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Abstract

The hidden-variable question is whether or not correlations that are observed in the outcomes
of an experiment can be explained via introduction of additional (“hidden”) variables which are
unobserved by the experimenter. The question arises most famously in quantum mechanics
(QM), but can also be asked in the classical realm. The nature of the experiment will tell
us how to model the observable variables–i.e., the possible measurements and outcomes. But,
by definition, we cannot know what structure to put on unobservable variables. Nevertheless,
we show that, under one condition, the hidden-variable question can always be put into a
canonical form. The condition is that the spaces of possible measurements and the spaces of
possible outcomes, viewed as measurable spaces, are separable (i.e., the σ-algebras are countably
generated). An argument based on Maharam’s Theorem ([10, 1942]) then shows that the hidden-
variable space can always be taken to be the unit interval equipped with Lebesgue measure.
As an application of our result, we give a hidden-variable characterization of the no-signaling
property of QM.

1 Introduction

Hidden variables are extra variables added to the model of an experiment to explain correlations in
the outcomes. Here is a simple example. Ann’s and Bob’s computers have been prepared with the
same password. We know that the password is either p2s4w6r8 or 1a3s5o7d, but we do not know
which it is. If Ann now types in p2s4w6r8 and this unlocks her computer, we immediately know what
will happen when Bob types in one or other of the two passwords. The two outcomes–when Ann
types a password and Bob types a password–are perfectly correlated. Clearly, it would be wrong
to conclude that, when Ann types a password on her machine, this somehow causes Bob’s machine
to acquire the same password. The correlation is purely informational: It is our state of knowledge
that changes, not Bob’s computer. Formally, we can consider an r.v. (random variable) X for Ann’s
password, an r.v. Y for Bob’s password, and an extra r.v. Z. The r.v. Z takes the value z1 or z2
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according as the two machines were prepared with the first or the second password. Then, even
though X and Y will be perfectly correlated, they will also be independent (trivially so), conditional
on the value of Z. In this sense, the extra r.v. Z explains the correlation.

Of course, even in the classical realm, there are much more complicated examples of hidden-
variable analysis. But, the most famous context for hidden-variable analysis is quantum mechanics
(QM). Starting with von Neumann [14, 1932], and including, most famously, Einstein, Podolosky,
and Rosen [6, 1935], Bell [2, 1964], and Kochen and Specker [9, 1967], a vast literature has grown
up around the question of whether a hidden-variable formulation of QM is possible. (The watershed
no-go theorems of Bell and Kochen-Specker give conditions under which the answer is negative. The
correlations that arise in QM–for example, in spin measurements–cannot be explained as reflecting
the presence of hidden variables.)

Let us specify a little more what we mean by an experiment. We imagine that Ann can make
one of several measurements on her part of a certain system and Bob can make one of several
measurements on his part of the system. Each pair of measurements (one by Ann and one by Bob)
leads to a pair of outcomes (one for Ann and one for Bob). We can build an empirical model of
the experiment by choosing appropriate spaces for the sets of possible measurements and outcomes,
and by specifying, for each pair of measurements, a probability measure over pairs of outcomes. An
associated hidden-variable (henceforth h.v.) model is obtained by starting with the empirical
model and then appending to it an extra r.v.. But, what structure should we put on the space on
which this extra r.v., which constitutes our hidden variable(s), lives? After all, a hidden variable
is a variable above and beyond those which are part of the actual experiment, and is therefore
unobserved. There is no natural structure to impose.

Despite this apparent obstacle, we show that there is a canonical h.v. space. Fix an empirical
model. Suppose there is an associated h.v. model which yields, for each pair of measurements, the
same probability measure over pairs of outcomes. (We will say that the h.v. model realizes the
empirical model.) Then, under one condition, there is always an h.v. model, in which the h.v. space
is the unit interval equipped with Lebesgue measure, which realizes the same empirical model. The
unit interval with Lebesgue measure is, therefore, a canonical h.v. space.

The condition for our theorem is that the spaces of possible measurements and the spaces of
possible outcomes, viewed as measurable spaces, are separable (i.e., the σ-algebras are countably
generated). Maharam’s Theorem ([10, 1942]) on the classification of measure algebras is the key
mathematical result that underlies the proof of our theorem.

