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Abstract

We characterize Maharam spectra of Loeb probability spaces and give some
applications of the results.

0 Introduction

In the nonstandard approach to probability theory, a central role is played by a fam-
ily of very rich probability spaces, known as Loeb spaces. It is natural to ask for

a description of the Loeb spaces, or at least a description of their measure alge-
bras, in standard terms. By Maharam’s Theorem (see §1), the measure algebra of

any atomless probability space (Ω,B, ν) is determined up to isomorphism by a finite
or countable set of “weighted” infinite cardinals, which we will call the Maharam
spectrum of (Ω,B, ν).

In this paper we will study the Maharam spectra of Loeb probability spaces. We

will concentrate on the two classes of Loeb spaces which are most frequently used in

applications: the hyperfinite Loeb spaces and the Loeb spaces generated by standard
probability spaces. In general, the possible Maharam spectra for these Loeb spaces

will depend on the nonstandard universe in which one is working.
We will prove the following three theorems. If X is a set, card(X) is the size of

X in the usual set-theoretic sense; if r ∈ ∗R, card(r) denotes card(∗N ∩ (0, r]).

A. (See Theorem 2.1). Let (Ω,A, µ) be a hyperfinite set with the normalized count-

ing probability measure. Then the corresponding Loeb space has Maharam spectrum
{card(2|Ω|)}.

B. (See Theorem 3.2). Let (Ω,A, µ) be a hyperfinite internal probability space
where each point x ∈ Ω has infinitesimal weight w(x), and let κ(x) = card(21/w(x)).

Then the Maharam spectrum of the corresponding Loeb space is the set of all cardinals
λ such that the set {x ∈ Ω : κ(x) = λ} has positive Loeb measure.
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C. (See Theorem 4.2). Let (Ω,B, ν) be a standard atomless probability space with
Maharam spectrum S. Then the Maharam spectrum of the Loeb space generated by
(∗Ω, ∗B, ∗ν) is the set {card(∗κ) : κ ∈ S}.

In [7] and [9] Maharam’s Theorem is successfully used in studying the compactness
of Loeb spaces and the effects of strong saturation properties of nonstandard universes
on Loeb spaces. It is shown in [7] that the Maharam spectrum of a hyperfinite Loeb
space with the normalized counting probability measure is a singleton {λ} for some λ.
This allows one to translate some problems about these Loeb spaces to problems about
the simplest classical measure algebras. Our first theorem in this paper pinpoints λ in

terms of the cardinality of the Loeb space. Sometimes we need to know the value of
λ; for example, see Corollary 2.5. In general the Maharam spectrum of a Loeb space
may have more than one cardinal. A clear characterization of the Maharam spectrum
of a Loeb space will give us a better understanding of the Loeb measure construction
and may be helpful in deriving sharper applications of Maharam’s Theorem.

We introduce notation in §1. In §2 we prove Theorem A above and give an appli-

cation . In §3 we prove Theorem B above. It will follow that the nonstandard universe
can be chosen so that any prescribed finite or countable set of distinct infinite cardi-
nals, with some obvious restrictions, can be the Maharam spectrum of a hyperfinite
Loeb probability space. In §4 we prove Theorem C above. In § 5 we explore the

possibility of representing the Maharam spectrum of a Loeb space (Ω, L(A), L(µ))
as the Maharam spectrum of the Loeb space generated by a hyperfinite subalgebra
B ⊆ A. In §6 we point out that the nonstandard universe can be chosen so that the
Maharam spectra of Loeb spaces are extremely simple.

1 Preliminaries

We write κ, λ, τ, . . . for infinite cardinals, and write α, β, γ, . . . for ordinals.

We begin with preliminary material in measure theory. For simplicity we consider
only finite countably additive measure spaces (Ω,B, ν) in this paper. By a measure
algebra isomorphism between two such spaces we will mean a bijection between
the associated measure algebras which preserves Boolean operations and measures. A

collection X of sets completely generates B if B is contained in the ν-completion
of the σ-algebra generated by X.
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For each A ∈ B, let (Ω,B, ν) � A be the measure space (A,B ∩ P(A), ν) formed
by restricting (Ω,B, ν) to A. We denote by ({0, 1}λ) the product of λ copies of the

two-point probability space {0, 1} where each point has measure 1
2 .

Maharam’s Theorem (cf. Theorem 3.9 of [2]) may be stated as follows.

Given an atomless probability space (Ω,B, ν), there is a finite or countable set of
distinct infinite cardinals {λi : i ∈ I}, and a partition {Ci : i ∈ I} of Ω with each Ci

having positive measure ri = ν(Ci), such that for each i ∈ I, (Ω,B, ν) �Ci is measure
algebra isomorphic to ri ·({0, 1}λi).

It follows that the partition {Ci : i ∈ I} is unique up to a null set, and the

set of pairs (ri, λi) is unique and determines the measure algebra of (Ω,B, ν) up to
isomorphism. We will call {Ci : i ∈ I} a Maharam partition of (Ω,B, ν), and we
define the Maharam spectrum of (Ω,B, ν) to be the set of cardinals {λi : i ∈ I}.

The Maharam type of (Ω,B, ν) is the least cardinal λ such that B is completely
generated by a set of cardinality λ. For each A ∈ B we will let τ(A) denote the
Maharam type of the restriction (Ω,B, ν) � A, with the convention that τ(A) = 0
if ν(A) = 0. In particular, τ(Ω) is the Maharam type of the whole space (Ω,B, ν).
(Ω,B, ν) is called homogeneous if and only if τ(A) = τ(Ω) for every A ∈ B of

positive measure. One can see from Maharam’s theorem that the Maharam type is

equal to the supremum of the Maharam spectrum.
We will use the following consequence of Maharam’s theorem.

