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Abstract. In Brandenburger and Keisler (2012b) we showed that, provided only that the
measurement and outcome spaces in an experimental system are measure-theoretically sepa-
rable, then there is a canonical hidden-variable space, namely the unit interval equipped with
Lebesgue measure. Here, we use this result to establish a general relationship between two kinds
of conditions on correlations in quantum systems: Bell locality (1964) and λ-independence on
the one hand, and no signaling (Ghirardi, Rimini, and Weber (1980), Jordan (1983)) on the
other hand.

“I rose the next morning, with Objective-Subjective and Subjective-Objective
inextricably entangled together in my mind”3

1 Introduction

Among the most striking properties of quantum systems is that of entanglement — i.e., stronger-
than-classical correlations — between particles that may be situated a large distance apart from each
other. Bell (1964) famously proved that these correlations are indeed stronger-than-classical, but left
open the question of just how strong they can be. A natural candidate for the answer to this question
is that the correlations can be arbitrarily strong, provided they do not violate relativistic causality.
Popescu and Rohrlich (1994) showed that this is false. There are correlations that respect relativistic
causality and yet are stronger than can arise in any quantum system — they are superquantum.

The formal statements of these propositions rely on giving mathematical content to the concepts
of classicality and relativistic causality. The first is captured via the condition of Bell locality (1964)
combined with λ-independence, while the second is captured via the condition of no signaling
(Ghirardi, Rimini, and Weber (1980), Jordan (1983)). In these terms, quantum correlations are
a strict superset of correlations satisfying locality and λ-independence, and are a strict subset of
correlations satisfying no signaling.

In particular, then, we know that the conjunction of locality and λ-independence is a strictly
stronger condition on correlations than is no signaling. But, can we say more about the relationship?

? This chapter was prepared for the symposium in honor of the 60th birthday of Samson Abramsky. Work
with Samson Abramsky, Lucy Brandenburger, Andrei Savochkin, and Noson Yanofsky was an important
input into the current work. The authors are grateful to two referees and the volume editor for valuable
feedback, and to the NYU Stern School of Business for financial support.
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Locality itself is known to be equivalent to the conjunction of two conditions, namely parameter
independence and outcome independence (Jarrett (1984), Shimony (1986)). In this chapter
we give a result that relates no signaling to the conjunction of parameter independence and λ-
independence.

Our result relates to work being done by the first author with Samson Abramsky and Andrei
Savochkin, the purpose of which is to provide a justification for the no-signaling condition that
does not involve an appeal to a different branch of physics (special relativity). The present result is
technical in nature. It extends a result from Brandenburger and Yanofsky (2008), which is used in
Abramsky, Brandenburger, and Savochkin (2013), from finite to infinite measurement spaces. It also
relates to recent work by Colbeck and Renner (2011), (2012) on the issue of whether a subjective
(or epistemic) vs. objective (or ontic) view of quantum states is tenable; see, especially p.4 in their
2011 paper.

2 Preliminaries

Alice has a space of possible measurements, which is a measurable space (Ya,Ya), and a space of
possible outcomes, which is a finite set Xa equipped with its power set, denoted Xa. Likewise, Bob
has a space of possible measurements, which is a measurable space (Yb,Yb), and a space of possible
outcomes, which is a finite set Xb equipped with its power set, denoted Xb. There is also a hidden-
variable space, which is an unspecified measurable space (Λ,L). We restrict attention to bipartite
systems, but our result extends to multipartite systems. Write

(X,X ) = (Xa,Xa)⊗ (Xb,Xb), (1)

(Y,Y) = (Ya,Ya)⊗ (Yb,Yb). (2)

Definition 1. An empirical model is a probability measure e on (X,X )⊗ (Y,Y).

Definition 2. A hidden-variable model is a probability measure p on (X,X )⊗ (Y,Y)⊗ (Λ,L).

Definition 3. We say that a hidden-variable model p realizes an empirical model e if e = margX×Y p.
Two hidden-variable models, possibly with different hidden-variable spaces, are (realization-) equiv-
alent if they realize the same empirical model.

