)
to γn(t) with γn on [t, tn]. It is clear that

S(y,γ(t))≤
∫ tn

t−dn

L(γ̃n(s), γ̃
′
n(s)) ds ≤ Cdn +

∫ tn

t

L(γn(s),γ
′
n(s)) ds.

Hence,

S(y,γ(t)) +

∫ t

0

�

L(γn(s),γ
′
n(s)) +H(0)

�

ds ≤ Cdn +

∫ tn

0

L(γn(s),γ
′
n(s)) ds.

Let n→∞ and use (7.36) to yield that

S(y,γ(t)) +

∫ t

0

�

L(γ(s),γ′(s)) +H(0)
�

ds ≤ 0. (7.37)

On the other hand,

S(γ(t), y)≤
∫ t

0

�

L(γ(s),γ′(s)) +H(0)
�

ds. (7.38)

Combine the two inequalities above to imply

0= S(y, y)≤ S(y,γ(t)) + S(γ(t), y)≤ 0

Thus, equalities in (7.37) and (7.38) must happen. In a similar way, we can construct
γ : (−∞, 0]→ Tn.

We therefore have γ : (−∞,∞)→ Tn with γ(0) = y , and, for t ∈ R,

S(γ(t), y) = −S(y,γ(t)) =

∫ t

0

�

L(γ(s),γ′(s)) +H(0)
�

ds. (7.39)
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By Theorem 7.6, S(·, y) is differentiable at γ(t) for all t ∈ R, and

DS(γ(t), y) = Dv L(γ(t),γ′(t)).

In particular, S(·, y) is differentiable at x = y .

Remark 7.46. In the above proof, we have actually shown that for each y ∈ A, there is a
two-sided minimizer γ : (−∞,∞)→ Tn with γ(0) = y satisfying (7.39). In the literature,
γ is also called a calibrated curve on R.

In fact, for any subsolution u ∈ Lip (Tn) of (7.23), we have

u(y)− u(γ(t))≤ S(y,γ(t)) and u(γ(t))− u(y)≤ S(γ(t), y).

Thus, (7.37) and (7.38) can be changed to

u(y)− u(γ(t)) +

∫ t

0

�

L(γ(s),γ′(s)) +H(0)
�

ds ≤ 0.

On the other hand,

u(γ(t))− u(y)≤
∫ t

0

�

L(γ(s),γ′(s)) +H(0)
�

ds.

This means that we also must have equalities happen in the two above. In particular, for
each t ∈ R,

u(γ(t))− u(y) =

∫ t

0

�

L(γ(s),γ′(s)) +H(0)
�

ds.

By Theorem 7.6, u is differentiable at y , and

Du(y) = DS(y, y) = Dv L(γ(0),γ′(0)).

6 References
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6. The PDE approach via nonlinear adjoint method here has an advantage that it works
well for general viscous Hamilton–Jacobi equations. We do not cover the viscous cases
here. See Gomes [71], Cagnetti, Mitake, Gomes, Tran [23], Mitake, Tran [116, 117],
Ishii, Mitake, Tran [87, 88].

7. For various examples on non-uniqueness of solutions to the cell problems, see Chapter
4, and Le, Mitake, Tran [100, Chapter 6].
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CHAPTER 8
Further properties of the effective
Hamiltonians in the convex setting

In this chapter, we aim at studying further properties of H in case that H = H(x , p) is convex
in p. As mentioned repeatedly in previous chapters, not so much of deep properties of H
is known at the moment. Nevertheless, with the developments of weak KAM theory in the
previous chapter, we are able to understand a bit more about H. We will address appropriate
assumptions that we need in each section below. The results in the sections in this chapter
are rather disjoint.

1 Strict convexity of the effective Hamiltonian in certain
directions

In this section, we always assume that
¨

H ∈ C2(Tn ×Rn),
there exists θ > 0 such that θ In ≤ D2

ppH(x , p)≤ θ−1In for all (x , p) ∈ Tn ×Rn.
(8.1)

Let L = L(y, v) be the corresponding Lagrangian. By changing θ > 0 to be smaller if needed,
we may also assume that
¨

L ∈ C2(Tn ×Rn),
there exists θ > 0 such that θ In ≤ D2

vv L(x , v)≤ θ−1In for all (x , v) ∈ Tn ×Rn.
(8.2)

Here is the main result in this section.

Theorem 8.1. Assume (8.1). Then, there exists a positive constant C such that for each R ∈ Rn,
we have

−R · Q̃, R · Q̂ ≤ C

�

lim inf
t→0+

H(P + tR) +H(P − tR)− 2H(P)
t2

�1/2

,

for some Q̃, Q̂ ∈ D−H(P). In particular, if H is twice differentiable at P, then

|DH(P) · R| ≤ C(R · D2H(P)R)1/2

for each R ∈ Rn.
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This result is taken from Evans, Gomes [53]. We also follow their approach to give a proof
here.

Proof. Fix R ∈ Rn. Denote by

ũ= u(·, P + tR) and û= u(·, P − tR)

solutions to the cell problems at P + tR and P − tR, respectively. As ũ, û are not smooth, we
smooth them up as usual. Let ρ ∈ C∞c (R

n, [0,∞)) be a standard mollifier. For δ > 0, let
ρδ(x) = δ−nρ(δ−1 x) for all x ∈ Rn. Denote by

ũδ = ρδ ∗ ũ and ûδ = ρδ ∗ û.

Then, of course, ũδ, ûδ ∈ C∞(Tn), ũδ→ ũ, ûδ→ û in C(Tn) as δ→ 0. Moreover,
¨

H(x , P + tR+ Dũδ)≤ H(P + tR) + Cδ,

H(x , P − tR+ Dûδ)≤ H(P − tR) + Cδ,
in Tn.

We simply write u= u(·, P) as a solution to the cell problem at P. Let µ be a Mather measure
corresponding to u, and σ = π ◦ µ, its projection to Tn. By the Lipschitz graph theorem
(Theorem 7.16), µ is supported on a Lipschitz graph, and for x ∈ spt(σ), u is differentiable
at x , and

H(x , P + tR+ Dũδ(x)) +H(x , P − tR+ Dûδ(x))− 2H(x , P + Du(x))

≤ H(P + tR) +H(P − tR)− 2H(P) + Cδ.

By the uniform convexity of H,

H(x , P + tR+ Dũδ(x))−H(x , P + Du(x))

≥ DpH(x , P + Du(x)) · (tR+ (Dũδ(x)− Du(x))) +
θ

2
|tR+ (Dũδ(x)− Du(x))|2,

and

H(x , P − tR+ Dûδ(x))−H(x , P + Du(x))

≥ DpH(x , P + Du(x)) · (−tR+ (Dûδ(x)− Du(x))) +
θ

2
| − tR+ (Dûδ(x)− Du(x))|2.

Combine the two inequalities above to imply

H(x , P + tR+ Dũδ(x)) +H(x , P − tR+ Dûδ(x))− 2H(x , P + Du(x))

≥ DpH(x , P + Du(x)) · D(ũδ + ûδ − 2u) +
θ

2
|tR+ D(ũδ − u)(x)|2 +

θ

2
| − tR+ D(ûδ − u)(x)|2.

Note that
∫

Tn

DpH(x , P + Du(x)) · D(ũδ + ûδ − 2u) dσ(x) = 0.

Therefore,
∫

Tn

�

|tR+ D(ũδ − u)|2 + | − tR+ D(ûδ − u)|2
�

dσ ≤ C
�

H(P + tR) +H(P − tR)− 2H(P) + Cδ
�

.

(8.3)
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On the other hand,

H(P)−H(P + tR)≤
∫

Tn

(H(x , P + Du)−H(x , P + tR+ Dũδ)) dσ+ Cδ

≤ C

�∫

Tn

| − tR+ D(u− ũδ)|2 dσ

�1/2

+ Cδ, (8.4)

and

H(P)−H(P − tR)≤
∫

Tn

(H(x , P + Du)−H(x , P − tR+ Dûδ)) dσ+ Cδ

≤ C

�∫

Tn

|tR+ D(u− ûδ)|2 dσ

�1/2

+ Cδ. (8.5)

Combine (8.3)–(8.5) and let δ→ 0 to observe that

¨

H(P)−H(P + tR)≤ C
�

H(P + tR) +H(P − tR)− 2H(P)
�1/2

,

H(P)−H(P − tR)≤ C
�

H(P + tR) +H(P − tR)− 2H(P)
�1/2

.

Thus, for any Q̃(t) ∈ D−H(P + tR), and Q̂(t) ∈ D−H(P − tR),

−tQ̃(t) · R, tQ̂(t) · R≤ C
�

H(P + tR) +H(P − tR)− 2H(P)
�1/2

.

Hence, we can find a sequence {tk} → 0+ so that Q̃(tk)→ Q̃, Q̂(tk)→ Q̂ with Q̃, Q̂ ∈ D−H(P)
such that

−R · Q̃, R · Q̂ ≤ C

�

lim inf
t→0+

H(P + tR) +H(P − tR)− 2H(P)
t2

�1/2

,

Of course, if H is twice differentiable at P, we have last claim in the theorem automatically.

Remark 8.2. By the above theorem, we see that if H is differentiable at P, then it is strictly
convex in each direction R which is not tangent to the level set

�

H = H(P)
	

.

For H(P) > minRn H, then 0 /∈ D−H(P). This implies that there is an open convex cone of
directions R in which H is strictly convex at P. In particular, we conclude that H can only
have flat parts at its minimum value. Of course, we have seen earlier in some examples that
H indeed has a flat part there at minRn H, and this theorem confirms that this is the only
possible flat part.

2 Asymptotic expansion at infinity

We assume here that

H(x , p) =
1
2
|p|2 + V (x) for (x , p) ∈ Tn ×Rn.
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Here, we consider a very simple setting where the potential energy V ∈ C(Tn) is a trigono-
metric polynomial, that is, V satisfies that

¨

V (x) = λ0 +
∑m

j=1(λ je
i2πk j ·x +λ je

−i2πk j ·x),
where λ0 ∈ R, {λ j}mj=1 ⊂ C and {k j}mj=1 ⊂ Z

n \ {0} are given.
(8.6)

Recall that λ j is the complex conjugate of λ j for 1 ≤ j ≤ m. Our aim, of course, is to
understand H better. It turns out that we are able to read off certain information of H(p)
as |p| →∞.

2.1 The method of asymptotic expansion at infinity

Let us explain first what is this method heuristically. For a given vector Q 6= 0 and ε > 0, set
p = Qp

ε
. The cell problem for this vector p is

1
2

�

�

�

�

Q
p
ε
+ Dvε

�

�

�

�

2

+ V (x) = H
�

Q
p
ε

�

in Tn.

Here, vε ∈ C(Tn) is a solution to the above. Multiply both sides by ε to yield

1
2
|Q+

p
εDvε|2 + εV (x) = εH

�

Q
p
ε

�

=: H
ε
(Q) in Tn. (8.7)

To understand the asymptotic behavior of H in the direction Q at infinity (more precisely,
at Qp

ε
as ε→ 0), we aim at finding asymptotic expansion of H

ε
(Q). Let us first use a formal

asymptotic expansion to do computations. We use an ansatz as following
¨p
εvε(x) = εv1(x) + ε2v2(x) + ε3v3(x) + · · · ,

H
ε
(Q) = a0 + εa1 + ε2a2 + ε3a3 + · · · .

Plug these into (8.7) to imply

1
2
|Q+ εDv1 + ε

2Dv2 + · · · |2 + εV = H
ε
(Q) = a0 + εa1 + ε

2a2 + · · · in Tn.

We first compare the O(1) terms in both sides of the above equality to get

a0 =
1
2
|Q|2.

By using O(ε), we get
Q · Dv1 + V = a1 in Tn.

Hence, a1 =
∫

Tn V d x = λ0 and

Dv1 = −
m
∑

j=1

(λ je
i2πk j ·x +λ je

−i2πk j ·x)
k j

k j ·Q
, (8.8)

provided that we do not divide by zero. Next, using O(ε2),

1
2
|Dv1|2 +Q · Dv2 = a2 in Tn,
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we achieve that

a2 =
m
∑

j=1

|λ j|2|k j|2

|k j ·Q|2
. (8.9)

Plug this back to get an equation for v2 as

Q · Dv2 = a2 −
1
2
|Dv1|2

= −
1
2

∑

±k j±kl 6=0

λ±j λ
±
l k j · kl

(k j ·Q)(kl ·Q)
ei2π(±k j±kl )·x .

Here for convenience, for 1≤ j ≤ m, we denote by

λ+j = λ j and λ−j = λ j.

Thus,

Dv2 = −
1
2

∑

±k j±kl 6=0

λ±j λ
±
l k j · kl

(k j ·Q)(kl ·Q)
ei2π(±k j±kl )·x

±k j ± kl

(±k j ± kl) ·Q
.

Let us now switch to a symbolic way of writing to keep track with all terms. We write
∑

G
to mean that it is a good sum where all terms are well-defined, that is, all denominators of
the fractions in the sum are not zero. We have

Dv2 = −
1
2

∑

G

λ±j1λ
±
j2
k j1 · k j2

(k j1 ·Q)(k j2 ·Q)
ei2π(±k j1±k j2 )·x

±k j1 ± k j2

(±k j1 ± k j2) ·Q
. (8.10)

Next, O(ε3) gives us the following relation

Q · Dv3 = a3 − Dv1 · Dv2.

Hence,

a3 =

∫

Tn

Dv1 · Dv2 d x ,

and

Dv3 = −
1
2

∑

G

λ±j1λ
±
j2
λ±j3(k j1 · k j2)(±k j1 ± k j2) · k j3

(k j1 ·Q)(k j2 ·Q)(k j3 ·Q)(±k j1 ± k j2) ·Q
×

× ei2π(±k j1±k j2±k j3 )·x
±k j1 ± k j2 ± k j3

(±k j1 ± k j2 ± k j3) ·Q
. (8.11)

The O(ε4) term yields

Dv1 · Dv3 +
1
2
|Dv2|2 +Q · Dv4 = a4.

Integrate to get

a4 =
1
2

∫

T2

|Dv2|2 d x +

∫

T2

Dv1 · Dv3 d x .

Of course, v4 satisfies

Q · Dv4 = a4 − Dv1 · Dv3 −
1
2
|Dv2|2. (8.12)
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It can be seen that although we have formulas for a3 and a4, they are already quite compli-
cated to be written down explicitly in general. By computing in an iterative way, we can get
formulas of al and vl for all l ∈ N. Clearly, these formulas are extremely involved and hard
to be use. Nevertheless, they do contain important information about how V influences
H
ε
(Q). It is necessary to come up with correct ways to read off the information.

2.2 Rigorous expansion

It turns out that the above formal asymptotic expansion of H
ε
(Q) holds true rigorously. As

we stop at a4, let us verify the result up to five terms in the asymptotic expansion.