An atomless probability space is measure algebra isomorphic to ({0, 1}λ) if and

only if the Maharam spectrum is the singleton set {λ}, and also if and only if the
space is homogeneous and has Maharam type λ.

We now turn to preliminaries in nonstandard analysis. Let N be the set of all

standard non-negative integers and let R ⊇ N be the set of all standard real numbers.
Let Z be a set containing R and all standard objects under consideration. Starting

from Z considered as a set of urelements, we construct the standard superstructure
V = V (Z) =

⋃

n∈N Vn, where V0 = Z and Vn+1 = Vn ∪ P(Vn) for every n ∈ N,

together with the membership relation ∈. By a nonstandard universe, denoted by

(∗V ,∈), we mean the Mostowski collapse of the truncation at rank ω of an elementary
extension of (V,∈) such that the image ∗N of N properly contains N. For brevity we

often write ∗V instead of (∗V ,∈). Let ∗ : V 7→ ∗V be the natural embedding. Thus
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∗V is a transitive subset of a second superstructure V (∗Z). A set A ∈ V (∗Z) is called
internal (in ∗V ) if A is an element of ∗V , and is called external otherwise. If X

is internal in ∗V we denote by |X| the internal cardinality of X in ∗V . The reader
may consult §4.4 of [1], [14] or [4] for more information on nonstandard analysis and
nonstandard universes. In this paper let’s fix, unless otherwise specified, an at least
ω1-saturated nonstandard universe ∗V .

For x, y ∈ ∗R, x ≈ y means x− y is infinitesimal. We write st(x) = r iff r ∈ R and
x ≈ r. Elements of ∗N are called hyperintegers. A set X is said to by hyperfinite
if |X| is an infinite hyperinteger, i.e. |X| ∈ ∗N r N. For any x, y ∈ ∗N we write [x, y)

exclusively for an interval {x, x + 1, . . . , y − 1} in ∗N rather than an interval of reals.
The symmetric difference of two sets A and B is denoted by A∆B.

By an internal measure space we mean an internal object (Ω,A, µ) ∈ ∗V which

satisfies the formula defining a (countably additive ) measure space in the model ∗V .
By a standard measure space we mean a (usually external) object in either V (Z) or
V (∗Z) which is a measure space in the ordinary sense. We use a similar convention for

other properties. Given an internal measure space (Ω,A, µ), with µ(Ω) finite, one can
form a real-valued finitely additive measure space (Ω,A, st ◦ µ). Then by the Loeb
construction one can extend A to a smallest complete σ-algebra L(A) and extend

st ◦ µ to a measure L(µ) on L(A) such that (Ω, L(A), L(µ)) is a complete countably
additive measure space with L(µ)(Ω) = st(µ(Ω)) < +∞. The space (Ω, L(A), L(µ))
is called the Loeb space generated by the internal space (Ω,A, µ). Loeb spaces are
important tools in applying nonstandard methods to probability theory. See [14],
[18] or [19] for more information on the construction of Loeb spaces. Among all Loeb
spaces, two classes are most frequently used. One is the class of all hyperfinite Loeb
spaces and the other is the class of all Loeb spaces generated by standard probability
spaces. All internal measure spaces are understood to be ∗countably additive in this

paper (although the Loeb construction works even when one starts with an internal
finitely additive measure space.)

A Loeb space (Ω, L(A), L(µ)) is called hyperfinite iff |Ω| is hyperfinite and A =
∗P(Ω) (the set of all internal subsets of Ω). If, in addition, µ is the normalized

counting probability measure µ(A) = |A|/|Ω| for all A ∈ A, then (Ω, L(A), L(µ)) is
called the uniform hyperfinite Loeb space on Ω.

Given a standard measure space (Ω,B, ν) in the original superstructure V (Z)
with ν(Ω) finite, the counterpart (∗Ω, ∗B, ∗ν) is an internal measure space. The cor-
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responding Loeb space (∗Ω, L(∗B), L(∗ν)) is called the Loeb space generated by the

standard measure space (Ω,B, ν).

2 Uniform hyperfinite Loeb spaces

We state the main theorem in this section first.

Theorem 2.1 The Maharam spectrum of a uniform hyperfinite Loeb probability space

(Ω, L(A), L(µ)) is {card(2|Ω|)}.

Here |Ω| is the internal cardinality of Ω, which is an infinite hyperinteger. Thus

the exponent 2|Ω| is the internal cardinality of the set of all internal subsets of Ω, and
card(2|Ω|) is the external cardinality of this set. The proof of the theorem needs the
following two lemmas.

Lemma 2.2 Any uniform hyperfinite Loeb probability space (Ω, L(A), L(µ)) is ho-

mogeneous.

Proof: The lemma is proved in [7]. We would like to include the proof here for
self-containment.

Let

κ = min{τ(C) : L(µ)(C) > 0}.

It suffices to show that τ(Ω) = κ. Since (Ω, L(A), L(µ)) is atomless, κ is infinite.

Let C ∈ L(A) be such that τ(C) = κ. Then L(µ)(C) > 0, so there is an internal

set A ⊆ C such that L(µ)(A) > 0. Thus m = [H/K] is finite, where H = |Ω| and
K = |A|. For each i = 0, 1, . . . , m−1, let Ai = [i·K, (i+1)·K) and let A∗ = [m·K,H).
Then |Ai| = K for each i < m, and |A∗| 6 K. Therefore τ(Ai) = κ for each i < m,
and τ(A∗) ∈ {0, κ}. Hence

κ 6 τ(Ω) 6 (
k−1
∏

i=0
τ(Ai))·τ(A∗) 6 κk+1 = κ. 2

The next lemma is a purely finite combinatorial result. Given n ∈ N, let Ωn =
[0, n) and let µn be the normalized counting measure on Ωn, i.e. µn(A) = |A|/n for
any A ⊆ Ωn. Given a k ∈ N and a c ∈ R with c > 1, we call a sequence 〈Ai : i < J〉 of
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subsets of Ωn a (k, c)-independent sequence iff for any σ ⊆ [0, J) with |σ| 6 k and

for any h ∈ 2σ, we have

µn(
⋂

i∈σ
Ah(i)

i ) >
1

2|σ| ·c
,

where we write A0 = A and A1 = Ωn r A for every A ⊆ Ωn. Note that if k = ∞ and
c = 1 then a (k, c)-independent sequence is an independent sequence of measurable
sets with measure 1

2 .

