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Abstract

We first introduce two functions on finitely additive probability
spaces that behave well under products: discrepancy, which measures
how close one space comes to extending another, and bi-discrepancy,
which is a pseudo-metric on the collection of all spaces on a given set,
and a metric on the collection of complete spaces. We then apply these
to show that the Loeb space of the internal product of two internal
finitely additive probability spaces depends only on the Loeb spaces
of the two original internal spaces. Thus the notion of a Loeb product
of two Loeb spaces is well-defined. The Loeb operation induces an
isometry from the nonstandard hull of the space of internal probability
spaces on a given set to the space of Loeb spaces on that set, with the
metric of bi-discrepancy.

1 Introduction

The most important construction in the application of model theory to prob-
ability is the Loeb measure construction from [10]. The Loeb operation
converts an internal finitely additive probability space M = (Ω,F , µ) to a
complete σ-additive probability space L(M) = (Ω, L(F), L(µ)). It provides
a valuable tool for proving mathematical results using model-theoretic meth-
ods (see, for example, [1], [8], [9], and [11]). The purpose of this paper is to
show that the “Loeb product” of two Loeb spaces is well-defined. That is,
given two internal probability spaces, the Loeb space of the internal product
depends only on the Loeb spaces of the original internal spaces. Thus, it is
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appropriate to call the Loeb spaces of the original spaces “factors”, and to
call the Loeb space of the internal product the “Loeb product”.

For each i = 1, 2, let Mi = (Ωi,Fi, µi) be an internal probability space,
where Fi is an internal algebra of subsets of a nonempty internal set Ωi, and µi

a finitely additive internal measure on Fi. There are several ways to construct
σ-additive product probability spaces based on the Loeb operations. First,
we take the Loeb spaces L(Mi) = (Ωi, L(Fi), L(µi)) for i = 1, 2 and take
their usual σ-additive measure-theoretic product

L(M1)⊗σ L(M2) = (Ω1 × Ω2, L(F1)⊗σ L(F2), µ1 ⊗σ µ2).

Its completion is denoted by (L(M1)⊗σ L(M2))c. Second, let

M1 ⊗M2 = (Ω1 × Ω2,F1 ⊗F2, µ1 ⊗ µ2)

be the internal product space, where F1⊗F2 is simply the internal algebra of
all ∗finite disjoint unions of rectangles A1×A2 with Ai ∈ Fi. The Loeb space
L(M1⊗M2) of M1⊗M2 is called the Loeb product space. Third, when
the internal probability spacesM1 andM2 are ∗σ-additive, letM1⊗σM2 be
the internal ∗σ-additive probability space generated by the internal product
M1⊗M2. The Loeb space L(M1⊗σ M2) of M1⊗σ M2 is called the Loeb
σ-product space.

As already noted in [2], (L(M1)⊗σ L(M2))c ⊆ L(M1⊗M2). It is shown
in [13] that the inclusion is always proper when L(M1) and L(M2) are non-
atomic (a specific example can be found in [1] p.74). In fact, Theorem 6.2
in [13] shows that the Loeb product space is very rich in the sense that
it can be endowed with independent processes that are not measurable in
(L(M1) ⊗σ L(M2))c but have almost independent random variables with
any variety of distributions. In addition, it is shown in [3] that there is a
continuum of increasing Loeb product null sets with large gaps in the sense
that their set differences have L(µ1)⊗σ L(µ2)-outer measure one. Thus, the
Loeb product space is much richer than the usual product even on null sets.
It is also clear that L(M1 ⊗M2) ⊆ L(M1 ⊗σ M2) when both M1 and M2

are internally ∗σ-additive.
Though the Loeb product (or Loeb σ-product) space is usually much

richer than the completion of the usual product of the Loeb spaces, it still
has the Fubini property ([9]). This property plays a key role in the discovery
of some basic phenomena involving independence (see [13] and [14]). Loeb
product spaces are also useful in solving stochastic differential equations ([1]),
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in chaos decompositions ([4] and Chapter 6 of[11] by Osswald), and in the
model theory of stochastic processes ([8], [9]).

Recently, a number of special measure-theoretic properties of Loeb spaces
were discovered and formulated in conventional terms; see, for example, [6],
[8], [11], [13] and their references. For applications of these special properties,
one can simply regard the Loeb space as a primitive object without going
through internal operations at all. On the other hand, the definition of Loeb
product (Loeb σ-product) relies on the internal product (the internal ∗σ-
additive product). Also, different internal probability spaces may give the
same Loeb space. So the basic question is whether for any two given Loeb
spaces, one can still define their Loeb product (or their Loeb σ-product)
unambiguously. In this paper, we show that the Loeb product space
L(M1 ⊗M2) depends only on the factor Loeb spaces L(M1) and L(M2),
and not on the internal spaces M1 and M2 themselves. We also prove that if
M1 andM2 are ∗σ-additive, then the Loeb σ-product L(M1⊗σM2) depends
only on L(M1) and L(M2). Therefore both the Loeb product and the Loeb
σ-product are well-defined functions of the factor Loeb spaces.

In Sections 2 and 3, we develop some general methods to study the collec-
tion of (finitely additive) standard probability spaces. A standard function
d(M,N ), which we call the discrepancy, is introduced. It measures how
close one (finitely additive) probability space comes to extending another.
The discrepancy function is of independent interest, and its properties are
studied in detail in Section 2. In particular, given a nonempty set Ω, the bi-
discrepancy d2(M,N ) = d(M,N ) + d(N ,M) is a pseudo-metric on the set
of all probability spaces on Ω, and a metric on the set of all complete prob-
ability spaces on Ω. In Section 3 it is shown that the discrepancy from one
product probability space to another product probability space is bounded
by the sum of the discrepancies of the respective factor spaces.