Theorem 8.3. Assume that H(x , p) = 1
2 |p|

2+ V (x) for all (x , p) ∈ Tn×Rn, where V satisfies
(8.6). Let H be the effective Hamiltonian corresponding to H. Let Q 6= 0 be a vector in Rn

such that Q is not perpendicular to each nonzero vector of k j1 , ±k j1 ± k j2 , ±k j1 ± k j2 ± k j3 , and
±k j1 ± k j2 ± k j3 ± k j4 for 1≤ j1, j2, j3, j4 ≤ m.

For ε > 0, set H
ε
(Q) = εH1

�

Qp
ε

�

. Then we have that, as ε→ 0,

H
ε
(Q) =

1
2
|Q|2 + εa1 + ε

2a2 + ε
3a3 + ε

4a4 +O(ε5),

where a1, a2, a3, a4 are the constants derived in the previous section. Here, the error term
satisfies |O(ε5)| ≤ Kε5 for some K depending only on Q, {λ j}mj=1 and {k j}mj=1.

The proof of this turns out to be quite simple. We just need to use the viscosity solution
techniques to show that our expansion, which is smooth, approximates pretty well H

ε
(Q).

It is worth mentioning that the error term O(ε5) does depend on the position of Q.

Proof. Let v1, v2, v3, v4 be solutions to (8.8), (8.10), (8.11), (8.12), respectively. Let φ =
εv1 + ε2v2 + ε3v3 + ε4v4. Then φ is of course smooth, and φ satisfies

1
2
|Q+ Dφ|2 + εV =

1
2
|Q|2 + εa1 + ε

2a2 + ε
3a3 + ε

4a4 +O(ε5) in Tn.

Here, the error term O(ε5) can be seen explicitly in the computations as

O(ε5) = ε5
�

Dv1 · Dv4 + Dv2 · Dv3

�

+ ε6
�

Dv2 · Dv4 +
1
2
|Dv3|2

�

+ ε7
�

Dv3 · Dv4

�

+ ε8 |Dv4|2

2
.

It is clear that |O(ε5)| ≤ Kε5 for some K depending only on Q, {λ j}mj=1 and {k j}mj=1.

Recall that w =
p
εvε1 is a solution to (8.7). We now use φ, which is smooth, as a test

function for (8.7). By looking at the places where w−φ attains its maximum and minimum
in Tn and using the definition of viscosity subsolutions and supersolutions, respectively, we
arrive at the conclusion that

H
ε
(Q) =

1
2
|Q|2 + εa1 + ε

2a2 + ε
3a3 + ε

4a4 +O(ε5).
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Remark 8.4. Let t = ε−1/2. Then, from the above theorem, we get that

H(tQ)
t2

=
1
2
|Q|2 +

1
t2

a1 +O
�

1
t4

�

=
1
2
|Q|2 +

1
t2

∫

Tn

V d x +O
�

1
t4

�

,

which tells us that at infinity, we see the average of V as the next order term after 1
2 |Q|

2.
This is quite interesting as this term is independent of Q. The next term in the expansion

1
t4

a2 =
1
t4

m
∑

j=1

|λ j|2|k j|2

|k j ·Q|2

is clearly dependent on Q.

3 The classical Hedlund example

In dimensions three or higher (n ≥ 3), it is quite hard to understand deeply about H. We
discuss now a classical and famous example pointed out by Hedlund [79]. See Bangert [12,
Section 5] and E [44] for more modern accounts of this example.

Let us consider the simplest case in three dimensions (n= 3) with Hamiltonian

H(y, p) =
1

a(y)
|p| for all (y, p) ∈ R3 ×R3, (8.13)

where a : R3→ [δ, 1+δ] is a smooth Z3-periodic function satisfying

(i) a ≥ 1 outside Uδ(L) and minR3 a = δ;

(ii) a(y) = δ if and only if y ∈ L.

Here,

L=
3
⋃

i=1

�

li +Z3
�

where l1 = R × {0} × {0}, l2 = {0} × R × {
1
2} and l3 = {

1
2} × {

1
2} × R are straight lines

in R3. The constant δ ∈ (0, 10−2) is fixed, and Uδ is the Euclidean δ-neighborhood of L,
which is basically the union of tubes. For 1 ≤ i ≤ 3, each li is a minimizing geodesic for
the Riemannian metric ds2 = a(y)2

∑3
i=1 d y2

i . It is important noting that the tubes around
li for 1≤ i ≤ 3 stay away from each other.

Of course, we can think of H as H ∈ C(T3 × R3). It is clear here that H is convex, but
not uniformly convex in p, and it corresponds to a front propagation problem, which is
extremely important in practice. This Hamiltonian is often called a metric Hamiltonian in
the literature. It turns out that in this case, we have an explicit formula for H as following.

Theorem 8.5. Assume that H is of the form (8.13). Let H be its corresponding effective Hamil-
tonian. Then,

H(p) =
1
δ

max {|p1|, |p2|, |p3|} for p = (p1, p2, p3) ∈ R3.
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y1

y2

y3

Figure 8.1: Shape of Uδ(L)

Theorem 8.5 was proved by Bangert [12] in the dual form of the stable norm. We give here
a purely PDE proof.

Proof. By the inf-sup (or inf-max) formula, we have, for p ∈ R3,

H(p) = inf
φ∈C1(T3)

max
y∈T3

1
a(y)

|p+ Dφ(y)|.

It is clear that H is positively 1-homogeneous. Fix p ∈ R3 with |p| ≥ 1. Without loss of
generality, let us assume |p1| ≥ |p2|, |p3|. For each φ ∈ C1(T3), on l1, y1 7→ φ(y1, 0, 0) has a
minimum at some ȳ = ( ȳ1, 0, 0) ∈ T3. This implies

max
y∈T3

1
a(y)

|p+ Dφ(y)| ≥
1

a( ȳ)
|p+ Dφ( ȳ)| ≥

1
δ
|p1|.

Thus,

H(p)≥
1
δ

max {|p1|, |p2|, |p3|} .

To prove the converse, we construct a corresponding subsolution ϕ ∈ C1(T3) so that

ϕ(y) =



















−(p2 y2 + p3 y3) for y ∈ Uδ(l1)∩T3,

−(p1 y1 + p3(y3 −
1
2)) for y ∈ Uδ(l2)∩T3,

−(p1(y1 −
1
2) + p2(y2 −

1
2)) for y ∈ Uδ(l3)∩T3,

0 for y ∈ T3 \ U2δ(l1 ∪ l2 ∪ l3),

and |Dϕ| ≤ C in T3. This is possible as |ϕ(y)| ≤ Cδ for y ∈ Uδ(l1 ∪ l2 ∪ l3)∩T3. Then, it is
quite straightforward to check that

1
a(y)

|p+ Dϕ(y)| ≤
1
δ

max {|p1|, |p2|, |p3|} in T3.

In fact, the above inequality is strict for all y ∈ T3 \ (l1 ∪ l2 ∪ l3). The proof is complete.
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Remark 8.6. Let us discuss more about the Hedlund example here. As

H(p) =
1
δ

max {|p1|, |p2|, |p3|} for p = (p1, p2, p3) ∈ R3,

it is clear that H is only Lipschitz, not differentiable in R3, and its level sets are concentric
cubes in R3. Moreover, if H is differentiable at p, then DH(p) ∈

� e1
δ , e2

δ , e3
δ

	

. If DH(p) = ei
δ

for some 1 ≤ i ≤ 3, then a corresponding backward characteristic is li. It is not hard to
show that li is the unique trajectory of the projected Mather set at p.

Although we do not discuss in deep the projected Aubry set here, the above proof also gives
that the projected Aubry set at each p ∈ R3 can contain at most l1∪ l2∪ l3. And as the Aubry
set is bigger than the projected Mather set, this also means that the projected Mather set is
always a subset of l1 ∪ l2 ∪ l3. Thus, classically, to obtain rotation vectors from backward
characteristics, we are only able to get three rotation vectors

� e1
δ , e2

δ , e3
δ

	

. This gives a detailed
explanation for Remark 7.7.

This Hedlund example also explains a weakness of weak KAM theory in dimensions three
and higher, where the projected Aubry and projected Mather sets might only occupy a tiny
part of Tn, and do not give us much information. Notice that a solution u ∈ Lip (Tn) to our
cell problem is differentiable almost everywhere, and thus, the set of differentiable points
of u is much richer than Aubry and projected Mather sets in this situation.

4 A generalization of the classical Hedlund example

In this section, we assume that n ≥ 3, and we provide a generalization of the classical
Hedlund example as following.

Theorem 8.7. Assume that n ≥ 3. Let P ⊂ Rn be a centrally symmetric polytope with ra-
tional vertices and nonempty interior. Then, we are able to construct explicitly a function
a ∈ C∞(Tn, (0,∞)) such that, for H(y, p) = 1

a(y) |p| for (y, p) ∈ Tn×Rn, then the correspond-

ing H is
H(p) =max

q∈P
p · q for all p ∈ Rn.

We present here a proof following Jing, Tran, Yu [93], which is quite simple and has similar
flavors as that of Theorem 8.5. This result was also presented in Babenko, Balacheff [10],
Jotz [94] in the equivalent form of stable norms.

Proof. Assume that the vertices of P are ±q1,±q2, . . . ,±qm, which are rational vectors in Rn.
Denote by Li = {tqi : t ∈ R} for 1 ≤ i ≤ m. Since P is convex and has nonempty interior,
q1, q2, . . . , qm are mutually non-parallel and

span{q1, q2, . . . , qm}= Rn.

As a result,
θ =min

|p|=1
max
1≤i≤m

|p · qi|> 0.

As usual, we divide the proof into several steps for clarity.
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STEP 1. Construction of aA. Let y1 = 0. For k ≤ m− 1, choose inductively that

yk+1 ∈ (0,1)n\
k
⋃

i=1

{yi + sqk+1 + tqi +Zn : s, t ∈ R} .

Then for such selected points y1, y2, . . . , ym ∈ (0,1)n, we have that for i 6= j,

(yi + Li +Zn)∩ (y j + L j +Zn) = ;. (8.14)

Due to the fact that {qi} are rational vectors, the projection of {yi+ Li+Zn} to the flat torus
Tn is a closed orbit for each 1 ≤ i ≤ m. As a result, we can choose a sufficiently small
number δ ∈ (0, 1/3) so that, for i 6= j,

Uδ,i ∩ Uδ, j = ;,

where
Uδ,i = {y ∈ Rn : dist(y, yi + Li +Zn)≤ δ}.

Choose a smooth Zn-periodic function aA : Rn→ (0,∞) such that











aA(y) =
1

A|qi |
on yi + Li +Zn for 1≤ i ≤ m,

1
A|qi |
≤ aA(y)≤ 1 on Uδ,i for 1≤ i ≤ m,

aA(y) = 1 on Rn\
⋃m

i=1 Uδ,i.

Here, A> 0 is a large positive constant to be determined later.

Next, for every unit vector |p|= 1 and 1≤ i ≤ m, write

p⊥i = p−
(p · qi)
|qi|2

qi,

which is the projection of p onto the (n− 1)-dimensional Euclidean subspace of Rn that is
perpendicular to qi. Apparently, we can construct a smoothZn-periodic functionφ satisfying
that

Dφ(y) = −p⊥i in Uδ,i for all 1≤ i ≤ m,

and
‖Dφ‖L∞ ≤ Cδ,

for a constant Cδ > 0 depending only on δ, and q1, q2, . . . , qm. We now pick A such that

A≥max

�

1+ Cδ
θ

,
1

min1≤i≤m |qi|

�

.

STEP 2. Characterization of the effective Hamiltonian. Let HA be the effective Hamilto-
nian corresponding to the Hamiltonian aA(y)|p|. We claim that

HA(p) = A max
1≤i≤m

|p · qi| for all p ∈ Rn. (8.15)
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We only need to prove this claim for unit vectors |p| = 1. Let us fix such a p. Firstly, by
using φ and the choice of A above, it is clear that

HA(p)≤max
y∈Rn

1
aA(y)

|p+ Dφ(y)|

≤max
n

A max
1≤i≤m

|p · qi|, 1+ Cδ
o

= A max
1≤i≤m

|p · qi|.

Secondly, let v = vp be a solution of the corresponding ergodic problem

1
aA(y)

|p+ Dv(y)|= HA(p) in Tn.

For simplicity, we assume v ∈ C1(Tn) (to make this rigorous, one needs to do convolution
with a standard mollifier, but we omit it here as this was done in various earlier proofs
already). Then, for each 1≤ i ≤ m,

A|qi| · |p+ Dv(y)|= HA(p) for y ∈ yi + Li +Zn.

Denote by u(y) = p · y + v(y) for y ∈ Rn. Choose m ∈ Z such that mqi ∈ Zn. Thanks to the
periodicity of v,

u(yi +mqi)− u(yi) = mp · qi.

Since |u(yi +mqi)− u(yi)| ≤ m|qi|maxy∈x i+Li
|Du(y)|, we deduce that

HA(p)≥ A|p · qi|.

Therefore, (8.15) holds true.

STEP 3. Construction of a. Let a(y) = AaA(y) for y ∈ Rn. Then by scaling the result of
Step 2, the effective Hamiltonian H(p) is

H(p) =
HA(p)

A
= max

1≤i≤m
|p · qi|= max

q∈{±q1,··· ,±qm}
p · q =max

q∈P
p · q, for all p ∈ Rn.

This completes the proof. Basically, it means that H is a convex, positively 1-homogeneous
function with the support set P.

Remark 8.8. From the constructions in the above proof, we observe two following simple
but important points.

• This kind of construction does not work in two dimensions. Indeed, in two dimen-
sions, there is no room for us in order to have that (8.14) holds.

• By properly choosing the rational vectors {qi}1≤i≤m and δ, it is not hard to construct
a sequence {am(·)} ⊂ C∞(Tn) such that

0< am ≤ 1, lim
m→∞

am(y) = 0 for a.e. y ∈ Tn,

and
lim

m→∞
Hm(p) = |p| locally uniformly in Rn.

Here, Hm is the effective Hamiltonian corresponding to the Hamiltonian am(y)|p|.
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5 References

1. Strict convexity of the effective Hamiltonian in certain directions is taken from Evans,
Gomes [53].

2. Asymptotic expansion at infinity is taken from Luo, Tran, Yu [107]. See also Jing,
Tran, Yu [92], and Tran, Yu [132]. The method of asymptotic expansion at infinity
was used in [107, 92, 132] to study inverse problems on how V affects H. This can
be seen also from the above expansion of H.

3. The classical Hedlund example was studied by Hedlund [79]. Then, Bangert [12] and
E [44] give connections of this example to Aubry–Mather theory and weak KAM theory.
Still, optimal rate of convergence of homogenization holds for this Hamiltonian (see
Mitake, Tran, Yu [118]).

4. The proof of Theorem 8.7 is taken from Jing, Tran, Yu [93]. This result was also
presented in Babenko, Balacheff [10], Jotz [94] in the equivalent form of stable norms
with more complicated proofs.
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Appendix

In Appendix, we cover some important results that we need in the book.

1 Sion’s minimax theorem

Here is the statement of the theorem.