Lemma 2.3 For every k ∈ N and for every c ∈ R with c > 1 there is a K ∈ N such

that for all large enough n there exists a (k, c)-independent sequence of length [2n/K ]

on Ωn.

Proof: The idea of the following probabilistic argument is due to S. Shelah (see
Fact 3 in §1 of [9]). Let’s fix k and c. Let J > k and consider a J × n-array of

independent coin-tossing experiments with respect to a probability measure P . For
each i < J let Ai ⊆ Ωn be such that m ∈ Ai iff the outcome of (m, i)-th coin-tossing

is a head. Given any σ ⊆ [0, J) with |σ| = s 6 k, and any function h ∈ 2σ, let

p = 2−s and Ah =
⋂

i∈σ Ah(i)
i . Then 〈Ai, i < J〉 is a (k, c)-independent sequence if and

only if µn(Ah) > p/c for every σ and h. Our plan is to get an upper bound for the
probability of the event µn(Ah) 6 p/c and use this upper bound to show that with
positive probability none of these events occur.

Fix σ with |σ| = s and h ∈ 2σ. For each m < n, let Xm = 1 − p if m ∈ Ah and
Xm = −p otherwise. The Xm are independent random variables with mean zero, and
their sum is

X =
∑

m<n
Xm = n·(µn(Ah)− p).

Thus µn(Ah) 6 p/c if and only if X 6 −q ·n where q = p · (1 − c−1). We can get

the desired bound from Bernstein’s inequality (see [10], Lemma 3.1), which says that
whenever z 6

√
n/4,

P [|X| > z
√

n] 6 2e−z2/4.

We can assume without loss of generality that c 6 5/4, so that q 6 p/5 6 1/5. We
may then take z = q

√
n, and we have

P [µn(Ah) 6 p/c] 6 P [|X| > q ·n] 6 2e−q2n/4.
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Then the probability that µn(Ah) 6 p/c for some σ ⊆ [0, J) such that |σ| = s and

some h ∈ 2σ is at most (Js/s!)2s+1e−q2n/4. The probability that this happens for some
s 6 k is at most f(J) = ekJke−r2n/4 where r = 2−k(1− c−1). Letting J = [en/K ], we
have f(J) = ek+n(k/K−r2/4). Taking K so that k/K < r2/4, we see that for sufficiently

large n we have f(J) < 1. Therefore with positive probability, 〈Ai : i < J〉 is a (c, k)-
independent sequence in Ωn. 2

Problem 2.4 Let (Ω, L(A), L(µ)) be a uniform hyperfinite Loeb probability space with

|Ω| = H. By above lemma, for each infinite hyperinteger K there exists an internal
sequence 〈Ai : i < [2H/K ]〉 of internal subsets of Ω such that L(µ)(Ai) = 1

2 for every
i < [2H/K ] and the sequence is an independent sequence in (Ω, L(A), L(µ)). Could
the infinite hyperinteger K above be replaced by a sufficiently large finite k ∈ N?

Proof of Theorem 2.1: Let H = |Ω|. Since (Ω, L(A), L(µ)) is homogeneous we
need only show that τ(Ω) = card(2H). Clearly,

τ(Ω) 6 card(A) = card(2H)

because for every B ∈ L(A) there exists an A ∈ A with  L(µ)(A∆B) = 0. We need
to show that τ(Ω) > card(2H).

By Lemma 2.3 there is a finite K ∈ N such that there exists an internal (2, 2)-
independent sequence 〈Ai : i < [2H/K ]〉 of internal subsets of Ω. Since K is finite, one
has

card(2H/K) = card(2H).

Suppose τ(Ω) < card(2H). Take an X ⊆ A which completely generates L(A) such
that card(X) = τ(Ω) < card(2H). For each i < [2H/K ] let Xi ∈ X be such that
L(µ)(Ai∆Xi) < 1

8 . Clearly, there exist i 6= j such that Xi = Xj. So

L(µ)(Ai∆Aj) = L(µ)(Ai ∩ (Ω r Aj)) + L(µ)((Ω r Ai) ∩ Aj) >
1
4
.

But on the other hand,

L(µ)(Ai∆Aj) 6 L(µ)(Ai∆Xi) + L(µ)(Aj∆Xj) <
1
4
.

This contradiction completes the proof. 2

Remarks: (1) It is easy to see that if L(µ)(Ω) = 1 is replaced L(µ)(Ω) = r for any

positive r ∈ R, then Theorem 2.1 is still true.
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(2) If µ is not uniform but

max{µ({x}) : x ∈ Ω} 6 c·min{µ({x}) : x ∈ Ω}

for some positive c ∈ R, then it is also easy to see that Theorem 2.1 is true.

Next we apply Theorem 2.1 to a problem on the relation between the measure
algebra automorphisms and point-automorphisms of a uniform hyperfinite Loeb space
(Ω, L(A), L(µ)). We will not give the relevant definitions involved. The reader can

find them in [16], [17], [5] or [6].

