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Abstract. Every complete first order theory has a corresponding complete theory in
continuous logic, called the randomization theory. It has two sorts, a sort for random
elements of models of the first order theory, and a sort for events. In this paper we
establish connections between properties of countable models of a first order theory and
corresponding properties of separable models of the randomization theory. We show
that the randomization theory has a prime model if and only if the first order theory
has a prime model. And the randomization theory has the same number of separable
homogeneous models as the first order theory has countable homogeneous models. We
also show that when T has at most countably many countable models, each separable
model of TR is uniquely characterized by a probability density function on the set of
isomorphism types of countable models of T . This yields an analogue for randomizations
of the results of Baldwin and Lachlan on countable models of ω1-categorical first order
theories.

1. Introduction

A randomization of a first order structure M, as introduced by Keisler [Kei2] and
formalized as a metric structure by Ben Yaacov and Keisler [BK], is a new structureMR

with two sorts, a sort for random elements of M , and a sort for events in an underlying
probability space. Given a complete first order theory T , the theory TR of randomiza-
tions of models of T forms a complete theory in continuous logic, which is called the
randomization theory of T . One would expect that a first order theory and its random-
ization would be model theoretically similar. We continue the tradition in [BK] and [Ben]
of examining which properties of a theory are preserved in its randomization. In partic-
ular, [BK] showed that ω-categoricity, having a countable or separable saturated model,
ω-stability, and stability are preserved, and Ben Yaacov [Ben] showed that dependence
is preserved.

This paper owes much to the paper Vaught [Va], “Denumerable Models of Complete
Theories”. We will cite [Va] for results on first order theories that were originally pub-
lished there. The reader may also consult standard model theory texts, such as Section
2.3 in [CK].

In this paper we show that TR has a prime model if and only if T has a prime model.
TR never has a prime model that is minimal, but TR has a prime model that is minimal
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over its events (see Definition 9.6) if and only if T has a prime model that is minimal.
We show that the number of separable homogeneous models of TR is equal to the num-
ber of countable homogeneous models of T . We also show that every countable model
of T is homogeneous if and only if every separable model of TR is homogeneous over
its events (see Definition 9.1). And unless T is ω-categorical, TR has continuum many
non-isomorphic separable models that are homogeneous over events but are not homo-
geneous. In the case where T has at most countably many countable models (up to
isomorphism), we show that the separable models of TR are exactly the completions of
product randomizations (see Definition 7.1) of the countable models of T . This uniquely
characterizes each separable model of TR by a probability density function on the set of
isomorphism types of countable models of T .

We were motivated by the theorem of Baldwin and Lachlan [BL] which shows that ev-
ery ω1-categorical theory in a countable language has countably many countable models,
and all countable models are homogeneous. Moreover, these countable models are char-
acterized by the dimension of the strongly minimal set, that takes values in N ∪ {∞}.
Our results yield a version of the Baldwin-Lachlan theorem for randomizations of ω1-
categorical theories. If T is ω1-categorical, then every separable model N of TR is char-
acterized by a countable sequence of reals s0, s1, . . . , sω ∈ [0, 1] such that

∑
k≤ω sk = 1,

and is homogeneous over events. The model N should be interpreted as the result of
sampling from the k-dimensional model of T with probability sk for each k ≤ ω.

This paper is organized as follows. In Section 2 we review some notions we will need
from the literature, including the key notion of the Borel randomization (M[0,1),L) of a
first order structureM. Section 3 contains results about prime models. In Sections 4 and
5 we prepare the way for our main results by examining in detail the strongly separable
models— those that are embeddable in Borel randomizations of countable models. Our
results about separable homogeneous models are in Section 6. In Section 7 we introduce
product randomizations. Section 8 contains our characterization of the separable models
of TR when T has at most countably many countable models, and Section 9 contains
results about models that are homogeneous over events, and about prime models that
are minimal over events.

This paper is the result of merging two earlier submissions to the Journal of Symbolic
Logic at the suggestion of the editors—a submission by the second author alone containing
the results of Sections 3 on prime models and 6 on separable homogeneous models, and
a submission by both authors containing the remaining results.

We thank Itai Ben Yaacov and Isaac Goldbring for valuable discussions related to this
work. We thank the anonymous referees for many helpful suggestions, including one that
led us to the last subsection about minimality over events.

2. Preliminaries

We refer to [BBHU] and [BU] for background in continuous model theory, and follow
the notation of [BK]. We assume familiarity with the basic notions about continuous
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model theory as developed in [BBHU], including the notions of a theory, structure, pre-
structure, formula, and model of a theory. In particular, the universe of a pre-structure
is a pseudo-metric space, and the universe of a structure is a complete metric space. In
continuous model theory, the analogue of a countable structure is a separable structure,
that is, a structure whose universe is a separable metric space. A pre-structure is said to
be separable if its universe is a separable pseudo-metric space. We remind the reader that
formulas take truth values in [0, 1], and are built from atomic formulas using continuous
connectives on [0, 1] and the quantifiers sup, inf.

We assume throughout that L is a finite or countable first order signature, and that
T is a complete theory for L whose models have at least two elements. As in [BK], by
a countable model of T we mean a model of T whose universe is either finite or of
cardinality ω. A tuple is a finite sequence.

2.1. The theory TR. A randomization of a model M of T is a two-sorted continuous
structure with a sort K whose elements are random elements ofM, and a sort B whose
elements are events in an underlying probability space. The probability of the event that
a first order formula holds for a tuple of random elements will be expressible by a formula
of continuous logic.

Formally, the randomization signature LR is the two-sorted continuous signature
with sorts K and B, an n-ary function symbol Jϕ(·)K of sort Kn → B for each first order
formula ϕ of L with n free variables, a [0, 1]-valued unary predicate symbol µ of sort B
for probability, and the Boolean operations >,⊥,u,t,¬ of sort B. The signature LR

also has distance predicates dB of sort B and dK of sort K. In LR, we use B,C, . . . for
variables or parameters of sort B, and B

.
= C means dB(B,C) = 0.

A pre-structure for TR will be a pair N = (K,B) where K is the part of sort K
and B is the part of sort B. We call B the event sort of N . In this paper we will
only need to consider pre-structures of a special kind— the Borel randomizations and
their (pre-)substructures. Borel randomizations are closely related to Boolean valued
ultrapowers.

We let L be the family of Borel subsets of [0, 1), and let ([0, 1),L, λ) be the usual
probability space1 where λ is the restriction of Lebesgue measure to L. The phrase
“almost all t” will mean “for all t in a set B ∈ L of λ-measure one”. Given a model M
of T , we letM[0,1) be the set of L-measurable functions with countable range from [0, 1)
into M. Intuitively, an element of M[0,1) is an experiment in which an element of M is
chosen at random. The elements of M[0,1) are called random elements of M.

