The Strength of Nonstandard Analysis

H. Jerome Keisler
University of Wisconsin, Madison

Abstract

A weak theory nonstandard analysis, with types at all finite levels over both the integers
and hyperintegers, is developed as a possible framework for reverse mathematics. In this weak
theory, we investigate the strength of standard part principles and saturation principles which
are often used in practice along with first order reasoning about the hyperintegers to obtain
second order conclusions about the integers.

1 Introduction

In this paper we revisit the work in [HKK] and [HK], where the strength of nonstandard analysis
is studied. In those papers it was shown that weak fragments of set theory become stronger when
one adds saturation principles commonly used in nonstandard analysis.

The purpose of this paper is to develop a framework for reverse mathematics in nonstandard
analysis. We will introduce a base theory, “weak nonstandard analysis” (W NA), which is proof
theoretically weak but has types at all finite levels over both the integers and the hyperintegers.
In W N A we study the strength of two principles that are prominent in nonstandard analysis, the
standard part principle in Section 6, and the saturation principle in Section 9. These principles are
often used in practice along with first order reasoning about the hyperintegers to obtain second
order conclusions about the integers, and for this reason they can lead to the discovery of new
results.

The standard part principle (STP) says that a function on the integers exists if and only if
it is coded by a hyperinteger. Our main results show that in WNA, STP implies the axiom of
choice for quantifier-free formulas (Theorem 8.4), ST P+ saturation for quantifier-free formulas
implies choice for arithmetical formulas (Theorem 10.1), and ST P+ saturation for formulas with
first order quantifiers implies choice for formulas with second order quantifiers (Theorem 10.3).
The last result might be used to identify theorems that are proved using nonstandard analysis but
cannot be proved by the methods commonly used in classical mathematics.

The natural models of WNA will have a superstructure over the standard integers N, a su-
perstructure over the hyperintegers *N, and an inclusion map j : N — *N. With the two super-
structures, it makes sense to ask whether a higher order statement over the hyperintegers implies a
higher order statement over the integers. As is commonly done in the standard literature on weak
theories in higher types, we use functional superstructures with types of functions rather than sets.
The base theory W N A is neutral between the internal set theory approach and the superstructure
approach to nonstandard analysis, and the standard part and saturation principles considered here
arise in both approaches. For background in model theory, see [CK], Section 4.4.

The theory WN A is related to the weak nonstandard theory NPRAY of Avigad [A], and the
base theory RC A for higher order reverse mathematics proposed by Kohlenbach [K]. The paper



[A] shows that the theory NPRA“ is weak in the sense that it is conservative over primitive
recursive arithmetic (PRA) for IIy sentences, but is still sufficient for the development of much
of analysis. The theory WN A is also conservative over PRA for I, sentences, but has more
expressive power. In Sections 11 and 12 we will introduce a stronger, second order Standard Part
Principle, and give some relationships between this principle and the theories NPRA“ and RC A§.

2 The theory PRAY

Our starting point is the theory PRA of primitive recursive arithmetic, introduced by Skolem. It
is a first order theory which has function symbols for each primitive recursive function (in finitely
many variables), and the equality relation =. The axioms are the rules defining each primitive
recursive function, and induction for quantifier-free formulas. This theory is much weaker than
Peano arithmetic, which has induction for all first order formulas.

An extension of PRA with all finite types was introduced by Godel [G], and several variations
of this extension have been studied in the literature. Here we use the finite type theory PRAY as
defined in Avigad [A].

There is a rich literature on constructive theories in intuitionistic logic that are very similar
to PRA“, such as the finite type theory HA“ over Heyting arithmetic (See, for example, [TD]).
However, in this paper we work exclusively in classical logic.

We first introduce a formal object N and define a collection of formal objects called types
over N.

(1) The base type over N is N.

(2) If o, 7 are types over N, then ¢ — 7 is a type over N.

We now build the formal language L(PRA“). L(PRAY) is a many-sorted first order language
with countably many variables of each type o over IV, and the equality symbol = at the base type
N only. It has the usual rules of many-sorted logic, including the rule 3fVu f(u) = t(u, ...) where
u, f are variables of type 0,0 — N and t(u,...) is a term of type N in which f does not occur.

We first describe the symbols and then the corresponding axioms. L(PRA“) has the following
function symbols:

e A function symbol for each primitive recursive function.

e The primitive recursion operator which builds a term R(m, f,n) of type N from terms of
type NN — N, and N.

e The definition by cases operator which builds a term ¢(n,wu,v) of type o from terms of type
N,o, and 0.

e The A operator which builds a term Av.t of type ¢ — 7 from a variable v of type ¢ and a
term t of type 7.

e The application operator which builds a term ¢(s) of type 7 from terms s of type o and ¢ of
type o0 — 7.

Given terms r,t and a variable v of the appropriate types, r(t/v) denotes the result of substi-
tuting ¢ for v in r. Given two terms s,t of type o, s = ¢ will denote the infinite scheme of formulas
r(s/v) = r(t/v) where v is a variable of type o and r(v) is an arbitrary term of type N. = is a
substitute for the missing equality relations at higher types.

The axioms for PRAY are as follows.



Each axiom of PRA,

e The induction scheme for quantifier-free formulas of L(PRAY),

Primitive recursion: R(m, f,0) =m, R(m, f,s(n)) = f(n, R(m, f,n)),
e Cases: ¢(0,u,v) = u, c(s(m),u,v) = v,
e Lambda abstraction: (Au.t)(s) = t(s/u).

The order relations for type N can be defined in the usual way by quantifier-free formulas.

In [A] additional types o x 7, and term-building operations for pairing and projections with
corresponding axioms were also included in the language, but as explained in [A], these symbols
are redundant and are often omitted in the literature.

On the other hand, in [A] the symbols for primitive recursive functions are not included in the
language. These symbols are redundant because they can be defined from the primitive recursive
operator R, but they are included here for convenience.

We state a conservative extension result from [A], which shows that PRAY is very weak.