We actually prove more than the statement above. The reason is that unrestricted h.v. models
are not very interesting. Given any empirical model, it is trivial to build an h.v. model that realizes
it, if no restrictions are placed on the h.v. model.1 Hidden-variable analysis becomes interesting
once we ask that the h.v. model satisfy various properties. Among such properties are: locality,
parameter independence, outcome independence, λ-independence, and strong and weak determinism.
(We define these properties presently.) We show that the h.v. model we build preserves each such
property satisfied by the original h.v. model.

The final part of this paper offers an application of our construction of a canonical h.v. space. An
important property of an empirical model is no signaling (Ghirardi, Rimini, and Weber [7, 1980]).
No signaling says that, given a measurement by Ann, the marginal probabilities of her outcomes
do not depend on what measurement Bob makes (and vice versa). QM satisfies no signaling, which
ensures its compatibility with relativity. There are also hypothetical physical theories which are
superquantum but still no-signaling (Popescu and Rohrlich [11, 1994]). We use our construction to

1The idea of the construction is well known. We simply take the hidden-variable space to be a copy of the product
of Ann’s and Bob’s outcome spaces, and build a probability measure on the diagonal of the product of these two
products.
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give an h.v. characterization of the no-signaling property: An empirical model satisfies no signaling
if and only if there is an h.v. model which realizes it and which satisfies parameter independence and
λ-independence. We interpret this result later.

2 Empirical and Hidden-Variable Models

Ann has a space of measurements, which is a measurable space (Ya,Ya), and a space of possible
outcomes, which is a measurable space (Xa,Xa). Likwise, Bob has a space of measurements, which is
a measurable space (Yb,Yb), and a space of possible outcomes, which is a measurable space (Xb,Xb).
(Throughout, we will restrict attention to a system with just two parts. We comment later on the
extension to more than two parts.) There is also an h.v. space, which is an unspecified measurable
space (Λ,L). Write

(X,X ) = (Xa,Xa)⊗ (Xb,Xb)

(Y,Y) = (Ya,Ya)⊗ (Yb,Yb)

Ψ = (X,X )⊗ (Y,Y).

Ω = (X,X )⊗ (Y,Y)⊗ (Λ,L).

Definition 2.1 An empirical model is a probability measure e on Ψ.

We see that an empirical model describes an experiment in which the pair of measurements
y = (ya, yb) ∈ Y is randomly chosen according to the probability measure margY e, and y and the
joint outcome x = (xa, xb) ∈ X are distributed according to e.

Definition 2.2 A hidden-variable (h.v.) model is a probability measure p on Ω.

Definition 2.3 We say that an h.v. model p realizes an empirical model e if e = margΨp. We say
that two h.v. models are (realization-)equivalent if they realize the same empirical model.

We see that an h.v. model is a model which has an extra component, viz., the h.v. space, and
which reproduces a given empirical model when we average over the values of the h.v.. The interest
in h.v. models is that we can ask them to satisfy properties that it would be unreasonable to demand
of an empirical model. (In the example we began with, the property is conditional independence–
which we would only expect once Z is introduced.) We review various properties of h.v. models in
Section 4, after covering some preliminaries.

3 Preliminaries

Throughout the paper, we use the following two conventions. First, when p is a probability measure
on a product space (X,X )⊗ (Y,Y) and q = margXp, then for each J ∈ X we write

p(J) = p(J × Y ) = q(J),

and for each q-integrable f : X → R we write∫
J

f(x) dp =

∫
J×Y

f(x) dp =

∫
J

f(x) dq.
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Thus, in particular, a statement holds for p-almost all x ∈ X if and only if it holds for q-almost all
x ∈ X.

Second, when p is a probability measure on a product space (X,X )⊗ (Y,Y)⊗ (Z,Z) and J ∈ X ,
we let p[J ||Z] be the function from Z into [0, 1] such that

p[J ||Z]z = p[J × Y × Z|{X × Y, ∅} ⊗ Z]((x,y,z) = E[1J×Y×Z |{X × Y, ∅} ⊗ Z].