In Section 4, we consider Loeb extensions and Loeb equivalence of inter-
nal probability spaces, which have useful characterizations in terms of the
discrepancy. It shown that the space LΩ of all Loeb spaces on Ω is a com-
plete metric space under bi-discrepancy, and that the Loeb operation induces
an isometry from the nonstandard hull of the space of internal probability
spaces to LΩ. Section 5 presents the results on the uniqueness of the Loeb
product and the Loeb σ-product. Finally, Section 6 deals with hyperfinite
probability spaces. It is shown that when one of the factors is the Loeb space
of a hyperfinite probability space, the Loeb product and the Loeb σ-product
are the same. This leads to the study of spaces that are Loeb equivalent to
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a hyperfinite probability space.
A few questions are posed in Section 7. For background in nonstandard

probability see, e.g., [1] or [11]. As usual, we work in an ω1-saturated non-
standard universe.

This research was supported in part by the Vilas Trust Fund at the Uni-
versity of Wisconsin.

2 Discrepancy of probability spaces

A standard probability space (Ω,F , µ) is only understood to have a finitely
additive measure µ on an algebra F of subsets of a nonempty set Ω with
µ(Ω) = 1 unless we explicitly assume countable additivity (also termed σ-
additivity). In this and the next section, we only work with standard prob-
ability spaces.

We first give a formal definition of the notion of discrepancy, which mea-
sures how close one probability space comes to extending another.

Definition 2.1 Let M = (Ω,F , µ) and N = (Ω,G, ν) be probability spaces.
Define the outer measure ν̄ so that

ν̄(B) = inf{ν(C) : B ⊆ C ∈ G}

for any B ⊆ Ω. Define the discrepancy d(M,N ) of M from N by

d(M,N ) = sup{ν̄(B)− µ(B) : B ∈ F}.

Define the bi-discrepancy between M and N as the sum

d2(M,N ) = d(M,N ) + d(N ,M).

It is easy to see that if N extends M (denoted by M ⊆ N ) then
d(M,N ) = 0, and in particular that d(M,M) = d2(M,M) = 0. Note
that the outer measure ν̄ as defined here may be different from the usual
outer measure defined in a textbook on measure theory (see [5] or [12]),
where a countable covering is used. The following lemma shows that the
discrepancy function is non-negative and satisfies the triangle inequality.

Lemma 2.2 Let M = (Ω,F , µ), N = (Ω,G, ν) and P = (Ω,H, ρ) be proba-
bility spaces. Then
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(a) d(M,N ) = sup{|ν̄(B)− µ(B)| : B ∈ F}, and 0 ≤ d(M,N ) ≤ 1.
(b) The function d(·, ·) satisfies the triangle inequality

d(M,P) ≤ d(M,N ) + d(N ,P).

Proof. (a) For any B ∈ F , we have ν̄(B) + ν̄(Ω \B) ≥ 1, and hence

ν̄(Ω \B)− µ(Ω \B) ≥ (1− ν̄(B))− (1− µ(B)) = −(ν̄(B)− µ(B)).

This means that if ν̄(B)− µ(B) < 0, then

|ν̄(B)− µ(B)| = −(ν̄(B)− µ(B)) ≤ ν̄(Ω \B)− µ(Ω \B) ≤ d(M,N ).

When ν̄(B)−µ(B) ≥ 0, it is obvious that |ν̄(B)−µ(B)| ≤ d(M,N ). By the
arbitrary choice of B, we have sup{|ν̄(B)−µ(B)| : B ∈ F} ≤ d(M,N ). The
opposite inequality is clear. Hence d(M,N ) = sup{|ν̄(B)− µ(B)| : B ∈ F},
which implies that 0 ≤ d(M,N ) ≤ 1.

(b) For any B ∈ F , we have ν̄(B) − µ(B) ≤ d(M,N ). Let ε be any
positive real number. There is a set C ∈ G such that B ⊆ C and ν(C)−ε/2 ≤
ν̄(B). Similarly, there is a set D ∈ H such that C ⊆ D and ρ(D) − ε/2 ≤
ρ̄(C). Add the three inequalities together and rearrange to obtain

ρ(D)− µ(B) ≤ d(M,N ) + (ρ̄(C)− ν(C)) + ε ≤ d(M,N ) + d(N ,P) + ε.

Since ρ̄(B) ≤ ρ(D), we have ρ̄(B)− µ(B) ≤ d(M,N ) + d(N ,P) + ε, which
implies the desired triangle inequality by taking arbitrary choices of B ∈ F
and ε > 0.

Lemma 2.2(a) shows that in the special case that M,N are complete
countably additive probability spaces with the same underlying σ-algebra
F = G, the discrepancy d(M,N ) is equal to the total variation distance.

Theorem 2.3 The bi-discrepancy d2(·, ·) is a pseudo-metric on the family
of all probability spaces on Ω.

Proof. The bi-discrepancy is clearly symmetric, and the triangle inequal-
ity follows from Lemma 2.2 (b).

The following example shows that in general, the discrepancy d is not a
pseudo-metric because d(M,N ) 6= d(N ,M).
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Example 2.4 (a) Let N be the probability space such that Ω = [0, 1), G be
the set of all finite unions of disjoint sub-intervals [a, b) in [0, 1), and ν be the
Lebesgue measure restricted to G. Let M be the Borel probability space on
[0, 1) with the Lebesgue measure. Let Q be the set of rational numbers in [0, 1).
It is clear that ν̄(Q) = 1 and µ(Q) = 0, and it follows that d(M,N ) = 1 but
d(N ,M) = 0.

(b) Here is a finite example. Let m be a positive integer greater than
3 and Ω = {1, 2, . . . , m}. Let F be the algebra generated by the partition
{{1, 2}} ∪ {{i} : 3 ≤ i ≤ m} and let µ({1, 2}) = 2/m, µ({i}) = 1/m for
3 ≤ i ≤ m. Let G be the algebra of all subsets of Ω and let ν be the uniform
counting probability measure. It is easy to check that d(M,N ) = 0 and
d(N ,M) = 1/m.