Every point-automorphism induces a unique measure algebra automorphism. In
[16] it is proved that if the nonstandard universe ∗V is fully saturated, then every
measure algebra automorphism of a uniform hyperfinite Loeb probability space is
induced by a point-automorphism. Recently, the result was improved in [7], where full

saturation is replaced by a weaker property called the ℵ1-special model axiom. With

the knowledge of the exact value of the Maharam spectrum of a uniform hyperfinite
Loeb probability space we can show that some assumptions about the nonstandard

universe in addition to ω1-saturation are needed to guarantee the truth of above

result.

Corollary 2.5 Assume GCH. There is a nonstandard universe ∗V in which there

exists a uniform hyperfinite Loeb probability space (Ω, L(A), L(µ)) such that the set

of measure algebra automorphisms of (Ω, L(A), L(µ)) has larger cardinality than the

set of point-automorphisms of (Ω, L(A), L(µ)).

Proof: Let V be the original superstructure and let κ > card(V ) be a regular
cardinal. Then there is a κ-saturated nonstandard universe ∗V in which there is an
infinite hyperinteger H such that card(H) = κ and card(2H) = κ+ (see [15], for
example). Let Ω = [0, H) and let (Ω, L(A), L(µ)) be the uniform hyperfinite Loeb
probability space. The by Maharam’s Theorem one can easily see that there are
2κ+ = κ++ distinct measure algebra automorphisms of (Ω, L(A), L(µ)). One the

other hand, there are at most 2κ = κ+ point-automorphisms because each point-

automorphism is a mapping from Ω to Ω. 2
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3 General hyperfinite Loeb spaces

In this section we apply Theorem 2.1 to characterize the Maharam spectrum of an

arbitrary atomless hyperfinite Loeb probability space (Ω, L(A), L(µ)). Without loss
of generality we assume that Ω = [0, H) and A is the set of all internal subsets of
Ω. Each point x ∈ Ω has weight w(x) = µ({x}). We may further assume without

loss of generality that all weights are positive and that the elements of Ω are listed
in order of decreasing weight, that is, w(x) > w(y) > 0 whenever x, y ∈ Ω and x 6 y.
Since we consider only atomless Loeb spaces, w(x) is infinitesimal for every x ∈ Ω.
We associate with each x ∈ Ω the infinite cardinal κ(x) = card(21/w(x)). Note that
κ(x) 6 κ(y) whenever x 6 y. Let

λΩ = (
⋃

{κ(x) : x ∈ Ω})+.

For each λ < λΩ let’s define

K(λ) = {x ∈ Ω : κ(x) = λ}, K(6 λ) = {x ∈ Ω : κ(x) 6 λ}.

Clearly, K(6 λ) is an initial segment of Ω, and Ω =
⋃

λ<λΩ
K(λ).

Lemma 3.1 Every initial segment of Ω is L(µ)-measurable.

Proof: Let J be any initial segment of Ω. If J has a largest element l, then

J = [0, l] is internal, so J ∈ L(A). Suppose J has no largest element. Let’s define

L(µ)(J ) = sup{L(µ)([0, x)) : x ∈ J }

and define

L̄(µ)(J ) = inf{L(µ)([0, x)) : x ∈ Ω r J }.

If L(µ)(J ) = L̄(µ)(J ), then J ∈ L(A) by the completeness of the Loeb measure.
Suppose L(µ)(J ) = r < L̄(µ)(J ) = s. Let

C = {x ∈ Ω : µ([0, x)) 6
r + s

2
}.

Then C is internal, hence the largest element c of C exists. Using the fact that w(c)
and w(c + 1) are infinitesimals, it is easy to see that c can belong to neither J nor
Ω r J . Hence we have a contradiction. 2

For each λ < λΩ, the set K(λ) is a difference of two initial segments of Ω. By
above lemma, K(λ) is measurable.
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Theorem 3.2 The Maharam spectrum of an atomless hyperfinite Loeb probability

space
(Ω, L(A), L(µ)) is the set

S = {λ < λΩ : L(µ)(K(λ)) > 0}.

Proof: Let δ be the order type of S, let {λα : α < δ} be the increasing enumeration
of S, and let rα = L(µ)(K(λα)). Since the sets K(λα), α < δ, are disjoint sets

of positive Loeb measure, δ is an at most countable ordinal. Moreover, each rα is
positive and

∑

α<δ rα 6 L(µ)(Ω) = 1.

Claim 3.2.1
∑

α<δ rα = 1.
Proof of Claim: Suppose

∑

α<δ rα < 1. Let

X = Ω r (
⋃

α<δ

(K(λα)).

Then L(µ)(X) = 1−∑

α<δ rα > 0. Let

κ0 = min{λ : L(µ)(X ∩ K(6 λ)) > 0}.

Then L(µ)(X ∩ K(6 κ0)) > 0, and L(µ)(X ∩ K(κ)) = 0 for each κ < κ0. Let J be

the initial segment J =
⋃

κ<κ0
K(κ) = K(6 κ0)rK(κ0). Since J is Loeb measurable,

L(µ)(J ) = L(µ)(J ) = sup
x∈J

L(µ)[0, x).

Therefore
L(µ)(X ∩ J ) = sup

x∈J
L(µ)(X ∩ [0, x)) = 0,

so L(µ)(X∩K(κ0)) > 0. But then κ0 = λα for some α. This contradicts the definition
of X 2(Claim3.2.1)

Let α < δ. Since K(λα) is a convex subset of Ω of Loeb measure rα, there is a
countable increasing chain of intervals

Iα,n = [xα,n, yα,n) ⊆ K(λα)

such that

lim
n→∞

L(µ)(Iα,n) = rα.
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Then L(µ)(Jα) = rα where Jα =
⋃

n∈N Iα,n. Now {Jα : α < δ} is a disjoint family of

measurable subsets of Ω and

L(µ)(
⋃

α<δ

Jα) =
∑

α<δ

rα = 1.