We use similar notation for (finite) products with factors to the left of (X,X ) or to the right of
(Z,Z). Note that if q = margX×Zp, then q[J ||Z] = p[J ||Z]. We also use the analogous notation for
expected values of random variables: Given an integrable function f : X → R, we write E[f ||Z] for
the conditional expectation E[f ◦π|{X ×Y, ∅}⊗Z] where π is the projection from X ×Y ×Z to X.

Lemma 3.1 The mapping z 7→ p[J ||Z]z is the p-almost surely unique Z-measurable function f :
Z → [0, 1] such that for each set L ∈ Z,∫

L

f(z) dp = p(J × L).

Proof. Let f(z) = p[J ||Z]z. Using the definition of p[J ||Z], we see that∫
L

f(z) dp =

∫
X×Y×L

E[1J×Y×Z |{X × Y, ∅} ⊗ Z] dp =

∫
X×Y×L

1J×Y×Z dp = p((X × Y × L) ∩ (J × Y × Z)) = p(J × L),

as required.

Corollary 3.2 Let q be the marginal of p on X×Z. Then, for each J ∈ X , we have p[J ||Z] = q[J ||Z]
q-almost surely.

Lemma 3.3 If p[J ||Z] ∈ {0, 1} p-almost surely, then p[J ||Y ⊗ Z] = p[J ||Z] p-almost surely.

Proof. Let L0 = {z ∈ Z : p[J ||Z]z = 0} and L1 = {z ∈ Z : p[J ||Z]z = 1}. Then L0, L1 ∈ Z and
p(L0 ∪ L1) = 1. By Lemma 3.1, ∫

L0

p[J ||Z]z dp = 0 = p(J × L0),

∫
L1

p[J ||Z]z dp = p(L1) = p(J × L1).

By Lemma 3.1 again,∫
Y×L0

p[J ||Y ⊗ Z](y,z) = p(J × Y × L0) = p(J × L0) = 0,

so
p[J ||Y ⊗ Z](y,z) = 0 = p[J ||Z]z ∀ (y, z) ∈ Y × L0.

Similarly, ∫
Y×L1

p[J ||Y ⊗ Z](y,z) = p(J × Y × L1) = p(J × L1) = p(L1),
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so
p[J ||Y ⊗ Z](y,z) = 1 = p[J ||Z]z ∀ (y, z) ∈ Y × L1,

as required.

When x ∈ X, we write p[x||Z]z = p[{x}||Z]z. By the properties of probability measures, for X
finite we have

∑
x∈X p[x||Z]z = 1 p-almost surely.

Given probability measures p on (X,X )⊗ (Y,Y) and r on (Y,Y), we say that p is an extension
of r if r = margY p. We say that two probability measures p and q on (X,X )⊗ (Y,Y) agree on Y
if margY p = margY q.

In what follows, whenever we write an equation involving conditional probabilities, it will be
understood to mean that the equation holds p-almost surely. By the term “measure” we will always
mean “probability measure.”

4 Properties of Hidden-Variable Models

The definitions of properties of h.v. models in this section are due to Bell [2, 1964] (locality), Jarrett
[8, 1984] (parameter independence and outcome independence), and Brandenburger and Yanof-
sky [4, 2008] (the distinction between strong and weak determinism). Some terminology is from
Shimony [13, 1986] parameter independence and outcome independence) and Dickson [5, 2005] (λ-
independence).

The results in this paper hold when the spaces Xa, Xb, Ya, Yb are infinite, and the σ-algebras
Xa, Xb, Ya, Yb are countably generated. However, everything is conceptually simpler when Xa,
Xb are finite, because in this case we can work with individual elements rather than with subsets.
Furthermore, our results when Xa, Xb are finite can be used to prove similar results for the infinite
case. This preliminary version of the paper treats the finite case; the next version will cover the
infinite case.2 Of course, there are cases where Xa, Xb are, in fact, finite: spin measurements in QM
are one example.

Assumption: From now on, except where noted otherwise, the outcome spaces Xa and Xb will be
finite, and Xa and Xb will be the respective power sets.

All expressions below which are given for Ann have counterparts for Bob, with a and b inter-
changed.

Definition 4.1 The h.v. model p is λ-independent if for every event L ∈ L,

p[L||Y]y = p(L).