Proposition 2.1 PRA¥ is a conservative extension of PRA, that is, PRA“ and PRA have the
same consequences in L(PRA).

The natural model of PRA“ is the full functional superstructure V(N), which is defined as
follows. N is the set of natural numbers. Define Viy(N) = N, and inductively define V,_.(N) to
be the set of all mappings from V,(N) into V;(N). Finally, V(N) = |J_ V,(N). The superstructure
V(N) becomes a model of PRA“ when each of the symbols of L(PRA“) is interpreted in the
obvious way indicated by the axioms. In fact, V(N) is a model of much stronger theories than
PRAY, since it satisfies full induction and higher order choice and comprehension principles.

3 The Theory NPRA¥

In [A], Avigad introduced a weak nonstandard counterpart of PRA“, called NPRA“. NPRA¥
adds to PRA“ a new predicate symbol S(-) for the standard integers (and S-relativized quantifiers
v9,3%), and a constant H for an infinite integer, axioms saying that S(-) is an initial segment not
containing H and is closed under each primitive recursive function, and a transfer axiom scheme
for universal formulas. In the following sections we will use a weakening of NPRAY as a part of
our base theory.

In order to make N PRA® fit better with the present paper, we will build the formal language
L(NPRAY) with types over a new formal object *N instead of over N. The base type over *N is
*N, and if o, 7 are types over *N then ¢ — 7 is a type over *N.

For each type o over N, let *o be the type over *N built in the same way. For each function
symbol u in L(PRA¥) from types & to type 7, L(NPRA") has a corresponding function symbol
*u from types *& to type *r. L(NPRA¥) also has the equality relation = for the base type *N,
and the extra constant symbol H and the standardness predicate symbol S of type *N.

We will use the following conventions throughout this paper. When we write a formula A(7),
it is understood that ¥ is a tuple of variables that contains all the free variables of A. If we want
to allow additional free variables we write A(7,...). We will always let:

e m,n,... be variables of type N,



e z,y,... be variables of type *N,
e f,g,... be variables of type N — N.

To describe the axioms of NPRA“ we introduce the star of a formula of L(PRAY). Given
a formula A of L(PRA¥), a star of A is a formula *A of L(NPRA“) which is obtained from A
by replacing each variable of type ¢ in A by a variable of type *o in a one to one fashion, and
replacing each function symbol in A by its star. The order relations on *N will be written <, <
without stars.

The axioms of NPRA® are as follows:

e The star of each axiom of PRAY,

e S is an initial segment: —S(H) A VaVy[S(z) Ay <z — S(y)],

e S is closed under primitive recursion,

e Transfer: V97 *A(%) — Vi *A(Z), A(m) quantifier-free in L(PRA®).

It is shown in [A] that if A(m,n) is quantifier-free in L(PRA) and N PRA® proves Vo x3y *A(z,y),
then PRA proves Ym3n A(m,n). It follows that NPRA“ is conservative over PRA for IIy sen-
tences.

The natural models of NPRA® are the internal structures *V(N), which are proper elementary

extensions of V(N) in the many-sorted sense, with additional symbols S for N and H for an element
of *N\ N.

4 The theory WNA

We now introduce our base theory W N A, weak nonstandard analysis. The idea is to combine the
theory PRA“ with types over N with a weakening of the theory NPRA% with types over *N,
and form a link between the two by identifying the standardness predicate S of NPRA® with the
lowest type N of PRA¥. In this setting, it will make sense to ask whether a formula with types
over *N implies a formula with types over N.

The language L(WNA) of WN A has both types over N and types over *N. It has all of the
symbols of L(PRA¥), all the symbols of L(NPRA%) except the primitive recursion operator *R,
and has one more function symbol j which goes from type N to type *N.

We make the axioms of W N A as weak as we can so as to serve as a blank screen for viewing
the relative strengths of additional statements which arise in nonstandard analysis.

The axioms of WN A are as follows:

e The axioms of PRA%,

e The star of each axiom of PRA,

e The stars of the Cases and Lambda abstraction axioms of PRAY,

e S is an initial segment: —S(H) A VaVy[S(z) Ay <z — S(y)],

S is closed under primitive recursion,



e j maps S onto N: Vz[S(z) — Ima = j(m)],
e Lifting: j(a(m)) = *a(j(m)) for each primitive recursive function «.

The star of a quantifier-free formula of L(PRA), possibly with some variables replaced by H,
will be called an internal quantifier-free formula. The stars of the axioms of PRA include the
star of the defining rule for each primitive recursive function, and the induction scheme for internal
quantifier-free formulas (which we will call internal induction).

The axioms of NPRA“ that are left out of WINA are the star of the Primitive Recursion
scheme, the star of the quantifier-free induction scheme of PRAY, and Transfer. These axioms are
statements about the hyperintegers which involve terms of higher type.

Note that W N A is noncommittal on whether the characteristic function of S exists in type
*N — *N, while the quantifier-free induction scheme of NPRA®“ precludes this possibility.

In practice, nonstandard analysis uses very strong transfer axioms, and extends the mapping j
to higher types. Strong axioms of this type will not be considered here.

Theorem 4.1 WNA + NPRA¥ is a conservative extension of NPRAY, that is, NPRA¥ and
WNA+ NPRAY have the same consequences in L(NPRAY).

Proof. Let M be a model of NPRA®, and let M* be the restriction of M to the standardness
predicate S. Then M?° is a model of PRA. By Proposition 2.1, the complete theory of M*
is consistent with PRA¥. Therefore PRA“ has a model K whose restriction KV to type N is
elementarily equivalent to M®. By the compactness theorem for many-sorted logic, there is a
model M; elementarily equivalent to M and a model K; elementarily equivalent to K with an
isomorphism j : M7 = K. such that (K, M, ;) is a model of WNA + NPRA“. Thus every
complete extension of NPRAY is consistent with WNA + NPRA“, and the theorem follows. m

Corollary 4.2 WNA is a conservative extension of PRA for Iy formulas. That is, if A(m,n) is
quantifier-free in L(PRA) and WNA F ¥Ym3n A(m,n), then PRA F ¥Ym3n A(m,n).

