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Abstract

We prove a generalization of the main theorem in [4] about the sumset phe-
nomenon in the setting of an abelian group with layered tiles of cell measures.
Then we give some applications of the theorem for multi–dimensional cases of
the sumset phenomenon. Several examples are given in order to show that the
applications obtained are not vacuous and cannot be improved in various direc-
tions. We also give a new proof of Shnirel’man’s theorem to illustrate a different
approach to some combinatorial problems which uses the sumset phenomenon.

0 Introduction

A theorem in nonstandard analysis was proved in [4] in order to answer a question
posed by Keisler and Leth in [5]. This theorem implies many results in standard

mathematics which reveal a general principle called the sumset phenomenon: if A
and B are large in terms of “measure”, then A + B is not small in terms of “order–
topology”.
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In §1 of this paper, we generalize [4, Theorem 1] to the setting of abelian groups

with layered tiles of cell measures. The new generalization makes the applications in
§2 to multi–dimensional cases easier. These applications show that the description of
the sumset phenomenon needs to be adjusted with “measure” replaced by “product
measure” and “order–topology” replaced by “product of order–topology”. In §3, we
construct several examples to show that the results about the sumset phenomenon in
§2 and in [4] cannot be improved in various directions. For example, it was proven

in [4] that if A and B are two subsets of the natural numbers with positive upper

Banach density, then A+B is piecewise syndetic, which means that there exists a fixed

positive integer k such that A+B +{0, 1, . . . , k} is thick. It is natural to ask whether

the least such k is related to the upper Banach density of A and the upper Banach

density of B. One example constructed in §3 shows that k is not directly related to
these upper Banach densities. In §4, a new proof of Shnirel’man’s theorem is given,
which uses the idea of the sumset phenomenon rather than a finite combinatorial
argument. In §5, two questions are raised.

1 Groups with Layered Tiles of Cell Measures

Let (G, +) be an abelian group. We often write G for (G, +). For any A,B ⊆ G
and g ∈ G, we write A ± B = {a ± b : a ∈ A and b ∈ B}, −A = {−a : a ∈ A},
g±A = {g} ±A, and A± g = A± {g}. The lower case Greek letters α, β, γ, δ, ε will
always denote standard real numbers.

Definition 1.1 Given a set C ⊆ G such that 0 ∈ C = −C, a C–cell is a set D of
the form C + g for some g ∈ G. D is called the translation of C by g, and g is
called the center of D.

A cell measure on G is a pair (C, λ) such that 0 ∈ C = −C, λ is a finitely

additive measure on a Boolean algebra B of subsets of G (called λ–measurable sets),
C ∈ B, λ(C) = 1, and λ is invariant under translations and reflections, that is, for
each set A ∈ B and each g ∈ G, A + g ∈ B, −A ∈ B, and λ(A) = λ(A + g) = λ(−A).

A cell measure tiling on G is a triple (C, λ, T ) such that (C, λ) is a cell measure,

T is a pairwise disjoint family of C–cells such that the set of centers of cells in T is
a subgroup GT of G, and for each λ–measurable set B, the set
T (B) =

⋃

{E ∈ T : E ⊆ B} is λ–measurable.
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Here are some easy consequences of the definition.

Lemma 1.2 Suppose (C, λ, T ) is a cell measure tiling and D is a C–cell.
(i) For each g ∈ G, D + g and −D are C–cells.
(ii) D −D = C − C.
(iii) λ(D) = 1.
(iv) If D ∈ T and g ∈ GT , then D + g ∈ T and −D ∈ T .
(v) If A,B are λ-measurable, the set

T (A,B) =
⋃

{E ∈ T (B) : E ∩ A 6= ∅}

is λ–measurable, and

A ∩ T (B) ⊆ T (A,B) ⊆ T (B) ⊆ B.

Proof We have D = C + h for some h ∈ G.
(i) D + g = (C + h) + g = C + (h + g), and −D = −(C + h) = −C − h = C − h.
(ii) D −D = (C + h)− (C + h) = (C − C) + (h− h) = C − C.
(iii) Because λ is invariant under translations.

(iv) Note that h ∈ GT and use the proof of (i).
(v) T (A, B) = T (B)r T (B r A). 2

For a simple example of a cell measure tiling, let d be a positive integer, let G
be the Euclidean vector space Rd, and let C be the open d-cube (−1/2, 1/2)d. Then
the set of C–cells is the set of all open d–cubes of side one. Now let λ be the d-th
product of Lebesgue measure and let T be the set of C–cells whose center is a d–
tuple of integers. Then (C, λ, T ) is a cell measure tiling on G, and GT is the subgroup
GT = Zd. Further examples will appear later on in this paper.

In this paper (P, 6) always denotes a downward directed partial order with no
least element. (A partial order is called downward directed if for any two elements

p and q, there is an r with r 6 p and r 6 q.) We say that each sufficiently small

s ∈ P has property X if there exists t ∈ P such that each s < t has property X.
Since P is downward directed, if all sufficiently small s ∈ P have a property X and

all sufficiently small s ∈ P have property Y , then all sufficiently small s ∈ P have

property (X and Y ).

Here is the key definition in this paper.
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Definition 1.3 An abelian group G has layered tiles of cell measures of type P if
there is a real number δ ∈ (0, 1) and a family of cell measure tilings {(Cr, λr, Tr) : r ∈ P}
such that the following hold for all r ∈ P .

1. For each s ∈ P , λs and λr have the same measurable sets.

2. If s < r then Cs ⊆ Cr.

3. There exists s < r such that Cs − Cs ⊆ Cr.

4. For every real ε > 0, and for every sufficiently small s ∈ P :

(a) For each Cr–cell C, λr(C r Ts(C)) < ε.

(b) For each Cr–cell C and measurable set A, λr(A ∩ Ts(C)) 6 αλr(Ts(A,C))

where α = sup{λs(E ∩ A) : E is a Cs–cell }.

(c) For all Cr–cells C, D such that the center of D is in C, λr(Ts(C∩D)) > δ.

Remarks (1) The reader might want to keep a concrete example in mind in order
to better grasp the idea. For example, one can think of G as the group R2 with vector
addition, P as the set of all pairs of positive real numbers with the partial order

(s, t) > (s′, t′) iff s > s′ and t > t′,

C(s,t) as the open rectangle (−s, s) × (−t, t), λ(s,t) = (4st)−1λ where λ is Lebesgue
measure, and T(s,t) as the set of C(s,t)–cells with centers {(2sm, 2tn) : m,n ∈ Z}.

(2) The word “layer” is used because one can think of the Cr–cells as a layer of

cells at level r.
(3) Condition 4 (a) says that each Cr–cell is tiled by Cs–cells in the set Ts with

an error less than ε.