The outer measure ν̄ associated with a finitely additive measure ν is used
to define the discrepancy. We shall also consider the inner measure ν. The
outer and inner measures are then used to extend ν to its completion ν c.

Definition 2.5 Let N = (Ω,G, ν) be a probability space. Let ν be the inner
measure such that for any B ⊆ Ω, ν(B) = sup{ν(C) : B ⊇ C ∈ G}. The
completion of N is defined as the probability space N c = (Ω,Gc, ν c) where
Gc = {B ⊆ Ω : ν̄(B) = ν(B)}, ν c = ν̄|Gc. N is said to be complete if
N c = N .

Here is a collection of easy facts that will be needed.

Lemma 2.6 (a) N c is a finitely additive probability space extending N .
(b) If N is a countably additive probability space, then so is N c, which is

the completion of N in the usual measure-theoretic sense.
(c) N c is complete.
(d) If M⊆ N , then Mc ⊆ N c.
(e) d2(N ,N c) = 0 and d(M,N ) = d(Mc,N c).
(f) d(M,N ) = 0 if and only if M⊆ N c.
(g) d(Mc,N c) = 0 if and only if Mc ⊆ N c.
(h) d2(Mc,N c) = 0 if and only if Mc = N c.

Proof. The result (a) is essentially known. We include its proof for the
sake of completeness.

We first show that Gc is an algebra. For any E ∈ Gc, we have

ν̄(Ω \ E) = 1− ν(E) = 1− ν̄(E) = ν(Ω \ E),
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and hence (Ω \ E) ∈ Gc.
Next, take any Bi ∈ Gc for i = 1, 2. For any given ε > 0, there exist sets

Ci, Di ∈ G for i = 1, 2 such that Di ⊆ Bi ⊆ Ci and

ν(Ci)− ε/4 ≤ ν̄(Bi) = ν(Bi) ≤ ν(Di) + ε/4.

It follows that
ν(Ci \Di) = ν(Ci)− ν(Di) ≤ ε/2.

Let B = B1 ∪B2, C = C1 ∪ C2, and D = D1 ∪D2. Then D ⊆ C, and

C \D = (C1 \D) ∪ (C2 \D) ⊆ (C1 \D1) ∪ (C2 \D2).

Therefore

0 ≤ ν̄(B)− ν(B) ≤ ν(C)− ν(D) = ν(C \D) ≤ ν(C1 \D1) + ν(C2 \D2) ≤ ε.

Hence ν̄(B) = ν(B), and B ∈ Gc.
If B1 ∩B2 = ∅, then D1 ∩D2 = ∅, and

ν̄(B1) + ν̄(B2) ≤ ν(D1) + ε/4 + ν(D2) + ε/4 = ν(D) + ε/2 ≤ ν̄(B) + ε/2,

which implies ν̄(B1) + ν̄(B2) ≤ ν̄(B) by arbitrarily choosing ε > 0. Since it
is easy to verify that ν̄(B) ≤ ν̄(B1) + ν̄(B2), we have ν̄(B) = ν̄(B1) + ν̄(B2).
Hence (a) is proven.

For (b), assume that N is countably additive. Then B ∈ Gc if and only
if there exist C,D ∈ G such that D ⊆ B ⊆ C and ν(C \D) = 0. Thus N c is
the completion of N in the usual measure-theoretic sense.

For (c), we first show that ν c = ν̄. Take any B ⊆ Ω. Since the set
{ν c(C) : B ⊆ C ∈ Gc} contains the set {ν(C) : B ⊆ C ∈ G}, we have
ν c(B) ≤ ν̄(B). On the other hand, take any E ∈ Gc with B ⊆ E. For any
given ε > 0, there exists a set D ∈ G such that D ⊇ E and ν(D)−ε ≤ ν c(E).
Thus, ν̄(B) − ε ≤ ν c(E). Then ν̄(B) ≤ ν c(E) follows from the arbitrary
choice of ε. By taking the infimum on all the E ∈ Gc with B ⊆ E, we obtain
that ν̄(B) ≤ ν c(B). It follows that ν c = ν. Therefore, (Gc)c = Gc and
(ν c)c = ν c, i.e., (N c)c = N c.

For (d), note that for any B ⊆ Ω, µ(B) ≤ ν(B) ≤ ν̄(B) ≤ µ̄(B). If
B ∈ F c, then we must have ν(B) = ν̄(B) = µ̄(B), and hence B ∈ Gc and
ν c(B) = µc(B). (d) is shown.

For (e), note that d(N c,N ) = sup{ν̄(B) − ν c(B) : B ∈ Gc}. By the
definition of N c, we know that ν c(B) = ν̄(B) for B ∈ Gc. Hence d(N c,N ) =
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0. SinceN c is an extension ofN , d(N ,N c) = 0. Hence d2(N ,N c) = 0, which
together with the triangle inequality implies d(M,N ) = d(Mc,N c).

Now we consider (f). First assume d(M,N ) = 0. For any given B ∈ F ,
Lemma 2.2(a) implies that ν̄(B) = µ(B) . Thus

ν(B) = 1− ν̄(Ω \B) = 1− µ(Ω \B) = µ(B) = ν̄(B),

and hence B ∈ Gc and ν c(B) = µ(B). Therefore M ⊆ N c. On the other
hand, if M ⊆ N c, then d(M,N c) = 0, and 0 ≤ d(M,N ) ≤ d(M,N c) +
d(N c,N ) = 0. Hence d(M,N ) = 0.

If d(Mc,N c) = 0, then (e) and (f) imply that d(M,N ) = 0 andM⊆ N c.
By (c) and (d), Mc ⊆ (N c)c = N c. It is obvious that if Mc ⊆ N c, then
d(Mc,N c) = 0. Hence (g) is shown.