Proof. Suppose WNA I Vm3n A(m,n). By the Lifting Axiom, WNA - V923%y *A(z,y). By
Theorem 4.1, NPRA® - V¥23%y *A(x,y). Then PRA \- Ym3n A(m,n) by Corollary 2.3 in [A]. m

Each model of WN A has a V(N) part formed by restricting to the objects with types over N,
and a V(*N) part formed by restricting to the objects with types over *N. Intuitively, the V(N)
and V(*N) parts of WN A are completely independent of each other, except for the inclusion map
j at the zeroth level. The standard part principles introduced later in this paper will provide links
between types N — N and (N — N) — N in the V(N) part and types *N and *N — *N in the
V(*N) part.

W N A has two natural models, the “internal model” (V(N),*V(N), j) which contains the nat-
ural model *V(N) of NPRA“, and the “full model” (V(N),V(*N), ) which contains the full
superstructure V(*N) over *N. In both models, j is the inclusion map from N into *N. The full
natural model (V(N), V(*N), j) of WN A does not satisfy the axioms NPRAY. In particular, the
star of quantifier-free induction fails in this model, because the characteristic function of S exists
as an object of type *N — *N.

5 Bounded Minima and Overspill

In this section we prove some useful consequences of the W N A axioms.



Given a formula A(z,...) of L(WNA), the bounded minimum operator is defined by
u=(pr <y)Az,...) o u<yA Ve <u)-Alz,...)AN[Alu,...)Vu=1y]],

where v is a new variable. By this we mean that the expression to the left of the «» symbol is an
abbreviation for the formula to the right of the «» symbol. In particular, if z does not occur in A,
(nz < 1) A(...) is the (inverted) characteristic function of A, which has the value 0 when A is true
and the value 1 when A is false.

In PRA, the bounded minimum operator is defined similarly.

Lemma 5.1 Let A(m, i) be a quantifier-free formula of L(PRA) and let a(p, ) be the primitive
recursive function such that in PRA, a(p, ) = (um < p) A(m, 7). Then

(i) WNAE *a(y, 2) = (ux < y) *A(z, 2).

(i) In WN A, there is a quantifier-free formula B(p,...) such that

(Vm < p) A(m,...) < B(p,...), (Ve < y)*A(z,...) < *B(y,...).

Similarly for (3z < y)*A(z,...), and u = (px < y) *A(z,...).

Proof. (i) By the axioms of WN A, the defining rule for *« is the star of the defining rule for

(ii) Apply (i) and observe that in WN A,

(Vo < y)*A(z,...) —y = (px < y) "A(z,...).

Let us write V°z A(z, . ..) for Va[-S(z) — A(z,...)] and 3%z A(x, . ..) for Tz [-S(z)AA(x, .. .)].

Lemma 5.2 (Overspill) Let A(x,...) be an internal quantifier-free formula. In WNA,
VizA(z,...) — 3¥z A(z,...), and ¥z A(z,...) — I%2A(x,...).

Proof. Work in WNA. If A(H,...) we may take x = H. Assume VSzA(x,...) and ~A(H,...).
By Lemma 5.1 (ii) we may take u = (uz < H)-A(z,...). Then -~S(u). Let + = u — 1. We have
x < u,s0 A(z,...). Since S is closed under the successor function, =S(z). m

We now give a consequence of W N A in the language of PRA which is similar to Proposition
4.3 in [A] for NPRAY. ¥;-collection in L(PRA) is the scheme

(Ym < p)an B(m,n,7) — Fk(Vm < p)(In < k)B(m,n,7)
where B is a formula of L(PRA) of the form ¢ C, C' quantifier-free.
Proposition 5.3 X;-collection in L(PRA) is provable in W N A.

Proof. We work in WNA. By pairing existential quantifiers, we may assume that B(m,n,T)
is quantifier-free. Assume (Vm < p)3n B(m,n, 7). Let *B be the formula obtained by starring
each function symbol in B and replacing variables of type N by variables of type *IV.

By the Lifting Axiom and the axiom that S is an initial segment,

(Vo < p)F%y *B(z,y,i(F)).



Then
Vew (Ve < p)(By < w) "Bz, y, j(7)).

By Lemma 5.1 and Overspill,
Fw (Ve < p)(3Fy < w) *Blz,y, j (7).

By the Lifting Axiom again,
Jk(Ym < p)(3In < k)B(m,n,T).

6 Standard Parts

This section introduces a standard part notion which formalizes a construction commonly used in
nonstandard analysis, and provides a link between the type N — N and the type *IV.

In type N let (n) be the power of the k-th prime in n, and in type *N let (x), be the power of
the y-th prime in z. The function (n, k) — (n)x is primitive recursive, and its star is the function
(2,9) - (2)y.

Hereafter, when it is clear from the context, we will write t instead of j(t) in formulas of
L(WNA).

Intuitively, we identify j(¢) with ¢, but officially, they are different because ¢ has type N while
j(t) has type *N. This will make formulas easier to read. When a term ¢ of type N appears in a
place of type * N, it really is j(¢).

In the theory WN A, we say that x is near-standard, in symbols ns(z), if V92 S((z).). Note
that this is equivalent to VnS((z),). We employ the usual convention for relativized quantifiers,
so that V"*z B means Vz[ns(x) — B| and 3"°z B means Jz[ns(x) A B]. We write

z =y if ns(z) AV 2 (2). = (y)..

This is equivalent to ns(x) AVn (z), = (y),. We write f = °z, and say f is the standard part
of z and x is a lifting of f, if
ns(x) AVnf(n) = (z)n.

Note that the operation x +— °z goes from type *N to type N — N. In nonstandard anal-
ysis, this often allows one to obtain results about functions of type N — N by reasoning about
hyperintegers of type *N.

Lemma 6.1 In WNA, suppose that x is near-standard. Then
(i) If x = y then ns(y) and y =~ x.
() By < H)x =~ y.