(4) Condition 4 (b) says that if A has density at most α within each tile, then A
has density at most α within the union of the tiles which meet A.

(5) Condition 4 (c) says that the union of the tiles inside C ∩D has measure at
least δ. The constant δ is independent of r and is a lower bound for the overlap
between nearby cells. In the example in (1) above, one can take δ = 1/5.

(6) We define layered tiles of cell measures on an abelian group for convenience
only. One can define the concept on a non–abelian group, but we have not yet seen

any interesting applications of that case.
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Let C = {Cr : r ∈ P}, Λ = {λr : r ∈ P}, and T = {Tr : r ∈ P}. We write
(G, +,C, Λ,T, δ) for a group with layered tiles of cell measures (Cr, λr, Tr) of type
P and overlap constant δ. For the rest of this section, we fix such an abelian group
(G, +,C, Λ,T, δ). We also let Cr be the set of all Cr–cells.

Definition 1.4 A set A ⊆ G is called Λ–measurable if it is λr–measurable for some
r ∈ P . For a Λ–measurable set A ⊆ G, the upper Banach density of A, BDΛ(A),
is defined by:

BDΛ(A) = sup{λr(A ∩ C) : r ∈ P,C ∈ Cr}.

Definition 1.5 A set A ⊆ G is called C–nowhere dense if for every r ∈ P and
every C ∈ Cr, there exists an s < r and a D ∈ Cs such that D ⊆ C and D ∩ A = ∅.

Note that the definition of C–nowhere denseness does not mention any measure
in Λ. We prove two more easy lemmas.

Lemma 1.6 Let A be Λ–measurable and g ∈ G. Then

BDΛ(A) = BDΛ(A + g) = BDΛ(−A).

If A is C–nowhere dense, then so are A + g and −A.

Proof This follows from the fact that each measure λr is invariant under translations

and reflections. 2

Lemma 1.7 Let A be a Λ–measurable set with BDΛ(A) > γ. Then for each suffi-

ciently small s ∈ P there is a Cs-cell E such that λs(A ∩ E) > γ.

Proof By the definition of BDΛ one can find an r ∈ P and a Cr–cell C such that
λr(A ∩ C) > γ. Let

ε = λr(A ∩ C)− γ.

Each sufficiently small s ∈ P satisfies Definition 1.3 part 4 with respect to r and ε.

Let
α = sup{λs(A ∩ E) : E ∈ Cs}.

We have Ts(A,C) ⊆ C, so λr(Ts(A,C)) 6 λr(C) = 1. Then by 4 (b),

λr(A ∩ Ts(C)) 6 αλr(Ts(A,C)) 6 α.
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Moreover,

A ∩ C ⊆ (A ∩ Ts(C)) ∪ (C r Ts(C)).

Therefore

γ + ε = λr(A ∩ C) 6 λr(A ∩ Ts(C)) + λr(C r Ts(C)) < α + ε.

Then α > γ, so there is a Cs-cell E such that λs(A ∩ E) > γ. 2

Next we state and prove the main theorem of the paper.

Theorem 1.8 Let (G, +,C, Λ,T, δ) be an abelian group with layered tiles of cell mea-
sures of type P . Let A and B be Λ–measurable subsets of G. If BDΛ(A) > 0 and

BDΛ(B) > 0, then A + B is not C–nowhere dense.

Proof Assume that the theorem is not true. We will derive a contradiction. First
we define two numbers α and β. Let

α = sup{BDΛ(A) : A ⊆ G is Λ–measurable and
there is a Λ–measurable B ⊆ G with BDΛ(B) > 0
such that A + B is C–nowhere dense }.

Note that α is a positive real number by the assumption that the theorem is not true.

Fix a positive real number

α0 <
αδ
3

(1)

and let

β = sup{BDΛ(B) : B ⊆ G is Λ–measurable and
there is a Λ–measurable A ⊆ G with BDΛ(A) > α− α0

such that A + B is C–nowhere dense }.

It is easy to see that β is positive and β 6 α. Again fix a positive real number

β0 <
βδ
3

. (2)

We also fix two Λ–measurable sets A,B ⊆ G such that

BDΛ(A) > α− α0, BDΛ(B) > β − β0,

and A + B is C–nowhere dense. It follows from the definitions of α and β that

BD(A) 6 α and BD(B) 6 β. By Lemma 1.7, for each sufficiently small r ∈ P there

are Cr–cells C,D such that

λr(A ∩ C) > α− α0 and λr(B ∩D) > β − β0. (3)
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By Lemma 1.6, we may assume that C = Cr.

We have D ⊆ C +D because 0 ∈ C. Since A+B is C–nowhere dense, there exists

t < r and a Ct–cell F ⊆ D such that F ∩ (A + B) = ∅. Let g be the center of D and

let f be the center of F , whence D = C + g and F = Ct + f .
Let

ε = min
(

α0

2
,
β0

2

)

. (4)

Each sufficiently small s ∈ P satisfies Definition 1.3 part 4 for ε, r, and also satisfies
s < t and Cs − Cs ⊆ Ct. Then for each E ∈ Ts we have E − E + f = Cs − Cs + f ⊆
Ct + f = F , so E − E + f is disjoint from A + B. It follows that

Ts(A,C) ∩ Ts(f −B, f −D) = ∅,

because if a Cs–cell E met both A and f −B, then f −E would meet B, and hence
E − E + f would meet A + B.

We have f ∈ F ⊆ C + g, so f = c + g for some c ∈ C, and therefore f − g ∈ C.

The Cr–cell with center f − g is f − (C + g) = f −D. By 1.3 part 4 (c),

λr(Ts(C ∩ (f −D))) ≥ δ.

It follows that at least one of the sets

Ts(C ∩ (f −D))r Ts(A,C), Ts(C ∩ (f −D))r Ts(f −B, f −D)

has λr–measure at least δ/2.
Suppose first that

λr( Ts(C ∩ (f −D))r Ts(A,C) ) >
δ
2
.

Then
λr(Ts(A,C)) 6 1− δ

2
.

We have
sup{λs(A ∩ E) : E ∈ Cs} 6 BDΛ(A) 6 α.

By part 4 (b) of Definition 1.3,

λr(A ∩ Ts(C)) 6 αλr(Ts(A,C)).
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Since

A ∩ C ⊆ (A ∩ Ts(C)) ∪ (C r Ts(C)),

we have

λr(A ∩ C) 6 αλr(A ∩ Ts(C)) + λr(C r Ts(C)) < α
(

1− δ
2

)

+ ε.

Using (1), (3), and (4), we get the contradiction

α− α0 < α
(

1− δ
2

)

+ ε < α
(

1− 3α0

2α

)

+
α0

2
= α− α0.

Now suppose that

λr( Ts(C ∩ (f −D))r Ts(f −B, f −D) ) >
δ
2
.