Definition 2.1. The Borel randomization of M is the pre-structure (M[0,1),L) for
LR whose universe of sort K is M[0,1), whose universe of sort B is L, whose measure µ
is given by µ(B) = λ(B) for each B ∈ L, and whose Jψ(·)K functions are

Jψ(~f)K = {t ∈ [0, 1) :M |= ψ(~f(t))}.
1In [BK] the set [0, 1] is used instead of [0, 1). The set [0, 1) is more convenient here because it can

be partitioned into intervals of the form [r, s).
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(So Jψ(~f)K ∈ L for each first order formula ψ(~v) and tuple ~f in M[0,1)). Its distance
predicates are defined by

dB(B,C) = µ(B4C), dK(f ,g) = µ(Jf 6= gK),

where 4 is the symmetric difference operation.

Fact 2.2. ([BK], Theorem 2.1) There is a unique complete theory TR for LR, called
the randomization theory of T , such that for each model M of T , (M[0,1),L) is a
pre-model of TR.

It follows that for each first order sentence ϕ, if T |= ϕ then TR |= JϕK .
= >. In both

the first order and continuous settings, ≡ denotes elementary equivalence. We will use
M,H to denote models of the complete first order theory T with universes M and H,
and use N and P to denote continuous structures or pre-structures with signature LR.
By a pair in a pre-structure N = (K,B) we mean a pair (f ,B) such that f ∈ K and
B ∈ B. We sometimes abuse notation by writing (f ,B) ∈ N instead of “(f ,B) is a pair
in N ”.

We extend the notions of embedding and elementary embedding to pre-structures in
the natural way. Given pre-structures P , N , we write h : P ⊆ N if h is a mapping
from P into N which preserves the truth values of atomic formulas, and h : P ≺ N
(h is an elementary embedding) if h preserves the truth values of all formulas. If
h : P ⊆ N where h is the inclusion mapping, we write P ⊆ N and say that P is a
pre-substructure of N . If h : P ≺ N where h is the inclusion mapping, we write
P ≺ N and say that P is an elementary pre-substructure of N . If h : P ⊆ N ,
or even h : P ≺ N , h preserves distance but is not necessarily one-to-one. Note that
compositions of elementary embeddings are elementary embeddings.

Remark 2.3. It is easily seen that if H ≺M, then (H[0,1),L) ≺ (M[0,1),L).

We write h : P ∼= N if h : P ≺ N and every element of N is at distance zero from
some element of h(P). We say that P and N are isomorphic, and write P ∼= N , if
h : P ∼= N for some h.

Remark 2.4. The isomorphism relation ∼= is an equivalence relation on pre-structures.

Proof. It is clear that the relation ∼= is reflexive and transitive. To show that ∼= is
symmetric, suppose h : P ∼= N . Pick a random element k(g) of P for each random
element g of N , and an event k(B) of P for each event B of N , such that (h(k(g))

.
= g

and h(k(B))
.
= B. Then k : N ∼= P . �2.4

We say that N is a reduction of P if P ∼= N and the distance relations dK, dB for
N are metrics. For every pre-structure P , one can obtain a reduction of P by identifying
elements that are at distance zero from each other. Note that if P and N are reduced
structures, then P ∼= N has the usual meaning, that there is a bijection from P to N
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that preserves truth values of (atomic) formulas. In general, P is isomorphic to N if and
only if a reduction of P is isomorphic to a reduction of N .

We call N a completion of P if N is a structure obtained from a reduction of
P by completing the metrics. Every pre-structure P has a completion, and any two
completions of P are isomorphic. Following [BK], we say that P is pre-complete if a
reduction of P is already a structure (i.e., its metrics are already complete).

Fact 2.5. ([BK], Corollary 3.6) For each model M of T , the Borel randomization
(M[0,1),L) is pre-complete.

Fact 2.6. ([BK], Theorem 2.7) Every model or pre-complete model N = (K,B) of TR

has perfect witnesses, i.e.,
(i) for each first order formula ϕ(x, ~y) and each ~g in Kn there exists f ∈ K such that

Jϕ(f , ~g)K .
= J(∃xϕ)(~g)K;

(ii) for each B ∈ B there exist f ,g ∈ K such that B
.
= Jf = gK.

Corollary 2.7. Let N = (K,B) be a pre-complete model of TR and let f ,g ∈ K and
B ∈ B. Then there is an element h ∈ K that agrees with f on B and agrees with g on
¬B, that is, Jh = fK u B

.
= B and Jh = gK u ¬B .

= ¬B.

Proof. By Fact 2.6 (ii), there exist d, e ∈ K such that B
.
= Jd = eK. The first order

sentence

(∀u)(∀v)(∀x)(∀y)(∃z)[(x = y → z = u) ∧ (x 6= y → z = v)]

is logically valid, so we must have

J(∃z)[(d = e→ z = f) ∧ (d 6= e→ z = g)]K .
= >.

By Fact 2.6 (i) there exists h ∈ K such that

Jd = e→ h = fK .
= >, Jd 6= e→ h = gK .

= >,

so Jd = eK v Jh = fK and Jd 6= eK v Jh = gK. �2.7

Fact 2.8. (Strong quantifier elimination, [Kei2]. See Theorem 2.9 in [BK]) Every for-
mula Φ in the continuous language LR is TR-equivalent to a formula with the same free
variables and no quantifiers of sort K or B.

It follows that if P ,N are pre-models of TR and P ⊆ N , then P ≺ N . We will also
need the following result about pre-substructures of Borel randomizations.

Fact 2.9. ([Kei2]. See Proposition 2.2 in [BK]) If (K,B) ⊆ (M[0,1),L), B is atomless,
and (K,B) has perfect witnesses, then (K,B) is a pre-model of TR (so (K,B) ≺ (M[0,1),L)
by Fact 2.8).



6 URI ANDREWS AND H. JEROME KEISLER

2.2. First order types. We assume familiarity with the first order notion of a type
being realized in a structure. Sn(T ) is the set of all complete types for T in n variables.
Given a first order structure M and a tuple ~a in M , the structure M with an added
symbol for each element of ~a is denoted by M~a or (M,~a), and the complete theory
of M~a is denoted by T~a. We say that M is countable saturated if M is countable
and for each tuple ~a in M , every type in Sn(T~a) is realized in M~a. M is countable

homogeneous if M is countable, and for all n-tuples ~a,~b in M , if M~a ≡ M~b then
(∀c ∈M)(∃d ∈M)M~a,c ≡M~b,d. Note that ifM is countable saturated or homogeneous,
then so is M~a for each tuple ~a in M . We will use the following classical results for first
order theories with countable signatures.