(h) follows from (g) easily.

Theorem 2.7 The bi-discrepancy d2(·, ·) is a metric on the family of all
complete probability spaces on Ω.

Proof. By Lemmas 2.2 and 2.6.

The following proposition shows that the operation of countably additive
extension is a contraction for the discrepancy function.

Proposition 2.8 (a) If N can be extended to a countably additive probability
space σ(N ) = (Ω, σ(G), ν σ), then d(M, σ(N )) ≤ d(M,N ).

(b) Suppose that both M and N can be respectively extended to countably
additive probability spaces σ(M) = (Ω, σ(F), µσ) and σ(N ) = (Ω, σ(G), ν σ).
Then:
(1) d(σ(M), σ(N )) = d(M, σ(N )), and
(2) d(σ(M), σ(N )) ≤ d(M,N ).

Proof. (a) follows easily from the fact that for any B ⊆ Ω,

ν σ(B) = inf{ν σ(C) : B ⊆ C ∈ σ(G)} ≤ inf{ν(C) : B ⊆ C ∈ G} = ν̄(B).

To prove the equality in (b)(1), we first observe that

d(M, σ(N )) = sup{ν σ(B)− µ(B) : B ∈ F}
≤ sup{ν σ(B)− µσ(B) : B ∈ σ(F)}
= d(σ(M), σ(N )).
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The proof of the other side of the inequality is more involved. Assume that
d(M, σ(N )) < δ. Let E be the set of all B ∈ σ(F) such that there exists a
set C ∈ σ(G) with B ⊆ C and ν σ(C) − µσ(B) ≤ δ. Thus, E contains the
algebra F . We show that E is a monotone class.

Let A0 ⊇ A1 ⊇ · · · be a decreasing chain of sets in E and A =
⋂

n An. For
each n there is a set Cn ∈ σ(G) such that An ⊆ Cn and ν σ(Cn)−µσ(An) ≤ δ.
We may take the Cn so that C0 ⊇ C1 ⊇ · · ·. Let C =

⋂

n Cn. Then
A ∈ σ(F), C ∈ σ(G), and

ν σ(C)− µσ(A) = lim
n→∞

ν σ(Cn)− lim
n→∞

µσ(An) = lim
n→∞

(ν σ(Cn)− µσ(An)) ≤ δ,

so A ∈ E .
Now let B0 ⊆ B1 ⊆ · · · be an increasing chain of sets in E and let

B =
⋃

n Bn. For each n choose a set Dn ∈ σ(G) such that Bn ⊆ Dn and
ν σ(Dn)−µσ(Bn) ≤ δ. Let En =

⋂∞
m=n Dm. Then En ∈ σ(G), Bn ⊆ En ⊆ Dn,

and E0 ⊆ E1 ⊆ · · ·. It follows that ν σ(En) − µσ(Bn) ≤ δ. Let E =
⋃

n En.
We have B ∈ σ(F), E ∈ σ(G), B ⊆ E, and

ν σ(E)− µσ(B) = lim
n→∞

ν σ(En)− lim
n→∞

µσ(Bn) = lim
n→∞

(ν σ(En)− µσ(Bn)) ≤ δ,

and hence B ∈ E .
We have shown that E is a monotone class. By the Monotone Class Theo-

rem (e.g. see [5], p.15), E is the σ-algebra σ(F) generated by F . This proves
that d(σ(M), σ(N )) ≤ δ, and it follows that d(σ(M), σ(N )) = d(M, σ(N ))
as required.

(b)(2) follows easily from (a) and (b)(1).

Example 2.9 Let N and M be the spaces from Example 2.4 (a). N is the
restriction of Lebesgue measure to the algebra of finite unions of intervals
in [0, 1), M is the restriction of Lebesgue measure to the Borel algebra, and
d(M,N ) = 1. We note that M = σ(N ), so

0 = d(M, σ(N )) = d(σ(M), σ(N )) < d(M,N ) = 1.

Thus both the inequalities in (a) and (b)(2) of Proposition 2.8 hold strictly
in this case.
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3 Discrepancy of product spaces

In this section we show that the discrepancy from one product probability
space to another product probability space is dominated by the sum of the
discrepancies of the respective factor spaces. The same result also holds for
σ-product spaces.

Definition 3.1 Given probability spaces M1 = (Ω1,F1, µ1) and
M2 = (Ω2,F2, µ2), let

M1 ⊗M2 = (Ω1 × Ω2,F1 ⊗F2, µ1 ⊗ µ2)

denote the product space. In this product, F1 ⊗ F2 is the set of all finite
unions of rectangles A1 × A2 where A1 ∈ F1, A2 ∈ F2, and

(µ1 ⊗ µ2)(A1 × A2) = µ1(A1)µ2(A2).

The following result shows that the discrepancy is preserved for product
spaces when one factor space is fixed. When both factor spaces are changed,
the discrepancy of the product spaces are dominated by the sum of the factor
discrepancies.

Theorem 3.2 Let M1 = (Ω1,F1, µ1), N1 = (Ω1,G1, ν1), M2 = (Ω2,F2, µ2),
and N2 = (Ω2,G2, ν2) be probability spaces. Then

(a) d(M1 ⊗M2,N1 ⊗M2) = d(M1,N1).
(b) d(N1 ⊗M2,N1 ⊗N2) = d(M2,N2).
(c) d(M1 ⊗M2,N1 ⊗N2) ≤ d(M1,N1) + d(M2,N2).