Then
λr(Ts(f −B, f −D)) 6 1− δ

2
.

By repeating the above argument with (f−B, f−D, β) instead of (A, C, α), we again

get a contradiction. This completes the proof. 2

2 The Sumset Phenomenon

In this section we apply Theorem 1.8 to obtain new examples of the sumset phe-
nomenon for multi–dimensional cases. Let N, Z, and R denote the set of all natural
numbers including 0, all integers, and all real numbers, respectively. From now on we
fix a positive integer d for the dimension of a space. In some applications we work
within a countably saturated nonstandard universe ∗V. The reader is assumed to

have enough basic knowledge of nonstandard analysis to understand these applica-
tions. For more information on nonstandard analysis consult [6],[7], or §4.4 of [2].

For any standard set A, the set ∗A is always the nonstandard version of A in ∗V. For
an abelian group (G, +), we also use + for the addition on the product group Gd, i.e,

(f0, f1, . . . , fd−1) + (g0, g1, . . . , gd−1) = (f0 + g0, f1 + g1, . . . , fd−1 + gd−1). In the first

two applications, an interval means an interval of real numbers.

Application 2.1 Let ν be the Lebesgue measure on R and νd be the d–dimensional

product of ν on Rd. Let A,B ⊆ Rd be such that νd(A) > 0 and νd(B) > 0. Then

A + B contains a non–empty open ball.
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Proof It is sufficient to show that A+B contains a non–empty d–dimensional open
cube. Without loss of generality, we can assume that A and B are compact subsets

of Rd, because every set of positive νd–measure contains a compact subset of positive
νd–measure. Since A + B is closed, it is enough to prove that A + B is not nowhere
dense.

Let G = (Rd, +). We now define the layered tiles of cell measures of type P . Let
P be the set of all positive real numbers with the natural order. For each r ∈ P let
Cr = (−r, r)d. Then Cr is the set of all d–dimensional open cubes with sides of length
2r. Let λr = (2r)−dνd, and let Tr be the set of all Cr–cells with centers (2rm, 2rn)

where m,n ∈ Z. Let C = {Cr : r ∈ P}, Λ = {λr : r ∈ P}, and T = {Tr : r ∈ P},
and let δ = 2−d−1. It is clear that (Rd, +,C, Λ,T, δ) is a group with layered tiles of
cell measures of type P , since the each tiling Tr is countable. It is easy to see that

BDΛ(A) > 0 and BDΛ(B) > 0. Therefore by Theorem 1.8, A + B is not nowhere
dense. 2

We now use the nonstandard reals to construct another group with layered tiles
of cell measures. Let ∗R be the additive group of hyperreal numbers, which is the

nonstandard version of the usual additive group of real numbers in ∗V.

A set U of non–negative elements of ∗R is called a cut in ∗R if:
(1) 0 ∈ U ,
(2) If y ∈ U and 0 6 x < y, then x ∈ U , and
(3) U + U ⊆ U .

Note that {0} and {r ∈ ∗R : r > 0} are cuts in ∗R. Let U be a cut in ∗R and
r be an element of ∗R. We write r > U if r > s for every s ∈ U . A cut U in ∗R is
upper bounded if r > U for some r ∈ ∗R. For convenience we consider only upper

bounded cuts in ∗R in the next application. Let ∗(νd) be the nonstandard version of

νd and let st be the standard part map from ∗R to R ∪ {∞}.
A cut in ∗Rd is an d-tuple U = (U0, U1, . . . , Ud−1) of upper bounded cuts in ∗R.

Given a cut U and an element r = (r0, . . . , rd−1) in ∗Rd, r > U means that rj > Uj

for j = 0, . . . , d − 1. A U–box is a set of the form
∏d−1

j=0(aj, bj) where bj − aj > Uj

for each j. A set A ⊆ ∗Rd is called U–nowhere dense if for every U–box C, there

is another U–box D such that D ⊆ C and D ∩ A = ∅.

Application 2.2 Let A,B ⊆ ∗Rd be internal sets and let U be a cut in ∗Rd. If there
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exist two U–boxes C and D such that

st
(∗(νd)(A ∩ C)

∗(νd)(C)

)

> 0 and st
(∗(νd)(B ∩D)

∗(νd)(D)

)

> 0,

then A + B is not U–nowhere dense.

Proof Let G = ∗Rd. Let

P = {r ∈ ∗Rd : r > U}.

For any r, s ∈ P , define r 6 s by rj 6 sj for j = 0, 1, . . . , d−1. Then P is a downward
directed partial ordering. For each r ∈ P let

Cr =
d−1
∏

j=0

(−rj, rj).

Let B be the Boolean algebra of all internal ∗(νd)–measurable sets, and define λr by

λr(D) = st
( ∗(νd)(D)
∗(νd)(Cr)

)

for each D ∈ B. Then each λr is a finitely additive measure on B. Let the tiling Tr

be the set of all Cr–cells with centers (2r0z0, . . . , 2rd−1zd−1) where z0, . . . , zd−1 ∈ ∗Z.
Let C = {Cr : r ∈ P}, Λ = {λr : r ∈ P}, T = {Tr : r ∈ P}, and δ = 2−d−1. It is

easy to see that BDΛ(A) > 0 and BDΛ(B) > 0. By Theorem 1.8, it suffices to verify

that (∗Rd, +,C, Λ,T, δ) is an abelian group with layered tiles of cell measures of type
P . Parts (1)–(3) of Definition 1.3 are clear. For part 4, let ε > 0 be real and r ∈ P .

For each s ∈ P , the set Ts is internal and ∗countable, i.e., countable in the sense of
the nonstandard universe. Take an integer k such that d/k < ε. Then for any s < r/k
in P , part 4 of the definition follows by the transfer principle. In particular, for part
4 (b), consider any real β > α where α = sup{λs(E ∩ A) : E ∈ Cs}. We have

∗(νd)(E ∩ A) < β · ∗(νd)(Cs)

for each E ∈ Cs, and therefore for any Cr–cell C

∗(νd)(A ∩ Ts(C))
∗(νd)(Cr)

<
β · ∗(νd)(Ts(A,C))

∗(νd)(Cr)
.

Taking standard parts,

λr(A ∩ Ts(C)) 6 β · λr(Ts(A, C)).
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Since this holds for all β > α, we get the desired inequality

λr(A ∩ Ts(C)) 6 α · λr(Ts(A,C)). 2

For the rest of this section we deal with the abelian group ∗Z, which is the non-
standard counterpart of the abelian group Z of integers under addition. From now

on, by an interval we mean an interval in ∗Z. An element K ∈ ∗N r N is called a
hyperfinite integer. A set S is called hyperfinite if S is internal and the internal
cardinality of S is a hyperfinite integer (that is, S is ∗finite but not finite). For a
hyperfinite set S let ΣS be the collection of all internal subsets of S. The set ΣS is

also a hyperfinite set. Then one can define a normalized counting measure µS on
ΣS (or simply on S) by putting µS(F ) = |F |/|S| for each nonempty F ∈ ΣS. Now
st ◦ µS is a finitely additive standard probability measure defined on ΣS.