Theorem A.1 (Sion’s minimax theorem). Let X be a compact convex subset of a linear topo-
logical space, and Y be a convex subset of a linear topological space. Let f : X × Y → R be a
function such that

(i) f (x , ·) is upper semicontinuous and quasiconcave on Y for each x ∈ X ;

(ii) f (·, y) is lower semicontinuous and quasiconvex on X for each y ∈ Y .

Then,
min
x∈X

sup
y∈Y

f (x , y) = sup
y∈Y

min
x∈X

f (x , y).

We always assume the settings of Theorem A.1 in this section. We follow here a proof by
Komiya [97], which is quite elementary. Here are two preparatory lemmas.

Lemma A.2. Assume that there are y1, y2 ∈ Y and a ∈ R such that

a <min
x∈X

max{ f (x , y1), f (x , y2)}.

Then, there exists y0 ∈ Y such that

a <min
x∈X

f (x , y0).

Proof. Assume by contradiction that a ≥minx∈X f (x , y) for all y ∈ Y . Pick b ∈ R such that

a < b <min
x∈X

max{ f (x , y1), f (x , y2)}.

Denote by [y1, y2] the line segment connecting y1 and y2. For each z ∈ [y1, y2], set

Cz = {x ∈ X : f (x , z)≤ a} and Dz = {x ∈ X : f (x , z)≤ b}.
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Let A= Dy1
and B = Dy2

. It is clear that Cz, Dz, A, B are all nonempty, convex closed sets in X
because of the lower semicontinuity and quasiconvexity of f (·, z). In particular, Cz, Dz, A, B
are all connected sets. Moreover, by our hypothesis, A∩ B = ;.

On the other hand, the quasiconcavity of f (x , ·) gives, for z ∈ [y1, y2],

f (x , z)≥min{ f (x , y1), f (x , y2)},

which yields Dz ⊂ A∪ B. The connectedness of Dz yields that

Cz ⊂ Dz ⊂ A or Cz ⊂ Dz ⊂ B.

Denote by

I = {z ∈ [y1, y2] : Cz ⊂ A} and J = {z ∈ [y1, y2] : Cz ⊂ B}.

Then, of course, I , J 6= ;, I ∩ J = ;, and I ∪ J = [y1, y2]. As [y1, y2] is connected, we will
show that I , J are both closed to arrive at a contradiction. It is enough to show that I is
closed. Take a sequence {zk} ⊂ I such that zk → z ∈ [y1, y2] as k→∞. Pick x ∈ Cz, then
f (x , z)≤ a. By the upper semicontinuity of f (x , ·),

limsup
k→∞

f (x , zk)≤ f (x , z)≤ a.

Hence, we can find k ∈ N sufficiently large such that f (x , zk) < b, which means that x ∈
Dzk
⊂ A by the fact that {zk} ⊂ I . Thus, Cz ⊂ A, and z ∈ I . The proof is complete.

We apply induction to the above lemma to have the following.

Lemma A.3. Assume that there are y1, y2, . . . , yn ∈ Y and a ∈ R such that

a <min
x∈X

max{ f (x , yi) : 1≤ i ≤ n}.

Then, there exists y0 ∈ Y such that

a <min
x∈X

f (x , y0).

Proof. We prove by induction. There is nothing to prove if n = 1. Assume that the lemma
holds for n= m− 1 for m≥ 2. We show that it holds for n= m. Let

X ′ = {x ∈ X : f (x , ym)≤ a}.

If X ′ = ;, then choose y0 = ym to conclude. Otherwise, X ′ is a nonempty, convex, compact
set. Of course, we have

a <min
x∈X ′

max{ f (x , yi) : 1≤ i ≤ m− 1}.

By the induction hypothesis, there exists y ′0 ∈ Y such that minx∈X ′ f (x , y ′0) > a, which
implies

a <min
x∈X

max{ f (x , y ′0), f (x , ym)}.

Apply Lemma A.2 to conclude.
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We are now ready to prove Sion’s minimax theorem.

Proof of Theorem A.1. It is always the case that

sup
y∈Y

min
x∈X

f (x , y)≤min
x∈X

sup
y∈Y

f (x , y).

To complete, we need to prove the converse. Pick an arbitrary a ∈ R such that

a <min
x∈X

sup
y∈Y

f (x , y).

For y ∈ Y , let X y = {x ∈ X : f (x , y) ≤ a}. Then
⋂

y∈Y X y = ;, and the compactness of X
infers that there are y1, . . . , yn ∈ Y such that

⋂n
i=1 X yn

= ;. Therefore,

a <min
x∈X

max{ f (x , yi) : 1≤ i ≤ n}.

By Lemma A.3, we find that there is y0 ∈ Y so that a <minx∈X f (x , y0), which yields

sup
y∈Y

min
x∈X

f (x , y)≥ a.

Hence,
sup
y∈Y

min
x∈X

f (x , y)≥min
x∈X

sup
y∈Y

f (x , y).

2 Existence and regularity of minimizers for action
functionals

In this section, we study the existence and regularity of minimizers for action functionals.
Let L = L(y, v) : Tn ×Rn → R be the usual Lagrangian. For our purpose, we only consider
the spatial variable y in the flat n-dimensional torus instead of Rn. We always assume in
this section the following
¨

L ∈ C2(Tn ×Rn),
there exists θ > 0 such that θ In ≤ D2

vv L(y, v)≤ θ−1In for all (y, v) ∈ Tn ×Rn.
(A.1)

It is straightforward to see that (A.1) gives us nice bounds of L and Dv L as following. Firstly,
it is clear that there exists C > 0 such that

|Dv L(y, v)| ≤ C(1+ |v|) for all (y, v) ∈ Tn ×Rn.

Secondly, by making θ > 0 smaller if needed, we have

θ

2
|v|2 − K0 ≤ L(y, v)≤

1
2θ
|v|2 + K0 for all (y, v) ∈ Tn ×Rn,

for some K0 > 0.

Let g ∈ Lip (Tn) be a given function. Fix T > 0 and x1 ∈ Tn. Consider the following
variational problem

u(x1, T ) = inf

¨

∫ T

0

L(γ(s),γ′(s)) ds+ g(γ(0)) : γ ∈ AC ([0, T],Tn), γ(T ) = x1

«

. (A.2)
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2.1 Existence of minimizers

Here is our theorem on existence of minimizers for the above action functional.

Theorem A.4. Assume (A.1). Then (A.2) admits a minimizer γ ∈ AC ([0, T],Tn).

We need various preparations before proving this result. Firstly, we need the following
result, which is a classical result in Calculus of Variations on the existence of a minimizer
with fixed endpoints.

Lemma A.5. Fix x0 ∈ Tn. Define

V (x0) = inf

¨

∫ T

0

L(γ(s),γ′(s)) ds : γ ∈ AC ([0, T],Tn), γ(0) = x0,γ(T ) = x1

«

.

Then there is a minimizer for V (x0).

We note first that V is surely always bounded. Fix x0 ∈ Tn. On one hand, as L(y, v) ≥ −K0

for all (y, v) ∈ Tn ×Rn, V (x0) ≥ −K0T . On the other hand, for γ0 : [0, T]→ Tn such that
γ0(s) = x0 +

s
T (x1 − x0) for 0≤ s ≤ T , we have

V (x0)≤
∫ T

0

L(γ0(s),γ
′
0(s)) ds ≤

�

|x1 − x0|2

2θT 2
+ K0

�

T ≤
� n

2θT 2
+ K0

�

T ≤ C .

Next is a key point to prove Lemma A.5 and Theorem A.4.

Lemma A.6. Let {γk} ⊂ AC ([0, T],Tn) with γk(T ) = x1 for all k ∈ N. Assume that there is a
constant C > 0 such that

∫ T

0

L(γk(s),γ
′
k(s)) ds ≤ C for all k ∈ N.

Then, there exist a subsequence {γk j
} of {γk} and γ ∈ AC ([0, T],Tn) such that

γk j
→ γ uniformly on [0, T],

as j→∞, and
∫ T

0

L(γ(s),γ′(s)) ds ≤ lim inf
k→∞

∫ T

0

L(γk(s),γ
′
k(s)) ds.

Basically, this is a result on compactness and lower semicontinuity of the action functional.
We postpone the proof of Lemma A.6 for later. Let us now use it to prove Lemma A.5 and
Theorem A.4 first.

Proof of Lemma A.5. Fix x0 ∈ Tn. As explained earlier, V (x0) is bounded. Pick a minimizing
sequence {γk} ⊂ AC ([0, T],Tn) for V (x0) with γk(0) = x0, γk(T ) = x1 such that

∫ T

0

L(γk(s),γ
′
k(s)) ds ≤ V (x0) +

1
k
≤ C + 1 for all k ∈ N.

Thanks to Lemma A.6, we find a subsequence {γk j
} ⊂ AC ([0, T],Tn) and γ ∈ AC ([0, T],Tn)

such that
γk j
→ γ uniformly on [0, T],
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as j→∞, and

∫ T

0

L(γ(s),γ′(s)) ds ≤ lim inf
k→∞

∫ T

0

L(γk(s),γ
′
k(s)) ds ≤ V (x0).

The uniform convergence of {γk j
} to γ on [0, T] also gives that γ(0) = x0 and γ(T ) = x1.

Thus, γ is a minimizer for V (x0).

We have in addition that V is lower semicontinuous in Tn.

Lemma A.7. The function V is lower semicontinuous in Tn.

Proof. Pick a sequence {yk} ⊂ Tn that converges to x0 ∈ Tn. We aim at showing

V (x0)≤ lim inf
k→∞

V (yk).

For each k ∈ N, we can find γk ∈ AC ([0, T],Tn) such that γk(0) = yk, γk(T ) = x1, and

∫ T

0

L(γk(s),γ
′
k(s)) ds = V (yk)≤ C .

We use Lemma A.6 again to find a subsequence {γk j
} ⊂ AC ([0, T],Tn) and γ ∈ AC ([0, T],Tn)

such that
γk j
→ γ uniformly on [0, T],

as j→∞, and

∫ T

0

L(γ(s),γ′(s)) ds ≤ lim inf
k→∞

∫ T

0

L(γk(s),γ
′
k(s)) ds = lim inf

k→∞
V (yk).

As γ(0) = x0 and γ(T ) = x1, we conclude that

V (x0)≤
∫ T

0

L(γ(s),γ′(s)) ds ≤ lim inf
k→∞

∫ T

0

L(γk(s),γ
′
k(s)) ds = lim inf

k→∞
V (yk).

Proof of Theorem A.4. Recall that, by definition of u(x1, T ) in (A.2), we have

u(x1, T ) = inf
x∈Tn
(V (x) + g(x)) .

As V+ g is lower semicontinuous in Tn, it attains its minimum at a point x0 ∈ Tn. By Lemma
A.5, there is a minimizer γ for V (x0), and therefore, γ is also a minimizer for u(x1, T ).

Let us now proceed to prove Lemma A.6.

Lemma A.8. Assume the settings in Lemma A.6. Then, the sequence {γk} is equi-absolutely
continuous on [0, T].
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Proof. By our assumption (A.1) on L, for all k ∈ N,
∫ T

0

θ

2
|γ′k(s)|

2 ds ≤
∫ T

0

�

L(γk(s),γ
′
k(s)) + K0

�

ds ≤ C + K0T ≤ C .

Thus, for any Borel set B ⊂ [0, T] and any k ∈ N,

∫

B

|γ′k(s)| ds ≤
�∫

B

|γ′k(s)|
2 ds

�1/2�∫

B

1 ds

�1/2

≤ C |B|1/2.

Here, |B| denotes the Lebesgue measure of B. The above implies the conclusion.

Proof of Lemma A.6. By Lemma A.8, we are able to find a subsequence {γk j
} of {γk} and

γ ∈ AC ([0, T],Tn) such that
¨

γk j
→ γ uniformly on [0, T],

γ′k j
*γ′ weakly in L2([0, T]).

(A.3)

Note that, the convexity of L yields
∫ T

0

L(γk j
(s),γ′k j

(s)) ds ≥
∫ T

0

�

L(γk j
(s),γ′(s)) + Dv L(γk j

(s),γ′(s)) · (γ′k j
(s)− γ′(s))

�

ds.

By using the bounds on L, Dv L and (A.3), we obtain

lim
j→∞

∫ T

0

L(γk j
(s),γ′(s)) ds =

∫ T

0

L(γ(s),γ′(s)) ds,

and

lim
j→∞

∫ T

0

Dv L(γk j
(s),γ′(s)) · (γ′k j

(s)− γ′(s)) ds = 0.

The proof is complete.

For more complicated situations about existence of minimizers, see Cannarsa, Sinestrari
[26], Evans [49], Ishii [85].

2.2 Regularity of minimizers

Theorem A.9. Assume (A.1). Let γ ∈ AC ([0, T],Tn) be a minimizer in (A.2). Then γ ∈
C2([0, T]).

Sketch of proof. By the calculus of variation theory, γ solves the following Euler–Lagrange
equation

d
d t

�

Dv L(γ(t),γ′(t))
�

= Dx L(γ(t),γ′(t)) on [0, T].

Denote by X (t) = γ(t), and P(t) = Dv L(γ(t),γ′(t)) for t ∈ [0, T]. Then (X , P) solves the
following Hamiltonian system

¨

X ′(t) = DpH(X (t), P(t)),
P ′(t) = −Dx H(X (t), P(t)),

for t ∈ [0, T].
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As H ∈ C2(Tn ×Rn), we get that X ∈ C2([0, T]), which means γ ∈ C2([0, T]).

Furthermore, it is worth noting here that we have conservation of energy, that is, t 7→
H(X (t), P(t)) is constant. This can be easily checked as

d
d t

H(X (t), P(t)) = Dx H(X (t), P(t)) · X ′(t) + DpH(X (t), P(t)) · P ′(t) = 0.

In particular, this allows us to get that |P(t)| ≤ C , and also |γ′(t)| ≤ C for all t ∈ [0, T].

3 Characterization of the Legendre transform

This is taken from the paper of Artstein-Avidan, Milman [8]. Let us first provide the setting.

Denote the class of lower semi-continuous convex functions φ : Rn → R ∪ {±∞} by
Cvx (Rn). Clearly, the only function in Cvx (Rn) that attains the value −∞ is the constant
−∞ function. Recall that, for φ ∈ Cvx (Rn), its Legendre transform φ∗ is defined as

φ∗(x) = sup
y∈Rn
(y · x −φ(y)) .

And moreover, (φ∗)∗ = φ. It is straightforward from these that the Legendre transform has
two basic properties

¨

For φ ∈ Cvx (Rn), (φ∗)∗ = φ,

For φ,ψ ∈ Cvx (Rn) so that φ ≥ψ, then φ∗ ≤ψ∗.

In the following, we show that if a transformation from Cvx (Rn) to Cvx (Rn) that respects
the above two properties is essentially the Legendre transform.

Theorem A.10. Assume that T : Cvx (Rn)→ Cvx (Rn) is a transformation satisfying

• T (Tφ) = φ,

• φ ≥ψ implies Tφ ≤ Tψ.