Proof. (a) We first prove d(M1 ⊗M2,N1 ⊗M2) ≤ d(M1,N1). Let
δ > d(M1,N1). Let B ∈ F1 ⊗ F2. Then B is the union of a finite family
of rectangles Di × Ei, 1 ≤ i ≤ K for some positive integer K, where each
Di ∈ F1 and Ei ∈ F2. One can arrange things so that the sets Ei are pairwise
disjoint. For each i we have ν̄1(Di) − µ1(Di) < δ. We may therefore choose
sets Ci ∈ G1 such that for each 1 ≤ i ≤ K, Di ⊆ Ci and ν1(Ci)−µ1(Di) < δ.
Let C =

⋃

1≤i≤K Ci ⊗ Ei. Then C ∈ G1 ⊗ F2, B ⊆ C, and (ν1 ⊗ µ2)(C) −
(µ1 ⊗ µ2)(B) < δ. This proves desired inequality.

Next consider the other side of the inequality. Take any A ⊆ Ω1 and any
F ∈ G1 ⊗ F2 with A × Ω2 ⊆ F . Then F is the union of a finite family of
rectangles Gi × Hi, 1 ≤ i ≤ L, where each Gi ∈ G1 and Hi ∈ F2. One can
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arrange things so that the sets Hi are pairwise disjoint. Since A × Ω2 ⊆ F ,
we must have ∪1≤i≤LHi = Ω2, and A ⊆ Gi for each 1 ≤ i ≤ L. Thus,

(ν1 ⊗ µ2)(F ) =
∑

1≤i≤L

ν1(Gi)µ2(Hi) ≥
∑

1≤i≤L

ν1(A)µ2(Hi)

= ν1(A)
∑

1≤i≤L

µ2(Hi) = ν1(A).

Hence, ν1 ⊗ µ2(A× Ω2) ≥ ν1(A), which implies that for any A ∈ F1,

ν1(A)− µ1(A) ≤ ν1 ⊗ µ2(A× Ω2)− (µ1 ⊗ µ2)(A× Ω2).

Therefore, d(M1,N1) ≤ d(M1 ⊗M2,N1 ⊗M2), and (a) follows.
The identity in (b) can be proven similarly.
By (a), (b) and the triangle inequality in Lemma 2.2,

d(M1 ⊗M2,N1 ⊗N2) ≤ d(M1 ⊗M2,N1 ⊗M2) + d(N1 ⊗M2,N1 ⊗N2)
= d(M1,N1) + d(M2,N2),

and hence (c) is proven.

Corollary 3.3 For any probability spaces M1 and M2,

(M1)c ⊗ (M2)c ⊆ (M1 ⊗M2)c.

Proof. By Theorem 3.2 (c) and Lemma 2.6 (e),

d((M1)c⊗ (M2)c,M1⊗M2) ≤ d((M1)c,M1) + d((M2)c,M2) = 0 + 0 = 0.

The result now follows by Lemma 2.6 (f).

Finally, we consider discrepancy under the operation of σ-product. We
first give a formal definition for the σ-product.

Definition 3.4 LetM1 andM2 be countably additive (also called σ-additive)
probability spaces.

M1 ⊗σ M2 = (Ω1 × Ω2,F1 ⊗σ F2, µ1 ⊗σ µ2)

denotes the σ-product space. This is the countably additive probability space
generated by the finitely additive product space M1 ⊗M2.
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Theorem 3.5 Suppose M1, N1, M2, and N2 are countably additive proba-
bility spaces. Then

d(M1 ⊗σ M2,N1 ⊗σ N2) ≤ d(M1,N1) + d(M2,N2).

Proof. Since M1 ⊗σ M2 = σ(M1 ⊗M2) and N1 ⊗σ N2 = σ(N1 ⊗N2),
Proposition 2.8 (b) and Theorem 3.2 (c) imply that

d(M1⊗σM2,N1⊗σN2) ≤ d(M1⊗M2,N1⊗N2) ≤ d(M1,N1)+d(M2,N2),

and the result follows.

4 Loeb extension and Loeb equivalence

From this section onwards, we work in an ω1-saturated nonstandard universe.
An internal probability space M = (Ω,F , µ) is understood to have a finitely
additive (and hence ∗finitely additive by transfer) measure µ on an internal
algebra F of subsets of a nonempty internal set Ω with µ(Ω) = 1, unless we
explicitly assume ∗σ-additivity. Note that the values of µ are in ∗[0, 1]. We
let oM = (Ω,F , oµ) be the standard probability space where (oµ)(B) is the
standard part of µ(B) for each B ∈ F .

The Loeb probability space generated by an internal probability space
M = (Ω,F , µ) is defined as the structure L(M) = (Ω, L(F), L(µ)), where
L(F) is the set of all B ⊆ Ω such that

sup{oµ(A) : B ⊇ A ∈ F} = inf{oµ(C) : B ⊆ C ∈ F},

and L(µ)(B) is defined as the above supremum.
Then Definition 2.5 implies that L(M) = (oM)c, which is a finitely addi-

tive probability space by Lemma 2.6(a). However, Loeb in [10] showed that
L(M) is, in fact, a complete σ-additive probability space. Moreover, Lemma
2.6 (e) shows that d2(oM, L(M)) = 0.

The following definition gives a natural way of comparing two internal
probability spaces on the same set.

Definition 4.1 Given two internal probability spaces

M = (Ω,F , µ) ,N = (Ω,G, ν),
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we say that N Loeb extends M if L(G) ⊇ L(F), and L(ν) ⊇ L(µ) (which
simply means that L(ν) is an extension of L(µ)) as a function.

We say that M is Loeb equivalent to N if they generate the same Loeb
space, L(M) = L(N ).

Remark 4.2 (a) If N is an internal extension ofM, i.e., G ⊇ F and ν ⊇ µ,
then N Loeb extends M.

(b) M is Loeb equivalent to N if and only if M Loeb extends N and N
Loeb extends M.

(c) The Loeb extension relation is transitive.

By transfer, the function ∗d(·, ·) can be defined on the family of internal
probability spaces on a nonempty internal set Ω. When there is no ambiguity
we will abuse notation by writing d(M,N ) instead of ∗d(M,N ), dropping
the star.