A set U ⊆ ∗N is called a cut in ∗N if U is an infinite initial segment of ∗N and
U + U ⊆ U . Note that U = N is the smallest cut and ∗N is the largest cut. For
convenience we always assume U 6= ∗N. Given a positive integer d, a cut in ∗Nd is a

d-tuple U = (U0, U1, . . . , Ud−1) of cuts in ∗N. As before, U < r means that u < r for
all u ∈ U , and U < r means that Uj < rj for j = 0, . . . , d− 1. A product of intervals
of the form

∏d−1
j=0(aj, bj) ⊆ ∗Zd is called a U–box if bj − aj > Uj for each j. A set

A ⊆ ∗Zd is called U–nowhere dense if for every U–box C there is a U–box D such
that D ⊆ C r A.

In the one dimensional case d = 1, a U–box is just an interval (a, b) such that

b − a > U . In this case, it is sometimes convenient to borrow the gap function
notation from [5]. Let A ⊆ ∗Z be internal and let C be a U–box. Then the length of
the largest gap of A in C is

Gap(A,C) = max{|D| : D is a U–box and D ⊆ C r A}.

Thus an internal set A is U–nowhere dense iff for every U -box C, Gap(A,C) > U .

Application 2.3 Let A,B ⊆ ∗Zd be internal sets and let U be a cut in ∗Nd. If there

are U–boxes C and D such that st(µC(A ∩ C)) > 0 and st(µD(B ∩ D)) > 0, then
A + B is not U–nowhere dense.

In the one dimensional case, the conclusion says that for some U–box E,

Gap(A + B, E) ∈ U .
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Proof Let P = {r ∈ ∗Nd : r > U}. We again define r 6 s by rj 6 sj for

j ∈ [0, d− 1], and P is downward directed. Let G be the abelian group ∗Zd. For each
r ∈ P let

Cr =
d−1
∏

j=0

(−rj, rj)

and let C = {Cr : r ∈ P}. Let λr be the finitely additive measure defined on the class
of all internal subsets X of ∗Zd by the rule

λr(X) = st
(

|X|
|Cr|

)

,

so that λr(Cr) = 1. Let Λ = {λr : r ∈ P}. Let Tr be the set of all Cr–cells with centers
of the form (2r0z0, . . . , 2rd−1zd−1) where z0, . . . , zd−1 ∈ ∗Z, and let T = {Tr : r ∈ P}.
Let δ = 2−d−1.

It is again easy to see that BDΛ(A) > 0 and BDΛ(B) > 0. Using the same
argument as in Application 2.2, one can show that (∗Zd, +,C, Λ,T, δ) is an abelian
group with layered tiles of cell measures of type P . The desired result now follows
from Theorem 1.8. 2

Next we derive a variation of Application 2.3. Let H be a hyperfinite integer,

let ∗ZH = [0, H − 1], and let ⊕ be the usual addition modulo H. Then (∗ZH ,⊕) is
an abelian group. We also use ⊕ for the addition on the finite Cartesian product
(∗ZH)d as usual. Let µH be the normalized counting measure on (∗ZH)d. For each

j ∈ [0, d − 1] let Uj ⊆ ∗ZH be a cut in ∗N. Note that a cut U ⊆ ∗ZH is a relatively
small subset of ∗ZH because U < H/m for any standard positive integer m. The

definition of U–nowhere denseness of a set A ⊆ (∗ZH)d is exactly the same as before.

Application 2.4 Let A,B ⊆ (∗ZH)d be two internal sets. If st(µH(A)) > 0 and

st(µH(B)) > 0, then A⊕B is not U–nowhere dense.

Proof By Application 2.3, it suffices to show that A ⊕ B is U–nowhere dense iff

A + B is U–nowhere dense. This follows from the fact that

A⊕B =
⋃

{Fh − ch : h ∈ {0, 1}[0,d−1]},

where Fh and ch are defined by the following:
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Let E0 = ∗ZH and E1 = ∗Z2H r ∗ZH and let c0 = 0 and c1 = H. For each
function h from [0, d− 1] to {0, 1}, define Fh =

∏d−1
j=0(Eh(j) ∩ (A + B)) and

ch = (ch(o), ch(1), . . . , ch(d−1)). 2

Remark The main theorem in [4] is a special case of Application 2.4 for dimension
d = 1.

The next result is in the standard world. Let A be a subset of Nd. The set A ⊆ Nd

is called thick if for any m, there is an r ∈ Nd such that r + [0, m]d ⊆ A. The set

A ⊆ Nd is called piecewise syndetic if there is a k ∈ N such that A+[0, k]d is thick.
The upper Banach density of A, BD(A), is defined by:

BD(A) = lim
k→∞

sup
{

|A ∩ E|
|E|

: E = r + [0, k]d for r ∈ Nd
}

.

Application 2.5 Let A,B ⊆ Nd. If BD(A) > 0 and BD(B) > 0, then A + B is
piecewise syndetic.

Proof For each j ∈ [0, d − 1], let Uj = N and let U = (U0, U1, . . . , Ud−1). By the

transfer principle and BD(A) > α, there is a hyperfinite integer K and an r ∈ ∗Nd

such that

st
(

|∗A ∩ (r + [0, K]d)|
(K + 1)d

)

> α.

Therefore st(µC(∗A)) ≥ α > 0 where C = [0, K]d. The same holds for ∗B. Thus by
Application 2.3, ∗A+∗B is not U–nowhere dense. It follows that there is a hyperfinite

integer K and an r ∈ ∗Nd such that there is no U–box E ⊆ (r+[0, K]d)r (∗A+ ∗B).
Define

k = max{m ∈ ∗N : (∃ s ∈ ∗Nd) s + [0,m− 1]d ⊆ (r + [0, K]d)r (∗A + ∗B))}.

Then k must be finite. Therefore r + [0, K − k]d ⊆ ∗A + ∗B − [0, k]d, and hence

r + [k, K]d ⊆ ∗A + ∗B + [0, k]d.

This implies that A + B is piecewise syndetic. 2

Remark Application 2.5 is a multi-dimensional generalization of [4, Corollary 3],

which is a complementary result to the following result in [3]: If A ⊆ N has positive

upper Banach density, then (A− A) ∩ N is syndetic.