Then, T is essentially the Legendre transformation, that is, there exist c0 ∈ R, v0 ∈ Rn, and an
invertible symmetric matrix B of size n such that

(Tφ)(x) = φ∗(Bx + v0) + v0 · x + c0.

Let us now proceed to prove this main theorem, which was obtained by Artstein-Avidan,
Milman [8]. We always assume the settings of Theorem A.10 in this section. For a family
{ fα}α∈A ⊂ Cvx (Rn), we have that supα fα ∈ Cvx (Rn). It is not always the case that infα fα is
convex. We denote by ˇinfα fα the convex envelope of infα fα.
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3.1 Preliminaries

We have the following preparatory results.

Lemma A.11. Fix a family { fα}α∈A ⊂ Cvx (Rn) The following identities hold.

T ( ˇinfα fα) = sup
α

T ( fα) and ˇinfαT ( fα) = T (sup
α

fα).

Proof. We only prove the first identity as the second one follows in an analogous way. First
of all, it is clear that T ( ˇinfα fα)≥ T ( fα) for each α ∈A. Therefore,

T ( ˇinfα fα)≥ sup
α

T ( fα).

On the other hand, as T is surjective, there is g ∈ Cvx (Rn) such that supα T ( fα) = T g. Then,
g ≤ fα for all α ∈ A, and as a result, g ≤ infα fα. By the definition of convex envelopes,
g ≤ ˇinfα fα. Hence,

sup
α

T ( fα) = T g ≥ T ( ˇinfα fα).

Next, we see that it is enough to understand the analysis for affine and delta type functions
in order to get the conclusion. For z ∈ Rn, denote by

Dz(x) =

¨

0 for x = z,

+∞ for x 6= z.

Of course Dz + c ∈ Cvx (Rn) for all z ∈ Rn and c ∈ R. Besides, for any function f , we can
always express that

f (x) = inf
y∈Rn

�

Dy(x) + f (y)
�

for x ∈ Rn.

Lemma A.12. Assume that there exist c0 ∈ R, c1 > 0, an invertible matrix B of size n, and
v0, v1 ∈ Rn such that

T (Dz + c)(x) = (Bz + v1) · x + v0 · z − c1c + c0.

Then, for all φ ∈ Cvx (Rn),

(Tφ)(x) = c1φ
∗(Bx + v0) + v1 · x + c0.

Here, B = BT/c1, and v0 = v0/c1.

Proof. Fix φ ∈ Cvx (Rn). Recall that

φ(x) = inf
y∈Rn

�

Dy(x) +φ(y)
�

= ˇinfy∈Rn

�

Dy(x) +φ(y)
�

.

Therefore,

(Tφ)(x) = sup
y∈Rn
((B y + v1) · x + v0 · y − c1φ(y) + c0)

= sup
y∈Rn
((B y + v1) · x + v0 · y − c1φ(y) + c0)

= sup
y∈Rn

�

y · (BT x + v0)− c1φ(y)
�

+ v1 · x + c0

= c1φ
∗(Bx + v0) + v1 · x + c0.
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Next, we conclude that we must have B is symmetric, c1 = 1, and v0 = v1.

Lemma A.13. Assume that there exist c0 ∈ R, c1 > 0, an invertible matrix B of size n, and
v0, v1 ∈ Rn such that

T (Dz + c)(x) = (Bz + v1) · x + v0 · z − c1c + c0.

Then, B is symmetric, c1 = 1, and v0 = v1. Moreover, for all φ ∈ Cvx (Rn),

(Tφ)(x) = φ∗(Bx + v0) + v0 · x + c0.

Proof. By the previous lemma, we already have, for all φ ∈ Cvx (Rn),

(Tφ)(x) = c1φ
∗(Bx + v0) + v1 · x + c0, (A.4)

where B = BT/c1, and v0 = v0/c1.

We note that for φ ≡ C , we have φ∗ = D0 − C . Plug this into (A.4) carefully to derive that

Tφ = D−(BT )−1v0
+ c0 − Cc1 − v1 · ((BT )−1v0).

Then, by the fact that T (Tφ) = φ, we deduce

C = (−B(BT )−1v0 + v1) · x + v0 · (−(BT )−1v0)− c1

�

c0 − Cc1 − v1 · ((BT )−1v0)
�

+ c0

= (−B(BT )−1v0 + v1) · x + (c1v1 − v0) · (−(BT )−1v0) + c0(1− c1) + Cc2
1 .

Since the above holds true for all C ∈ R and x ∈ Rn, we yield that c1 = 1, and v1 =
B(BT )−1v0. Thus, (A.4) is simplified as, for φ ∈ Cvx (Rn),

(Tφ)(x) = φ∗(Bx + v0) + (B(B
T )−1v0) · x + c0.

Use the identity T (Tφ) = φ once more to deduce that (BT )−1B = In, which gives us that
B = BT .

3.2 Affine functions and delta type functions

By the preliminaries, in order to prove Theorem A.10, we just need to verify that there exist
c0 ∈ R, c1 > 0, an invertible matrix B of size n, and v0, v1 ∈ Rn such that

T (Dz + c)(x) = (Bz + v1) · x + v0 · z − c1c + c0 for all z ∈ Rn. (A.5)

This is a much simpler task since we only need to interact with affine and delta type func-
tions.

Proposition A.14. Assume the settings in Theorem A.10. Then, there exist c0 ∈ R, c1 > 0, an
invertible matrix B of size n, and v0, v1 ∈ Rn such that (A.5) holds.

To make the proof clear, we break it into various parts.

Lemma A.15. The map T maps delta type functions to affine functions, and affine functions
to delta type functions.
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Proof. First, fix z ∈ Rn and c ∈ R. Let φ ∈ Cvx (Rn) so that Tφ = Dz + c. We need to show
that φ is affine, that is,

φ(x) = a · x + b

for some a ∈ Rn, b ∈ R. Assume by contradiction that φ is not affine, then we are able to
find two affine functions φi for i = 1, 2 such that

φi(x) = ai · x + bi,

φi ≤ φ, and furthermore a1 6= a2. Then, Tφi ≥ Tφ = Dz+ c. This means that Tφi = Dz+ ci

for some constants ci ∈ R for i = 1, 2, and c1 6= c2. Without loss of generality, assume c1 > c2.
Then,

T (max(φ1,φ2)) = T (φ2) = Dz + c2,

which is absurd as max(φ1,φ2) 6= φ2.

Next, let φ be an affine function. We need to show that Tφ is a delta type function. Assume
again by contradiction that Tφ is not a delta type function. Then, there exist y, z ∈ Rn with
y 6= z such that T (φ)(y), T (φ)(z) ≤ c < +∞ for some c ∈ R. Let ψ1,ψ2 ∈ Cvx (Rn) be
such that Tψ1 = Dy+ c, Tψ2 = Dz+ c. Then, as Tφ ≤ Tψ1, Tψ2, we infer thatψ1,ψ2 ≤ φ.
This means that both ψ1,ψ2 are affine functions, and their graphs are parallel to that of φ.
Without loss of generality, assume then that ψ1 ≤ψ2. This yields that

Tψ1 = Dy + c ≥ Tψ2 = Dz + c,

which is a contradiction.

As the conditions on T and T−1 are the same, we get right away the desired result. Note
moreover that the correspondence between delta type functions and affine functions of T
is one-to-one and onto.

Remark A.16. From the above proof, we get furthermore that, for z ∈ Rn,

T{Dz + c : c ∈ R}= {T Dz + c : c ∈ R}.

Besides, for a ∈ Rn, denote by la(x) = a · x for x ∈ Rn, then

T{la + s : c ∈ R}= {T la + s : c ∈ R}.

Next, we define G1, G2 : Rn+1→ Rn+1 as following. For G1, denote by

G1(z, c) = (a, s) provided that T (Dz + c) = la + s.

For G2, set
G2(a, s) = (z, c) provided that T (la + s) = Dz + c.

Lemma A.17. For i = 1, 2, Gi maps an interval in Rn+1 to an interval in Rn+1.

Proof. It is enough to show the proof for G1. Fix z1, z2 ∈ Rn and c1, c2 ∈ R. Assume that
G1(z1, c1) = (a1, s1) and G1(z2, c2) = (a2, s2). Let L be the interval joining (z1, c1) and (z2, c2),
that is,

L = {λ(z1, c1) + (1−λ)(z2, c2) : λ ∈ [0,1]} .
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We aim at showing that

T (L) =
�

µ(la1
+ s1) + (1−µ)(la2

+ s2) : µ ∈ [0,1]
	

.

Indeed, we have that

T (m̌in(Dz1
+ c1, Dz2

+ c2)) =max{la1
+ s1, la2

+ s2}.

Here, m̌in(Dz1
+ c1, Dz2

+ c2) is convex, which is linear on L, and +∞ elsewhere. Fix λ ∈
[0, 1], and let (z, c) = λ(z1, c1)+(1−λ)(z2, c2). It is clear that Dz+ c ≥ m̌in(Dz1

+ c1, Dz2
+ c2),

and so,
T (Dz + c) = la + s ≤max{la1

+ s1, la2
+ s2}.

For the affine function la+s to lie below la1
+s1 and la2

+s2, we need to have that a ∈ [a1, a2],
that is,

a = µa1 + (1−µ)a2

for some µ ∈ [0, 1]. If the graph of la + s touches the graph of max{la1
+ s1, la2

+ s2}, then
we are done. Otherwise, there is δ1 > 0 such that

T (Dz + c) +δ1 = la + s+δ1 ≤max{la1
+ s1, la2

+ s2}.

Then, one is able to find δ2 > 0 so that

Dz + c −δ2 ≥ m̌in(Dz1
+ c1, Dz2

+ c2),

which is absurd. The proof is complete.

Clearly, G1, G2 map straight lines to straight lines in Rn+1 from this result. The following
result is the fundamental fact of affine geometry.

Lemma A.18. Let m≥ 2, and G : Rm→ Rm be an injective map which maps all straight lines
to straight lines. Then, G is affine, that is,

G(x) = G(0) + Bx for all x ∈ Rm,

for some invertible matrix B of size m.
We will not give a proof of this result. See [8] for some discussions and references there.
We are ready to prove Proposition A.14, which in turns gives the conclusion of Theorem
A.10 right away.

Proof of Proposition A.14. By the above, G1, G2 are affine. We can write

G1(z, c) = B1(z, c) + V1 and G2(a, s) = B2(a, s) + V2,

where B1, B2 are invertible matrices of size n+ 1 and V1, V2 ∈ Rn+1.

By Remark A.16, B1, B2 have zeros in all the entries of their last columns except for the
(n+1)-entry. Let B be the first n×n block of B1, and (v0,−c1) ∈ Rn×R be its (n+1)-th row.
Of course B is invertible itself. Write V1 = (v1, c0) ∈ Rn ×R. Then,

G1(z, c) = (Bz, v0 · z − c1c) + (v1, c0) = (Bz + v1, v0 · z − c1c + c0).

This implies that
T (Dz + c)(x) = (Bz + v1) · x + v0 · z − c1c + c0.

Since c 7→ T (Dz + c) is strictly decreasing, we deduce that c1 > 0. Therefore, (A.5) holds,
and our proof is complete.
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4 Boundary value problems

Let us only focus on static (time-independent) problems here. Throughout this book, we
only deal with equations in the whole Rn, or equations in the periodic setting, which can be
formulated as equations on Tn = Rn/Zn. We here give some basic and brief discussions on
boundary value problems for first-order equations and present some examples.

Let U ⊂ Rn be an open, bounded domain with smooth boundary. In a general form, the
boundary value problem reads

¨

F(x , u, Du) = 0 in U ,

B(x , u, Du) = 0 on ∂ U .
(A.6)

Here, F : U × R × Rn → R and B : ∂ U × R × Rn → R are given continuous functions.
The unknown in (A.6) is u. Of course, the second equality in (A.6) represents a general
boundary condition. We give first a general definition of viscosity solutions to (A.6).

Definition A.19 (viscosity solutions of (A.6)). Let u ∈ C(U).

(a) We say that u is a viscosity subsolution to (A.6) if for any test function ϕ ∈ C1(U) such
that u−ϕ has a strict maximum x0 ∈ U, then

F(x0, u(x0), Dϕ(x0))≤ 0 if x0 ∈ U ,

or
min {F(x0, u(x0), Dϕ(x0)), B(x0, u(x0), Dϕ(x0))} ≤ 0 if x0 ∈ ∂ U .

(b) We say that u is a viscosity supersolution to (A.6) if for any test function ϕ ∈ C1(U) such
that u−ϕ has a strict minimum x0 ∈ U, then

F(x0, u(x0), Dϕ(x0))≥ 0 if x0 ∈ U ,

or
max {F(x0, u(x0), Dϕ(x0)), B(x0, u(x0), Dϕ(x0))} ≥ 0 if x0 ∈ ∂ U .

(c) We say that u is a viscosity solution to (A.6) if it is both a viscosity subsolution and a
viscosity supersolution to (A.6).

It is clear from the definition above that boundary conditions in the viscosity sense do not
hold in the classical way. This definition arises naturally from the usual vanishing viscosity
process, but we omit this discussion here. Based on the definition, u is a viscosity solution
to (A.6) if it satisfies in the viscosity sense







F(x , u, Du) = 0 in U ,

min {F(x , u, Du), B(x , u, Du)} ≤ 0 on ∂ U ,

max {F(x , u, Du), B(x , u, Du)} ≥ 0 on ∂ U .

(A.7)

This equation makes clearer the meaning of being a viscosity solution in the boundary value
problem. We now discuss further some specific situations.

252



4.1 State-constraint problems

A state-constraint boundary problem has the following form
¨

F(x , u, Du)≤ 0 in U ,

F(x , u, Du)≥ 0 on U .
(A.8)

This equation can be written in an equivalent way as
¨

F(x , u, Du) = 0 in U ,

F(x , u, Du)≥ 0 on ∂ U .

One can see that this equation is of a special form of (A.7) but it is clearly simpler. As a
matter of fact, we only require the supersolution property F(x , u, Du)≥ 0 on the boundary
of U . We give here an example for problems of this type.

Example A.1. Assume that n= 1, U = (−1,1), and

F(x , z, p) = z + |p− 1| − 1 for all (x , z, p) ∈ [−1, 1]×R×R.

The corresponding state-constraint problem becomes
¨

u(x) + |u′(x)− 1| − 1≤ 0 in (−1,1),
u(x) + |u′(x)− 1| − 1≥ 0 on [−1,1].

(A.9)

Firstly, it is clear that v ≡ 0 on [−1, 1] solves the equation

v(x) + |v′(x)− 1| − 1= 0 in (−1,1).

We now argue that v however is not a solution to (A.9) as it does not satisfy the state-constraint
boundary condition. Indeed, let ϕ(x) = x − 1 for all x ∈ [−1, 1]. Then v − ϕ has a strict
minimum at 1 on [−1,1], but

v(1) + |ϕ′(1)− 1| − 1= −1< 0.