Proof. (i) Suppose z = y. If S(z) then S((z).) and (y), = ()2, so S((y).). Therefore ns(y),

and y = x follows trivially.

(ii) Let B be the primitive recursive function S(m,n) = ;< pgn)i. By Lifting and defining
rules for 3 and *83, VaVuVz[z < u — (z), = (*B(u,x)).]. Therefore V°uV3z (z), = (*B(u,z)),
and hence V®uz =~ *B(u,z). We have VYww™ < H, and by Overspill, there exists w with

-S(w) Aw® < H. Since z is near-standard, Vo u[u < w A (Vz < u) s < w]. By Overspill,

F®ulu < w A (Vz < u) p®= < w).



Let y = *B(u,x). Then x ~ y. By internal induction,
Vu[(Vz < u) p®= < w — *Bu,z) < w"].
Theny <w*" <w“< H. =

We now state the Standard Part Principle, which says that every near-standard x has a standard
part and every f has a lifting.

Standard Part Principle (STP):
V@xAf f=°c AVf3x f = .
The following corollary is an easy consequence of Lemma 6.1.
Corollary 6.2 In WNA, STP is equivalent to
(V¥x < H)Af f =z AVf(Fx < H) f =“x.

The Weak Koenig Lemma is the statement that every infinite binary tree has an infinite
branch. The work in reverse mathematics shows that many classical mathematical statements are
equivalent to the Weak Koenig Lemma.

Theorem 6.3 The Weak Koenig Lemma is provable in WNA + STP.
Proof. Work in WNA + STP. Let B(n) be the formula
(Vm < n)[(n)m <3ANVE<m)[(n)r =0— (n)y =0]].
B(n) says that n codes a finite sequence of 1’s and 2’s. Write m < n if
B(m)AB(n)Am <nA Mk <m)[(m)g>0— (m)g=(n)l

This says the sequence coded by m is an initial segment of the sequence coded by n. Suppose that
{n: f(n) = 0} codes an infinite binary tree T, that is,

Yman[m <n A f(n) =0 AVn[f(n) =0— B(n) AVm[m <n — f(m) = 0]].

The formulas B(n) and m <1 n are PRA-equivalent to quantifier-free formulas, which have stars
*B(y) and z*<y. By STP, f has a lifting . By Lemma 5.1 and Overspill,

FI*Y["By) A (V2 <y)lz"<y — (v). = 0]].

Then ns(y), and by the STP there exists g = °y. It follows that g codes an infinite branch of T'.
]

The next proposition gives a necessary and sufficient condition for STP in WNA + NPRAY.
Let ¢ be a variable of type *N — *N, and write f C ¢ for Vnf(n) = ¢(n).

Proposition 6.4 In WNA + NPRA“, STP is equivalent to

Vfdef C ¢ AVIf[VIx S(d(x)) — f C o).



Proof. Work in WNA + NPRA%. Call the displayed sentence ST P’.

Assume STP. Take any f. By STP, f has a lifting w. Since (u,y) — (u), is primitive
recursive, 3¢Vy¢p(y) = (v),. Then Vn f(n) = (u), = ¢(n), so f C ¢.

Now take any ¢ and assume that ¥z S(é(z)). Using the star of the primitive recursion scheme
in NPRAY, there exists ¢ such that Vz(Vy < z) ¢(y) = (¢(x))y. Let u = ¢(H). We then have
(Vy < H) ¢(y) = (u)y, so ¥y ¢(y) = (u),. It follows that u is near-standard, and by STP there
exists f with f = °u and hence f C ¢.

Now assume ST P’. Take any f. By STP’ there exist ¢ with f C ¢. As before there exists
1 such that Vz(Vy < z) ¢(y) = (¢(2))y. Let u = ¢(H). Then Yn (u), = ¢(n) = f(n), so uis a
lifting of f.

Now let u be near-standard. Since (u,y) — (u), is primitive recursive, 3¢Vy ¢(y) = (u),. Then
vz S(¢(x)), so by STP’ there exists f with f C ¢. Then Vn f(n) = (u), = ¢(n), so f =°u. =

7 Liftings of Formulas

In this section we will define some hierarchies of formulas with variables of type N and N — N,
and corresponding hierarchies of formulas with variables of type */N. We will then define the lifting
of a formula and show that liftings preserve the hierarchy levels and truth values of formulas.

In the following we restrict ourselves to formulas of L(PRA“) with variables of types N and
N — N. We now introduce a restricted class of terms, the basic terms, which behave well with
respect to liftings.

By a basic term over N we mean a term of the form a(uq,...,u) where « is a primitive
recursive function of k variables and each w; is either a variable n of type IV or an expression of
the form f(n). These basic terms capture all primitive recursive functionals (i, f) in sense that
there is a basic term ¢(1, f,n) over N which gives the nth value in the computation of 3(r, f) for
each input m, f, n.

Let QF be the set of Boolean combinations of equations between basic terms over V.

In A € QF, then (Ym < n)A, (Im < n)A, and u = (pr < y) A are PRAY-equivalent to
formulas in QF.

The set II} = 3} of arithmetical formulas is the set of all formulas which are built from
formulas in QF using first order quantifiers Vm, 3m and propositional connectives.

For each natural number k, H,l€ 41 is the set of formulas of the form VfA where A € 2,16, and
341 1s the set of formulas of the form 3fA where A € II;..

We observe that up to PRA“-equivalence, I, C II; ., N X}, II; is closed under finite con-
junction and disjunction, and that negations of sentences in H,lC belong to ¥} (and vice versa).

In the following we restrict our attention to formulas with variables of type *N. We build a
hierarchy of formulas of this kind.

By a basic term over *N we mean a term of the form *a(ug, ..., u;) where « is a primitive
recursive function of k variables and each wu; is either a variable of type *IN or the constant symbol
H. NQF is the set of finite Boolean combinations of equations s = ¢ and formulas S(¢) where s, ¢
are basic terms over *N. Note that the constant symbol H and the predicate symbol S are allowed
in formulas of NQF', but the symbol j is not allowed.