Note that the λ-independence property for p depends only on r = margY×Λp. By well-known
properties of product measures, we have:

Lemma 4.2 The following are equivalent:

(i) the measure p is λ-independent;

(ii) the measure r is the product r = margY p⊗margΛp;

2For the proofs for the infinite case, see our online draft “Observable Implications of Unobservable Variables,” at
www.stern.nyu.edu/∼abranden/papers.
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(iii) the σ-algebras Y and L are independent with respect to p, i.e.,

p(K × L) = p(K)× p(L)

for every K ∈ Y, L ∈ L.

Definition 4.3 The h.v. model p has parameter independence if for every xa ∈ Xa we have

p[xa||Y ⊗ L] = p[xa||Ya ⊗ L].

Definition 4.4 The h.v. model p has outcome independence if for every x = (xa, xb) ∈ X we
have

p[x||Y ⊗ L] = p[xa||Y ⊗ L]× p[xb||Y ⊗ L].

Definition 4.5 The h.v. model p is local, or has locality, if for every x ∈ X we have

p[x||Y ⊗ L] = p[xa||Ya ⊗ L]× p[xb||Yb ⊗ L].

The next proposition follows Jarrett [8, 1984, p.582].

Proposition 4.6 The h.v. model p is local if and only if p has parameter independence and outcome
independence.

Proof. It is easily seen from the definitions that if p has parameter independence and outcome
independence, then p is local.

Suppose that p is local. We have

{xa} ×Xb =
⋃

xb∈Xb

{(xa, xb)},

so
p[xa||Y ⊗ L] = p[{xa} ×Xb||Y ⊗ L] =

∑
xb∈Xb

p[xa, xb||Y ⊗ L] =∑
xb∈Xb

(p[xa||Ya ⊗ L]× p[xb||Yb ⊗ L]) =

p[xa||Ya ⊗ L]×
∑

xb∈Xb

p[xb||Yb ⊗ L] = p[xa||Ya ⊗ L]× 1 = p[xa||Ya ⊗ L].

Similarly,
p[xb||Y ⊗ L] = p[xb||Yb ⊗ L].

It follows that p has parameter independence.
Again, supposing that p is local, we have

p[xa, xb||Y ⊗ L] = p[xa||Ya ⊗ L]× p[xb||Yb ⊗ L],

and hence
p[xa, xb||Y ⊗ L] = p[xa||Y ⊗ L]× p[xb||Y ⊗ L],

so p has outcome independence.

Definition 4.7 The h.v. model p has strong determinism if for each xa ∈ Xa we have

p[xa||Ya ⊗ L](ya,λ) ∈ {0, 1}.
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This says that the set Ya ×Λ can be partitioned into sets {Axa
: xa ∈ Xa} such that p[xa||Axa

] = 1
for each xa ∈ Xa.

Definition 4.8 The h.v. model p has weak determinism if for each x ∈ X we have

p[x||Y ⊗ L](y,λ) ∈ {0, 1}.

This says that the set Y × Λ can be partitioned into sets {Ax : x ∈ X} such that p[x||Ax] = 1
for each x ∈ X.

Lemma 4.9 The following are equivalent:

(i) the measure p has weak determinism;

(ii) for each xa ∈ Xa we have
p[xa||Y ⊗ L](y,λ) ∈ {0, 1}.

Proof. It is clear that (ii) implies (i).
Assume (i). Then for p-almost all (y, λ) there is an x ∈ X such that p[x||Y ⊗ L](y,λ) = 1, and

hence
p[xa||Y ⊗ L](y,λ) = 1

for each xa ∈ Xa. Therefore (ii) holds.

Proposition 4.10 If p has strong determinism then p has weak determinism.

Proof. Suppose p has strong determinism. By Lemma 3.3, we have

p[xa||Yc ⊗ L] = p[xa||Y ⊗ L]

p-almost surely, and therefore
p[xa||Y ⊗ L] ∈ {0, 1},

so p has weak determinism by Lemma 4.9(ii).

Proposition 4.11 If p has weak determinism, then p has outcome independence.

Proof. Suppose p has weak determinism. By Lemma 4.9, we have

p[xa||Y ⊗ L] ∈ {0, 1}.