This shows that the state-constraint boundary condition plays an essential role in the problem.
Secondly, denote by

u(x) = ex−1 for x ∈ [−1,1].

We claim that u is a solution to (A.9). It is clear that u satisfies the equation for x ∈ (−1,1)
in the classical sense, and we only need to verify the boundary condition. Let us only check the
supersolution condition at x0 = 1 as the supersolution condition at x0 = −1 can be checked in
a similar manner. Let ϕ ∈ C1([−1, 1]) be a test function such that u−ϕ has a strict minimum
at x0 = 1, and u(1) = ϕ(1). Then, ϕ′(1)≥ u′(1) = 1, which means that

u(1) + |ϕ′(1)− 1| − 1= 1+ (ϕ′(1)− 1)− 1= ϕ′(1)− 1≥ 0.

It turns out that this u is the unique viscosity solution to (A.9).

We do not discuss further about well-posedness of solutions to (A.8) here. Let us give a
representation formula of the solution in the convex setting.
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Theorem A.20. Assume that

F(x , z, p) = z +H(x , p) for all (x , z, p) ∈ U ×R×Rn,

where H ∈ C1(U ×Rn) satisfies that p 7→ H(x , p) is convex for x ∈ U, and

lim
|p|→∞

�

min
x∈U

H(x , p)
|p|

�

= +∞.

Let L be the corresponding Legendre transform of H. Then, the unique viscosity solution u to
(A.8) has the following representation formula

u(x) = inf

�∫ ∞

0

e−s L
�

γ(s),−γ′(s)
�

ds : γ(0) = x ,γ([0,∞)) ⊂ U ,γ ∈ AC ([0,∞),Rn)

�

.

A key feature of the above representation formula is that all admissible paths are running
on U , which explains intuitively the keyword “state-constraint". For further discussions on
state-constraint problems, see Soner [127, 128], Capuzzo-Dolcetta, Lions [28].

4.2 Dirichlet problems

A Dirichlet boundary problem has the following form
¨

F(x , u, Du) = 0 in U ,

u= g on ∂ U .
(A.10)

Here, g ∈ C(∂ U) is given. This is of course a special case of (A.6) where B(x , z, p) = z−g(x).
As discussed earlier, u is a viscosity solution to (A.10) if it satisfies in the viscosity sense







F(x , u, Du) = 0 in U ,

min {F(x , u, Du), u− g(x)} ≤ 0 on ∂ U ,

max {F(x , u, Du), u− g(x)} ≥ 0 on ∂ U .

Let us give a simple example to show that this Dirichlet boundary condition does not hold
in the classical sense.

Example A.2. Assume that n= 1, U = (0, 1), and

F(x , z, p) = p− 1 for all (x , z, p) ∈ [0,1]×R×R.

Assume further that g ≡ 0 on [0, 1]. The corresponding Dirichlet problem is
¨

u′(x)− 1= 0 in (0, 1),
u(0) = u(1) = 0.

(A.11)

On the first hand, it is quite straightforward to see that (A.11) does not admit any classical
solution with u(0) = u(1) = 0. On the other hand, we claim that

u(x) = x for x ∈ [0, 1]
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is a viscosity solution to (A.11). Of course, u satisfies the equation for x ∈ (0,1) in the classical
sense, and we only need to verify the Dirichlet boundary condition. The Dirichlet boundary
condition at x0 = 0 satisfies classically, so there is nothing to check. At x0 = 1, the supersolution
test holds automatically as u(1) = 1> 0. To check the subsolution property, takeϕ ∈ C1([0,1])
such that u−ϕ has a strict maximum at x0 = 1, and u(1) = ϕ(1). Then, ϕ′(1) ≤ u′(1) = 1,
and therefore,

ϕ′(1)− 1≤ 0.

We do not discuss further about well-posedness of solutions to (A.10) here. It is important
pointing out that, in general, it is still an open problem to determine in which parts of the
boundary of U that one has u= g in the classical sense. This of course has a strong relation
to the method of characteristics. Let us give a representation formula of the solution in the
convex setting.

Theorem A.21. Assume that

F(x , z, p) = z +H(x , p) for all (x , z, p) ∈ U ×R×Rn,

where H ∈ C1(U ×Rn) satisfies that p 7→ H(x , p) is convex for x ∈ U, and

lim
|p|→∞

�

min
x∈U

H(x , p)
|p|

�

= +∞.

Let L be the corresponding Legendre transform of H. Then, the unique viscosity solution u to
(A.10) has the following representation formula

u(x) = inf

�∫ τx

0

e−s L
�

γ(s),−γ′(s)
�

ds+ e−τx g(γ(τx)) : γ(0) = x ,γ ∈ AC ([0,∞), U)

�

.

Here,
τx = τx(γ) =min{t > 0 : γ(t) ∈ ∂ U},

which is the first exit time from U of the path γ. Of course, in case {t > 0 : γ(t) ∈ ∂ U} is
empty, τx =∞ and e−τx g(γ(τx)) = 0.

4.3 Neumann problems

A Neumann boundary problem has the following form
¨

F(x , u, Du) = 0 in U ,

Du(x) · γ(x) = g(x) on ∂ U .
(A.12)

Here, g ∈ C(∂ U) is given, and γ ∈ C(∂ U ,Rn) is a given vector field such that

n(x) · γ(x)> 0 for x ∈ ∂ U ,

where n(x) denotes the outer unit normal vector to U at x . This is again a special case of
(A.6) where B(x , z, p) = p · γ(x) − g(x). The boundary condition in (A.12) is called the
inhomogeneous linear Neumann boundary condition. We note that for φ ∈ C1(U), we can
write

Dφ(x) · γ(x) =
∂ φ

∂ γ
(x) = lim

s→0

φ(x + sγ(x))−φ(x)
s

for x ∈ ∂ U .

Let us also give a simple example demonstrating that the Neumann boundary condition
does not satisfy in the classical sense.
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Example A.3. Assume that n= 1, U = (0, 1), and

F(x , z, p) = z + p− x − 1 for all (x , z, p) ∈ [0, 1]×R×R.

Assume further that g ≡ 0 on [0, 1]. The Neumann problem of interests is
¨

u(x) + u′(x)− x − 1= 0 in (0, 1),
u′(0) = u′(1) = 0.

(A.13)

We claim that
u(x) = x + e−x for all x ∈ [0, 1]

is a viscosity solution to (A.13). By direct computations, we see that u ∈ C1([0,1]) satisfies
the equation in (0, 1) classically. Besides, u′(0) = 0, which means that the Neumann boundary
condition holds classically at 0.
However, u′(1) = 1− e−1 > 0, which means that the subsolution property at x0 = 1 does not
hold in the strong sense. Take ϕ ∈ C1([0, 1]) such that u−ϕ has a strict maximum at x0 = 1,
and u(1) = ϕ(1). Then, ϕ′(1)≤ u′(1) = 1− e−1, which means that

u(1) +ϕ′(1)− 2≤ u(1) + u′(1)− 2= 0,

and hence, the subsolution test holds true at x0 = 1.

There is also an analog of Theorems A.20 and A.21 for (A.12), but it is slightly more com-
plicated, and we omit it here.

5 Sup-convolutions

Sup-convolutions and inf-convolutions are basic and very important tools to regularize vis-
cosity solutions. These approximations were first realized by Jensen [91]. We give here
some properties of sup-convolutions.

Definition A.22. Let u : Rn→ R be a given bounded function, and ε > 0 be a parameter. The
sup-convolution uε : Rn→ R and inf-convolution uε : Rn→ R are defined as

uε(x) = sup
y∈Rn

�

u(y)−
|y − x |2

2ε

�

for x ∈ Rn,

and

uε(x) = inf
y∈Rn

�

u(y) +
|y − x |2

2ε

�

for x ∈ Rn.

It is worth noting that, for x ∈ Rn,

uε(x) = − sup
y∈Rn

�

−u(y)−
|y − x |2

2ε

�

= −(−u)ε(x).

This relation allows us to interpret properties of sup-convolutions into the corresponding
ones of inf-convolutions automatically and vice versa. Here is a main result on the properties
of sup-convolution uε.
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Proposition A.23. Assume that u is upper semicontinuous in Rn. Assume further that there
exists M > 0 such that ‖u‖L∞(Rn) ≤ M. Then, the following properties hold.

(i) We have
−M ≤ u(x)≤ uε(x)≤ M for all x ∈ Rn.

(ii) The function x 7→ uε(x) + |x |
2

2ε is convex in Rn.

(iii) If p ∈ D+uε(x) for some x ∈ Rn, then

|p| ≤ 2

√

√M
ε

and p ∈ D+u(x + εp).

Proof. Claim (i) is quite clear as

uε(x) = sup
y∈Rn

�

u(y)−
|y − x |2

2ε

�

≤ sup
y∈Rn

u(y)≤ M ,

and if we choose y = x in the above formula,

uε(x)≥ u(x)≥ −M .

To prove claim (ii), we rewrite the formula of uε(x) as

uε(x) +
|x |2

2ε
= sup

y∈Rn

�

u(y)−
|y|2

2ε
+

y · x
ε

�

.

The right hand side above is the supremum of a family of affine functions in x , which is
surely a convex function in x .

Let us now prove assertion (iii). Assume that p ∈ D+uε( x̄) for some x̄ ∈ Rn. By Theorem
1.4, there exists a function φ ∈ C1(Rn) such that Dφ( x̄) = p, and uε −φ has a global strict
maximum at x̄ . Besides, as u is upper semicontinuous, we can find ȳ ∈ Rn such that

uε( x̄) = sup
y∈Rn

�

u(y)−
|y − x̄ |2

2ε

�

= u( ȳ)−
| ȳ − x̄ |2

2ε
.

In particular,
| ȳ − x̄ |2

2ε
= u( ȳ)− uε( x̄)≤ 2M . (A.14)

Consider an auxiliary function Φ : Rn ×Rn→ R as

(x , y) 7→ Φ(x , y) = u(y)−
|y − x |2

2ε
−φ(x).

It is clear that Φ has a global maximum at ( x̄ , ȳ). In particular, x 7→ Φ(x , ȳ) has a global
maximum at x̄ , and y 7→ Φ( x̄ , y) has a global maximum at ȳ . These allow us to imply that

p = Dφ( x̄) =
ȳ − x̄
ε

and
ȳ − x̄
ε
∈ D+u( ȳ).

Thus, ȳ = x̄ + εp, and in light of (A.14),

|p| ≤ 2

√

√M
ε

and p ∈ D+u( x̄ + εp).
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In this book, we have not used sup-convolutions and inf-convolutions to regularize and
analyze viscosity solutions (more generally, subsolutions and supersolutions) as we typically
deal with nice enough solutions already. Let us give here a prototypical example of their
usage.

Example A.4. Let H ∈ C(Rn × Rn) be a given Hamiltonian. Let u : Rn → R be a bounded
and upper semicontinuous function. Pick M > 0 such that ‖u‖L∞(Rn) ≤ M. Assume that u is a
viscosity subsolution to

H(x , Du(x))≤ 0 in Rn. (A.15)

For each ε > 0, let uε be the sup-convolution of u. Let δ = 2
p

Mε. By Proposition A.23, we see
that uε is a viscosity subsolution to both

H(x + εDuε(x), Duε(x))≤ 0 in Rn, (A.16)

and

|Duε(x)| ≤
δ

ε
in Rn.

Thus, uε is Lipschitz in Rn with Lipschitz constant δ/ε. Define eH : Rn ×Rn→ R as

eH(x , p) =min
|z|≤δ

H(x + z, p) for all (x , p) ∈ Rn ×Rn.

Then, thanks to (A.16), we see that uε is a viscosity subsolution to

eH(x , Duε(x))≤ 0 in Rn.

We now argue that the inf-convolution uε is actually quite a familiar object. Indeed, consider
the following Cauchy problem

¨

vt +
|Dv|2

2 = 0 in Rn × (0,∞),
v(x , 0) = u(x) on Rn.

(A.17)

Let us not worry much about the regularity of initial data u here. By the Hopf-Lax formula,
we have, for (x , t) ∈ Rn × (0,∞),

v(x , t) = inf
y∈Rn

�

u(y) +
|y − x |2

2t

�

.

Consequently, for t = ε, we see that

uε(x) = v(x ,ε) for all x ∈ Rn.

This shows that Cauchy problem (A.17) has a natural regularizing effect. In fact, this reg-
ularizing effect holds for solutions of Cauchy problems with general convex, superlinear
Hamiltonians.

Remark A.24. It is important pointing out that we can do inf-sup convolutions to regularize
more a given function. Indeed, for ε,α > 0, it is quite clear that w = (uε+α)ε is both
semiconvex and semiconcave, and hence, w ∈ C1,1(Rn). We refer to Lasry, Lions [99] for
some applications on this.
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6 Notations

We list here notations that are used in the book.

6.1 Notation for sets and spaces

• n ∈ N is often used to denote the dimensions.

• Rn = n-dimensional real Euclidean space; R= R1.

• ei is the i-th vector in the canonical basis of Rn for 1≤ i ≤ n, that is,

ei = (0, . . . , 0, 1, 0, . . . , 0),

where 1 occurs in the i-th position.

• A typical point in Rn is often denoted by x = (x1, . . . , xn). Depending on different
situations, we might regard x as a row vector or a column vector.

• For x , y ∈ Rn with x = (x1, . . . , xn), y = (y1, . . . , yn), write

x · y =
n
∑

i=1

x i yi and |x |=
p

x · x =

√

√

√

n
∑

i=1

x2
i .

• A typical point inRn×[0,∞) is often denoted by (x , t) = (x1, . . . , xn, t), where t often
stands for the time variable.

• For a given real number s ∈ R, denote by [s] its integer part.

• Tn = Rn/Zn is the usual n-dimensional flat torus. When there is no confusion, we
identify Tn with the unit cell Y = [0, 1]n with periodic boundary condition on Y .

• For an open set U ⊂ Rn, we write ∂ U to denote its boundary, and U = U ∪ ∂ U to
denote its closure.

• For U , V open sets in Rn, we write

U ⊂⊂ V

if U ⊂ U ⊂ V , and U is compact, and say that U is compactly supported in V .

• For x ∈ Rn and r > 0, we denote by B(x , r) the open ball in Rn with center x , radius
r, that is,

B(x , r) = {y ∈ Rn : |y − x |< r} .

Denote by B(x , r) or B(x , r) the closed ball with center x , radius r, that is,

B(x , r) = B(x , r) = {y ∈ Rn : |y − x | ≤ r} .

We also write B(x , r), B(x , r) as Br(x), Br(x), respectively. When x = 0, we simply
write Br = Br(0), Br = Br(0).
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6.2 Notation for functions

Let u : Rn→ R be a smooth function. We have some basic notions as following.

• Du(x) =∇u(x) =
�

∂ u
∂ x1
(x), . . . , ∂ u

∂ xn
(x)
�

.