Fact 2.10. (Morley and Vaught [MV], and Keisler and Morley [KM]; see also [CK],
Section 2.4)

(i) Every countable model of T has a countable homogeneous elementary extension.
(ii) Any two countable homogeneous models of T that realize the same types are iso-

morphic.
(iii) If M is countable homogeneous and M~a ≡M~b then M~a

∼=M~b.

Fact 2.11. (Vaught [Va]) T has a countable saturated model if and only if
⋃
n Sn(T ) is

countable.

Lω1ω is the infinitary logic with signature L, countable conjunctions and disjunctions,
negations, and the usual quantifiers ∃x,∀x (for background see [Kei1]). We say that an
Lω1ω sentence ϕ defines a countable structureM with signature L if for every countable
structure H with signature L we have H |= ϕ if and only if H ∼=M.

Fact 2.12. (Scott [Sc]) For every countable structure M, there is an Lω1ω sentence ϕ
that defines M.

2.3. Continuous types. For each n-tuple ~f of elements in a continuous pre-structure

N , the type tp(~f) of ~f in N is the function p from formulas to [0, 1] such that for each

formula Φ(~x), we have Φ(~x)p = Φ(~f)N .
By quantifier elimination (Fact 2.8), the n-types in TR of sort B do not depend on

the theory T at all, and can be identified with the n-types in the continuous theory of
atomless measure algebras (B,>,⊥,u,t,¬, µ(·)). Formally, we have

Remark 2.13. Let N ,P be models of TR and let ~B, ~C be tuples of sort B in N and P
respectively. Then tp(~B) = tp(~C) if and only if µ(τ(~B))N = µ(τ(~C))P for every Boolean
term τ .

By Fact 2.6 (ii), in a model of TR we can always replace an element of sort B by a
term Jf = gK. Thus every type in TR of sort B can be obtained from a type in TR of
sort K. The space of continuous n-types in TR with variables of sort K will be denoted

by Sn(TR). For each pre-model N = (K,B) of TR and n-tuple ~f in K, the type tp(~f) of
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~f is the unique element p ∈ Sn(TR) such that for each first order formula ϕ(~v),

(µJϕ(~f)K)N = (µJϕ(~v)K)p.

We say that a type p ∈ Sn(TR) is realized in a pre-model N if we have p = tp(~f) for

some n-tuple ~f in N . By the Compactness Theorem, every type p ∈ Sn(TR) is realized
in some separable model of TR.

A continuous pre-structure N is ω-homogeneous if for every pair of n-tuples ~f , ~g in
N which realize the same type in N , and every h in N , there exists k in N such that

(~f ,h) and (~g,k) realize the same type in N . We say that N is separable homogeneous
if N is separable and ω-homogeneous.

The paper [BK] gave a useful connection between the types of TR and the Borel
probability measures on the space of types of T . Let R(Sn(T )) be the set of Borel
probability measures on Sn(T ).

Fact 2.14. Every measure ν ∈ R(Sn(T )) is regular, that is, for each Borel set B, the
measure of B is approximated above by the measures of open supersets of B, and below
by the measures of compact subsets of B.

Proof. Sn(T ) is a compact Polish space. Every Borel probability measure on a compact
Polish space is regular (See, for example, [Bi]). �2.14

Fact 2.15. ([BK], Corollary 2.10) For every p ∈ Sn(TR) there is a unique measure
νp ∈ R(Sn(T )) such that for each formula ϕ(~v) of L,

νp({q ∈ Sn(T ) : ϕ(~v) ∈ q}) = (µJϕ(~v)K)p.

Moreover, for each measure ν ∈ R(Sn(T )) there is a unique p ∈ Sn(TR) such that ν = νp.

We will sometimes use Fact 2.15 to build types of TR.

Example 2.16. For each first order type q ∈ Sn(T ), there is a unique type q? ∈ Sn(TR)
such that νq∗ is the point mass at q, that is, νq?({q}) = 1.

Let p0, p1, . . . be a finite or countable sequence of first-order types in Sn(T ) and let
α0, α1, . . . be elements of [0, 1] such that

∑
i αi = 1. Then there is a unique type p ∈

Sn(TR) such that νp({pi}) = αi for each i. We denote this type by

p =
∑
i

αip
?
i .

Remark 2.17. Let p =
∑

i αip
?
i be as in Example 2.16, and let M be a model of T .

(i) Suppose N is a model of TR. If each type p?i is realized in N , then p is realized
in N .

(ii) If each type pi is realized inM, then the type p =
∑

i αip
?
i is realized in (M[0,1),L).

(iii) If ~f is a tuple inM[0,1), then tp(~f) =
∑

i αip
?
i where {~a0,~a1, . . .} is the range of ~f ,

and for each i, pi = tp(~ai) and αi = λ({t : ~f(t) = ~ai}).
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(iv) In particular, if~f(t) has the constant value ~a for all t ∈ [0, 1), then tp(~f) = (tp(~a))?.

Proof. (i) For each i, let ~fi realize the type p?i in N . Using Corollary 2.7 countably many
times and taking a limit, we can obtain a family of pairwise disjoint events Ai in N such

that µ(Ai) = αi for each i, and a tuple ~f in N such that for each i, ~f agrees with ~fi on Ai.

Then ~f realizes
∑

i αip
?
i in N . (ii)–(iv) follow easily from the definitions involved. �2.17

3. Prime models

In this section we show that T has a prime model if and only if its randomization
theory TR has a prime model.

Let N be a first order or continuous structure with a countable signature and let U be
the complete theory of N . By definition, N is prime if N is elementarily embeddable
in every model of U . We will call a pre-structure prime if its completion is prime. We
define an n-type p ∈ Sn(U) to be principal if p is realized in every model of U . For
continuous theories, [BBHU] gave a different definition of principal type, but the above
definition is equivalent to theirs by Theorem 13.4 in [BBHU]. We use the following results
from the literature.

Fact 3.1. (Vaught [Va]; see also [CK], Section 2.3)

(i) A model M of T is prime if and only if M is countable and every type which is
realized in M is principal.

(ii) Any two prime models of T are isomorphic.
(iii) T has a prime model if and only if every formula ϕ(~v) which is consistent with T

belongs to a principal type.
(iv) A type in Sn(T ) is principal if and only if it contains a maximal consistent for-

mula.

Fact 3.2. ([BBHU], Corollary 13.7.) Let U be a complete continuous theory with a
countable signature.

(i) A model N of U is prime if and only if N is separable and every type which is
realized in N is principal.

(ii) Any two prime models of U are isomorphic.

Lemma 3.3. Let M be a countable model of T . M is prime if and only if (M[0,1),L) is
prime.

Proof. Suppose first that M is not prime. By Fact 3.1 there is a tuple ~a in M and a
countable model H of T such that the type of ~a inM is not realized in H. One can then
check that the type of the constant function at ~a in M[0,1) is not realized in (H[0,1),L),
so by Fact 3.2, (M[0,1),L) is not prime.