To prove the theorem we need only show that for each α < δ, we have τ(C) = λα for
every set C ⊆ Jα of positive Loeb measure.

Claim 3.2.2 Suppose that τ(B) = λα for each n ∈ N and each B ⊆ Iα,n of
positive Loeb measure. Then τ(A) = λα for each C ⊆ Jα of positive Loeb measure.

Proof of Claim 3.2.2: For convenience we suppress the subscript α in the proof.
For any C ⊆ J with L(µ)(C) > 0 there is an n ∈ N such that L(µ)(C ∩ In) > 0.
Hence

τ(C) > τ(C ∩ In) = λ.

So it suffices to show τ(J) 6 λ. For each n ∈ N, let Xn be a set of cardinality λ which

completely generates L(A)∩P(In). Let X =
⋃

n∈NXn. Then card(X) = λ. We want
to show that X completely generates L(A)∩P(J). Given any measurable set A ⊆ J
and any positive ε ∈ R, there is an n ∈ N and a B ∈ Xn such that

L(µ)(A r In) <
ε
2

and L(µ)((In ∩ A)∆B) <
ε
2
.

Hence L(µ)(A∆B) < ε. This shows X completely generates L(A)∩P(J), so τ(J) 6 λ.

2(Claim 3.2.2)

By the claim above, the theorem is reduced to the following claim. Let’s fix an

α < δ and an n ∈ N.

Claim 3.2.3 For every B ⊆ Iα,n of positive Loeb measure, τ(B) = λα.
Proof of Claim 3.2.3: Let’s again suppress the subscripts α and n in the following

proof. Without loss of generality, 0 < L(µ)(I), so 0 < st(µ(I)). We show first that
τ(I) 6 λ. Recall that I = [x, y), where x, y ∈ K(λα). Let t = w(y). Then w(z) > t

for all z ∈ I, and card(21/t) = λ. By “splitting each point of I into pieces”, we can
form a new hyperfinite measure space (Ω1,A1, µ1) with weight function w1(u) such
that Ω1 has an internal partition Ω1 =

⋃

z∈I Yz with

µ1(Yz) = w(z) for each z ∈ I,

and

t 6 w1(u) 6 2t for each u ∈ Ω1.
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By the remarks right after Theorem 2.1 one has that τ(Ω1) = card(2|Ω1|). Summing

over Ω1,

t·|Ω1| 6
∑

u∈Ω1

w1(u) = µ(I) 6 2·t·|Ω1|,

which implies
µ(I)
2·t

6 |Ω1| 6
µ(I)

t
.

Since card(21/t) = λ, we have card(2a/t) = λ whenever 0 < st(a) 6 1. It follows that

λ = card(2µ(I)/2t) 6 card(2|Ω1|) 6 card(2µ(I)/t) = λ.

Hence τ(Ω1) = λ.

Subclaim 3.2.3.1 τ(I) 6 τ(Ω1) = λ.
Proof of Subclaim 3.2.3.1: Take a set X ⊆ A1 of cardinality λ which completely

generates L(A1). For each A ∈ X define CA ⊆ I by

CA = {z ∈ I : µ1(Yz ∩ A) >
1
2
·w(z)}.

Then
I r CA = {z ∈ I : µ1(Yz r A) >

1
2
·w(z)}.

We want to show that {CA : A ∈ X} completely generates L(A) ∩ P(I). Given any

internal B ⊆ I, let DB =
⋃

z∈B Yz. Given any positive ε ∈ R, we need to find an

A ∈ X such that µ(CA∆B) < ε. Let A ∈ X be such that µ1(A∆DB) < ε
2 . Then

µ(CA∆B) =
∑

z∈CArB

w(z) +
∑

z∈BrCA

w(z)

6
∑

z∈CArB

2µ1(Yz ∩ A) +
∑

z∈BrCA

2µ1(Yz r A)

6 2µ1(A rDB) + 2µ1(DB r A) = 2µ1(A∆DB) < ε.

Hence τ(I) 6 card(X) = λ. 2(Subclaim 3.2.3.1)

We now show that for any internal A ⊆ I with L(µ)(A) > 0, one has τ(A) > λ.
Let s = w(x). Then s > w(z) for every z ∈ A, and card(21/s) = λ. By “gluing points
of A together”, we can a hyperfinite measure space (Ω2,A2, µ2) with weight function
w2 where Ω2 is an internal partition of A such that for each Y ∈ Ω2

s 6 w2(Y ) = µ(Y ) 6 2s.

12



As in the proof of Subclaim 3.2.3.2 one can show that

τ(Ω2) = card(21/s) = λ

and
τ(A) > τ(Ω2).

This completes the proof of the theorem. 2

From Theorem 3.2 one can see that the Maharam spectrum of a nonuniform hyper-
finite Loeb probability space can be complex. In fact, for any countable set of infinite
cardinals satisfying a minor condition one can choose an ω1-saturated nonstandard
universe ∗V and an atomless hyperfinite Loeb probability space in ∗V such that the
Maharam spectrum of the Loeb space is the prescribed set. Given a nonstandard
universe ∗V , let

D∗V = {card(H) : H is an infinite hyperinteger in ∗V }.

For the existence of the nonstandard universe mentioned above we cite a result from
[13].

Suppose D is a set of infinite cardinals satisfying
(1) λℵ0 = λ for each λ ∈ D, and
(2) If 〈κn : n ∈ N〉 is a strictly increasing sequence in D, then (

⋃

n∈N κn)+ ∈ D.
Then there is a nonstandard universe ∗V , obtained by taking an ultrapower of the

original superstructure, such that D = D∗V .