Lemma 4.3 Let M, N be internal probability spaces.
(a) d(oM, oN ) = o(d(M,N )).
(b) d(L(M), L(N )) = o(d(M,N )).
(c) N Loeb extends M if and only if d(M,N ) ≈ 0.
(d) N Loeb extends M if and only if for every B ∈ F there exists C ∈ G

such that B ⊆ C and ν(C) ≈ µ(B).
(e) M is Loeb equivalent to N if and only if d2(M,N ) ≈ 0.

Proof. (a) It is obvious that for any internal subset B of Ω,

inf{oν(C) : B ⊆ C ∈ G} = o(inf{ν(C) : B ⊆ C ∈ G}),

and thus o(ν̄(B)) = oν(B). Hence

d(oM, oN ) = sup{oν(B)− oµ(B) : B ∈ F} = sup{o(ν(B)− µ(B)) : B ∈ F}
= o(sup{(ν(B)− µ(B)) : B ∈ F}) = o(d(M,N ))

(b) By the definition of Loeb spaces and by Lemma 2.6(e) and (a) of this
lemma,

d(L(M), L(N )) = d((oM)c, (oN )c) = d(oM, oN ) = o(d(M,N )).

(c) N Loeb extendsM if and only if L(M) ⊆ L(N ), i.e., (oM)c ⊆ (oN )c.
By Lemma 2.6(g) and (b) of this lemma, it is equivalent to d((oM)c, (oN )c) =
o(d(M,N )) = 0.

13



(d) If d(M,N ) ≈ 0, then Lemma 2.2 (a) implies that for each B ∈ F ,
ν̄(B) ≈ µ(B). Since ν̄ is an internal outer measure, there exists a set C ∈ G
such that B ⊆ C and ν(C) ≈ ν̄(B), and hence ν(C) ≈ µ(B).

Next, assume that for each B ∈ F there exists C ∈ G such that B ⊆
C and ν(C) ≈ µ(B). Take any standard positive real number ε. Then
ν̄(B) − µ(B) ≤ ν(C) − µ(B) < ε, which implies that d(M,N ) ≤ ε. Since
d(M,N ) is a non-negative hyperreal number less than any standard positive
real number, we have d(M,N ) ≈ 0.

(e) follows easily from (c).

In the case that F ⊆ G, the Loeb extension relation behaves in a simple
way.

Corollary 4.4 Suppose M,N are such that F ⊆ G.
(a) N Loeb extends M if and only if ν(A) ≈ µ(A) for all A ∈ F .
(b) Let P be the subspace of N with the algebra H = F . N Loeb extends

M if and only if P is Loeb equivalent to M.
(c) If F = G, then N is Loeb equivalent to M if and only if N Loeb

extends M.

The Loeb extension relation between stars of standard spaces also takes
a simple form.

Corollary 4.5 Suppose M = ∗M0 and N = ∗N0 where M0 and N0 are
standard probability spaces on the same set Ω0.

(a) N Loeb extends M if and only if M0 ⊆ (N0)c.
(b) M and N are Loeb equivalent if and only if (M0)c = (N0)c.

Proof. Part (a) follows from Lemma 2.6 (f) and Lemma 4.3 (b) and (c).
Part (b) then follows easily.

In this paper, by a hyperfinite set we will mean an internal set whose
internal cardinality is a finite or infinite hyperinteger, that is, an element of
∗N. Using the next example, one can easily find different internal probability
spaces M,N on a hyperfinite set Ω such that M and N are Loeb equivalent
and have the same internal algebra F = G.

Example 4.6 Let Ω be a hyperfinite set. Let M = (Ω,F , µ),N = (Ω,G, ν)
be internal probability spaces such that F = G = the set of all internal subsets
of Ω, and the sum Σω∈Ω |µ({ω})−ν({ω})| is positive infinitesimal. Then M
and N are Loeb equivalent.
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The Loeb extension or Loeb equivalence relation is much more difficult
when it is not assumed that F ⊆ G; see the open questions at the end of
this paper. The following example shows that one can indeed find different
internal probability spaces M,N that are Loeb equivalent, but (1) one is a
proper extension of the other, or (2) neither internal algebra is an extension
of the other.

Example 4.7 Let Ω be a hyperfinite set. Suppose N = (Ω,G, ν) is an in-
ternal probability space such that G is the set of all internal subsets of Ω,
and S1 and S2 are disjoint internal subsets of Ω such that ν(Si) ≈ 0 and
card(Si) > 1 for i = 1, 2. For a given i = 1 or 2, let Fi be the set of all
internal sets U ⊆ Ω such that U either contains Si or is disjoint from Si,
and let Mi = (Ω,Fi, ν|Fi). Then M1 and M2 are Loeb equivalent to each
other and to their proper extension N , but F1 and F2 are not extensions of
each other.

Let us now consider the space (IΩ, ∗d2) of all internal probability spaces
on Ω, endowed with the internal pseudo-metric ∗d2. Let LΩ be the space
of all Loeb spaces on Ω with the metric of the standard bi-discrepancy d2.
Let π be the Loeb operation from IΩ to LΩ, where π(M) = L(M) for each
internal probability space M on Ω.

Theorem 4.8 The Loeb operation induces an isometry from the nonstan-
dard hull of the space (IΩ, ∗d2) of internal probability spaces to the space
(LΩ, d2) of Loeb spaces, and (LΩ, d2) is a complete metric space.

Proof. By Lemma 2.2, (IΩ, ∗d2) is an internal pseudo-metric space. Then
∗d2(M,N ) ≈ 0 defines an equivalence relation on IΩ. Let ̂IΩ be the set of
equivalence classes, and let the equivalence class of M be denoted by ̂M.
For ̂M, ̂N ∈ ̂IΩ, define ̂d2( ̂M, ̂N ) = o∗d2(M,N ). Since 0 ≤ ∗d(M,N ) ≤ 1,
̂d2( ̂M, ̂N ) is finite for all M,N . It is well known (see, for example, [11]) that
the nonstandard hull of a metric space is a complete metric space. The same
proof shows that the nonstandard hull of an internal pseudo-metric space is
also a complete metric space, and hence (̂IΩ, ̂d2) is a complete metric space.