Therefore
p[x||Y ⊗ L] = p[xa||Y ⊗ L]× p[xb||Y ⊗ L],

as required.

Proposition 4.12 The h.v. model p has strong determinism if and only if p has weak determinism
and parameter independence.
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Proof. Suppose p has strong determinism. By Lemma 3.3,

p[xa||Ya ⊗ L] = p[xa||Y ⊗ L],

so p has parameter independence. By Proposition 4.10, p has weak determinism.
For the converse, suppose p has weak determinism and parameter independence. Fix xa ∈ Xa.

By weak determinism and Lemma 4.9,

p[xa||Y ⊗ L](y,λ) ∈ {0, 1}.

By parameter independence,
p[xa||Y ⊗ L] = p[xa||Ya ⊗ L].

Therefore
p[xa||Ya ⊗ L](y,λ) ∈ {0, 1},

so p has strong determinism.

We can summarize the properties we have considered and the relationships among them in the
following Venn diagram.3

Strong Determinism

Outcome Independence

Weak Determinism

Parameter Independence

Λ-Independence

The definitions and results in this section extend immediately to systems with more than two
parts, except that parameter independence must now be stated in terms of sets of parts instead of
individual parts.

We need two more definitions for the next section. By the Lebesgue unit interval we mean
the probability space U = ([0, 1],U , u) where U is the set of Borel subsets of [0, 1] and u is Lebesgue
measure on U .

Definition 4.13 The h.v. model p is real-valued if (Λ,L) = ([0, 1],U) and margΛp = u.

3By virtue of our Proposition 4.12, this diagram improves upon the Venn diagram in Brandenburger and Yanofsky
[4, 2008], in showing that four of the regions in the latter diagram are empty.
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5 A Canonical Hidden-Variable Space

We now state and prove our main result, which says that, given an h.v. model, there is an equivalent
real-valued h.v. model which preserves properties.

Theorem 5.1 Assume that the σ-algebras Ya and Yb are countably generated. Then every h.v. model
p is equivalent to a real-valued h.v. model p such that for each of the properties of λ-independence,
parameter independence, outcome independence, strong determinism, and weak determinism, if p
has the property then so does p.

Proof. We may assume without loss of generality that p has an atomless h.v. model, because the
product p⊗u of p with the Lebesgue unit interval is equivalent to p and has the atomless h.v. model
(Λ,L, `)⊗U, and if p has any of the five properties above, then so does p⊗ u.

Let Y0
a be a countable subset of Ya that generates the σ-algebra Ya, and similarly for Y0

b . Let
U0 be the family of all open subintervals of [0, 1] with rational endpoints. Let

(xan, xbn, Ban, Bbn, Cn)

be an enumeration of the countable set Xa ×Xb × Y0
a × Y0

b × U0. The Cartesian products {xan} ×
{xbn} ×Ban ×Bbn × Cn generate the σ-algebra X ⊗ Y ⊗ U . For each n, let

Dn = {λ ∈ Λ : p[{(xan, xbn)} ×Ban ×Bbn||L]λ ∈ Cn}.

To continue the proof, we need the following lemma. In what follows, we will write ` = margΛp.

Lemma 5.2 There is a countably generated σ-algebra D ⊆ L such that each of the sets Dn belongs
to D, and the restriction of ` to D is atomless.

Proof of lemma. Since ` is atomless, it follows from a result of Sierpinski [12, 1922] that for each
set L ∈ L there is a set L′ ∈ L such that L′ ⊆ L and `(L′) = `(L)/2. Then, by the Axiom of Choice,
there is a function F : L → L such that for each L ∈ L, F (L) ⊆ L and `(F (L)) = `(L)/2. Let E0 be
the algebra of subsets of Λ generated by {Dn : n ∈ N}. For each m ∈ N, let Em+1 be the algebra
of subsets of Λ generated by Em ∪ {F (L) : L ∈ Em}. Let E =

⋃
m Em, and let D be the σ-algebra

generated by E . Clearly, each Dn belongs to D, and E is countable, so D is countably generated.
We show that the restriction of ` to D is atomless. Let D′ be the set of all D ∈ D that can be

approximated by sets in E with respect to `, that is,

D′ = {D ∈ D : (∀r > 0)(∃E ∈ E)`(E4D) < r}.