Note that any nonstandard universe obtained by an ultrapower construction is
ω1-saturated, and if H is an infinite hyperinteger in some ω1-saturated nonstandard
universe, then (card(H))ℵ0 = card(H).

Theorem 3.3 Given any countable set of infinite cardinals S and indexed set of

positive real numbers {rλ : λ ∈ S} such that λℵ0 = λ for each λ ∈ S and
∑

λ∈S rλ = 1,
there is an ω1-saturated nonstandard universe ∗V which has an atomless hyperfinite
Loeb probability space (Ω, L(A), L(µ)) with a Maharam partition {Aλ : λ ∈ S} such
that for each λ ∈ S, L(µ)(Aλ) = rλ and τ(Aλ) = λ. Hence S is the Maharam
spectrum of (Ω, L(A), L(µ)).
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Proof: Let ∗V be an ω1-saturated nonstandard universe such that S ⊆ D∗V . The
existence of such nonstandard universe is guaranteed by the result in [13] mentioned

above. Note that if card(K) = λ and H = [log2 K], then card(2H) = λ. Hence for
each λ ∈ S there is an infinite hyperinteger Hλ such that card(2Hλ) = λ. Let

S = {λn : n < k}

be an enumeration, where k can be either finite or ω. Let K−1 = 0 and for each n < k
let Kn = Kn−1 + Hλn . Let W be the function on

⋃

n<k[0, Kn) such that

W (z) = rλn/Hλn

for each n < k and z ∈ [Kn−1, Kn). By ω1-saturation one can find a K ∈ ∗N such that

K > Kn for each n < k, and extend W to an internal function W : [0, K) → ∗[0, 1]
such that

∑

z∈[0,K) W (z) 6 1. Let Ω = [0, K) and let µ be the measure on ∗P(Ω) with

weight function W . It is easy to see that (Ω, L(∗P(Ω)), L(µ)) is the desired space,

because
L(µ)(Ω r

⋃

n<k

[0, Kn)) = 0. 2

4 Loeb spaces generated by standard spaces

In this section we characterize the Maharam spectrum of a Loeb probability space

(∗Ω, L(∗B), L(∗ν)) generated by a standard probability space (Ω,B, ν) in V . Note
that if X and Y are two sets in V with the same cardinality, then ∗X and ∗Y in ∗V
have the same external cardinality because if i is a bijection from X to Y , then ∗i is
a bijection from ∗X to ∗Y .

Theorem 4.1 If a standard probability space (Ω,B, ν) is homogeneous and has Ma-
haram type κ, then the Loeb probability space (∗Ω, L(∗B), L(∗ν)) generated by (Ω,B, ν)
is also homogeneous and has Maharam type card(∗κ).

Proof: First we show that the Loeb space (∗Ω, L(∗B), L(∗ν)) has Maharam type
τ(∗Ω) 6 card(∗κ). We will then show that for each A ∈ L(∗B) with L(∗ν)(A) > 0, one
has τ(A) > card(∗κ). Without loss of generality we may take the set Z of urelements

to contain κ.

14



Suppose X ⊆ B is a set of cardinality κ which completely generates B. By

Maharam’s Theorem, (Ω,B, ν) is measure algebra isomorphic to the space ({0, 1}κ)
defined in the introduction. Hence there is an independent sequence 〈Bα : α < κ〉 of
measurable subsets of Ω such that ν(Bα) = 1

2 . For each n ∈ N let Fn be a maximal
family of measurable subsets of Ω containing all Bα’s such that ν(F∆G) > 1

n for any
two different F and G in Fn. Clearly, card(Fn) > κ for each n > 1.

Claim 4.1.1 card(Fn) = κ for each n > 1.

Proof of Claim 4.1.1: Suppose card(Fn) > κ. For each F ∈ Fn there exists an
xF ∈ X such that ν(F∆xF ) < 1

2n . Since card(Fn) > card(X), there exist at least
two distinct elements, F and G in Fn, such that xF = xG. Hence

ν(F∆G) 6 ν(F∆xF ) + ν(xG∆G) <
1
n

,

which contradicts ν(F∆G) > 1
n . 2(Claim 4.1.1)

Now let F =
⋃

n∈N
∗Fn. Then one has card(∗Fn) = card(∗κ) for each n > 1, and

card(F) = ℵ0 ·card(∗κ) = card(∗κ).

Claim 4.1.2 F completely generates L(∗B).

Proof of Claim 4.1.2 Let n ∈ N. Since the sentence

“(∀B ∈ B)(∃F ∈ Fn)
(

ν(B∆F ) <
1
n

)

”

is true by the maximality of Fn, then by the Transfer Principle the sentence

“(∀B ∈ ∗B)(∃F ∈ ∗Fn)
(

∗ν(B∆F ) <
1
n

)

”

is also true in ∗V . Hence for every A ∈ ∗B and every positive ε ∈ R there exists an
F ∈ F such that ∗ν(A∆F ) < ε. This ends the proof. 2(Claim 4.1.2)

By Claim 4.1.2 we have that τ(∗Ω) 6 card(∗κ). Let C ∈ ∗B with

L(∗ν)(C) = r > 0.

Claim 4.1.3 τ(C) > card(∗κ).
Proof of Claim 4.1.3: Suppose

λ = τ(C) < card(∗κ).
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Let X be a subset of ∗B of cardinality λ which completely generates the restriction

L(∗B) ∩ P(C). Let D = 〈Bα : α < κ〉 be the independent sequence of measurable

subsets of Ω such that ν(Bα) = 1
2 for each α < κ. Then ∗D = 〈∗Bα : α < ∗κ〉 is an

independent sequence with ∗ν(∗Bα) = 1
2 for each α < ∗κ in (∗Ω, L(∗B), L(∗ν)). Choose

m ∈ N first and then choose n ∈ N large enough such that

1
2m <

r
2
− m

n
.