When A = B, the result above can be improved. For simplicity, we consider only
the one dimensional case.
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Application 2.6 Let A ⊆ N and BD(A) = α > 0. For any sequence of intervals

〈[ai, bi] : i ∈ N〉 with limi→∞(bi − ai) = ∞ such that

lim
i→∞

|A ∩ [ai, bi]|
bi − ai + 1

= α

and for any β ∈ (0, 2), there is a sequence of intervals 〈[ci, di] : i ∈ N〉 and there is a
k ∈ N such that [ci, di] ⊆ [2ai, 2bi],

lim inf
i→∞

di − ci

bi − ai
> β,

and
⋃

i∈N
[ci, di] ⊆ A + A + [0, k].

Proof By the transfer principle, for every hyperfinite integer K, one has

st
(

|∗A ∩ [aK , bK ]|
bK − aK + 1

)

= α. (5)

Therefore, by Application 2.3, ∗A + ∗A is not N–nowhere dense. Choose [c′K , d′K ] ⊆
[2aK , 2bK ] such that

2− β
3

<
c′K − 2aK

bK − aK
<

2− β
2

and
2− β

3
<

2bK − d′K
bK − aK

<
2− β

2
.

Then

2 =
2bK − 2aK

bK − aK
=

d′K − c′K
bK − aK

+
2bK − d′K
bK − aK

+
c′K − 2aK

bK − aK
6

d′K − c′K
bK − aK

+ 2− β.

Hence one has
d′K − c′K
bK − aK

> β.

Claim 2.6.1 There exists a k ∈ N such that if [x, y] ⊆ [c′K , d′K ] r (∗A + ∗A),
then y − x 6 k.

Proof of Claim 2.6.1 If the claim is not true, then there is an interval [x, y] ⊆
[2aK , 2bK ]r (∗A + ∗A) such that y− x > N. Let H be a hyperfinite integer such that
H2 < y − x. For simplicity we assume that H evenly divides ak, bK , and x. Let

m = max{i ∈ ∗N : 2aK + iH 6 bK} =
bk − aK

H
.
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For each i ∈ [0,m− 1] let Ei = [aK + iH, aK + (i + 1)H − 1]. Whenever (i + j)H =

x− 2aK , we have Ei + Ej ⊆ [x, y], and therefore either

∗A ∩ Ei = ∅ or ∗A ∩ Ej = ∅.

Since

x > c′K >
2− β

3
(bK − aK) + 2aK and y 6 d′K < 2bK −

2− β
3

(bK − aK),

then
st

(

x− 2aK

bK − aK

)

>
2− β

3
and st

(

2bK − y
bK − aK

)

>
2− β

3
.

It follows that [0, m−1] contains a subinterval I such that st(|I|/m) > 0 and at least
half of the points i ∈ I are such that ∗A∩Ei = ∅. Therefore, in view of equation (5),

there exists an i ∈ [0,m− 1] such that

st
(

|∗A ∩ [aK + iH, aK + (i + 1)H − 1]|
H

)

> α.

By the transfer principle, one gets BD(A) > α, a contradiction. 2(Claim 2.6.1)

By the claim one can find a k ∈ N such that [c′K + k, d′K + k] ⊆ ∗A + ∗A + [0, k].
Let kK be the smallest of these k’s. If the set {kK : K is hyperfinite } is unbounded

in N, then by countable saturation, there is a hyperfinite kK for some hyperfinite K.
This contradicts that kK is always finite. Hence kK is upper bounded in N. Let k be
an upper bound and let cK = c′K + k and dK = d′K + k. Then

[cK , bK ] ⊆ (∗A + ∗A + [0, k]) ∩ [2aK , 2bK ]

for every hyperfinite integer K. By the underspill principle, there is a sequence
〈[ci, di] : i > i0〉 which satisfies the conclusion of Application 2.6 for i > i0. For i 6 i0
simply let [ci, di] = ∅; this completes the proof. 2

Next we derive a multi–dimensional generalization of [4, Corollary 2]. Let (Zd)N

denote the set of all functions from N to Zd. For any f, g ∈ (Zd)N let (f + g)(m) =
f(m)+g(m). A set of the form Sk =

∏d−1
j=0[a

(k)
j , b(k)

j ] ⊆ Zd is called a box. A sequence
of boxes 〈Sk : k ∈ N〉 is called large if for each j ∈ [0, d−1], limk→∞(b(k)

j −a(k)
j ) = ∞.
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Application 2.7 For each k ∈ N, let Ak, Bk ⊆ Zd. If there are two large sequences
of boxes 〈Sk : k ∈ N〉 and 〈Tk : k ∈ N〉 such that

lim inf
k→∞

(

|Ak ∩ Sk|
|Sk|

)

> 0, lim inf
k→∞

(

|Bk ∩ Tk|
|Tk|

)

> 0,

then there is a large sequence of boxes 〈Qk : k ∈ N〉 such that

lim inf
k→∞

(Gap(Ak + Bk, Qk)) < ∞.

Proof Let F be a non–principal ultrafilter on N. Suppose the nonstandard universe
∗V is obtained by taking the ultrapower of the standard universe V modulo F . Then
∗Z = ZN/F , the ultrapower of Z modulo F . Every element in ∗V has the form
[〈ak : k ∈ N〉], the equivalence class of 〈ak : k ∈ N〉 modulo F , where 〈ak : k ∈ N〉 is

a sequence in a set S in V called a representative of the class. Let

U = {x ∈ ∗N : x < [〈f(k) : k ∈ N〉] for every f ∈ NN with lim
k→∞

f(k) = ∞}.

Then U is a cut. Note that U = N iff F is a so–called p–point. Let U = (U,U, . . . , U).
It is easy to verify that [〈Pk : k ∈ N〉] is a U–box iff it is represented by a large sequence
of boxes. So [〈Sk : k ∈ N〉] and [〈Tk : k ∈ N〉] are U–boxes and

st
(

|[〈Ak : k ∈ N〉] ∩ [〈Sk : k ∈ N〉]|
|[〈Sk : k ∈ N〉]|

)

> 0

and

st
(

|[〈Bk : k ∈ N〉] ∩ [〈Tk : k ∈ N〉]|
|[〈Tk : k ∈ N〉]|

)

> 0.

Hence by Application 2.3, [〈Ak + Bk : k ∈ N〉] is not U–nowhere dense. Now the

conclusion follows from the fact that a large sequence of boxes 〈Rk : k ∈ N〉 with
Rk ∩ (Ak + Bk) = ∅ for all but finitely many k ∈ N generates a U–box which is

disjoint from [〈Ak + Bk : k ∈ N〉]. 2

3 Examples

In this section we give examples which show that the results obtained in §2 are not
vacuous and cannot be improved in various directions. For convenience we only give
examples in the one dimensional case. The first four examples show that the results

obtained in §2 are not vacuous. The first example is well–known.
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Example 3.1 For each 0 < α < 1, there is a compact subset A of the unit interval
of the real line such that A is nowhere dense and the Lebesgue measure of A is greater
than α.