It is clear that E ⊆ D′, and that D′ is closed under finite unions and intersections. The set D′ is
also closed under unions of countable chains, because if Ln ∈ D′ and Ln ⊆ Ln+1 for each n, and
L =

⋃
n Ln, then for each r > 0 there exists n ∈ N and E ∈ E such that `(L4Ln) < r/2 and

`(E4Ln) < r/2. Therefore `(L4E) < r, so L ∈ D′. It follows that D′ = D. Now suppose D ∈ D,
`(D) > 0, and r > 0. Then D ∈ D′, so there is a set G ∈ E such that `(D4G) < r. We have
F (G) ∈ E , `(F (G)) = `(G)/2, and F (G) ⊆ G. Then D ∩ F (G) ∈ D, and, by taking r small enough,
we can guarantee that `(D) > `(D∩F (G)) > 0. This shows that the restriction of ` to D is atomless,
and proves the lemma.

Proof of Theorem 5.1 contd. By Maharam’s Theorem ([10, 1942]), the measure algebras of
(Λ,D, `) and U are isomorphic. This isomorphism maps the equivalence class (modulo null sets) of
each D ∈ D to the equivalence class of a set h(D) ∈ U such that u(h(D)) = `(D).
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Let p be the probability measure on X ⊗ Y ⊗ U such that for each Y ∈ X , S ∈ Y, and D ∈ D
we have p(Y × S × h(D)) = p(Y × S ×D). It is clear that p is an extension of s⊗ µ. Moreover, p
has the same marginal as p on X ×Y , so p is equivalent to p. The h.v. model p is the Lebesgue unit
interval, so p is real-valued. For each S ∈ Y and D ∈ D we have

p(S) = p(S), p(h(D)) = p(D), p(S × h(D)) = p(S ×D).

Therefore, if p has λ-independence, then p has λ-independence by Lemma 4.2.
The σ-algebra D is large enough so that for each K ∈ Y, the function p[{(xa, xb)} × K||L] is

D-measurable. It follows that

p[xa, xb||Y ⊗ L] = p[xa, xb||Y ⊗ D],

p[xa||Ya ⊗ L] = p[xa||Ya ⊗D],

and
p[xb||Yb ⊗ L] = p[xb||Yb ⊗D].

From the definition of p, one can see that joint distributions of the functions

p[xa, xb||Y ⊗ D], p[xa||Ya ⊗D], p[xb||Yb ⊗D]

and
p[xa, xb||Y ⊗ U ], p[xa||Ya ⊗ U ], p[xb||Yb ⊗ U ]

are the same. It follows that for each of the properties of parameter independence, outcome inde-
pendence, strong determinism, and weak determinism, if p has the property then so does p.

6 An Application to the No-Signaling Property

In this section we apply Theorem 5.1 to give an h.v. -characterization of the no-signaling property
(Ghirardi, Rimini, and Weber [7, 1980]) of empirical models. (As before, all expressions below which
are given for Ann have counterparts for Bob, with a and b interchanged.)

Definition 6.1 The empirical model e is no-signaling if for every xa ∈ Xa we have

e[xa||Y] = e[xa||Ya].

This says that, the probability of a particular outcome for Ann, conditional on her measurement,
is unaffected by also conditioning on Bob’s measurement. QM satisfies no signaling ([7, 1980]).
(For a proof that this is true for arbitrary sets of commuting observables, not just for multipartite
situations, see Abramsky and Brandenburger [1, 2011, Section 4.2].) There are also no-signaling
superquantum theories Popescu and Rohrlich ([11, 1994]). Satisfaction of no signaling is usually
said to be necessary if a physical theory is to be compatible with relativity.

Here is our h.v. -characterization of no signaling.

Theorem 6.2 Assume that the σ-algebras Ya and Yb are countably generated. Then, the empirical
model e is no-signaling if and only if there is an h.v. model p which realizes e and which has parameter
independence and λ-independence.