For each α < ∗κ let xα ∈ X be such that

∗ν((A ∩ ∗Bα)∆xα) <
1
n

.

Since card(∗κ) > card(X), there exists an infinite E ⊆ ∗κ and an x ∈ X such that for
each α ∈ E one has xα = x. Suppose ∗ν(x) > r

2 (otherwise replace x by C r x and
replace ∗Bα by ∗Ω r ∗Bα). Then for α1 < α2 < . . . < αm in E one has

∗ν
( m

⋂

i=1

∗Bαi ∩ C ∩ x
)

6 ∗ν
( m

⋂

i=1

∗Bαi

)

6
1

2m .

On the other hand, one has

m
⋂

i=1

∗Bαi ∩ C ∩ x = C ∩ x r
( m

⋃

i=1
(x r ∗Bαi)

)

.

Hence
∗ν

( m
⋂

i=1

∗Bαi ∩ C ∩ x
)

>
r
2
−

m
∑

i=1

∗ν(x r ∗Bαi) >
r
2
− m

n
,

which contradicts the choice of m and n. 2

Theorem 4.2 Let S be the Maharam spectrum of a standard probability space (Ω,B, ν)
in V . The Loeb probability space (∗Ω, L(∗B), L(∗ν)) generated by (Ω,B, ν) has Ma-
haram spectrum

T = {card(∗κ) : κ ∈ S}.

Proof: Let P = {Cκ : κ ∈ S} be a partition of Ω and let R = {rκ : κ ∈ S} be a set
of positive real numbers such that

ν(Cκ) = rκ,
∑

κ∈S

rκ = 1,
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and (Ω,B, ν) � Cκ is homogeneous with Maharam type κ. By Theorem 4.1 we

know that (∗Ω, L(∗B), L(∗ν)) � ∗Cκ is homogeneous with Maharam type card(∗κ),

and L(∗ν)(∗Cκ) = rκ. Since

{∗Cκ : κ ∈ S}

is a disjoint family, we have that

L(∗ν)(∗Ω r
⋃

κ∈S

∗Cκ) = 0.

For each λ ∈ T let

Dλ =
⋃

{∗Cκ : κ ∈ S and card(∗κ) = λ}.

Then it is easy to see that (Ω, L(A), L(µ)) � Dλ is homogeneous and has Maharam
type λ. Clearly, Dλ and Dλ′ are disjoint for different λ and λ′, and

L(∗ν)





⋃

λ∈T

Dλ



 = 1.

So T is the Maharam spectrum of (∗Ω, L(∗B), L(∗ν)). 2

5 Hyperfinite approximation

Throughout this section, we assume that (Ω,A, µ) is an internal (∗countably additive)
probability space.

Let us say that (Ω, C, µ) is a hyperfinite approximation of (Ω,A, µ) if C
is a hyperfinite subalgebra of A and every Maharam partition of the Loeb space
(Ω, L(C), L(µ)) is also a Maharam partition of (Ω, L(A), L(µ)) with the same Ma-
haram types.

It follows that (Ω, L(A), L(µ)) and (Ω, L(C), L(µ)) have the same Maharam spec-
tra.

In this section we will determine when a hyperfinite approximation of (Ω,A, µ) ex-
ists. It turns out that this happens if and only if the Maharam type of (Ω, L(A), L(µ))

is not too large. The question is of interest because the results in §§2,3 completely
characterize the Maharam spectra of hyperfinite Loeb spaces, and as the next lemma

shows, the Loeb space (Ω, L(C), L(µ)) is essentially a hyperfinite Loeb space.
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Lemma 5.1 Let (Ω, C, µ) be an internal probability space such that the algebra of sets
C is hyperfinite. Then the Loeb space (Ω, L(C), L(µ)) has Maharam type 6 card(H)

for some H ∈ ∗N, and there is a measure algebra isomorphism between (Ω, L(C), L(µ))
and a hyperfinite Loeb space.

Proof: For each x ∈ Ω, let

x̂ =
⋂

{C ∈ C : x ∈ C}

We can identify each x̂ with a point. For each C ∈ C let Ĉ = {x̂ : x ∈ C}. Let

Ω̂ = {x̂ : x ∈ Ω} Ĉ = {Ĉ : C ∈ C},

and let µ̂ be the measure on Ĉ induced by µ. Then (Ω̂, Ĉ, µ̂) is hyperfinite, and the

mapping C 7→ Ĉ induces a measure algebra isomorphism between the corresponding
Loeb spaces. 2

We now consider the case that (Ω,A, µ) is ∗atomless.

Lemma 5.2 Suppose (Ω,A, µ) is ∗atomless. Then the Loeb space (Ω, L(A), L(µ))
has Maharam type > card(∗N).

Proof: By the transfer principle, A contains an internal sequence of independent

sets indexed by ∗N. 2

Theorem 5.3 Suppose (Ω,A, µ) is ∗atomless and let λ be the Maharam type of the

Loeb space (Ω, L(A), L(µ)).
If λ = card(∗N) = card(H) for some H ∈ ∗N, then (Ω,A, µ) has a hyperfinite

approximation and (Ω, L(A), L(µ)) is homogeneous.

Otherwise (i.e., if either λ > card(∗N) or card(H) < card(∗N) for all H ∈ ∗N) 4,
the Maharam spectrum of (Ω, L(A), L(µ)) is disjoint from the Maharam spectrum of

(Ω, L(C), L(µ)) for every hyperfinite C ⊆ A.

Proof:

The “otherwise” part follows from the preceding two lemmas.
4The nonstandard universes with card(H) < card(∗N) for every H ∈ ∗N are called card(∗N)-

Archimedean. See [12] or [8] for the discussion of the existence of such nonstandard universes.
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Suppose that λ = card(∗N) = card(H) for some H ∈ ∗N. For any D ∈ A with

L(µ)(D) > 0 the measure space (Ω,A, µ) �D is still internal and ∗atomless. Hence

λ > τ(D) > card(∗N) > λ.