All definitions and notation parallel those in Section 3 of our 2012a paper. The reader should
consult that paper for details and, in particular, for the notation for conditional probability, the
definition of the extension of a probability measure, and the definition of the fiber product p⊗Z q
of two probability measures p and q over Z.

The key technique we use in proving our main result in the next section is the replacement of an
arbitrary hidden-variable model with one where the hidden-variable space (Λ,L) is the unit interval
with the Borel subsets and margΛp is Lebesgue measure. Theorem 5.1 in our 2012b paper shows
if the measurement and outcome spaces are countably generated, then this can always be done
— in such a way that the two hidden-variable models are realization-equivalent and that various
properties (parameter independence and λ-independence included) satisfied by the first model are
again satisfied by the second model.

The next two definitions are taken from Section 4 of our 2012a paper.

Definition 4. The hidden-variable model p satisfies parameter independence if for every xa ∈
Xa and xb ∈ Xb we have

p[xa||Y ⊗ L] = p[xa||Ya ⊗ L], p[xb||Y ⊗ L] = p[xb||Yb ⊗ L]. (3)



In words, the probability of a particular outcome for Alice, if conditioned on Alice’s choice of mea-
surement and the value of the hidden variable, does not depend on Bob’s choice of measurement;
and vice versa, with Alice and Bob interchanged.

Definition 5. The hidden-variable model p satisfies λ-independence if for every event L ∈ L,

p[L||Y]y = p(L). (4)

This is an independence requirement between the hidden variable on the one hand, and the mea-
surements chosen by Alice and Bob on the other hand. Whatever process determines the value of
the hidden variable, this process does not influence the measurements Alice and Bob choose.

Next is the property of empirical models which we study.

Definition 6. An empirical model e satisfies no signaling if for every xa ∈ Xa and xb ∈ Xb we
have

e[xa||Y] = e[xa||Ya], e[xb||Y] = e[xb||Yb]. (5)

In words, the probability of a particular outcome for Alice, if conditioned on Alice’s choice of mea-
surement, does not depend on Bob’s choice of measurement; and vice versa, with Alice and Bob
interchanged.

We will make use of the following notation:

ea = margXa×Ya
e, eb = margXb×Yb

e, (6)

s = margY e, (7)

pa = margXa×Y×Λp, pb = margXb×Y×Λp, (8)

qa = margXa×Ya×Λp, qb = margXb×Yb×Λp, (9)

r = margY×Λp. (10)

Lemma 1. An empirical model e satisfies no signaling if and only if e is a common extension of
the fiber products ea ⊗Ya

s and eb ⊗Yb
s.

Proof. By Lemma 3.6 in our 2012a paper.

3 The Result

Theorem 1. Assume that the σ-algebra Y is countably generated. Then an empirical model e sat-
isfies no signaling if and only if there is a hidden-variable model p which realizes e and satisfies
parameter independence and λ-independence.

Proof. First suppose e satisfies no signaling. We build the (trivial) hidden-variable model where Λ
is a singleton. It is immediate that this model realizes e and satisfies parameter independence and
λ-independence.

Now suppose that there is a hidden-variable model p which realizes e and satisfies parameter
independence and λ-independence. By Lemma 1, we must show that e is an extension of the fiber
product ea ⊗Ya s.



By Theorem 5.1 in our 2012b paper, e is realized by a hidden-variable model p where (Λ,L)
is the unit interval with the Borel subsets, margΛp is Lebesgue measure, and p satisfies parameter
independence and λ-independence. Let L1,L2, . . . be an increasing chain of finite algebras of sets
whose union generates L. By parameter independence, pa is the fiber product pa = qa ⊗Ya×Λ r.

For each n, let qna and rn be the restrictions of qa and r to Xa⊗Ya⊗Ln and Y ⊗Ln respectively.
In general, p will not be an extension of the fiber product qna ⊗Ya×Λ r

n. Our plan is to show that
qna ⊗Ya×Λ r

n is an extension of ea ⊗Ya
s, and converges to pa as n→∞.