• D2u(x) = Hessian of u at x =







∂ 2u
∂ x2

1
(x) ∂ 2u

∂ x1∂ x2
(x) . . . ∂ 2u

∂ x1∂ xn
(x)

...
...

. . .
...

∂ 2u
∂ xn∂ x1

(x) ∂ 2u
∂ xn∂ x2

(x) . . . ∂ 2u
∂ x2

n
(x)






.

• The Laplacian ∆u(x) = tr(D2u(x)) =
∑n

i=1
∂ 2u
∂ x2

i
(x) is the trace of D2u(x).

In this book, we use the notion Du(x) instead of ∇u(x). We usually write ux i
for ∂ u

∂ x i
.

When u is not smooth, we have the following definition for subdifferential and superdiffer-
ential of u at x .

• The subdifferential of u at x is denoted by D−u(x), where

D−u(x) =
§

p ∈ Rn : lim inf
y→x

u(y)− u(x)− p · (y − x)
|y − x |

≥ 0
ª

.

• The superdifferential of u at x is denoted by D+u(x), where

D+u(x) =

�

p ∈ Rn : limsup
y→x

u(y)− u(x)− p · (y − x)
|y − x |

≤ 0

�

.

If u is differentiable at x then

D−u(x) = D+u(x) = {Du(x)}.

For u : Rn × [0,∞)→ R smooth, we write

• Du(x , t) = Dxu(x , t) and ut(x , t) = ∂ u
∂ t (x , t).

• D2u(x , t) = D2
x u(x , t), and ∆u(x , t) =∆xu(x , t).

Besides, we use the following for a given function u : Rn→ R.

• Set u+ =max{u, 0}, and u− = −min{u, 0}. Surely, u= u+ − u−, and |u|= u+ + u−.

• If u is compactly supported, then the support of u is denoted by spt(u).

• If u is Zn-periodic, then we can think of u as a function from Tn to R as well, and vice
versa. In the book, we switch freely between the two interpretations.

For a smooth path γ : R→ Rn and t ∈ R, we write

γ′(t) =
d
d t
γ(t)
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In many occasions, we use a modulus of continuity ω. By this, we mean ω : [0,∞) →
[0,∞) is a continuous function such that ω(0) = 0= limr→0 w(r).

The following convolution trick is used quite often throughout the book. Take η to be the
standard mollifier, that is,

η ∈ C∞c (R
n, [0,∞)), supp(η) ⊂ B(0, 1),

∫

Rn

η(x) d x = 1.

For ε > 0, denote by ηε(x) = ε−nη
�

x
ε

�

for all x ∈ Rn. Let u : Rn → R be a continuous
function. Set

uε(x) = (ηε ? u) (x) =

∫

Rn

ηε(x − y)u(y) d y =

∫

B(x ,ε)

ηε(x − y)u(y) d y for x ∈ Rn.

Then uε ∈ C∞(Rn), and uε → u locally uniformly as ε → 0. If needed, one can assume
further that η is symmetric or radially symmetric.

6.3 Notation for function spaces

• C(Rn) = {u : Rn→ R : u is continuous}.

• B(Rn) = {u : Rn→ R : u is bounded}.

• BC(Rn) = {u : Rn→ R : u is bounded, and continuous}.

• BUC (Rn) = {u ∈ C(Rn) : u is bounded, and uniformly continuous}.

• For k ∈ N, C k(Rn) = {u : Rn→ R : u is k-times continuously differentiable}.

• C∞(Rn) = {u : Rn→ R : u is infinitely differentiable}. For u ∈ C∞(Rn), we say that
u is smooth.

• C k
c (R

n), C∞c (R
n) denote the space of functions in C k(Rn), C∞(Rn) that have compact

supports, respectively.

• Lip (Rn) = {u ∈ C(Rn) : ∃ C > 0 so that |u(x)− u(y)| ≤ C |x − y| for all x , y ∈ Rn}.
We write

Lip [u] = sup
x ,y∈Rn

x 6=y

|u(x)− u(y)|
|x − y|

,

and say that Lip [u] is the Lipschitz constant of u.

• For α ∈ (0,1], we say that u ∈ C(Rn) is Hölder continuous with exponent α if there
exists C > 0 such that

|u(x)− u(y)| ≤ C |x − y|α for all x , y ∈ Rn.

In this case, the α-th Hölder seminorm of u is

[u]C0,α(Rn) = sup
x ,y∈Rn

x 6=y

|u(x)− u(y)|
|x − y|α

.
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If we have in addition that u is bounded, then we define the α-th Hölder norm of u to
be

‖u‖C0,α(Rn) = ‖u‖C(Rn) + [u]C0,α(Rn).

Then, the Hölder space C0,α(Rn) is defined as

C0,α(Rn) =
�

u ∈ C(Rn) : ‖u‖C0,α(Rn) < +∞
	

.

• L∞(Rn) =
�

u : Rn→ R : u is Lebesgue measurable and ‖u‖L∞(Rn) < +∞
	

, where

‖u‖L∞(Rn) = ess sup
Rn

|u|.

• It is clear that C0,1(Rn) = L∞(Rn)∩ Lip (Rn), and Lip [u] = [u]C0,1(Rn).

• In a same way, one can define C k,α(Rn) for k ∈ N and α ∈ (0, 1].

• USC (Rn) = {u : Rn→ R : u is upper semicontinuous}.

• LSC (Rn) = {u : Rn→ R : u is lower semicontinuous}.

• For a function u : Rn→ R that is bounded, we denote by

u∗(x) = lim sup
y→x

u(y) for all x ∈ Rn,

and
u∗(x) = lim inf

y→x
u(y) for all x ∈ Rn.

It is clear that u∗ ∈ USC (Rn), u∗ ∈ LSC (Rn). We say that u∗, u∗ are the upper semi-
continuous envelope, and the lower semicontinuous envelope of u, respectively. One
has that u is continuous in Rn if and only if u∗ = u∗.

• Let U ⊂ Rn be a given open set. All above function spaces can be defined in U and U
in place of Rn in a similar way.

• For given T > 0, AC ([0, T],Rn) denotes the space of all absolutely continuous curves
from [0, T] to Rn.

• Cvx (Rn) denotes the class of lower semi-continuous convex functions φ : Rn → R ∪
{±∞}.

6.4 Notation for estimates

• The constants in the estimates are often denoted by C (and C1, C2, etc.), which might
change from line to line in a given computation. This makes our presentation clearer
without keeping track with various factors in each step. Of course, we specify clearly
the dependence of these constants on specific parameters.

• (Big-oh notation) For two given functions f , h, we write f = O(h) as x → y if there
exists C > 0 such that

| f (x)| ≤ C |h(x)| for all x sufficiently close to y.
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• (Little-oh notation) For two given functions f , h, we write f = o(h) as x → y if

lim
x→y

| f (x)|
|h(x)|

= 0.

In particular, when h≡ 1, we have the notions of O(1) and o(1), respectively.
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Solutions to some exercises

Solutions to some exercises in the book were provided to me by Son Tu.

Exercise 1. Consider the eikonal problem in one dimension
¨

|u′(x)| = 1 in (−1, 1),
u(1) = u(−1) = 0.

(A.18)

(a) Show that there is no C1 solution.

(b) Show that all continuous a.e. solutions with finitely many gradient jumps are mutually
viscosity subsolutions.

Proof of Exercise 1.

(a) Assume that there exists a C1 solution u : [−1,1]→ R satisfies (A.18), then x 7→ u′(x)
must be continuous. By the mean value theorem, there exists some c ∈ (−1,1) such
that 0 = u(1)− u(−1) = 2u′(c), and thus, u′(c) = 0. This is a contradiction since one
should have |u′(c)|= 1. Therefore, (A.18) has no C1 solution.

(b) Generally, a continuous a.e. solution with finitely many gradient jumps must have the
form as in figure A.2.

It is clear that a graph of such a solution is a combination of line segments with slope 1
or−1. As we can see, u′(x) exists a.e., so we only need to check if they are subsolution
at points where u′(x) is not well defined (at the vertices).

– If x is the vertex of the shape
∨

, then there is no C1 function ϕ that can touch u
from above at x (in the sense that u−ϕ has a strict max at x). That means the
condition |u′(x)| ≤ 1 in the viscosity sense holds true automatically.

– If x is the vertex of the shape
∧

, then any C1 function ϕ that can touch u from
above at x (in the sense that u − ϕ has a strict max at x) must have ϕ′(x) ∈
[−1, 1]. That means the condition |u′(x)| ≤ 1 in the viscosity sense holds true.

Exercise 3. Prove that in the above definition of viscosity solutions of (1.1), we can equiva-
lently require the test functions ϕ,ψ ∈ C2(Rn × (0,∞)). Same holds when we require that
ϕ,ψ ∈ C∞(Rn × (0,∞)).
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Figure A.2: Typical continuous a.e. solutions with finitely many gradient jumps.

Proof of Exercise 3 . Recall the definition of viscosity solution for first-order equations:
¨

ut(x , t) +H(Du(x , t)) = 0 in Rn × (0,∞),
u(x , 0) = u0(x) on Rn.

(A.19)

In Definition 1.1, let us modify a little bit. A function is a

• viscosity solution with C1 test functions if it satisfies Definition 1.1 with C1 test func-
tions,

• viscosity solution with C2 test functions if it satisfies Definition 1.1 with C2 test func-
tions.

It is clear that a viscosity solution with C1 test functions is also a viscosity solution with C2

test functions. For the converse, assume that u is a viscosity subsolution of (A.19) with C2

test functions, then u(x , 0) ≤ u0(x). Let ϕ ∈ C1(Rn × (0, T )) such that u(x0, t0) = ϕ(x0, t0)
and u−ϕ has a strict max at (x0, t0) ∈ Rn × (0, T ), we need to prove that

ϕt(x0, t0) +H(Dϕ(x0, t0))≤ 0. (A.20)

For simplicity, let us extend ϕ to Rn × R so that it has compact support. Let {ηε}ε>0 ⊂
C∞c (R

n+1) be the standard mollifiers, that is, ηε(x) = ε−(n+1)η
�

ε−1 x
�

whereη ∈ C∞c (B(0, 1))
with

0≤ η≤ 1, supp η ⊂ B(0,1), and

∫

Rn+1

η(x) d x = 1.

For ε > 0 we let ϕε(x , t) =
�

ηε ? ϕ
�

(x , t), then it is clear that ϕε → ϕ, ϕεt → ϕt , and
Dϕε → Dϕ locally uniformly on Rn × (0, T ). Also by stability of viscosity solutions (see
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Lemma 1.8), we can choose a decreasing subsequence {εi} ↘ 0 such that
�

xεi
, tεi

�

→ (x0, t0)
as i→∞ and u−ϕεi has a local max at

�

xεi
, tεi

�

, thus

ϕ
εi
t

�

xεi
, tεi

�

+H
�

Dϕεi
�

xεi
, tεi

��

≤ 0.

Let εi → 0 and using the facts that
�

xεi
, tεi

�

→ (x0, t0), H is continuous, and ϕεt → ϕt ,
Dϕε → Dϕ locally uniformly, we obtain (A.20). Thus u is a viscosity subsolution with C1

test functions. The argument for supersolution test is similar.

Exercise 10. Let u,ϕ be two given continuous functions onRn×[0, T] for some T > 0 such that
u−ϕ has a strict max over Rn× [0, T] at (x0, T ). For each ε > 0, let ϕε(x , t) = ϕ(x , t)+ ε

T−t
for all (x , t) ∈ Rn × [0, T] . Show that for ε > 0 small enough, u − ϕε has a local max at
(xε, tε) ∈ Rn × (0, T ), and (xε, tε)→ (x0, T ) up to a subsequence.

Proof of Exercise 10. Without loss of generality, we assume that u(x0, T ) = ϕ(x0, T ).

Fix 0 < r < T and let Ωr = Br(x0)× [T − r, T ), we have u−ϕ < 0 for all (x , t) ∈ Ωr . It is
clear that

u(x , t)−ϕε(x , t)≤ −
ε

T − t
< 0. (A.21)

We claim that u − ϕε has a local max over Br(x0) × [T − r, T ) at (xε, tε). Indeed, let ζ =
supBr (x0)×[T−r,T )(u−ϕε) and (x j, t j) ∈ Ωr such that u(x j, t j)−ϕε(x j, t j)→ α. By compactness

we have (x j, t j) → (x , t) ∈ Ωr up to subsequence. If t = T then from (A.21) we have
α= −∞, which is a contradiction.

We show that for r > 0, there exists ε = ε(r) > 0 small enough so that (xε, tε) ∈ int(Ωr),
which implies that u−ϕε has a local max at (xε, tε). Since tε < T for all ε > 0, it is suffices
to consider (we do not have to worry about the top of the cylinder)

∂Ωr =

�

B(x0, r)× {T − r}
�

︸ ︷︷ ︸

bottom of the cylinder

∪
�

∂ B(x0, r)× (T − r, T )

�

︸ ︷︷ ︸

the surface between the bottom and the top

.

Let α = sup∂Ωr
(u−ϕ)(x , t) < 0. There exists 0 < δ < r such that |(u−ϕ)(x0, s)| < −α2 for

all s ∈ [T −δ, T], thus

(u−ϕ)(x , t)<
α

2
+ (u−ϕ)(x0, T −δ)

for all (x , t) ∈ ∂Ωr . Therefore

(u−ϕε)< (u−ϕ)(x0, T −δ) +
α

2
−

ε

T − t
< (u−ϕ)(x0, T −δ) +

α

2
−
ε

r

for all (x , t) ∈ ∂Ωr . Choose ε such that ε
�

1
δ −

1
r

�

< −α2 , we obtain

(u−ϕε)(x , t)< (u−ϕε)(x0, T −δ)

for all (x , t) ∈ ∂Ωr . Thus the maximum point (xε, tε) of u−ϕε cannot belong to ∂Ωr . Our

claim is proven with ε(r) = −αr
2

�

1
δr
− 1

r

�−1
. Now let r = 1

n we obtain a sequence εn → 0

and thus
�

xεn
, tεn

�

→ (x0, T ) since Ωr shrinks to (x0, T ) as r → 0.
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Exercise 11. Let H = H(x , p) : Rn × Rn → R be a Hamiltonian satisfying that, there exists
C > 0 such that, for all x , y, p, q ∈ Rn,

¨

|H(x , p)−H(x , q)| ≤ C |p− q|,
|H(x , p)−H(y, q)| ≤ C(1+ |p|)|x − y|.

For i = 1, 2, let ui be the viscosity solution to
¨

ui
t +H(x , Dui) = 0 in Rn × (0,∞),

ui(x , 0) = g i(x) on Rn,
(A.22)

where g i ∈ BUC (Rn) is given. Use the comparison principle for (A.22) to show the following
L∞ contraction property: For any t ≥ 0,

sup
x∈Rn
|u1(x , t)− u2(x , t)| ≤ sup

x∈Rn
|g1(x)− g2(x)|.

Proof of Exercise 11. Denote C = ‖g1 − g2‖L∞(Rn) = supx∈Rn |g1(x)− g2(x)|.