Now suppose that M is prime. By Fact 3.2, it is enough to show that for every tuple
~f in M[0,1), the type p of ~f in (M[0,1),L) is realized in every model of TR. By Remark

2.17 (iii), p =
∑

i αip
?
i , where αi = λ({t : ~f(t) = ~ai}) and pi = tp(~ai) in M. Since M is
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prime, each type pi is realized in every model of T . By Fact 3.1, each type pi contains
a maximal consistent formula. It follows that p?i is realized in every model of TR. By
Remark 2.17 (i), p is realized in every model of TR. �3.3

Theorem 3.4. (i) T has a prime model if and only if TR has a prime model.
(ii) A model N of TR is prime if and only if N is isomorphic to the Borel randomization

of a prime model of T .

Proof. (i) Suppose T has a prime model M. Then (M[0,1),L) is prime by Lemma 3.3.
For the converse, suppose that T does not have a prime model, but TR does have a

prime model N . We will arrive at a contradiction, completing the proof. By Fact 3.1,
there is a formula ϕ(~v) which is consistent with T but does not belong to a principal
type. Then T |= (∃~v)ϕ(~v), so TR |= J(∃~v)ϕ(~v)K .

= >. By Fact 2.6, there is a tuple
~f in N such that N |= µ(Jϕ(~f)K) = 1. Let p = tp(~f). Then µ(Jϕ(~v)K)p = 1. By
Fact 3.2, p is principal. Now consider an arbitrary countable model H of T . Since p is
principal, p is realized by some tuple ~g in (H[0,1),L). By Remark 2.17 (iii), p =

∑
i αip

?
i

for some sequence of types pi ∈ Sn(T ) and some sequence of numbers αi ∈ [0, 1] such
that

∑
i αi = 1 (the types pi need not be distinct). Take an i such that αi > 0. We

have λ({t : tp((~g)(t)) = pi}) ≥ αi > 0, so pi is realized in H. Thus pi is realized in
every countable model of T , and hence is a principal type. But since µ(Jϕ(~v)K)p = 1,
and ~g realizes p in (H[0,1),L), H |= ϕ(~g(t)) for almost all t. Therefore ϕ(~v) belongs to a
principal type pi. This is a contradiction, and completes the proof of (i).

(ii) Let N be a model of TR. By Lemma 3.3, if N is isomorphic to the Borel random-
ization of a prime model of T then N is prime. For the other direction, suppose N is
prime. By (i), T has a prime model M. By Lemma 3.3, (M[0,1),L) is a prime model of
TR, and hence by Fact 3.2 (ii), N ∼= (M[0,1),L). �3.4

We will now show that the randomization theory TR cannot have a minimal prime
model. This is a place where the model theory of TR differs from first order model
theory.

Proposition 3.5. TR does not have a minimal prime model. In fact, for every prime
model N = (K,B) of TR, and any element B ∈ B such that N |= 0 < µ(B) < 1, N has
an elementary substructure which does not contain B.

Proof. By Theorem 3.4, T has a prime model M. By Lemma 3.3 and Fact 3.2 (ii),
N ∼= (M[0,1),L). It is well-known and easy to see that since ([0, 1),L, λ) is atomless, for
each B ∈ L such that 0 < λ(B) < 1 there is a λ-atomless σ-algebra A ⊆ L such that A is
independent of B with respect to λ. Let (MA,A) be the pre-structure whereMA is the
set of A-measurable functions from [0, 1) into M. By Example 3.4 in [BK], (MA,A) is
a full pre-complete randomization of M , thus has perfect witnesses by Proposition 2.5 in
[BK]. By Fact 2.9, (MA,A) is a pre-model of TR and (MA,A) ≺ (M[0,1),L). Since A
is independent of B and µ(B) > 0, (MA,A) does not contain B. �3.5
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4. Strongly Separable Models

Definition 4.1. A pre-model N of TR is called strongly separable if N is elementarily
embeddable in (H[0,1),L) for some countable model H of T .

From this point on, our main focus will be on strongly separable models of TR.
By Corollary 3.8 in [BK], every strongly separable pre-model of TR is separable. Ex-

ample 3.10 of [BK] gives an example of a theory T and a separable model of TR that is
not strongly separable. More such examples can be found using Corollary 5.3 below.

Theorem 3.12 of [BK] shows that every separable model of TR is strongly separable
if and only if T has a countable saturated model. The results in Sections 3 and 4 of
[BK] give some information about the separable pre-models of TR in the case that T has
a countable saturated model. In this section we will obtain results about the strongly
separable pre-models of TR in the general case that T is not assumed to have a countable
saturated model. These results will be used in Sections 6 through 9.

Lemma 4.2. A model H of T is countable if and only if the Borel randomization
(H[0,1),L) is separable.

Proof. Suppose first that H is countable. Let A be the algebra generated by the set of
all subintervals of [0, 1) with rational endpoints, and let F be the set of A-measurable
elements of H[0,1) with finite range. A is countable and dense in L. As shown in [BK],
Lemma 3.7, F is countable and dense in H[0,1). Therefore (H[0,1),L) is separable.

Now suppose that H is uncountable. Then the set C of constant functions from [0, 1)
into H is an uncountable set of elements of (H[0,1),L) such that the distance between
any two elements of C is one, so (H[0,1),L) is not separable. �4.2

Proposition 4.3. A pre-model N of TR is strongly separable if and only if N is separable
and N is elementarily embeddable in the Borel randomization of some model of T .

Proof. If N is strongly separable, then by definition, N is elementarily embeddable in
(H[0,1),L) for some countable model H of T . By Corollary 3.8 in [BK], N is separable.
Alternatively, by Lemma 4.2, (H[0,1),L) is separable, so N is separable.

For the other direction, suppose that N = (K,B) is separable and h : N ≺ (M[0,1),L)
for some modelM of T . Let K0 be a countable dense subset of K. Since each f ∈M[0,1)

has countable range in M , there is an elementary submodel H ≺ M that contains the
range of h(g) for each g ∈ K0. Then h(K0) ⊆ H[0,1). It is clear that H[0,1) is closed
in M[0,1), so h(K) ⊆ H[0,1). By Facts 2.2 and 2.8, we have (H[0,1),L) ≺ (M[0,1),L), so
h : N ≺ (H[0,1),L) and thus N is strongly separable. �4.3

To clarify the relationships between different strongly separable pre-models of TR,
we will fix once and for all a model M∞ of T such that every countable model of T
is elementarily embeddable in M∞. The existence of such a model follows from the
Compactness Theorem. We denote the Borel randomization of M∞ by

N∞ = (M[0,1)
∞ ,L).
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It follows from Proposition 4.3 that a pre-model N of TR is strongly separable if and
only if it is separable and elementarily embeddable in N∞.