Therefore (Ω, L(A), L(µ)) is homogeneous.
By the Transfer Principle we can partition Ω into H disjoint sets {An : n < H}

such that for each n < H the set An is in A and has µ-measure 1/H. Let C be
the internal subalgebra of A generated by {An : n < H}. Then C is hyperfinite.
Clearly, (Ω, L(C), L(µ)) is measure algebra isomorphic to a uniform hyperfinite Loeb
probability space over a set with internal cardinality H. Hence (Ω, L(C), L(µ)) is
homogeneous and has Maharam type card(2H). Since

λ = card(H) 6 card(2H) 6 card(∗N) = λ,

(Ω, L(C), L(µ)) has Maharam type λ and is a hyperfinite approximation of (Ω, L(A), L(µ)).
2

We now take up the case where (Ω,A, µ) is ∗atomistic.

Lemma 5.4 Suppose C is a hyperfinite subalgebra of A such that for each A ∈ A
there is a C ∈ C with L(µ)(A∆C) = 0. Then (Ω, C, µ) is a hyperfinite approximation
of (Ω,A, µ).

Proof: Straightforward. 2

Theorem 5.5 Suppose that (Ω,A, µ) is ∗atomistic, or at least that every set of pos-
itive Loeb measure contains a ∗atom of (Ω,A, µ). Then (Ω,A, µ) has a hyperfinite

approximation.

Proof: By transfer, there is an internal maximal pairwise disjoint family D of
∗atoms in (Ω,A, µ). Moreover, D is hyperfinite or ∗countable, so its union belongs

to A.
⋃

D has Loeb measure one, since its complement does not contain a ∗atom.

By ∗countable additivity, for each δ > 0 there is a hyperfinite D0 ⊆ D such that
µ(

⋃

D0) > µ(
⋃

D)− δ. Taking δ infinitesimal, we get a D0 such that
⋃

D0 has Loeb
measure one. Let C be the ∗subalgebra of A generated by D0. Then C is hyperfinite.
It is easily seen that C satisfies the hypotheses of Lemma 5.4. 2

Finally, we combine the two preceding theorems to take care of the general case.
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Theorem 5.6 The following are equivalent:
(i) (Ω,A, µ) has a hyperfinite approximation.

(ii) The corresponding Loeb space (Ω, L(A), L(µ)) has Maharam type 6 card(H)

for some H ∈ ∗N.

Proof: Lemma 5.1 shows that (i) implies (ii). Assume (ii). By the Transfer Principle
one can partition Ω into two sets Ω0 and Ω1 such that Ω0 is the union of an at most
∗countable family of ∗atoms, and Ω1 contains no ∗atoms. Without loss of generality we
assume L(µ)(Ωi) > 0 for i = 0, 1 (otherwise the case is reduced to either Theorem 5.5

or Theorem 5.3). For i = 0, 1 let Ai and µi be the restrictions of A and µ to Ωi.
By Theorems 5.5 and 5.3, for i = 0, 1, (Ωi,Ai, µi) has a hyperfinite approximation
(Ωi, Ci, µi). Now let C be the internal subalgebra of A generated by C0∪C1. It is easy

to see that (Ω, L(C), L(µ)) is a hyperfinite approximation of (Ω,A, µ). 2

6 Working in a nice nonstandard universe

In this section we show that by working within a nice nonstandard universe or im-
posing a bound on the internal cardinality of the sample space Ω, one can make the
Maharam spectra of Loeb spaces simple.

Theorem 6.1 There exists an infinite hyperinteger H such that every hyperfinite

Loeb probability space (Ω, L(A), L(µ)) with |Ω| 6 H is homogeneous and has Maharam
type card(H).

Proof: Let λ = min{card(K) : K ∈ ∗N r N} and let H be an infinite hyperinteger

such that card(2H) = λ. Then card(H) = λ. Suppose (Ω, L(A), L(µ)) is a hyperfinite

Loeb probability space such that |Ω| 6 H. For any A ∈ A with L(µ)(A) > 0 there
is a sequence 〈An : n ∈ N〉 of internal subsets of A such that L(µ)(An∆Am) > 1

4 for
different n,m ∈ N because (Ω, L(A), L(µ)) is atomless. By ω1-saturation the sequence

can be extended to a hyperfinite internal sequence 〈An : n < K〉 for some infinite

hyperinteger K such that L(µ)(An∆Am) > 1
4 for different n,m < K. So one has that

λ 6 card(K) 6 τ(A) 6 card(∗P(Ω)) 6 card(2H) = λ.

Hence (Ω, L(A), L(µ)) is homogeneous and has Maharam type card(H). 2
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Theorem 6.2 If there is a cardinal λ such that λ = card(H) for each infinite hy-
perinteger H, then every hyperfinite Loeb probability space is homogeneous and has
Maharam type λ.

Proof: Similar to the proof of Theorem 6.1. 2

Remark: If the nonstandard universe ∗V is obtained from an ultrapower construc-
tion of the standard superstructure modulo an ultrafilter over a countable set, then

card(H) = 2ℵ0 for every infinite hyperinteger H in ∗V .

Theorem 6.3 If there is a cardinal λ such that card(X) = λ for every infinite inter-

nal set X, then every Loeb probability space is homogeneous and has Maharam type

λ.

Proof: Left to the reader. 2

Remark: If ∗V satisfies the ℵ1-isomorphism property or the ℵ1-special model axiom
(see [3], [17], [5] or [6] for the definitions), then all infinite internal sets have the same

external cardinality.
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