We will prove the theorem and then discuss it. For the proof, we will need the notion of a
fiber product of measures from Ben Yaacov and Keisler [3, 2009]. Let (X,X ), (Y,Y), (Z,Z) be
measurable spaces. (In the next definition and lemma, the space X need not be finite.)
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Definition 6.3 Let q, r be probability measures on (X,X )⊗ (Z,Z) and (Y,Y)⊗ (Z,Z) respectively.
Assume that q and r have the same marginal s on (Z,Z). The fiber product p = q ⊗Z r is the
probability measure p on (X,X )⊗ (Y,Y)⊗ (Z,Z) such that

p(J ×K × L) =

∫
L

q[J ||Z]z × r[K||Z]z ds

for all J ∈ X , K ∈ Y, and L ∈ Z.

It follows from the Caratheodory Extension Theorem that when q, r are as above, the fiber prod-
uct p = q⊗Z r exists and is unique, and is a common extension of q and r. Next is a characterization
of the fiber product in terms of conditional probabilities and extensions.

Lemma 6.4 Let q and r be as in Definition 6.3, and let p be a common extension of q, r on
(X,X )⊗ (Y,Y)⊗ (Z,Z). Then the following are equivalent.

(i) p = q ⊗Z r.

(ii) p[J ×K||Z]z = q[J ||Z]z × r[K||Z]z p-almost surely, for all J ∈ X and K ∈ Y.

(iii) p[J ×K||Z]z = p[J ||Z]z × p[K||Z]z p-almost surely, for all J ∈ X and K ∈ Y.

(iv) p[J ||Y ⊗ Z](y,z) = p[J ||Z]z p-almost surely, for all J ∈ X .

Proof. It is clear that (i), (ii), and (iii) are equivalent. Consider any J ∈ X ,K ∈ Y, and L ∈ Z.
Assume (i). We have ∫

K×L
p[J ||Z] dp =

∫
Y×L

p[J ||Z]× 1K dp.

By the rules of conditional expectations,

E[p[J ||Z]× 1K ||Z] = p[J ||Z]× E[1K ||Z] = p[J ||Z]× p[K||Z].

Therefore ∫
Y×L

p[J ||Z]× 1K dp =

∫
L

p[J ||Z]× p[K||Z] dp =

∫
L

q[J ||Z]× r[K||L] dp.

By (i), this is equal to p(J ×K × L), so∫
K×L

p[J ||Z] dp = p(J ×K × L).

This shows that (i) imples (iv).
Now assume (iv). Then

p(J ×K × L) =

∫
K×L

p[J ||Y ⊗ Z] dp =

∫
K×L

p[J ||Z] dp =

∫
Y×L

p[J ||Z]× 1K dp.

As in the preceding paragraph,∫
Y×L

p[J ||Z]× 1K dp =

∫
L

q[J ||Z]× r[K||Z] dp,

and condition (i) is proved.

Let ea, s be the marginals of e on Xa × Ya and Y respectively.
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Proposition 6.5 An empirical model e is no-signaling if and only if e is an extension of ea ⊗Ya
s.

Proof. By Lemma 6.4.

Proof of Theorem 6.2. Suppose e is no-signaling. Then, the h.v. model where Λ is a singleton
{λ} realizes e and has parameter independence and λ-independence.

Now suppose that there is an h.v. model p which realizes e and which has parameter independence
and λ-independence. By Proposition 6.5, we must show that e is an extension of the fiber product
ea ⊗Ya s.

By Theorem 5.1, e is realized by an h.v. model p which is real-valued and has parameter indepen-
dence and λ-independence. Let Λ = [0, 1], let L be the σ-algebra of Borel subsets of [0, 1], and let
L1,L2, . . . be an increasing chain of finite algebras of sets whose union generates L. Let qa, pa, r be
the marginals of p on Xa×Ya×Λ, Xa×Y ×Λ, and Y ×Λ respectively. By parameter independence,
pa is the fiber product pa = qa ⊗Ya×Λ r.

For each n, let qna and rn be the restrictions of qa and r to Xa⊗Ya⊗Ln and Y ⊗Ln respectively.
In general, p will not be an extension of the fiber product qna ⊗Ya×Λ r

n. Our plan is to show that
qna ⊗Ya×Λ r

n is an extension of ea ⊗Ya
s, and converges to pa as n→∞.