For each pre-substructure N ⊆ N∞, we will now construct three associated pre-
structures, the reduction N o of N in N∞, the completion N ∧ of N , and the closure
N cl of N in N∞. Up to isomorphism, these pre-structures will not depend on our choice
of M∞.

We first introduce the reduction mapping o on N∞. For each random element

f ∈M[0,1)
∞ and event A ∈ L, let fo and Ao be the equivalence classes

fo = {g ∈M[0,1)
∞ : dK(f ,g) = 0}, Ao = {B ∈ L : dB(A,B) = 0}.

We let (N∞)o be the pre-structure obtained from N∞ by replacing each pair in (f ,A) ∈
N∞ by (fo,Ao). Note that (N∞)o is a reduction of N∞. By Fact 2.5, N∞ is pre-complete,
so (N∞)o is also a completion of N∞, and is thus a model of TR.

When we apply the reduction mapping o to a pre-substructure N = (K,B) ⊆ N∞,
we obtain a reduction2 N o = (Ko,Bo) of N , which we call the reduction of N in
N∞. The advantage of working within the same pre-structure N∞ is that we always have
P ⊆ N ⊆ N∞ implies Po ⊆ N o, and P ≺ N ≺ N∞ implies Po ≺ N o.

For eachN = (K,B) ⊆ N∞, the completion ofN in (N∞)o is the continuous structure
N ∧ = (K∧,B∧) whose universe is the closure of the universe of N o in (N∞)o. Thus N is
pre-complete if and only if N ∧ = N o. In particular we have (N∞)∧ = (N∞)o. We also
let (Lo, λo) be the Lebesgue measure algebra, where λo is the unique measure on Lo such
that λo(Bo) = λ(B) for each B ∈ L.

For each N ⊆ N∞, the closure of N in N∞ is the pre-structure N cl ⊆ N∞ with
universe sets

Kcl = {f ∈M[0,1)
∞ : fo ∈ K∧}, Bcl = {B ∈ L : Bo ∈ B∧}.

We say that P is dense in N if P ⊆ N ⊆ Pcl. In particular, N is dense in N cl.
In the next remark we collect some easy observations about N , N o, N cl, and N ∧.

Remark 4.4. For all pre-substructures P , N ⊆ N∞ we have

(i) o : N ∼= N o and N o ≺ N ∧.
(ii) If P is dense in N , then Pcl = N cl, P∧ = N ∧, and P ≺ N . In particular,
P ≺ Pcl.

(iii) If P ⊆ N , then the following are equivalent:

P ≺ N , Po ≺ N o, P∧ ≺ N ∧, Pcl ≺ N cl.

(iv) N cl is pre-complete. If N is pre-complete, then N ∼= N cl.
(v) If N ≺ N∞, then N ∧ = (N cl)∧ and N ∧ is a model of TR.

(vi) If N ≺ N∞ and N is separable, then N , N cl, N o, and N ∧ are strongly separable.

2The paper [BK] used the notation N for the reduced pre-structure of N in N∞.
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Proof. Part (i) follows from Theorem 3.7 in [BBHU].

(ii) First check that Kcl is the topological closure of K in M[0,1)
∞ , and Bcl is the topo-

logical closure of B in L. It follows that Pcl = N cl and P∧ = N ∧. Now apply (i) to get
P ≺ N .

(iii) Observe that by (ii) we have P ≺ Pcl and N ≺ N cl. The equivalences follow from
that observation and (i).

(iv) Suppose (g,B) ∈ (N cl)∧. Then (g,B) ∈ (N∞)∧. By Fact 2.5, N∞ is pre-complete,
so (g,B) ∈ (N∞)o, and there exists (f ,A) ∈ N∞ such that (g,B) = (f ,A)o. Hence
(f ,A) ∈ N cl and (g,B) ∈ (N cl)o, so N cl is pre-complete.

If N is pre-complete, then (N cl)o = N ∧ = N o, so N ∼= N cl.
(v) Since N is dense in N cl, (ii) gives N ∧ = (N cl)∧. (iii) gives N ∧ ≺ (N∞)∧, and since
N ∧ is complete it is a model of TR.

(vi) Suppose N ≺ N∞. Then by (iii), N cl ≺ (N∞)cl = N∞. By (i) and (iii), N o ≺
N ∧ ≺ (N∞)∧. By (i) and Fact 2.5, N∞ ∼= (N∞)o = (N∞)∧. By Remark 2.4, ∼= is
symmetric, so (N∞)∧ ∼= N∞. Therefore N o and N ∧ are elementarily embeddable in
N∞. By Proposition 4.3, if N is separable then N , N cl, N o, and N ∧ are strongly
separable. �4.4

The next theorem shows that every pre-complete strongly separable model of TR is
isomorphic to one whose event sort is all of L.

Theorem 4.5. Let N = (K,B). Suppose N is pre-complete and elementarily embeddable
in (M[0,1),L). Then N is isomorphic to an elementary pre-submodel of (M[0,1),L) whose
event sort is all of L.

Proof. The elementary embedding ofN into (M[0,1),L) induces an elementary embedding

g : N o ≺ (M[0,1),L)o.

Since N is pre-complete, the restriction of the Lebesgue measure algebra (Lo, λo) to g(Bo)
is a measure algebra (g(Bo), λo). Since N is elementarily embeddable in (M[0,1),L),
(g(Bo), λo) is atomless. In both (g(Bo), λo) and (Lo, λo), every ideal is countably gener-
ated. Therefore, by Maharam’s theorem ([Mah]), these measure algebras are isomorphic.
That is, there is a measure-preserving Boolean isomorphism

h : (g(Bo), λo)) ∼= (Lo, λo).
h can be extended to an elementary embedding h : g(N o) ≺ (M[0,1),L)o as follows. For
each A ∈ g(Bo), let h(A) = h(A). For each f ∈ g(Ko), let h(f) be the unique element of
(M[0,1),L)o such that

(∀c ∈M)Jh(f) = cK = h(Jf = cKo)
where c is the reduction of the constant function with value c. Then for every first order

formula ϕ(~x) and tuple ~f in g(K),

Jϕ(h(~f))K = h(Jϕ(~f)Ko).
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It follows that the composition h ◦ g is an elementary embedding

h ◦ g : N o ≺ (M[0,1),L)o

such that (h ◦ g)(Bo) = Lo. Since N is pre-complete, we have

N ∼= N o ∼= (h ◦ g)(N o) = ((h ◦ g)(Ko),Lo) ∼= (K′,L)

where K′ is the set of f ∈M[0,1) such that fo ∈ (h ◦ g)(Ko). �4.5

Definition 4.6. Let H be a countable model of T . We say that (K,A) is a countable
part of (H[0,1),L) if (K,A) is countable, (K,A) ≺ (H[0,1),L), (K,A) has perfect wit-
nesses, and f−1(c) ∈ A for each f ∈ K and c ∈ H (that is, f is A-measurable). For each
t ∈ [0, 1), we let K(t) be the substructure of H with universe K(t) = {f(t) : f ∈ K}.