The second example is from [5].

Example 3.2 Let α ∈ (0, 1). For any hyperfinite integer H and any cut U ⊆ [0, H−
1], there is an internal set A ⊆ [0, H − 1] with st(|A|/H) > α such that A is U–

nowhere dense.

Example 3.3 For any α ∈ (0, 1), there is a set A ⊆ N such that BD(A) > α and A
is not piecewise syndetic.

Proof Let k0 ∈ N be such that
∞

∑

k=k0

k
2k < 1− α.

For each k > k0 let

Bk =
k

⋃

m=k0

2k−m
⋃

l=1

[l2m −m, l2m − 1].

Then Bk ⊆ [0, 2k − 1] and

|Bk|
2k 6

1
2k

k
∑

m=k0

2k−m
∑

l=1

m =
k

∑

m=k0

2k−mm
2k =

k
∑

m=k0

m
2m < 1− α.

Let Ak = [0, 2k − 1]rBk and let

A =
∞
⋃

k=k0

(2k − 2k0 + Ak).

It is easy to check that BD(A) > α (in fact the Shnirel’man density of A is greater
than or equal to α). Since every interval of length 2k+1 contains a subinterval of

length at least k, which is disjoint from A, A is not piecewise syndetic. 2

Example 3.4 For any α ∈ (0, 1) there is a sequence of sets 〈Ak ⊆ [0, 2k−1] : k ∈ N〉
with

inf
{

|Ak|
2k : k ∈ N

}

> α
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such that for every large sequence of intervals (one–dimensional boxes) 〈[ak, bk] : k ∈ N〉,
one has

lim
k→∞

Gap(Ak, [ak, bk]) = ∞.

Proof Let Ak be the same as in Example 3.3 for k > k0 and let Ak = [0, 2k − 1] for
k < k0. It is easy to see that the sequence 〈Ak ⊆ [0, 2k − 1] : k ∈ N〉 has the required

properties. 2

The last four examples show that the results in §2 cannot be improved in various

directions.

Example 3.5 Let H be a hyperfinite integer and let U, V ⊆ [0, H − 1] be two cuts
with U rV 6= ∅. For any α < 1/2 there exist two internal sets A,B ⊆ [0, H − 1] such
that st(|A|/H) > α, st(|B|/H) > α, and for any interval [a, b] with b− a > U ,

Gap(A + B, [a, b]) > V.

Proof Let x ∈ U r V . Define A and B by the following:

A =
⋃

{

[lx, [(l + α)x]− 1] : 0 6 l 6

[

H
x

]

− 1
}

and B = A. It is easy to check that st(|A|/H) = st(|B|/H) = α. Since

A + B ⊆
⋃

{

[lx, [(l + 2α)x]− 1] : 0 6 l 6 2
[

H
x

]

− 2
}

and 2α < 1, for any interval [a, b] with b− a > U one has

Gap(A + B, [a, b]) > [(1− 2α)x]− 1 > V. 2

Remark Using the same idea as in Example 3.2 and Example 3.6, one can modify

the sets A and B in Example 3.5 to make them U–nowhere dense.

Look at Application 2.5 for the case of d = 1. Given two sets A, B ⊆ N, if
BD(A) > 0 and BD(B) > 0, then there is a m ∈ N such that A + B + [0, m] is thick.

It is easy to see that if BD(A) + BD(B) > 1, then A + B is already thick. So m = 0.
Hence it is natural to guess that the number m may be related to BD(A) and BD(B).

The next example uses an idea similar to Example 3.5 to show that this is not the
case.
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Example 3.6 For any α and β with α + β < 1 and for any m ∈ N, there exist
A,B ⊆ N such that A and B are not piecewise syndetic, BD(A) > α, BD(B) > β,

and A + B + [0,m] is not thick.

Proof Without loss of generality, we assume m > 1. Let ε = 1− α− β and let

δ = min
{

ε
4α + ε

,
ε

4β + ε

}

.

Let Ak be the same sets constructed in Example 3.3 such that |Ak|/2k > 1 − δ for
each k > k0, where k0 can be chosen large enough so that k0 > 4m/ε. Let

C =
∞
⋃

k=k0

(2k − 2k
0 + Ak).

Then BD(C) > 1 − δ and C is not piecewise syndetic. Now we construct A and B
by:

A =
⋃

a∈C

(k0a + [0, [(α +
ε
4
)k0]]) and B =

⋃

a∈C

(k0a + [0, [(β +
ε
4
)k0]]).

Then

BD(A) > BD(C)
(

α +
ε
4

)

> (1− δ)
(

α +
ε
4

)

>

(

1− ε
4α + ε

)(

4α + ε
4

)

= α.

By the same reason we have BD(B) > β. Since C is not piecewise syndetic, then

both A and B are not piecewise syndetic. For any l ∈ N, since

[lk0, (l + 1)k0 − 1] ∩ (A + B) ⊆ [lk0, lk0 + [(α + β + ε/2)k0]],

then

[lk0, (l + 1)k0 − 1] ∩ (A + B + [0,m])

⊆ [lk0, lk0 + [(α + β + ε/2)k0] + m]

⊆ [lk0, lk0 + [(α + β + ε/2)k0] + [εk0/4]]

⊆ [lk0, lk0 + [(α + β + 3ε/4)k0]]

⊆ [lk0, lk0 + [(1− ε/4)k0]]

⊆ [lk0, (l + 1)k0 −m− 1].

Hence A + B + [0,m] is not thick because any interval of length greater than 3k0

contains an interval of the form [lk0, (l + 1)k0 − 1], which contains a subinterval
[(l + 1)k0 −m, (l + 1)k0 − 1] disjoint from A + B + [0,m]. 2
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Assume d = 1 as in Application 2.7. The conclusion there is

lim inf
k→∞

(Gap(Ak + Bk, Qk)) < ∞.

Is it possible that the conclusion can be strengthened to

lim sup
k→∞

(Gap(Ak + Bk, Qk)) < ∞?

The next example shows that it cannot.

Example 3.7 For any non–negative real numbers α and β such that α+β < 1, there
exist two sequences of sets 〈Ak ⊆ [0, 2k − 1] : k ∈ N〉 and 〈Bk ⊆ [0, 2k − 1] : k ∈ N〉
with

inf
{

|Ak|
2k : k ∈ N

}

> α and inf
{

|Bk|
2k : k ∈ N

}

> β

such that for any large sequence of intervals 〈[ak, bk] : k ∈ N〉 the set

{Gap(Ak + Bk, [ak, bk]) : k ∈ N}

is unbounded in N.