Define a mapping π̂ from ̂IΩ to LΩ by letting π̂( ̂M) = π(M). By Lemma
4.3(d), π̂ is well-defined and a bijection from ̂IΩ to LΩ. By Lemma 4.3(b),
we have

̂d2( ̂M, ̂N ) = o∗d2(M,N ) = d2(L(M), L(N )) = d2(π̂( ̂M), π̂( ̂N )),
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and hence π̂ is an isometry. Since (̂IΩ, ̂d2) is a complete metric space, so is
(LΩ, d2).

5 Uniqueness of the Loeb product

We show in this section that for any two given Loeb spaces, their Loeb
product (or the Loeb σ-product) is uniquely defined. We begin with a formal
definition of the internal product.

Definition 5.1 Given internal probability spaces M1 and M2, M1 ⊗M2

will denote the internal product space, where F1 ⊗F2 is the set of all hyper-
finite unions of rectangles A1×A2, and (µ1⊗µ2)(A1×A2) = µ1(A1)µ2(A2).

The following theorem shows that the Loeb product is well defined in
terms of factor Loeb spaces. That is, the Loeb product space L(M1 ⊗M2)
depends only on the Loeb spaces L(M1) and L(M2), and not on the internal
probability spaces M1 and M2 that generate the Loeb spaces L(M1) and
L(M2).

Theorem 5.2 (a) If N1 Loeb extends M1 and N2 Loeb extends M2, then
N1 ⊗N2 Loeb extends M1 ⊗M2.

(b) If M1 is Loeb equivalent to N1 and M2 is Loeb equivalent to N2, then
M1 ⊗M2 is Loeb equivalent to N1 ⊗N2.

Proof. (a) By Lemma 4.3(c), we have d(M1,N1) ≈ 0 and d(M2,N2) ≈
0. It follows from Lemma 2.2(a) and Theorem 3.2(c) that d(M1⊗M2,N1⊗
N2) ≈ 0. By Lemma 4.3(c) again, N1 ⊗N2 Loeb extends M1 ⊗M2.

(b) follows from Remark 4.2.

We now turn to σ-additive probability spaces.
The following example shows that an internal ∗σ-additive probability

space N need not be Loeb equivalent to an internal subspace that ∗σ-
generates it.

Example 5.3 Let N be the star of Lebesgue measure on [0, 1], and let M be
the star of the subspace of finite unions of half-open intervals in [0, 1]. Then
N is not Loeb equivalent to M.
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Proof. The set of hyperrational numbers in ∗[0, 1] has measure 0 in N
but any superset in F has measure 1 in M.

For a pair of internal ∗σ-additive probability spaces, there is a second
notion of product to be considered.

Definition 5.4 Given two internal ∗σ-additive probability spaces M1 and
M2, M1⊗σ M2 will denote the internal ∗σ-additive probability space gener-
ated by M1 ⊗M2

The next theorem shows that the Loeb σ-product is well-defined.

Theorem 5.5 Suppose M1, N1, M2, and N2 are ∗σ-additive internal prob-
ability spaces.

(a) If N1 Loeb extends M1 and N2 Loeb extends M2, then N1⊗σN2 Loeb
extends M1 ⊗σ M2.

(b) If N1 is Loeb equivalent to M1 and N2 is Loeb equivalent to M2, then
N1 ⊗σ N2 is Loeb equivalent to M1 ⊗σ M2.

Proof. The procedure for proving this theorem is exactly the same as
that of Theorem 5.2 except using Theorem 3.5 instead of Theorem 3.2(c).

6 Hyperfinite probability spaces

The Loeb σ-product is especially simple when one of the factor spaces is
hyperfinite. A hyperfinite probability space is an internal probability
space M such that F is a hyperfinite set. (Note that we do not require Ω to
be hyperfinite.)

Remark 6.1 If at least one of the internal ∗σ-additive probability spaces
M1 and M2 is hyperfinite, then the internal product space is the same as the
internal σ-product space.

Corollary 6.2 Suppose thatM,N are internal ∗σ-additive probability spaces
and either M or N is Loeb equivalent to a hyperfinite probability space. Then
M⊗σ N is Loeb equivalent to M⊗N .

Proof. By Theorems 5.2 and 5.5 and Remark 6.1.
In view of Corollary 6.2, it is natural to ask which internal spaces are

Loeb equivalent to hyperfinite probability spaces. The rest of this section
deals with that question.
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Proposition 6.3 Suppose M and N are internal probability spaces, and M
is hyperfinite.

(a) If N Loeb extends M, then N has a hyperfinite subspace P that Loeb
extends M.

(b) If N is Loeb equivalent to M, then N has a hyperfinite subspace that
is Loeb equivalent to M.

Proof. We prove (a) first. By Lemma 4.3, for each B ∈ F there is a set
F (B) = C ∈ G such that B ⊆ C and ν(C) ≈ µ(B). The function F may be
taken to be internal. Let H be the hyperfinite subalgebra of N generated by
the range of F , ρ = ν|H and P = (Ω,H, ρ). Then by Lemma 4.3, P Loeb
extends M.

For (b), note that L(M) ⊆ L(P) ⊆ L(N ) ⊆ L(M). Hence L(M) =
L(P).

An atom of M is a set B ∈ F such that B 6= ∅ but there is no A ∈ F
such that ∅ ⊂ A ⊂ B. Note that this is the notion of an atom in the Boolean
algebra on F , which is different from the notion of an atom in the measure
algebra on F modulo the null sets.

Proposition 6.4 Suppose N is an internal probability space. Then the fol-
lowing are equivalent.