• Let ζ(x , t) = u2(x , t)+ C , then it is a viscosity supersolution of (A.22) with the initial
data g1(x), since:

– If ϕ ∈ C1(Rn× (0, T )) such that ζ−ϕ has a local min at (x0, t0) then u2−ϕ also
has a local min at (x0, t0), hence ϕt(x , t) +H(x , Dϕ(x , t))≥ 0.

– ζ(x , 0) = u2(x , 0) + C = g2(x) + C ≥ g1(x).

By comparison principle for (A.22), ζ(x , t) ≥ u1(x , t), that is, u2(x , t) + C ≥ u1(x , t)
for (x , t) ∈ Rn × (0,∞).

• Let δ(x , t) = u2(x , t)− C , then it is a viscosity subsolution of (A.22) with the initial
data g1(x), since:

– If ϕ ∈ C1(Rn× (0, T )) such that δ−ϕ has a local max at (x0, t0) then u2−ϕ also
has a local max at (x0, t0), hence ϕt(x , t) +H(x , Dϕ(x , t))≤ 0.

– δ(x , 0) = u2(x , 0)− C = g2(x)− C ≤ g1(x).

By comparison principle for (A.22), δ(x , t) ≤ u1(x , t), that is, u2(x , t)− C ≤ u1(x , t)
for (x , t) ∈ Rn × (0,∞).

Therefore u2(x , t)− C ≤ u1(x , t)≤ u2(x , t) + C , which yields that

|u1(x , t)− u2(x , t)| ≤ C for all (x , t) ∈ Rn × (0,∞).

Exercise 12. Let H = H(x , p) : Rn ×Rn→ R be a C2 Hamiltonian satisfying






H, DpH ∈ BUC (Rn × B(0, R)) for each R> 0,

lim
|p|→∞

inf
x∈Rn

�

1
2

H(x , p)2 + Dx H(x , p) · p
�

= +∞.
(A.23)
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For ε > 0, consider the following static viscous Hamilton–Jacobi equation

uε +H (x , Duε) = ε∆uε in Rn. (A.24)

Let uε be the unique solution to the above. Use the Bernstein method to show that there exists
a constant C > 0 independent of ε such that ‖Duε‖L∞(Rn) ≤ C.

Proof of Exercise 13. For k = 1, 2, . . . , n, differentiate (A.24) with respect to xk, we have

uεxk
+Hxk

(x , Duε) + DpH(x , Duε) · Duεxk
= ε∆uεxk

.

Multiplying two sides by uεxk
and taking the sum over k = 1,2, . . . , n, we imply

n
∑

k=1

�

uεxk

�2
+ Dx H(x , Duε) · Duε + DpH(x , Duε) ·

n
∑

k=1

Duεxk
uεxk
= ε

n
∑

k=1

∆uεxk
uεxk

. (A.25)

• Duεxk
uεxk
=
�

uεx1 xk
uεxk

, . . . , uεxn xk
uεxk

�

= 1
2

�

∂
∂ x1

�

uεxk

�2
, . . . , ∂

∂ xn

�

uεxk

�2�

= 1
2 D
�

uεxk

�2
.

• ∆
�

uεxk

�2
= 2

∑n
i=1

�

∂ 2

∂ x2
i
uεxk

�

uεxk
+ 1

2

∑n
i=1

�

∂ uεxk
∂ x i

�2

, hence

n
∑

k=1

∆uεxk
uεxk
=

1
2
∆

�

n
∑

k=1

�

uεxk

�2
�

−
�

�D2uε
�

�

2
.

Using these equations, (A.25) becomes

n
∑

k=1

�

uεxk

�2
+Dx H(x , Duε)·Duε+DpH(x , Duε)·D

�

1
2

n
∑

k=1

�

uεxk

�2
�

= ε∆

�

1
2

n
∑

k=1

�

uεxk

�2
�

−ε
�

�D2uε
�

�

2
.

Set ψε(x , t) = 1
2

∑n
k=1

�

uεxk

�2
= 1

2 |Duε|2 ≥ 0. Then,

�

2ψε + DpH(x , Duε) · Dψε − ε∆ψε
�

+ Dx H(x , Duε) · Duε + ε
�

�D2uε
�

�

2
= 0. (A.26)

If ε < 1
n , then

ε
�

�D2uε
�

�

2 ≥ ε
n
∑

i=1

�

uεx i x i

�2
≥
ε

n

�

n
∑

i=1

uεx i x i

�2

=
ε

n
(∆uε)2 ≥

�

ε∆uε
�2
=
�

uε +H(x , Duε)
�2

.

Assume uε achieves its maximum and minimum at x1 and x2, respectively, then Duε(x1) =
Duε(x2) = 0 and ∆uε(x1)≤ 0≤∆uε(x2). Thus,

−C ≤ −H(x2, 0)≤ uε(x2)≤ uε(x)≤ uε(x1)≤ −H(x1, 0)≤ C =⇒ |uε(x)| ≤ C

for all x ∈ Rn and ε > 0. In particular,
�

uε + H(x , Duε)
�2
≥ 1

2 H(x , Duε)2 − C for some
constant C independent of ε. Now, using this fact in (A.26), we have:

�

2ψε + Dp(x , Duε) · Dψε − ε∆ψε
�

+
1
2

H(x , Duε)2 + Dx H(x , Duε) · Duε ≤ C . (A.27)
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Now, let us assume thatψε achieves its max onRn at xε, then Dψε(xε) = 0 and∆ψε(xε)≤ 0,
at xε. Plug these into (A.27) to yield

1
2

H
�

xε, Duε(xε)
�2
+ Dx H

�

xε, Duε(xε)
�

· Duε(xε)≤ C .

This is true for all ε > 0, by coercivity assumption we must have |Duε(xε)| ≤ C for all ε > 0.
It follows that

|Duε(x)| ≤ |Duε(xε)| ≤ C

for all x ∈ Rn since ψε(x) = 1
2 |Duε(x)|2. Thus |Duε| ≤ C for all ε > 0 small enough.

Exercise 19. Assume that the cost function satisfies

¨

f ∈ C(Rn × V ), | f (x , v)| ≤ C for all (x , v) ∈ Rn × V.

| f (y1, v)− f (y2, v)| ≤ Lip(b)|y1 − y2|.

Assume that b(·, v) is Lipschitz in the first variable for all v, i.e.,

|b(y1, v)− b(y2, v)| ≤ C |y1 − y2|

for all y1, y2 ∈ Rn and v ∈ V . Set λ0 = ‖Dy b(·, ·)‖L∞(Rn×V ), i.e., the best constant Lip(b) in
the above inequality is λ0. Prove that

(a) If λ > λ0, then u ∈ C0,1(Rn) = Lip(Rn) =W 1,∞(Rn).

(b) If λ= λ0, then u ∈ C0,α(Rn) for any 0< α < 1.

(c) If 0< λ < λ0, then u ∈ C0, λλ0 (Rn).

Proof of Exercise 21. Let v(·) be a control, and yx(·) and yz(·) be solutions to

¨

y ′x(s) = b(yx(s), v(s)),
yx(0) = x ,

and

¨

y ′z(s) = b(yz(s), v(s)),
yz(0) = z,

respectively. Then, for all s > 0, we have

|y ′x(s)− y ′z(s)| ≤ λ0|yx(s)− yz(s)| =⇒ |ϕ′(s)| ≤ λ0|ϕ(s)|

where ϕ(s) = yx(s)− yz(s). By the fundamental theorem of calculus,

|ϕ(t)|=

�

�

�

�

�

ϕ(0) +

∫ t

0

ϕ′(s) ds

�

�

�

�

�

≤ |ϕ(0)|+
∫ t

0

|ϕ′(s)| ds ≤ |x − z|+λ0

∫ t

0

|ϕ(s)| ds.

By Gronwall’s inequality, we obtain

|ϕ(t)|= |yx(t)− yz(t)| ≤ eλ0 t |x − z| for all t > 0. (A.28)
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(a) For (a) there is no need to use DPP, indeed, for any control v(·) we have:

|J(x , v(·))− J(z, v(·))|=
�

�

�

�

∫ ∞

0

e−λs f (yx(s), v(s)) ds−
∫ ∞

0

e−λs f (yz(s), v(s)) ds

�

�

�

�

≤
∫ ∞

0

e−λs | f (yx(s), v(s))− f (yz(s), v(s))| ds

≤
∫ ∞

0

Ce(−λ+λ0)s|x − z| ds =
C

λ−λ0
|x − z|= C0|x − z|.

From that we have

J(x , v(·))≤ C0|x − z|+ J(z, v(·)) =⇒ u(x)≤ C0|x − z|+ J(z, v(·))
(take inf over v(·)) =⇒ u(x)≤ C0|x − z|+ u(z)
J(z, v(·))≤ C0|x − z|+ J(x , v(·)) =⇒ u(z)≤ C0|x − z|+ J(x , v(·))
(take inf over v(·)) =⇒ u(z)≤ C0|x − z|+ u(x).

(b) We define

K(t, x , v(·)) =
∫ t

0

e−λs f
�

yx ,v(·)(s), v(s)
�

ds+ e−λtu
�

yx ,v(·)(t)
�

.

Then,
u(x) = inf

v(·)
K(t, x , v(·))

for all t > 0 by dynamic programming principle. Besides, as | f (x , v)| ≤ C for all
(x , v) ∈ Rn × V , it is clear that

|u(x)| ≤
∫ ∞

0

Ce−λs ds =
C
λ

. (A.29)

From (A.29) and (A.28), we have

|K(t, x , v(·))− K(t, z, v(·))|

≤
∫ t

0

e−λs | f (yx(s), v(s))− f (yz(s), v(s))| ds+ e−λt |u (yx(t))− u (yz(t))|

≤ C |x − z|
∫ t

0

e(λ0−λ)s ds+
2C
λ

e−λt

= C |x − z|t +
2C
λ

e−λt ≤ 2C

�

|x − z|t +
e−λt

λ

�

.

This is true for all t > 0, thus we can see it as a function of t, then the minimum of
the right hand side will be obtained at t such that F ′(t) = 0, where

F(t) = |x − z|t +
e−λt

λ
=⇒ F ′(t) = |x − z| − e−λt

=⇒ F ′(t) = 0 iff t =
1
λ

log
�

1
|x − z|

�

.
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We consider the case 0< |x − z|< 1 first so that the value t above is indeed positive.
Then,

|K(t, x , v(·))− K(t, z, v(·))| ≤
2C
λ

�

|x − z| log
�

1
|x − z|

�

+ |x − z|
�

.

Setting G(s) = s
�

log
�

1
s

�

+ 1
�

= s(1− log(s)), we prove that there exists Cα > 0 such
that G(s)≤ Cαs

α on (0, 1) for any 0< α < 1. Indeed, for β = 1−α ∈ (0, 1), we have

Gβ(s) =
s(1− log(s))

sα
= sβ(1− log(s))

is continuous on (0,1) and lim
s→0

Gβ(s) = 0, lim
s→1

Gβ(s) = 1, thus, Gβ is bounded by some

constant Cα. If α ∈ (0,1) and |x − z|< 1, then

K(t, x , v(·))≤ Cα|x − z|α + K(t, z, v(·)) =⇒ u(x)≤ Cα|x − z|α + K(t, z, v(·))
(take inf over v(·)) =⇒ u(x)≤ Cα|x − z|α + u(z)

K(t, z, v(·))≤ Cα|x − z|α + K(t, x , v(·)) =⇒ u(z)≤ Cα|x − z|α + K(t, x , v(·))
(take inf over v(·)) =⇒ u(z)≤ Cα|x − z|α + u(x).

Therefore |u(x) − u(z)| ≤ Cα|x − z|α whenever |x − z| < 1, i.e., |u(x)−u(z)|
|x−z|α ≤ Cα if

0< |x − z|< 1. If |x − z| ≥ 1, then from (A.29) we have

|u(x)− u(z)|
|x − z|α

≤
2C
λ

=⇒
|u(x)− u(z)|
|x − z|α

≤max
§

Cα,
2C
λ

ª

for any x 6= z and for any α ∈ (0, 1).

(c) From (A.29) and (A.28), we have

|K(t, x , v(·))− K(t, z, v(·))|

≤
∫ t

0

e−λs | f (yx(s), v(s))− f (yz(s), v(s))| ds+ e−λt |u (yx(t))− u (yz(t))|

≤ C |x − z|
∫ t

0

e(λ0−λ)s ds+
2C
λ

e−λt

= C |x − z|
e(λ0−λ)t − 1
λ0 −λ

+
2C
λ

e−λt ≤
C

λ0 −λ
|x − z|e(λ0−λ)t +

2C
λ

e−λt .

This is true for all t > 0, thus we can see it as a function in t, then the minimum of
the right hand side will be obtained at t such that F ′(t) = 0, where

F(t) =
C

λ0 −λ
|x − z|e(λ0−λ)t +

2C
λ

e−λt =⇒ F ′(t) = C |x − z|e(λ0−λ)t − 2Ce−λt

=⇒ F ′(t) = 0 iff t =
1
λ0

log
�

2
|x − z|

�

.

We consider the case 0< |x − z|< 2 first so that the value t above is indeed positive.
Then,

|K(t, x , v(·))− K(t, z, v(·))| ≤
C

λ0 −λ
|x − z|2

λ0−λ
λ0 |x − z|

λ−λ0
λ0 +

2C
λ

2
−λ
λ0 |x − z|

λ
λ0 .

=
�

2
λ0−λ
λ0

C
λ0 −λ

+ 2
λ0−λ
λ0

C
λ

�

|x − z|
λ
λ0 ≤ C1|x − z|

λ
λ0 .
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By using a similar argument to the latter part of (b) and DPP, we have |u(x)−u(z)| ≤
C1|x − z|

λ
λ0 whenever |x − z|< 2, i.e., |u(x)−u(z)|

|x−z|
λ
λ0

≤ C1. If |x − z| ≥ 2, then from (A.29),

we have
|u(x)− u(z)|

|x − z|
λ
λ0

≤
2C

λ2
λ
λ0

= 21− λ
λ0

C
λ
= C2 =⇒

|u(x)− u(z)|

|x − z|
λ
λ0

≤max{C1, C2}= C3

for any x 6= z. Thus, |u(x)− u(z)| ≤ C3|x − z|
λ
λ0 .

Exercise 20. Compute the Legendre transform L(x , v) of the Hamiltonian H : Rn ×Rn → R,
where

H(x , p) =
|p|m

m
+ V (x) for all (x , p) ∈ Rn ×Rn.

Here, m≥ 1 and V ∈ BUC (Rn).

Proof of Exercise 22. We have

L(x , v) = sup
p∈Rn

�

p · v −H(x , p)
�

= sup
p∈Rn

�

p · v −
|p|m

m

�

− V (x).

The map f : Rn→ R maps p 7→ p · v − |p|
m

m is continuous, and

lim
|p|→∞

f (p) = lim
|p|→∞

|p|
�

p · v
|p|
−
|p|m−1

m

�

= −∞.