Note that by Remark 4.4, if P is a countable part of (H[0,1),L) then

P ≺ Pcl ≺ (H[0,1),L).

We now prove a collection of lemmas that will allow us to prove things about an arbitrary
strongly separable model N ′ of TR by first using Theorem 4.5 to get a pre-structure
N ≺ (H[0,1),L) such that N ∼= N ′ and N has event sort L, then taking a countable
part (K,A) of (H[0,1),L) that is dense in N , and working with the first order structures
K(t), t ∈ [0, 1). These lemmas will be used repeatedly in Sections 6 through 9.

Lemma 4.7. Suppose H is a countable model of T , N ≺ (H[0,1),L), and N has perfect
witnesses. Then there exists a countable part (K,A) of (H[0,1),L) that is dense in N .

Proof. By Proposition 4.3, N is separable. Therefore there is a countable pre-structure
(K0,A0) ⊆ N that is dense in N . By listing the first order formulas and using the
fact that N has perfect witnesses, we can construct a chain of countable pre-structures
(Kn,An), n ∈ N such that for each n:

• (Kn,An) ⊆ (Kn+1,An+1) ⊆ N ;
• for each first order formula ϕ(x, ~y) and tuple ~g in Kn there exists f ∈ Kn+1 such

that

Jϕ(f , ~g)K .
= J(∃xϕ)(~g)K;

• For each B ∈ An there exist f ,g ∈ Kn+1 such that B
.
= Jf = gK;

• (∀c ∈ H)(∀f ∈ Kn) {t : f(t) = c} ∈ An+1.

The union

(K,A) =
⋃
n

(Kn,An)

is a countable part of (H[0,1),L), and (K,A) is dense in N . �4.7

Lemma 4.8. If H is a countable model of T , and (K,A) is a countable part of (H[0,1),L),
then K(t) ≺ H for almost all t.
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Proof. We note that for each a ∈ H, the set

{t : a ∈ K(t)}
is Borel, because it is equal to the countable union of the sets h−1(a) where h ∈ K. Since

(K,A) ≺ (H[0,1),L), for each first order formula ϕ(~u, v) and each tuple ~f in K, we have

µ(J(∃v)ϕ(~f , v)K) = sup
g∈K

µ(Jϕ(~f ,g)K).

Therefore for each ϕ(~u, v) and each ~a ∈ Hn, for almost all t we have

if ~a ∈ K(t)n and H |= (∃v)ϕ(~a, v) then (∃b ∈ K(t))H |= ϕ(~a, b).

Since H is countable, it follows that for almost all t, for every formula ϕ(~u, v) and every
~a ∈ Hn we have

if ~a ∈ K(t)n and H |= (∃v)ϕ(~a, v) then (∃b ∈ K(t))H |= ϕ(~a, b).

Then by the Tarski-Vaught condition, we have K(t) ≺ H for almost all t. �4.8

Lemma 4.9. Suppose H is a countable model of T , and (K,A) is a countable part of
(H[0,1),L). Let

K+ = {f ∈ H[0,1) : f(t) ∈ K(t) for almost all t}.
Then Kcl ⊆ K+. If A is dense in L, then Kcl = K+.

The hypothesis that A is dense in L is necessary in Lemma 4.9. One can easily get an
example to show this using Proposition 3.5 and Lemma 4.7.

Proof of Lemma 4.9. Let g ∈ Kcl. Then there is a sequence gn of elements of K that
converges to g. Therefore for each r > 0 there is an nr ∈ N such that dK(gnr ,g) < r.
Then

λ({t : g(t) = gnr(t)}) > 1− r and {t : g(t) ∈ K(t)} ⊇ {t : g(t) = gnr(t)}.
Since this holds for every r > 0, we have g ∈ K+. This shows that K+ ⊇ Kcl.

We now assume that A is dense in L, and prove that K+ ⊆ Kcl. For each element
a ∈ H, let a be the constant function a(t) = a in H[0,1). We show next that there is a
function in Kcl that agrees with a(t) whenever possible. Pick an element h ∈ K.

Claim 1. For each a ∈ H, the set

Ba = {t : a ∈ K(t)}
is Borel, and the function

ah(t) =

{
a(t), when t ∈ Ba
h(t) otherwise

belongs to Kcl.
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Proof of Claim 1: Let a ∈ H. For each f ∈ K, let

Ba,f = {t ∈ [0, 1) : f(t) = a}.
List the elements of K, K = {f1, f2, . . .}. For each n, fn is A-measurable, so Ba,fn ∈ A.
Hence the set

Ba =
⋃
n

Ba,fn = {t : a ∈ K(t)}

is Borel.
Let a0 = h, and inductively define an by

an(t) =

{
fn(t) when t ∈ Ba,fn
an−1(t) otherwise.

Since (K,A) is a pre-model of TR, we see by induction on n that an belongs to K.
Moreover, we have

an(t) =

{
a(t) when t ∈

⋃
m≤n Ba,fm

h(t) otherwise.

Therefore, for all t we have an(t) = ah(t) for all sufficiently large n. It follows that
dK(an, ah) converges to zero, so Claim 1 holds.

We now let g′ ∈ K+ and show that g′ ∈ Kcl. There is a set B ∈ L such that λ(B) = 1
and g′(t) ∈ K(t) for all t ∈ B. Define g by

g(t) =

{
g′(t) when t ∈ B,

h(t) otherwise.

Then g ∈ H[0,1), g(t) ∈ K(t) for all t, and dK(g,g′) = 0. So to prove g′ ∈ Kcl it suffices
to find a sequence gn, n ∈ N of elements of Kcl such that dK(gn,g) converges to 0.

Let H = {a1, a2, . . .}. Let g0 = h, and inductively define gn by

gn(t) =

{
anh(t) when g(t) = an,

gn−1(t) otherwise.

Claim 2. gn belongs to Kcl for each n.

Proof of Claim 2: We argue by induction on n. We have g0 = h ∈ K by hypothesis.
Suppose that gn−1 ∈ Kcl. Since A is dense in L, we have

(K,A) ≺ (Kcl,Acl) = (Kcl,L) ≺ (H[0,1),L).

Therefore (Kcl,L) is a pre-model of TR. By Claim 1, anh belongs to Kcl. Since g ∈ H[0,1)

we have {t : g(t) = an} ∈ L. It follows that gn ∈ Kcl, and Claim 2 is proved.