The internal quantifier-free formulas are just the formulas B € NQF in which the symbol S
does not occur.

Let NIIj = NXJ be the set of formulas which are built from formulas in NQF using the
relativized quantifiers V¥, 3% and propositional connectives. Note that the relations ns(x) and



x ~ y are definable by NII§ formulas.

For each natural number k, NTI? 41 1s the set of formulas of the form V"*z A where A € N Z%.
NX{,, is the set of formulas of the form 3"z A where A € NIIJ.

Up to WN A-equivalence, NI C NII} ,, N\NX9_ |, NII} is closed under finite conjunction and
disjunction, and negations of sentences in NII{ belong to N9 (and vice versa).

We now define the lifting mapping on formulas, which sends II} to NII9.

Definition 7.1 Let A(?ﬁ,f)l}@ a formula in 11}, where m,f contain all the variables of A, both
free and bound. The lifting A(Z, %) is defined as follows, where Z and & are tuples of variables of

type *N of the same length as m, f.
e Replace each primitive recursive function symbol in A by its star.

e Replace each m; by z;.

Replace each f;(my) by (2;), -
e Replace each quantifier Vm; by ¥z, and similarly for 3.

e Replace each quantifier ¥ f; by V™*x;, and similarly for 3.
Lemma 7.2 (Zeroth Order Lifting) For each formula A(mi, j?) € I}, we have A(Z, %) € NIIJ, and
WNAF°Z = f — [A(m, f) — A(m, T)].
Moreover, if A€ QF then A(Z,%) is an internal quantifier-free formula.

Proof. It is clear from the definition that A(Z,Z) € NIIY, and if A € QF then A(Z, %) is an
internal quantifier-free formula. In the case that A is an equation between basic terms, the lemma,
follows from the Lifting Axiom. The general case is then proved by induction on the complexity
of A, using the axiom that j maps N onto S. m

=

Lemma 7.3 (First Order Lifting) For each formula A(7, f) € I1i, we have A(Z, %) € NIIY and

WNA+ STPF°% = f— [A(m, f) « A(m, T)].
Proof. Zeroth Order Lifting gives the result for £ = 0. The general case follows by induction
on k, using STP. m

8 Choice Principles in L(PRA")

In this section we state two choice principles in the language L(PRA“), and show that for
quantifier-free formulas they are consequences of the Standard Part Principle. Given a function g
of type N — N, let g™ be the function g(™ (n) = g(23").

In each principle, I is a class of formulas with variables of types N and N — N, and A(m,n,...)
denotes an arbitrary formula in IT.

(T',0)-choice Vm3n A(m,n,...) — IgVm A(m, g(m),...).
(T, 1)-choice Vm3f A(m, f,...) — Ig¥m A(m, g™, ...).

10



When T is the set of all quantifier-free formulas of PRA“, [K] calls these schemes QF — AC%°
and QF — AC%! respectively. A related principle is

I'-comprehension 3fVm f(m) = (uz < 1) A(m,...).

[I§-comprehension is called Arithmetical Comprehension. The following well-known fact
is proved by pairing existential quantifiers.

Proposition 8.1 In PRA%:
(119, 0)-choice, (I13,0)-choice, and Arithmetical Comprehension are equivalent.
,1)-choice is equivalent to ,1)-choice, and implies ,0)-choice;
119, 1)-choice i wal 0.1, 1)-choi d implies (3, |,0)-choi
(I}, 1)-choice is equivalent to (X}, |, 1)-choice and implies (3}, 1,0)-choice ;
(Z%41,0)-choice implies I1} -comprehension.

In PRA“, one can define a subset of N to be a function f such that ¥n f(n) < 1, and define
n € fas f(n) = 0. With these definitions, (II}, 1)-choice implies II}-choice and II}-comprehension
in the sense of second order number theory (see [S]).
Lemma 8.2 For each internal quantifier-free formula A(z,y, 2),

WNAF Y23 A(x,y, 2) — (3" < )Yz Az, (y)s, 2).

Proof. Work in WNA. Assume that V9 23%yA(z,y, 7). By Lemma 5.1, there is a primitive
recursive function a such that *a(u, Z,w) = (v < w) A(u, v, Z). By internal induction there exists
w such that w* < H A =S(w). Then ¥*u S(*a(u, Z,w)) and

Vr(3y < H)(Vu < z) () = *a(u, 2, w).
By internal induction, there exists an x such that -.S(x) and a y < H such that
Vu < z) (Y)u = "a(u, Z,w).
It follows that y is near-standard, and by the definition of «, (Vu < x) A(u, (¥)y, Z). Then
(F"y < H)Vz Az, (9)a, 7).
]

Theorem 8.3 (QF,0)-choice is provable in WNA + STP.

Proof. We work in WNA + STP. Let A(m,n,7, Fz) € QF and assume Ym3n A(m,n, 7, f_i)
Then A is an internal quantifier-free formula. By ST P, h has a lifting Z. By First Order Lifting,

A(m,n, T, i_i) — A(m,n,7, 7).

Then VSu3°v A(u,v, 7, 7). By Lemma 8.2, there is a near-standard y such that ¥ u A(u, (y)u, 7, 2).
By STP, 3gg = °y. Then by First Order Lifting, Ym A(m, g(m),7, h). m

Theorem 8.4 (QF,1)-choice is provable in WNA + STP.
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Proof. We use (QF,0)-choice. Let A(m, f,7, ﬁ) € QF. Assume for simplicity that the tuple 7
is a single variable r. Suppose that Ym3f A(m, f,r, h). By the definition of QF formulas, f occurs
in A only in terms of the form f(m) and f(r). Then

A(m, f,r,h) < B(m, f(m), f(r),r,h)

where B € QF. Hence Ym3k B(m, (k)m, (k),,r, E) By (QF, 0)-choice,

—

3fym B(m, (f(m))m, (f(m))r,r, h).