Proof Choose a non–principal ultrafilter F on N which is not a P–point. Let

the nonstandard universe and the cut U be the same as in Application 2.7. Let

V = N. Since F is not a P–point, then U r V 6= ∅. Let H = [〈2k : k ∈ N〉] Then
U, V ⊆ [0, H − 1]. By Example 3.5 there exist internal sets A = [〈Ak : k ∈ N〉] and

B = [〈Bk : k ∈ N〉] in [0, H − 1] such that st(|A|/H) > α, st(|B|/H) > β, and for
any interval [a, b] ⊆ [0, H − 1] of length greater than U ,

Gap(A + B, [a, b]) > V.

Let
X =

{

k ∈ N :
|Ak|
2k > α and

|Bk|
2k > β.

}

So X ∈ F . For each k ∈ X let Ak and Bk be unchanged and for each k 6∈ X redefine
Ak = Bk = [0, 2k − 1]. If 〈[ak, bk] ⊆ [0, 2(2k − 1)] : k ∈ N〉 is a large sequence of
intervals, then the interval [[〈ak : k ∈ N〉], [〈bk : k ∈ N〉]] ⊆ [0, 2H − 2] has length
greater than U . Hence

[〈Gap(Ak + Bk, [ak, bk]) : k ∈ N〉] > V = N.
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This implies that {Gap(Ak + Bk, [ak, bk]) : k ∈ N} is not bounded in N. 2

The last example shows that one cannot replace Lebesgue measure by outer
Lebesgue measure in Application 2.1. We use [0, 1] for the unit interval of real num-
bers in the next example.

Example 3.8 There is an A ⊆ [0, 1] such that the outer measure of A is 1 and A+A
does not contain a non–empty open interval of real numbers.

Proof In the proof below we use α and β for ordinals. Let c = 2ℵ0 be the cardinality
of the continuum and let {Xα : α < c} be an enumeration of all uncountable closed
subsets of [0, 1]. View R as a linear space over Q, the rational field. For any Y ⊆ R
let 〈Y 〉 denote the subspace generated by Y . We now construct two sequences of
subsets of [0, 1], A0 ⊆ A1 ⊆ A2 ⊆ · · · and B0 ⊆ B1 ⊆ B2 ⊆ · · ·, inductively such that
for each α < c

1. 〈Aα〉 ∩ [0, 1] = Aα and 〈Bα〉 ∩ [0, 1] = Bα,

2. 〈Aα〉 ∩ 〈Bα〉 = {0},

3. the cardinality of Aα ∪Bα < c,

4. Aα ∩Xα 6= ∅ and Bα ∩Xα 6= ∅.

Suppose Aβ and Bβ are obtained so that 1–4 above are true for every β < α. By
3, |Xα r

⋃

β<α(Aβ ∪ Bβ)| = c. By a cardinality argument one can choose x, y ∈
Xα r

⋃

β<α(Aβ ∪Bβ) such that

〈
⋃

β<α

Aβ ∪ {x}〉 ∩ 〈
⋃

β<α

Bβ ∪ {y}〉 = {0}.

Now let

Aα = 〈
⋃

β<α

Aβ ∪ {x}〉 ∩ [0, 1] and Bα = 〈
⋃

β<α

Bβ ∪ {y}〉 ∩ [0, 1].

It is clear that 1–4 are true for Aα and Bα. Finally, Let

A =
⋃

α<c

Aα and B =
⋃

α<c

Bα.

We now check that A is the set we want. A has outer measure 1 because of 4. A + A

does not contain any non–empty open interval because of 2 and 4. 2
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4 A New Proof of Shnirel’man’s Theorem

This section offers neither an “easier” nor a “better” proof of Shnirel’man’s theorem.
It merely offers a “different” proof. The purpose of this section is to demonstrate the

potential of the sumset phenomenon in dealing with combinatorial problems involving
asymptotic arguments. A conventional proof can be found in [8].

For a set A ⊆ N the Shnirel’man density of A is defined by the following:

σ(A) = inf
k>1

|A ∩ [1, k]|
k

.

Note that if σ(A) > α, then by the transfer principle

st
(

|∗A ∩ [0, H − 1]|
H

)

> α

for every hyperfinite integer H. Note also that if σ(A) > 0, then 1 ∈ A. For any set

A ⊆ N and for any h ∈ N let

hA = A + A + · · ·+ A
︸ ︷︷ ︸

h

if h > 0 and let hA = ∅ if h = 0. If U is a cut and x ∈ ∗Nr U , then

xU = {y ∈ ∗N : y < xu for some u ∈ U}

and
x/U = {y ∈ ∗N : y < x/u for every u ∈ U}

are cuts. Note that xN is the smallest cut containing x and x/N is the largest cut

not containing x.

Theorem 4.1 (Shnirel’man) For any set A ⊆ N, if 0 ∈ A and σ(A) > 0, then
there is an h ∈ N such that hA = N.

Proof We suppose the theorem is not true and derive a contradiction. Since

h ∗A 6= ∗N for every h ∈ N, then
⋃

h∈N(h
∗A) 6= ∗N by countable saturation. Let

H ∈ ∗Nr
⋃

h∈N(h
∗A).

Claim 4.1.1 Let K be a hyperfinite integer and let [a, b] ⊆ [0, K − 1] be such

that b− a > K/n for some n ∈ N. Then [a, b] ∩ (h ∗A) 6= ∅ for some h ∈ N.
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Proof of Claim 4.1.1 Since

st
(

|∗A ∩ [1, [K/n]]|
[K/n]

)

> 0,

then
∗A ∩ ([0, [K/n]]rK/N) 6= ∅.

Let x ∈ ∗A be such that K/N < x < K/n. Then x < b− a, and it is easy to see that
there is a finite h ∈ N such that hx ∈ [a, b]. So hx ∈ h ∗A ∩ [a, b]. 2(Claim 4.1.1)

Claim 4.1.2 Suppose that Gap(2 ∗A, [a, b]) ≤ n(d− c) and [c, d] ⊆ h ∗A. Then

[a + nd, b + nc] ⊆ (2 + nh) ∗A.

Proof of Claim 4.1.2 Let y = min(2 ∗A∩ [a, b]) and z = max(2 ∗A∩ [a, b]). Then

[y + nc, z + nd] ⊆ 2 ∗A + [nc, nd] ⊆ (2 + nh) ∗A.

Moreover, y 6 a + n(d − c), b − n(d − c) 6 z, so [a + nd, b + nc] ⊆ [y + nc, z + nd].
2(Claim 4.1.2)

Let

V = {U : U is a cut, U < H, and H/N 6= U},

and let

U = {U ∈ V : (∃[a, b] ⊆ H/N)(∃h ∈ N)[a, b] ⊆ h ∗A and U < b− a}.