(a) N is Loeb equivalent to some hyperfinite probability space.
(b) There is a hyperfinite set S of atoms of N with ν(

⋃

S∈S S) ≈ 1.

Proof. Assume (a). By Proposition 6.3, N has a Loeb equivalent hy-
perfinite subspace M. Let S be the set of all atoms of M that are also
atoms of N . We claim that ν(

⋃

S∈S S) ≈ 1, so (b) holds. Suppose not. Let
D = Ω \

⋃

S∈S S. Since M is hyperfinite, D is the union of a hyperfinite set
U of atoms of M, so D ∈ F . No element of U is an atom of N , so there is
a set E ∈ G such that E ⊆ D, and for each set H ∈ U , ∅ ⊂ (E ∩H) ⊂ H.
Then whenever A,C ∈ F and A ⊆ E ⊆ C, we must have A = ∅ and D ⊆ C,
so oν(C \ A) ≥ oν(D) > 0. This means that E 6∈ L(F), which contradicts
the assumption that M is Loeb equivalent to N . Hence it proves the claim.

Now assume (b). As in the last paragraph, let D = Ω \
⋃

S∈S S. Let
M be the hyperfinite subspace generated by the partition S ∪ {D}. Then
F ⊆ G. Let B ∈ G. Then B = (B ∩ D) ∪

⋃

S∈S(B ∩ S). For each atom
E of N , either E ⊆ B or E ∩ B = ∅. Hence B = (B ∩ D) ∪

⋃

E∈S,E⊆B E.
Let A =

⋃

E∈S,E⊆B E and C = A ∪ D. Then B = A ∪ (B ∩ D) ⊆ C with
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ν(C \ A) = ν(D) ≈ 0. Hence B ∈ L(F). By Lemma 4.3, M is Loeb
equivalent to N and (a) holds.

Corollary 6.5 If N is an internal probability space with no atoms of in-
ternally positive measure, then no hyperfinite probability space M is Loeb
equivalent to N .

Example 6.6 Let N be the star of Lebesgue measure on [0, 1]. Then the
above corollary implies that no hyperfinite probability space M is Loeb equiv-
alent to N .

7 Some questions

We include a few open questions in this final section. In each question, M
and N are assumed to be internal probability spaces.

Question 7.1 Suppose N Loeb extends M. Must N have an internal sub-
space that is Loeb equivalent to M? What if M is assumed to be hyperfinite?

Assuming a negative answer to Question 7.1, one can ask the following.

Question 7.2 Suppose N Loeb extends M and N is hyperfinite. Must M
be Loeb equivalent to a hyperfinite probability space?

Question 7.3 Suppose M is Loeb equivalent to N , and let H be the internal
set algebra generated by F ∪G. Must there be an internal probability measure
λ on H such that M is Loeb equivalent to (Ω,H, λ)? What if M and N are
assumed to be hyperfinite?

We conclude with one more open question.

Question 7.4 Let M and N be internal ∗σ-additive probability spaces. Must
the product M⊗N be Loeb equivalent to the σ-product M⊗σ N?

In the case that at least one of the spaces M,N is Loeb equivalent to a
hyperfinite probability space, the answer is “yes” by Corollary 6.2.

In the case that the spaces M and N are stars of standard spaces, M =
∗M0 and N = ∗N0, by definition we have

M⊗N = ∗(M0 ⊗N0), M⊗σ N = ∗(M0 ⊗σ N0).
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Therefore, in view of Corollary 4.5, Question 7.4 takes a standard form.

Let M0 and N0 be standard countably additive probability spaces. Must
(M0 ⊗N0)c = (M0 ⊗σ N0)c?

We have not been able to find an answer to this question in the literature,
but we conjecture that the answer is “no” in the case that M0 and N0 are
both equal to the unit interval [0, 1] with Lebesgue measure.
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Gruyter, 1995.

[5] J. L. Doob, Measure Theory, Springer-Verlag, 1994.

[6] S. Fajardo and H. J. Keisler, Neometric spaces, Advances in Math. 118
(1996), 134-175.

[7] S. Fajardo and H. J. Keisler, Existence theorems in probability theory,
Advances in Math. 120 (1996), 191-257.

[8] S. Fajardo and H. J. Keisler, Model Theory of Stochastic Processes,
Lecture Notes in Logic, Association for Symbolic Logic (in press).

[9] H. J. Keisler, Hyperfinite model theory, in Logic Colloquium 76 (R. O.
Gandy and J. M. E. Hyland eds.) North-Holland, Amsterdam, 1977.

[10] P. A. Loeb, Conversion from nonstandard to standard measure spaces
and applications in probability theory, Trans. Amer. Math. Soc. 211
(1975), 113-122.

20



[11] P. A. Loeb and Manfred Wolff, eds. Nonstandard Analysis for the Work-
ing Mathematician, Kluwer Academic Publishers, Dordrecht, 2000.

[12] H. L. Royden, Real Analysis, Macmillan, New York, 1968.

[13] Y. N. Sun, A theory of hyperfinite processes: the complete removal of
individual uncertainty via exact LLN, J. Math. Econ. 29 (1998), 419-503.

[14] Y. N. Sun, The almost equivalence of pairwise and mutual independence
and the duality with exchangeability, Probability Theory and Related
Fields 112 (1998), 425-456.

H. Jerome Keisler
Department of Mathematics, University of Wisconsin-Madison, 480 Lin-

coln Drive, Madison, Wisconsin 53706-1388, USA.
e-mail: keisler@math.wisc.edu

Yeneng Sun
Institute for Mathematical Sciences, National University of Singapore, 3

Prince George’s Park, Singapore 118402, Republic of Singapore.
and

Department of Mathematics, National University of Singapore, 2 Science
Drive 2, Singapore 117543, Republic of Singapore.

e-mail: matsuny@nus.edu.sg

21