For each n > 0, if t ∈ Ban and g(t) = an then for all m ≥ n we have

g(t) = an = anh(t) = gm(t).
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Therefore for each m > 0,

Jgm = gK ⊇ {t : g(t) ∈ {a1, . . . , am}} ∩
m⋃
n=1

Ban .

Hence limm→∞ µ(Jgm = gK) = 1, so limm→∞ dK(gm,g) = 0 and g ∈ Kcl. �4.9

Lemma 4.10. Suppose H is a countable model of T , (K,A) and (K′,A′) are countable
parts of (H[0,1),L), and K and K′ have the same closure in H[0,1). Then K(t) = K ′(t)
for almost all t.

Proof. We will show that for each a ∈ H, the statement [a ∈ K(t) if and only if a ∈ K ′(t)]
holds for almost all t. Since H is countable, this will imply that K(t) = K ′(t) for almost
all t.

Suppose that, on the contrary, there is an a ∈ H and a Borel set B of positive measure
such that for all t ∈ B, a ∈ K ′(t) \K(t). Then there is an element f ∈ K′ and a Borel set
C ⊆ B such that λ(C) > 0 and for all t ∈ C, f(t) = a. Since K is dense in the closure of
K′, there is an element g ∈ K such that dK(f ,g) < λ(C). But then there must exist t ∈ C
such that g(t) = f(t) = a, so a ∈ K(t). This contradiction completes the proof. �4.10

Lemma 4.11. Suppose H is a countable model of T and (K,A) is a countable part of

(H[0,1),L). Then for each tuple ~f in K and each Lω1ω formula ϕ(~v), the set

Jϕ(~f)KK = {t : K(t) |= ϕ(~f(t))}.

belongs to the σ-algebra σ(A) generated by A.

Proof. We argue by induction on the complexity of the formula ϕ. When ϕ is a first
order formula, we have

Jϕ(~f)KK ∈ A.
Suppose the result holds for all subformulas of ϕ. If ϕ =

∧
k ψk, then

Jϕ(~f)KK = J
∧
k

ψk(~f)KK =
⋂
k

Jψk(~f)KK,

which is a countable intersection of sets in σ(A) and hence belongs to σ(A). If ϕ = ¬ψ,
then

Jϕ(~f)KK = J¬ψ(~f)KK = ¬Jψ(~f)KK ∈ σ(A).

Finally, if ϕ = (∃v)ψ, then

Jϕ(~f)KK = J(∃v)ψ(~f , v)KK =
⋃
g∈K

Jψ(~f ,g)KK,

which is a countable union of sets in σ(A) and hence belongs to σ(A). �4.11
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5. Purely Atomic Types

Definition 5.1. We call a type p ∈ Sn(TR) purely atomic if there is a finite or countable
set {q0, q1, . . .} ⊆ Sn(T ) such that

∑
i νp({qi}) = 1. A type p ∈ Sn(TR) is called atomless

if the corresponding measure νp is atomless.

Note that no type can be both purely atomic and atomless. If in N , tp(f) is purely
atomic, tp(g) is atomless, and µ(Jh = fK) = µ(Jh = gK) = 1/2, then tp(h) is neither
purely atomic nor atomless.

The next proposition relates purely atomic types to strongly separable models of TR.

Proposition 5.2. For each type p ∈ Sn(TR), the following are equivalent.

(i) p is purely atomic.
(ii) p is realized in some strongly separable model of TR.

(iii) p is realized in the Borel randomization of some model of T .

Proof. Assume (i). There is a finite or countable set of types {q0, q1, . . .} ⊆ Sn(T ) such
that

∑
i νp(qi) = 1. By compactness, there is a countable model H of T such that for

each i, qi is realized by some n-tuple ~ai in H. Let ~f be an n-tuple in H[0,1) such that

λ(J~f = ~aiK) = νp(qi) for each i. Then ~f realizes p in the strongly separable pre-model
(H[0,1),L) of TR, so (ii) holds.

The implication from (ii) to (iii) is trivial. Assume (iii). Then some n-tuple ~f realizes
p in the Borel randomization (M[0,1),L) of some modelM of T . By definition, the range

of ~f is a countable set {~a0,~a1, . . .} ⊆ Mn. Therefore
∑

i νp({tp(~ai)}) = 1, so p is purely
atomic and (i) holds. �5.2

Corollary 5.3. Suppose p is an atomless type in TR. Then p can be realized in a separable
model of TR that is not strongly separable.

Proof. By the compactness theorem, p can be realized in a separable model N of TR.
Since p is atomless, it is not purely atomic, so by Proposition 5.2, N is not strongly
separable. �5.3

We will now refine the construction p =
∑

i αip
?
i introduced in Example 2.16, by

removing terms of measure zero and combining duplicates. This construction will be
used to analyze purely atomic types in TR.

Definition 5.4. Let p ∈ Sn(TR). We say that p =
∑

i αip
?
i is a nice decomposition of

p if

• p0, p1, . . . are pairwise distinct types in Sn(T );
• αi ∈ (0, 1] for each i;
•
∑

i αi = 1.
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Note that any two nice decompositions of an n-type p ∈ Sn(TR) are the same up to
the ordering of the terms. That is, if p =

∑
i αip

?
i and p =

∑
k βkq

?
k are nice, then

{α0p
?
0, α1p

?
1 . . .} = {β0q?0, β1q?1 . . .}.

Lemma 5.5. A type p in TR has a nice decomposition if and only if it is purely atomic.

Proof. Suppose p is purely atomic. Let

{p0, p1, . . .} = {q ∈ Sn(T ) : νp({q}) > 0}.
Since p is purely atomic, this set is finite or countable, and p =

∑
i αip

?
i is a nice decom-

position of p where

αi = νp({pi}).
Now suppose p has a nice decomposition p =

∑
i αip

?
i . Then for each i the set {pi}

is an atom of νp, and every set of νp-positive measure contains some pi. Therefore p is
purely atomic. �5.5

Corollary 5.6. Suppose M |= T and p is a purely atomic type in TR with the nice
decomposition p =

∑
i αip

?
i . Then p is realized in (M[0,1),L) if and only if pi is realized

in M for each i.

Proof. If pi is realized in M for each i, then p is realized in (M[0,1),L) by Remark 2.17
(ii). Suppose p is realized in (M[0,1),L) by an n-tuple ~g. Then for each i,

0 < αi = νp({pi}) = λ({t : tp(~g(t)) = pi}).
For each i there is an element ti such that tp(~g(ti)) = pi, so pi is realized in M. �5.6

Theorem 3.12 in [BK] gives necessary and sufficient conditions for every separable pre-
model of TR to be strongly separable. In the next proposition, we restate those conditions
and give some additional conditions involving types.

Proposition 5.7. The following are equivalent.