We first prove convergence. Fix an integer k > 0, and element xa ∈ Xa, and sets U ∈ Ya ⊗ Lk
and Kb ∈ Yb. Then qna [xa||Ya⊗Ln] is a uniformly bounded martingale with respect to the sequence
of σ-algebras Ya⊗Ln, n ≥ k. By the Martingale Convergence Theorem (Billingsley (1995, Theorem
35.5)), qna [xa||Ya⊗Ln] converges to qa[xa||Ya⊗L] p-almost everywhere. Similarly, for each Kb ∈ Yb,
rn[Kb||Ya ⊗ Ln] converges to r[Kb||Ya ⊗ L] p-almost everywhere. We have

(qna ⊗Ya×Λ r
n)({xa} × U ×Kb) =

∫
U

qna [xa||Ya ⊗ Ln]× rn[Kb||Ya ⊗ Ln] dp (11)

and

pa({xa} × U ×Kb) =

∫
U

qa[xa||Ya ⊗ L]× r[Kb||Ya ⊗ L] dp. (12)

Moreover, as n→∞,

qna [xa||Ya ⊗ Ln]× rn[Kb||Ya ⊗ Ln]→ qa[xa||Ya ⊗ L]× r[Kb||Ya ⊗ L] (13)

p-almost everywhere. By Fatou’s Lemma (Billingsley (1995, Theorem 16.3)),∫
U

qna [xa||Ya ⊗ Ln]× rn[Kb||Ya ⊗ Ln] dp→
∫
U

qa[xa||Ya ⊗ L]× r[Kb||Ya ⊗ L] dp. (14)

Therefore
(qna ⊗Ya×Λ r

n)({xa} × U ×Kb)→ pa({xa} × U ×Kb). (15)

It follows that for each xa ∈ Xa,Ka ∈ Ya, and Kb ∈ Yb,

(qna ⊗Ya×Λ r
n)({xa} ×Ka ×Kb)→ pa({xa} ×Ka ×Kb) = e({xa} ×Ka ×Kb). (16)

We next prove that for each n, qna ⊗Ya×Λ r
n is an extension of ea ⊗Ya s. Let An be the set of all

atoms of Ln of positive Lebesgue measure. Then An is a finite collection of pairwise disjoint subsets
of Λ whose union has Lebesgue measure 1. Let u = qna ⊗Ya×Λ r

n. By Lemma 3.6 in our 2012a paper,

u[xa||Y ⊗ Ln] = u[xa||Ya ⊗ Ln]. (17)

The conditional probability u[xa||Y⊗Ln](y,λ) depends only on y and the atom A ∈ An that contains
λ, so we may write

u[xa||Y ⊗ Ln](y,λ) = u[xa||Y ⊗ Ln](y,A) (18)

whenever λ ∈ A ∈ An. We have

u[xa||Y]y =
∑

A∈An
u[xa||Y ⊗ Ln](y,A) × p[A||Y]y. (19)

A similar computation holds with Ya in place of Y. Since p satisfies λ-independence,

p[A||Y]y = p(A) = p[A||Ya]y (20)



for each A ∈ An and y ∈ Y . Therefore

u[xa||Y] = u[xa||Ya]. (21)

Since qna is an extension of ea, and rn is an extension of s, we have from Lemma 3.6 in our 2012a
paper that u = qna ⊗Ya×Λ r

n is an extension of ea ⊗Ya s. Thus

(ea ⊗Ya s)({xa} ×Ka ×Kb) (22)

is a constant sequence that converges to e({xa} ×Ka ×Kb), and hence

(ea ⊗Ya
s)({xa} ×Ka ×Kb) = e({xa} ×Ka ×Kb) (23)

for all xa ∈ Xa,Ka ∈ Ya, and Kb ∈ Yb. This shows that e is an extension of ea ⊗Ya
s. A similar

argument holds for b in place of a, so e satisfies no signaling by Lemma 1 above.
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