Applying (QF,0)-choice to the formula Vp3qq = (f((p)o))p),, we have Ig¥pg(p) = (f((P)o)) ). >
and since (2M3")o = m and (2M3"); = n,

3gvm¥n g™ (n) = g(273") = (f(m))s.-

Then Vm B(m, g™ (m), g™ (r),r, k), and Ym A(m, g™ v 1). =

9 Saturation Principles

We state two saturation principles which formalize methods commonly used in nonstandard anal-
ysis. In each principle, I is a class of formulas with variables of type *NN, and A(zx,y, @) denotes
an arbitrary formula in the class T.

(T',0)-saturation V"4 [VSx3%yA(z,y, @) — IyVr A(x, (y)s, ©)].
(T',1)-saturation V"4 [VSx3"y A(z,y, @) — YW zA(z, (y)s, @)]-

Note that (I',1)-saturation implies (I, 0)-saturation. (NII,1)-saturation is weaker than the
*II-saturation principle in the paper [HKK]. *IIj-saturation is the same as (NIIY, 1)-saturation
except that the quantifiers V™®, 3% are replaced by V, 3.

In the rest of this section we prove some consequences of (NQF,0)-saturation.

Proposition 9.1 Let us write w = st(v) for
S(v) - w=vA-Sw)—w=0.

In WNA, (NQF,0)-saturation implies that

Va3 yvSz [(y). = st((2).)].
In WNA+ STP, (NQF,0)-saturation implies that

Va3 ¥m [f(m) = st((z)m)].

Proof. Work in WNA. Note that w = st(v) stands for a formula in NQF. Take any z. We

have V°23%ww = st((x),). Then by (NQF,0)-saturation, IyV°z (y). = st((x).), and it follows

that ns(y). The second assertion follows by taking f =°y. m

Lemma 9.2 WNAF (Vv > 1)(Fw < v2*H) (Vo < v) (w), = (pu < H) [(y)ae3« = 0].
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Proof. Use internal induction on v. The result is clear for v = 2. Let a(z) = (pu <
H)[(y)223« = 0]. Assume the result holds for v, that is, w < v?*# A (Vo < v) (w), = ().

Let z = w % p2*). We have p, < v2 and alv) < H, s0 z < 0?7 5?1 < (v 4 1)20HDH and
(Vx < v+1)(2), = a(x). This proves the result for v + 1 and completes the induction. =

Lemma 9.3 In WNA, (NQF,0)-saturation implies that for every formula A(z,@) € NIIY,
Vs (Jy < H)V92 (y)e = (pz < 1) A(z, @).

Proof. Work in WN A and assume (NQF,0)-saturation. Let ® be the set of formulas A(z, @)
such that V4@ (3y < H)V 'z (y), = (uz < 1)A(z,@). We prove that NII} C & by induction on
quantifier rank. Suppose first that A € NQF. Let C(z,w, @) be the formula w = (uz < 1) A(z, @).
Then C is a propositional combination of A, w = 0, and w = 1, so C € NQF. We clearly have
Vi e 35w C(z, w, ). By (NQF,0)-saturation and Lemma 6.1 (ii),

VI (Jy < H)st Clz, (y)z, ),

so A€ ®.

It is clear that the set of formulas ® is closed under propositional connectives. Suppose all
formulas of NTIJ of quantifier rank at most n belong to ®, and A(x, ) = 3%wB(z,w, @) where
B(x,w,@) € NI has quantifier rank at most n. There is a formula D(v,%) with the same
quantifier rank as B such that in WNA, D(2*3%,4) < B(x,w, ). Then D € ®, so

VG (3t < H)Yv (t), = (uz < 1) D(v, ).

Then
VS (3t < H)V V5w (H)geze = (uz < 1) B(x, w, ).

Assume that ns(#) and take ¢ as in the above formula. By Lemma 9.2 there exists s such that
(Y < H) (8)a = (0 < H)[(£)3+30 = 0],
It is trivial that VS 23%yy = (uz < 1) S((s),). By (NQF,0)-saturation and Lemma 6.1,
By < H¥S2 (). = (uz < 1) S((s)2).
Thus whenever S(x), (y), = 0 iff S((s),) iff 3%w [(t)2e3w = 0] iff I%w B(z,w, @). It follows that
Vi (3y < W92 (y)e = (uz < 1)3%0 Bz, w, @),
soAcd m
Theorem 9.4 In WNA, (NQF,0)-saturation implies (NTIJ,0)-saturation.

Proof. We continue to work in WNA and assume (NQF, 0)-saturation and ns(@). Assume
that A(x,y, @) € NIIJ and V923°y A(x,y, @). There is a formula B(v, ) € NII§ with B(2%3Y, )
W N A-equivalent to A(z,y, ). Applying Lemma 9.3 to B, we obtain w such that

V3 (w), = (uz < 1) B(v, @),
S0
VIS y (w)gezs = (nz < 1) A(z, y, ).
By Lemma 9.2 there exists w’ such that

(Vo < H) (w')e = (py < H) [(w)2e30 = 0].

Then V92 A(z, (w'),, i), and w is near-standard because V°x3%y A(z,y, 7). =
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Theorem 9.5 In WNA, (NQF,0)-saturation implies that for every formula A(%@) € NIIY, there
a formula B € NQF such that V"4 [A(@) « V"*23%y B(z,y, @)].

Proof. Work in WN A+ (NQF,0)-saturation. Suppose A € NIIJ. Then there is a least k such
that A is equivalent to a formula V**z C' where C is a prenex formula in NTIJ of quantifier rank k.
If C has the form V°y D, the quantifier V5y can be absorbed into the quantifier V**z, contradicting
the assumption that & is minimal. Suppose C has the form 3%y V2 D(z,y, 2, %) and assume that
ns(i@). Then —C is equivalent to V°y 3%z = D(z,y, z,%). By (NIIY, 0)-saturation, ~C' is equivalent
to 329y =D(x,y, (2),,@). Then A is equivalent to ¥V**2vV"*23%y D(x,y, (2),, @). By combining
the quantifiers V**zV"*z, we contradict the assumption that & is minimal. Therefore C' must have
the form 3%y B where B € NQF, as required. m

10 Saturation and Choice

In this section we prove results showing that in W N A+ ST P, saturation principles with quantifiers
of type *N imply the corresponding choice principles with quantifiers of type N — N.