Note that U is downward closed, i.e. U ⊆ V and V ∈ U imply U ∈ U .
Claim 4.1.3 N ∈ U .
Proof of Claim 4.1.3 For each x ∈ H/N, st(|∗A ∩ [0, x]|/x) > σ(A) > 0. By

Application 2.3, (2 ∗A) ∩ [0, 2x]) is not N–nowhere dense. Therefore there exists an
interval [a, b] ⊆ [0, 2x] for some x ∈ H/N such that b− a > N and Gap(2 ∗A, [a, b]) =
m ∈ N. Since [0, 1] ⊆ ∗A, it follows from Claim 4.1.2 that

[a + m, b] ⊆ (2 + m) ∗A.

2(Claim 4.1.3)

Claim 4.1.4 U = V.

Proof of Claim 4.1.4 Suppose U 6= V . Let V̄ =
⋂

(V r U). Then V̄ is a cut.
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Let x ∈ H/N r V̄ . By Application 2.3, there is an interval [a, b] ⊆ [0, 2x] with
b− a > V̄ such that Gap(2 ∗A, [a, b]) = l ∈ V̄ .

Case 1. l is finite. Then by Claim 4.1.2,

[a + l, b] ⊆ 2 ∗A + [0, l] ⊆ (2 + l) ∗A.

Therefore in this case we have V̄ ∈ U .
Case 2. l is hyperfinite. Let U = l/N. Then U < l ∈ V̄ , so U ∈ U . Hence there

exist h′ ∈ N and an interval [c, d] ⊆ H/N such that U < d− c ∈ V̄ and [c, d] ⊆ h′ ∗A.
Let n ∈ N be such that d− c > l/n. By Claim 4.1.2 again,

[a + nd, b + nc] ⊆ (2 + nh′) ∗A.

Moreover, (b + nc) − (a + nd) = (b − a) − n(d − c) > V̄ . Thus in this case we also
have V̄ ∈ U .

By the definition of U , there exist h ∈ N and [a, b] ⊆ H/N such that b − a > V̄
and [a, b] ⊆ h ∗A. Let V = (b − a)/N, then V ⊇ V̄ because V is the largest cut not
containing b−a. Also V ∈ U by the definition of U . So (b−a)N ⊆ V̄ because (b−a)N
is the smallest cut containing b− a. This contradicts (b− a)/N ⊇ V̄ , and completes
the proof that U = V. 2(Claim 4.1.4)

Claim 4.1.5 There exist h ∈ N and [a, b] ⊆ [0, H − 1] such that b − a > H/N
and [a, b] ⊆ h ∗A.

Proof of Claim 4.1.5 By Application 2.3, there is an interval

[c, d] ⊆ [0, [(H − 1)/2]]

such that d− c > H/N and

Gap(2 ∗A, [c, d]) = l < H/N.

Let U = lN. Then U 6= H/N by countable saturation. So by Claim 4.1.4, there exist

h′ ∈ N and [e, f ] ⊆ H/N such that f−e > U and [e, f ] ⊆ h′ ∗A. Let [a, b] = [c+f, d+e].
Then by Claim 4.1.2,

[a, b] ⊆ (2 + h′) ∗A.

It is obvious that 0 6 a and b < [(H− 1)/2]+ [(H−1)/2] 6 H− 1. 2(Claim 4.1.5)
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Let [a, b] ⊆ [0, H − 1] and h ∈ N be obtained according to Claim 4.1.5. By Claim

4.1.1 there is an h′ ∈ N such that [H − b,H − a] ∩ (h′ ∗A) 6= ∅. Let

r ∈ [H − b,H − a] ∩ (h′ ∗A).

Then
H ∈ [a + r, b + r] = [a, b] + r ⊆ (h ∗A) + (h′ ∗A) = (h + h′) ∗A.

This contradicts the choice of H and completes the proof. 2

5 Questions

In this section we pose two open questions.

Let H be a hyperfinite integer, and let I(H) be the set of all internal subsets of
[0, H − 1] ∩ ∗N. For A ∈ I(H) and m ∈ ∗N let

g(A,m) = min{Gap(A, [a, b]) : b− a + 1 = m}.

It is easy to see that if m > 0 and A 6= ∅, then g(A,m) < m/2. One can define an

internal decreasing sequence

S(H, A) = 〈mi : 0 6 i 6 k〉

such that m0 = H, mi+1 = g(A,mi) > 0 for i ∈ [0, k − 1], and mk = 0. The number

k is called the length of the sequence S(H, A), and is denoted by len(S(H,A)).
If U ⊆ [0, H − 1] is a cut and A is U–nowhere dense, then the length of the

sequence S(H, A) is a hyperfinite integer. On the other hand, if the length of the
sequence S(H, A) is hyperfinite, then

U =
⋂

i∈N
[0,mi]

is a cut and A is U–nowhere dense. Therefore by Application 2.3, if A,B ∈ I(H) and

st
(

|A ∩ [0, H − 1]|
H

)

> 0 and st
(

|B ∩ [0, H − 1]|
H

)

> 0.

then the length of the sequence S(H,A + B) is finite. Given positive standard real

numbers α and β such that α + β < 1, let

L(H,α, β) = {len(S(H, A + B)) : A,B ∈ I(H),
|A|
H

> α, and
|B|
H

> β}.

Then L(H,α, β) is an internal subset of N, and hence is upper bounded in N.
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Question 5.1 Given H, α, β, what is the least upper bound of L(H, α, β)?

Let (G, ·) be a countable group not necessarily abelian. For g ∈ G and A ⊆ G let

gA = {ga : a ∈ A} and Ag = {ag : a ∈ A}. We would like to define upper Banach
density and syndeticity of a subset of G following the ideas in [1]. For convenience
we consider only groups rather than semigroups .

A sequence 〈Ak : k ∈ N〉 of subsets of G is called a left Følner sequence if for every
g ∈ G

lim
k→∞

|gAk∆Ak|
|Ak|

= 0,

where ∆ is the symmetric difference. If G admits left Følner sequences, then for each

A ⊆ G one can define the upper Banach density of A by the following:

BD(A) = sup
{

lim sup
k→∞

|A ∩ Ak|
|Ak|

: 〈Ak : k ∈ N〉 is a left Følner sequence
}

.

A set A ⊆ G is called right thick if for every finite F ⊆ G, there is a g ∈ G such
that Fg ⊆ A. A set A ⊆ G is called right piecewise syndetic if there is a finite
subset F of G such that

⋃

f∈F fA is right thick.

Question 5.2 Let G be a countable group admitting left Følner sequences. Let A,B ⊆
G. Is A·B = {ab : a ∈ A, b ∈ B} always right piecewise syndetic whenever BD(A) > 0
and BD(B) > 0?
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