We first prove convergence. Fix an integer k > 0, and element xa ∈ Xa, and sets U ∈ Ya⊗Lk and
Kb ∈ Yb. Then qna [xa||Ya ⊗ Ln] is a uniformly bounded martingale with respect to the sequence of
σ-algebras Ya⊗Ln, for n ≥ k. By the Martingale Convergence Theorem, qna [xa||Ya⊗Ln] converges
to qa[xa||Ya ⊗ L] p-almost almost surely. Similarly, for each Kb ∈ Yb, rn[Kb||Ya ⊗ Ln] converges to
r[Kb||Ya ⊗ L] p-almost surely. We have

(qna ⊗Ya×Λ r
n)({xa} × U ×Kb) =

∫
U

qna [xa||Ya ⊗ Ln]× rn[Kb||Ya ⊗ Ln] dp

and

pa({xa} × U ×Kb) =

∫
U

qa[xa||Ya ⊗ L]× r[Kb||Ya ⊗ L] dp.

Moreover, as n→∞,

qna [xa||Ya ⊗ Ln]× rn[Kb||Ya ⊗ Ln]→ qa[xa||Ya ⊗ L]× r[Kb||Ya ⊗ L]

p-almost surely. By Fatou’s Lemma,∫
U

qna [xa||Ya ⊗ Ln]× rn[Kb||Ya ⊗ Ln] dp→
∫
U

qa[xa||Ya ⊗ L]× r[Kb||Ya ⊗ L] dp.

Therefore
(qna ⊗Ya×Λ r

n)({xa} × U ×Kb)→ pa({xa} × U ×Kb).

It follows that for each xa ∈ Xa, Ka ∈ Ya, and Kb ∈ Yb,

(qna ⊗Ya×Λ r
n)({xa} ×Ka ×Kb)→ pa({xa} ×Ka ×Kb) = e({xa} ×Ka ×Kb).

We next prove that for each n, qna ⊗Ya×Λ r
n is an extension of ea ⊗Ya

s. Let Xn be the set of all
atoms of Ln of positive Lebesgue measure. Then Xn is a finite collection of pairwise disjoint subsets
of Λ whose union has Lebesgue measure 1. Let u = qna ⊗Ya×Λ r

n. By Lemma 6.4,

u[xa||Y ⊗ Ln] = u[xa||Ya ⊗ Ln].
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The conditional probability u[xa||Y⊗Ln](y,λ) depends only on y and the atom A ∈ Xn that contains
λ, so we may write

u[xa||Y ⊗ Ln](y,λ) = u[xa||Y ⊗ Ln](y,A)

whenever λ ∈ A ∈ Xn. We have

u[xa||Y]y =
∑

A∈Xn
u[xa||K ⊗ Ln](y,A) × p[A||Y]y.

A similar computation holds with Ya in place of Y. Since p has λ-independence,

p[A||Y]y = p(A) = p[A||Ya]y

for each A ∈ Xn and y ∈ Y . Therefore

u[xa||Y] = u[xa||Ya].

Since qna is an extension of ea, and rn is an extension of s, we see from Lemma 6.4 that u = qna⊗Ya×Λr
n

is an extension of ea ⊗Ya
s. Thus

(ea ⊗Ya
s)({xa} ×Ka ×Kb)

is a constant sequence that converges to e({xa} ×Ka ×Kb), and hence

(ea ⊗Ya s)({xa} ×Ka ×Kb) = e({xa} ×Ka ×Kb)

for all xa ∈ Xa, Ka ∈ Ya, and Kb ∈ Yb. This shows that e is an extension of ea ⊗Ya s. A similar
argument holds for b in place of a, so e is no-signaling by Proposition 6.5.

By definition, empirical models that arise in the classical world can be realized by h.v. models
that have λ-independence and locality. Remember that locality is equivalent to the conjunction of
parameter independence and outcome independence (Proposition 4.6). Thus, Theorem 6.2 says
that dropping just outcome independence takes us from the classical world all the way to the
superquantum–i.e., no-signaling–world. It is well known that locating the QM world inside the
no-signaling world is a hard problem. Still, Theorem 6.2 suggests that there may be weakenings of
outcome independence that will help shed light on this problem.
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