Theorem 10.1 In WNA + STP, (NQF,0)-saturation implies Arithmetical Comprehension.

Proof. Work in WNA + STP and assume (NQF,0)-saturation. By Proposition 8.1, Arith-
metical Comprehension is equivalent to (IT§, 0)-choice. By Theorem 9.4, (NTIY, 0)-saturation holds.
Let A(m,n,7, H) be an arithmetical formula such that Ym3n A(m,n, 7, ﬁ) By STP, h has a lifting
@. By First Order Lifting, we have V°23%y A(x, y, 7, i), and A € NIIJ. By (NIIJ,0)-saturation,
there exists y such that V9z[S((y).) A A(z, ()., 7, @)]. Then y is near-standard, and by ST P there
exists g = °y. By First Order Lifting again, YmA(m, g(m),7,h). m

We remark that the axioms of Peano Arithmetic are consequences of Arithmetical Comprehen-
sion, so (NQF,0)-saturation implies Peano Arithmetic.

Theorem 10.2 In WNA+STP, (NII9,0)-saturation implies (I1},,0)-choice, and (N9, 0)-saturation
implies (34, 0)-choice.

Proof. Work in WN A+STP. For the II}, case, assume (NII?, 0)-saturation. Let A(m,n, 7, h) €

II} and suppose that Ym3n A(m,n, 7, ﬁ) Now argue as in the proof of Theorem 10.1. The X}, case
is similar. m

Theorem 10.3 In WNA + STP, (NTI}, 1)-saturation implies (X;,,1)-choice.

Proof. Work in WNA + STP and assume (NII, 1)-saturation. It suffices to prove (I}, 1)-
choice. Let A(m, f, T, E) € 11}, and suppose that Ym3f A(m, f, 7, i_i) By STP, h has a lifting 4. By
First Order Lifting, VS23"%y A(x,y,7, @) and A € NII. We may rewrite this as VS23"%y [ns(y) A
A(z,y,7,@)] and note that ns(y) A A € NII{. By (NII, 1)-saturation, there exists y such that

vz [ns((y)e) A Az, (y)a, 7 @)

Applying (NTIY, 0)-saturation to the formula V9z3%2 2 = (%) (@)0) ()2 > We get a near-standard z
such that V92 (2); = ((¥)(2),) (2),- Then

VIV w (2)gegw = ()2 )w-
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By STP, there exists g = °z. Then for each m,n, g™ (n) = g(2™3") = (2)amzn = (¥)m)n-
Therefore g™ = °((y),,) for each m. By First Order Lifting, we get the desired conclusion
VYm A(m, g™ 7, @). m

The literature in reverse mathematics (see [S]) shows that IT}-comprehension is strong enough
for almost all of classical mathematics. Let us work in W N A+ ST P and aim for II}-comprehension.
By Theorem 10.3, (NTI?,1)-saturation implies I1}-comprehension. By Theorem 9.5, (NIIY,1)-
saturation is equivalent to (T, 1)-saturation where I is the set of formulas of the form V**v3%w B
with B € NQF, so (T, 1)-saturation also implies IT}-comprehension. By Theorem 10.3 at the next
level, (NTI9, 1)-saturation implies I13-comprehension, which is stronger than the methods used in
most of classical mathematics.

11 Second Order Standard Parts

In this section we introduce second order standard parts, which provide a link between the second
level of V(N) (type (N — N) — N), and the first level of V(*N) (type *N — *N). We will use
F,@G,... for variables of type (N — N) — N, and ¢, %, ... for variables of type *N — *N.

¢ is called near-standard, in symbols ns(¢), if

vz S(¢(x) AVaVylz =y — ¢(z) = o(y)]-
We write
o =) if ns(g) AV p(x) = ().
We write G = °¢, and say that G is the standard part of ¢ and that ¢ is a lifting of G, if
ns(¢) AV aVf [°x = f — o(x) = G(f)].

Note that the operation ¢ — °¢ goes from type *N — *N to type (N — N) — N. The
following lemma is straightforward.

Lemma 11.1 If ns(¢) and ¢ = then ns(v) and ¢ = ¢.

We now state the Second Order Standard Part Principle, which says that every near-standard
¢ has a standard part and every F' has a lifting.

Second Order Standard Part Principle:
VYPIF F =°p AVFIPF = °¢.

By WNA + STP(2) we mean the theory WN A plus both the first and second order standard
part principles.

We now take a brief look at the consequences of ST P(2) in WN A+ NPRA®. Roughly speaking,
in WNA + NPRA“, the second order standard part principle imposes restrictions of the set of
functionals which are reminiscent of constructive analysis. Besides the axioms of W N A, the only
axiom of NPRAY that will be used in this section is the star of quantifier-free induction.

A functional G is continuous if it is continuous in the Baire topology, that is,

Vf3nVh[[(Vm < n) hm) = f(m)] — G(h) = G(f)).
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Proposition 11.2 WNA+ NPRA“ + STP(2) - VG G is continuous.
Proof. Work in WNA + NPRA“ + STP(2). Suppose G is not continuous at f. Then
Vn3h[[(Ym < n)h(m) = f(m)] AG(f) # G(h)].
By ST P(2) there are liftings ¢ of G and z of f. By Lemma 6.1 and STP,

Vn(Jy < H) [[(Ym < n) (y)m = (2)m] A ¢(z) # o(y)].