Therefore, f achieves maximum on Rn at p∗ such that D f (p∗) = 0. We have

D f (p) = v − p|p|m−2 = 0 ⇐⇒ p∗|p∗|m−2 = v,

which gives

f (p∗) = |v|
m

m−1 −
1
m
|v|

m
m−1 =

m− 1
m
|v|

m
m−1 .

Thus, for (x , v) ∈ Rn ×Rn,

L(x , v) =
m− 1

m
|v|

m
m−1 − V (x).

Exercise 22. Consider the Cauchy problem
¨

ut(x , t) +H(x , Du) = 0 in Rn × (0,∞),
(x , 0) = u0(x) on Rn.

(A.30)

For (x , t) ∈ Rn × (0,∞), let

u(x , t) = inf

�∫ t

0

L(γ(s),γ′(s)) ds+ u0(γ(0)) : γ(t) = x ,γ(0) ∈ Rn,γ′ ∈ L1([0, t])

�

.

Using the Dynamic programming principle (DPP)

u(x , t) = inf

�∫ t

s

L(γ(r),γ′(r)) dr + u(γ(s), s) : γ(t) = x ,γ′ ∈ L1([s, t])

�

(DPP)

to prove that u is a viscosity solution to (A.30).
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Proof of Exercise 24. The initial condition is obviously true. The subsolution test is pretty
simple. Take ϕ ∈ C1(Rn × [0,∞)) such that u−ϕ has a strict local maximum at (x0, t0) ∈
Rn × (0,∞), and u(x0, t0) = ϕ(x0, t0), we need to prove

ϕt(x0, t0) +H(x0, Dϕ(x0, t0))≤ 0. (A.31)

Pick a path γ(·) with γ(t0) = x0, then for s < t0, we have

u(γ(t0), t0)− u(γ(s), s)≥ ϕ(γ(t0), t0)−ϕ(γ(s), s)

=

∫ t0

s

�

ϕt(γ(r), r) + γ′(r) · Dϕ(γ(r), r)

�

dr. (A.32)

By dynamic programming principle (DPP), we have
∫ t0

s

�

L(γ(r),γ′(r))

�

dr ≥ u(γ(t0), t0)− u(γ(s), s). (A.33)

From (A.32) and (A.33) we have

0≥
1

t0 − s

∫ t0

s

�

ϕt(γ(r), r) + γ′(r) · Dϕ(γ(r), r)− L(γ(r),γ′(r))

�

dr.

Since the function inside the integral sign is continuous, taking s→ t0, we obtain

ϕt(γ(t0), t0) + γ
′(t0) · Dϕ(γ(t0), t0)− L(γ(t0),γ

′(t0))≤ 0

and thus (A.31) is true since we can design the path γ(·) such that γ′(t0) = v for any v ∈ Rn.

Now we perform the supersolution test. Take ϕ ∈ C1(Rn × [0,∞)) such that u−ϕ has a
strict local minimum at (x0, t0), and u(x0, t0) = ϕ(x0, t0), we need to prove

ϕt(x0, t0) +H(x0, Dϕ(x0, t0))≥ 0.

For any s ∈ (0, t0) we have

u(γ(t0), t0)− u(γ(s), s)≤ ϕ(γ(t0), t0)−ϕ(γ(s), s)

=

∫ t0

s

�

ϕt(γ(r), r) + γ′(r) · Dϕ(γ(r), r)

�

dr.

Let us subtract from two sides by L(γ(r),γ′(r)) we obtain

u(x0, t0)−
�∫ t0

s

L(γ(r),γ′(r)) dr + u(γ(s), s)

�

≤
∫ t0

s

�

ϕt(γ(r), r) +H(γ(r), Dϕ(γ(r), r))

�

dr. (A.34)

Define A to be the set of all “almost-admissible" paths with γ(t0) = x0, i.e., γ(·) such that
∫ t0

0

L(γ(s),γ′(s)) ds+ u0(γ(0))< u(x0, t0) + 1.
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It is easy to see that the Dynamic Programming Principle remains true with the new admis-
sible set A. Take the infimum over all paths γ(·) ∈A in (A.34), we obtain

0≤ sup
γ(t0)=x0
γ∈A

∫ t0

s

�

ϕt(γ(r), r) +H(γ(r), Dϕ(γ(r), r))

�

dr
︸ ︷︷ ︸

K[γ(·)]

. (A.35)

Now for γ(·) ∈A we have

K[γ(·)] = (t0 − s)

�

ϕt(x0, t0) +H(x0, Dϕ(x0, t0))

�

+

∫ t0

s

�

�

ϕt(γ(r), r)−ϕt(x0, t0)
�

+
�

H(γ(r), Dϕ(γ(r), r))−H(x0, Dϕ(x0, t0))
�

�

dr.

(A.36)

1. Now given η > 0, since ϕ is smooth and H is continuous at (x0, t0), there exists δ > 0
such that

|(y, s)− (x0, t0)|< δ =⇒

¨

|ϕt(y, s)−ϕt(x0, t0)|< η
|H(y, Dϕ(y, s))−H(x0, Dϕ(x0, t0))|< η.

2. By Lemma A.25 we know that |γ(r)| is bounded independent of γ ∈A and r < t0, thus
since u is locally bounded, we can get |u(γ(r), r)| ≤ C = C(x0, t0) for all r ∈ [s, t0].
Thus given δ > 0, by super-linearity we can choose M large so that

inf
x∈Rn

�

L(x , v)
|v|

�

>
2(2C + 1)

δ
for all |v| ≥ M . (A.37)

3. Let ε > 0, by (DPP) we can find γ ∈A such that (ε� 1)
∫ t0

s

L(γ(r),γ′(r)) dr ≤ u(x0, t0)− u(γ(s), s) + ε ≤ 2C + 1. (A.38)

• Estimate for the first term is easy:
∫

{r∈[s,t0]:|γ′(r)|≤M}
|γ′(r)| dr ≤ M(t0 − s). (A.39)

• Estimate for the second term:

∫

{r∈[s,t0]:|γ′(r)|≤M}
L(γ(r),γ′(r)) dr ≥ −



 sup
x∈Rn

|v|≤M

L(x , v)



=: −CM .

and
∫

{r∈[s,t0]:|γ′(r)|≥M}
L(γ(r),γ′(r)) dr =

∫

{r∈[s,t0]:|γ′(r)|≥M}

�

L(γ(r),γ′(r))
|γ′(r)|

�

|γ′(r)| dr

≥

 

inf
x∈Rn

|v|≥M

L(x , v)
|v|

!

∫

{r∈[s,t0]:|γ′(r)|≥M}
|γ′(r)| dr.
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From this we obtain

∫ t0

s

L(γ(r),γ′(r)) dr + CM ≥

 

inf
x∈Rn

|v|≥M

L(x , v)
|v|

!

∫

{r∈[s,t0]:|γ′(r)|≥M}
|γ′(r)| dr.

From (A.38) and (A.37) we obtain

∫

{r∈[s,t0]:|γ′(r)|≥M}
|γ′(r)| dr ≤

 

inf
x∈Rn

|v|≥M

L(x , v)
|v|

!−1

(2C + 1)≤
δ

2
. (A.40)

4. With M in step 2, (A.39) and (A.40) yield

sup
r∈[s,t0]

|γ(r)− x0| ≤
∫ t

s

|γ′(r)| dr

≤
∫

{r∈[s,t]:|γ′(r)|≤M}
|γ′(r)| dr +

∫

{r∈[s,t]:|γ′(r)|≥M}
|γ′(r)| dr ≤ M(t0 − s) +

δ

2
.

Choose s closed to t0 such that M(t0 − s)< δ
2 , we obtain

sup
r∈[s,t0]

|γ(r)− x0|< δ

which implies that
¨

|ϕt(γ(r), r)−ϕt(x0, t0)|< η
|H(γ(r), Dϕ(γ(r), r))−H(x0, Dϕ(x0, t0))|< η.

Using these facts in (A.36), we obtain that for any given η, there exists s ∈ [0, t0] such that

K[γ(·)≤ (t0 − s)
�

ϕt(x0, t0) +H(x0, Dϕ(x0, t0))
�

+ 2η(t0 − s).

Taking sup over all path γ(·) ∈A and divide both sides by t0 − s > 0, we obtain

ϕt(x0, t0) +H(x0, Dϕ(x0, t0)) + 2η≥ 0.

Finally since η is arbitrary, ϕt(x0, t0)+H(x0, Dϕ(x0, t0))≥ 0, and the proof is complete.

Lemma A.25. u is locally bounded on Rn × [0,∞), i.e., if (x , t) ∈ BR(0)× [0, T] then there
exists a positive constant CR,T such that |u(x , t)| ≤ CR,T .

Proof. It is easy to see that u(x , t) locally bounded from above on Rn × [0,∞). To prove
u(x , t) is locally bounded from below, let us fix (x , t) ∈ BR(0)× [0, T] and γ(·) ∈A, then for
(x , t) ∈ Rn × [0, T] we have:

1. For every path γ(·) ∈A then

∫ t

0

L(γ(s),γ′(s)) ds ≤ T
�

sup
x∈Rn
|L(x , 0)|

�

+ 2‖u0‖L∞ + 1=: C1
T .
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2. By the superlinearity of L, there exists M > 0 to such that

inf
x∈Rn

L(x , v)
|v|

≥ 1 for all |v| ≥ M .

3. The L1([0, t]) norm of γ′(·) is uniformly bounded. Indeed,

C1
T ≥

∫

{s∈[0,t]:|γ′(s)|≥M}
L(γ(s),γ′(s)) ds =

∫

{s∈[0,t]:|γ′(s)|≥M}

�

L(γ(s),γ′(s))
|γ′(s)|

�

|γ′(s)| ds

≥
∫

{s∈[0,t]:|γ′(s)|≥M}

�

inf
x∈Rn

L(x ,γ′(s))
|γ′(s)|

�

|γ′(s)| ds

≥
∫

{s∈[0,t]:|γ′(s)|≥M}
|γ′(s)| ds. (A.41)

And
∫

{s∈[0,t]:|γ′(s)|≤M}
|γ′(s)| ds ≤ M(s− t)≤ M T. (A.42)

which implies that for all γ ∈A then

∫ t

0

|γ′(s)| ds ≤ C1
T +M T.

4. From the above result we have the bound for |γ(·)| ∈A as

|x −γ(s)| ≤
∫ t

0

|γ′(r)| dr ≤ T (CT +M T ) =⇒ |γ(s)| ≤ R+ T (C1
T +M T ) = C2

T .

5. From (A.41) we obtain for all γ ∈A then
∫

{s∈[s,t]:|γ′(s)|≥M}
L(γ(s),γ′(s)) ds ≥ 0. (A.43)

While on {s ∈ [0, t] : |γ′(s)| ≤ M} we can use the continuity of L to estimate

|L(γ(s),γ′(s))− L(x ,γ′(s))| ≤ωmax{M ,C2
T }

�

|x − γ(s)|
�

≤ωmax{M ,C2
T }

�

T (C1
T +M T )

�

= C3
T

where ω(·) is a modulus of continuity. Thus

L(γ(s),γ′(s))≥ L(x ,γ′(s))− C3
T where |γ′(s)| ≤ M .

6. Using the convexity of v 7→ L(x , v) at v = 0, there exists some ξ ∈ D−v L(x , 0), then

L(x ,γ′(s))≥ L(x , 0) + γ′(s) · ξ≥ L(x , 0)− |ξ| · |γ′(s)|
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and thus from (A.42) and Lemma 2.17 we obtain
∫

{s∈[s,t]:|γ′(s)|≤M}
L(γ(s),γ′(s)) ds ≥

∫

s∈[s,t]:|γ′(s)|≤M

L(x ,γ′(s)) ds− C3
T t

≥
∫

{s∈[s,t]:|γ′(s)|≤M}

�

L(x , 0)− |ξ| · |γ′(s)|
�

ds− C3
T T

≥ − T
�

sup
x∈Rn
|L(x , 0)|

�

− |ξ|
∫

{s∈[s,t]:|γ′(s)|≤M}
|γ′(s)| ds− C3

T T

≥ − T
�

sup
x∈Rn
|L(x , 0)|

�

− |ξ|M T − C3
T T

≥ − T
�

sup
x∈Rn
|L(x , 0)|

�

−
�

sup
|x |≤R
|D−v L(x , 0)|

�

M T − C3
T T = C4

T .

Finally from (A.43) and the previous step we obtain for γ(·) ∈A then

u(x , t) + ‖u0‖L∞ + 1≥
∫ t

0

L(γ(s),γ′(s)) ds ≥ C4
T

which implies
u(x , t)≥ C4

T − ‖u‖L∞ − 1.

Thus u is locally bounded.

Exercise 28. Assume that H satisfies (4.2) and (4.3). Fix p ∈ Rn, and we look at (4.5). Show
that there exists a constant C > 0 independent of λ > 0 such that, for any λ > 0, we have



λvλ(·) +H(p)




L∞(Tn) ≤ Cλ.

Proof of Exercise 37. Let C =maxy∈Tn H(y, p). Then, by the comparison principle, we have

sup
y∈Tn
|λvλ(y)| ≤ C .

The coercivity of H implies that supy∈Tn |Dvλ(y)| ≤ C1, and for all y, x0 ∈ Tn, we have

|vλ(y)− vλ(x0)| ≤ C1

p
n =⇒ λvλ(x0)−λC1

p
n≤ λvλ(y)≤ λvλ(x0) +λC1

p
n

=⇒ λ sup
Tn

vλ(·)−λC1

p
n≤ λvλ(y)≤ λ inf

Tn
vλ(·) +λ.C1

p
n

From the above, it is suffices to prove that

λ inf
Tn

vλ(·)≤ −H(p)≤ λ sup
Tn

vλ(·) ⇐⇒ −λ sup
Tn

vλ(·)
︸ ︷︷ ︸

β

≤ H(p)≤ −λ inf
Tn

vλ(·)
︸ ︷︷ ︸

α

. (A.44)

Let v ∈ Lip(Tn) be any viscosity solution to the cell problem H(y, p + Dv) = H(p). If
H(p)> α, then in the viscosity sense, we have

H(y, p+ Dv(y)) = H(p)> α≥ −λvλ(y) = H
�

y, p+ Dvλ(y)
�

in Tn.
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Since v, vλ ∈ Lip(Tn) are bounded, we can choose δ > 0 such that

δv(y) +H(y, p+ Dv(y))>
H(p) +α

2
> δvλ(y) +H

�

y, p+ Dvλ(y)
�

in the viscosity sense. Then, v(·) and vλ(·) are a viscosity supersolution and subsolution
to the problem δw + H(y, p + Dw) = 1

2(H(p) + α), respectively. Thus, by the comparison
principle, v ≥ vλ. This is a contradiction since v − C is also a viscosity solution to the cell
problem for any constant C ∈ R. Performing a similar procedure for β , we deduce that
(A.44) is true, and thus, we obtain the rate of convergence is O(λ).
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