By the star of QF induction,

Fw(Fy < H) [[(Vu <w) (2)u = (y)u] A d(z) # 6(y)]-
But then y =~ x, contradicting the assumption that ¢ is near-standard. m

This result is closely related to Proposition 5.2 in [A], which says that in NPRAY“, every
function f € R — R is continuous.
The sentence

(3%) = 3GVSIG(f) = 0 = 3nf(n) = 0]

played a central role in the paper [K], where many statements are shown to be equivalent to (32)
in RCAY. Similar sentences are prominent in earlier papers, such as Feferman [F]. It is well-known
that

PRA® I (3*) — 3G G is not continouus.

Corollary 11.3 WNA + NPRAY + STP(2) - =(3?).

12 Functional Choice and (3?)

In this section we obtain connections between W N A and two statements which play a central role
in the paper of Kohlenbach [K], the statement (32) and the functional choice principle QF — AC1°.

In [K], Kohlenbach proposed a base theory RC A§ for higher order reverse mathematics which
is somewhat stronger than PRAY, and is a conservative extension of the second order base theory
RCAg. Its main axioms are the axioms of PRA“ and the scheme

QF —AC™:  YfInA(f.n,...) — 3IGYf A(f.G(f),...)

where A(f,n,...) is quantifier-free.

In [K], the formula A in the QF — ACY? scheme is allowed to be an arbitrary quantifier-free
formula in the language L(PRA“). Here we will make the additional restriction that A(f,n,...) is
in the class QF as defined in Section 7, that is, A(f,n,...) is a Boolean combination of equations
and inequalities between basic terms. These formulas only have variables of type N and N — N,
and do not have functional variables.

We show now that QF — ACY0 restricted in this way follows from WNA plus the standard
part principles.

Theorem 12.1 WNA+ STP(2) - QF — AC°.
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_ Proof. Work in WNA + STP(2). Assume Vf3n A(f,n,m, h). By Zeroth Order Lifting,
A(x,u,v,Z) is an internal quantifier-free formula, and

°x = fA°Z=h— [A(f,n,m, k) — A(z,n,m, 7).

By Lemma 5.1 there is a primitive recursive function a such that

oz, w,7,2) = (pu < w) A(z,u, 0, 2).
By ST P, there exists 2" such that h=c°z By the Lambda Abstraction axiom,
AoV ¢(x) = *a(x, H,m, 2).
Then o
vz [S(6(x)) A Az, d(x), m, Z)].

It follows that ¢ is near-standard. By STP(2), there exists G such that G = °¢. Therefore
VfA(f,G(f) i h). =

One of the advantages of WNA over NPRA is that one can add hypotheses which produce

external functions and still keep the standard part principles. The simplest hypothesis of this kind
is the following statement, which says that the characteristic function of S exists:

(ls exists) : VY o(y) = (uz < 1) S(y).

It is clear that
NPRA® I+ =(1g exists)

because by the star of quantifier-free induction, ¥y ¢(y) = 0 implies 3y [-S(y) A ¢(y) = 0].
However, (1g exists) is true in the full natural model (V(N), V(*N), j) of WNA. We now connect
this principle with the statement (32).

Theorem 12.2 WNA + STP(2) F (15 exists) — (3?).

Proof. Work in WN A+ST P(2). Let a be the primitive recursive function such that *a(z, w) =
(pu < w) (z), = 0. Let ¢ be the function 1g, so that Yy ¢(y) = (uz < 1) S(y). Then there exists
¥ such that Va i (z) = ¢(*a(x, H)). Observe that

ooz, H)) = 0 « F%u (x), =0,

so Y(z) = 0 « I%u (x), = 0. Moreover, Vaih(x) < 2. We show that 1 is near-standard.

Suppose ns(x) and z ~ y. We always have S(¢(z)) since ¢(z) < 2. If ¢(x) = 0 then there
exists u such that S(u) and (), = 0, so (y), = 0 and hence t(y) = 0. This shows that ns(¢).
By STP(2) there exists G such that G = °¢. Consider any f. By STP, f has a lifting . Then
G(f) = 0iff Y(z) = 0 iff 3%u (z), = 0 iff Inf(n) =0, and thus (%) holds. m

Let us now go back to Section 7 and redefine the set QF of formulas by allowing basic terms of
the form G;(fi) in addition to the previous basic terms, and redefining the hierarchy I}, by starting
with the new QF. Also redefine the set NQF and the hierarchy NII{ by allowing additional basic
terms of the form ¢;(xr). When ST P(2) is assumed, the lifting lemmas from Section 7 and the
results of Section 9 can be extended to the larger classes of formulas just defined. The hierarchies
Hi and N 1'[,1C at the next level can now be defined in the natural way. One can then obtain the
following result, with a proof similar to the proofs in Section 9.

Theorem 12.3 In WNA + STP(2), (NII},0)-saturation implies (112,0)-choice, and (NII},1)-
saturation implies (113, 1)-choice.
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13 Conclusion

We have proposed weak nonstandard analysis, W N A, as a base theory for reverse mathematics in
nonstandard analysis. In WNA + ST P, one can prove:

The Weak Koenig Lemma,

(QF,0)-choice and (QF, 1)-choice,

(NQF, 0)-saturation implies (I}, 0)-choice.

(NTIY, i)-saturation implies (II},4)-choice, i = 0, 1.

In WNA+ STP(2) one can prove:
QF — AC'Y,
NPRA¥® implies VG G is continuous,
1 exists implies (3?),
(NTI}, i)-saturation implies (I, 7)-choice, i = 0, 1.

We envision the use of these results to calibrate the strength of particular theorems proved using
nonstandard analysis. At the higher levels, this could give a way to show that a theorem cannot
be proved with methods commonly used in classical mathematics.

Look again at the natural models of WN A discussed at the end of Section 4. Let *V(N) be an
N;-saturated elementary extension of V(N) in the model-theoretic sense, and consider the internal
natural model (V(N),*V(N), j) and the full natural model (V(N), V(*N), j). Both of these models
satisfy the axioms of WN A, the STP, the statement (3?), and (NII}, 1)-saturation. In view of
Corollary 11.3, in the internal natural model the axioms of NPRA“ hold and ST P(2) fails, while
in the full natural model ST P(2) holds and the axioms of NPRA¥ fail.
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