(i) T has a countable saturated model.
(ii) TR has a separable ω-saturated model.

(iii) Every separable pre-model of TR is strongly separable.
(iv) Sn(T ) is countable for each n.
(v) Every type in TR is purely atomic.

(vi) There is no atomless type in TR.

Proof. The equivalence of (i)–(iii) is given by Theorem 3.12 in [BK]. The equivalence of
(i) and (iv) is due to Vaught [Va].

Assume (iv), and let p ∈ Sn(TR). By the Compactness Theorem, p is realized in some
separable model N of TR. By (iii), N is strongly separable, so by Proposition 5.2, p is
purely atomic. Thus (iv) implies (v).

(v) implies (vi) because no purely atomic type is atomless.
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Finally, assume that (iv) fails, so there is an n such that Sn(T ) is uncountable. By
the Cantor-Bendixson Theorem (Theorem 6.4 in [Kec]), the uncountable Polish space
Sn(T ) contains a Borel subset P that is perfect, and by Theorem 6.2 in [Kec], there is a
continuous injective mapping f from the Cantor space {0, 1}N into P . The Cantor space
has an atomless Borel probability measure µ. Then ν = µ ◦ f−1 is a Borel probability
measure on Sn(T ). Let X ⊆ Sn(T ) be a Borel set with r = ν(X) > 0. To show that
ν is atomless, we must find a Borel set Y ⊆ X with 0 < ν(Y ) < r. The set f−1(X) is
Borel and µ(f−1(X)) = r. Since µ is atomless, there is a Borel set Z ⊆ f−1(X) with
0 < µ(Z) < r. Let Y = f(Z). By the Lusin-Souslin theorem (Theorem 15.1 in [Kec]), Y
is a Borel subset of X. We have Z = f−1(Y ), so ν(Y ) = µ(Z). Hence 0 < ν(Y ) < r, and
ν is atomless. By Fact 2.15 there is a type p ∈ Sn(TR) such that ν = νp, so (vi) fails.
Thus (vi) implies (iv). �5.7

6. Separable Homogeneous Models

In this section we will show that for each complete first order theory T , the number of
separable homogeneous models of TR is equal to the number of countable homogeneous
models of T , up to isomorphism. The hard part will be to prove Theorem 6.5, which
shows that the strongly separable homogeneous models of TR are exactly the Borel
randomizations of countable homogeneous models of T , up to isomorphism.

Lemma 6.1. M is countable homogeneous if and only if (M[0,1),L) is separable homo-
geneous.

Proof. Suppose first that M is countable homogeneous. By Lemma 4.2, (M[0,1),L) is

separable. Let ~f , ~g realize the same n-type p in (M[0,1),L), let h ∈ M[0,1), and let q be

the (n+ 1)-type of (~f ,h). By Proposition 5.2, p and q are purely atomic. By Lemma 5.5,
p has a nice decomposition p =

∑
i αip

?
i . Then for each i, αi = λ(Ai) = λ(Bi) where

Ai = {t : tp(~f(t)) = pi}, Bi = {t : tp(~g(t)) = pi}.

Also q has a nice decomposition q =
∑

j βjq
?
j . By grouping the qj’s that contain pi

together for each i, we can write the nice decomposition of q as q =
∑

i(
∑

j βijq
?
ij) where

pi ⊆ qij for each (i, j). Then for each (i, j) we have βij = λ(Cij), where

Cij = {t : tp(~f(t),h(t)) = qij} ⊆ Ai.

Note that each of the sets Ai,Bi,Cij belongs to L. For each i, we may partition the
set Bi into a union Bi =

⋃
j Dij of Borel sets Dij such that βij = λ(Dij). Each of the

unions
⋃
i Ai,

⋃
i Bi,,

⋃
i(
⋃
j Cij), and

⋃
i(
⋃
j Dij) has measure one. Each of the sets Cij has

positive measure, so the type qij is realized in M. Since M is countable homogeneous,
for each (i, j) and each tuple ~c ∈ Mn such that tp(~c) = pi, we may choose an element
d = d(~c, i, j) ∈ M such that tp(~c, d) = qij. Let k be the almost surely unique element of
M[0,1) such that for each (i, j) and t ∈ Dij, k(t) = d(~g(t), i, j). Then (~g(t),k(t)) realizes
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qij for all t ∈ Dij, and hence (~g,k) realizes q. This shows that (M[0,1),L) is separable
homogeneous.

Now suppose (M[0,1),L) is separable homogeneous. M is countable by Lemma 4.2.

Let ~a,~b be tuples in M such that p = tp(~a) = tp(~b), and let c ∈ M . Let ~f , ~g,h be

the constant functions in M[0,1) with values ~a,~b, c respectively. By Remark 2.17 (iv) ,

p? = tp(~f) = tp(~g). Since (M[0,1),L) is separable homogeneous, there exists k in M[0,1)

such that tp(~f ,h) = tp(~g,k). Let q = tp(~a, c). Then q? = tp(~f ,h) = tp(~g,k). Therefore

q = tp(~f(t),h(t)) = tp(~g(t),k(t)) = tp(~b,k(t)) for almost all t, and hence there exists

d ∈M with tp(~b, d) = q. Thus M is countable homogeneous. �6.1

As a brief digression, we use Lemma 6.1 to give a characterization of strongly separable
pre-models in terms of types.

Proposition 6.2. A pre-model N of TR is strongly separable if and only if N is separable
and for each n, each n-type p ∈ Sn(TR) that is realized in N is purely atomic.

Proof. Suppose N is strongly separable. Then N is separable by Lemma 3.2 in [BK],
and each type that is realized in N us realized in the Borel randomization of some model
of T . By Proposition 5.2, each type that is realized in N is purely atomic.

For the other direction, suppose N is separable and each type p ∈ Sn(TR) that is
realized in N is purely atomic.

By Lemma 5.5, each type that is realized in N has a nice decomposition. Let D =
{f0, f1, . . .} be a countable dense subset of N . For each n, let Cn be the set of all n-

types q ∈ Sn(T ) such that for some n-tuple ~f in D, q? occurs in a nice decomposition

of tp(~f). Since the nice decompositions of an n-type are unique up to the ordering of
the terms, the set Cn is at most countable. By the Compactness Theorem and Fact
2.10, there is a countable homogeneous model H of T such that each type in

⋃
nCn is

realized in H. Then by Remark 2.17 (ii), for each n, pn = tp(f0, . . . , fn−1) is realized in
(H[0,1),L). Since H is countable homogeneous, (H[0,1),L) is separable homogeneous by
Lemma 6.1. Therefore whenever tp(g0, . . . ,gn−1) = pn inH[0,1), there is an h ∈ H[0,1) such
that tp(g0, . . . ,gn−1,h) = pn+1. It follows by induction that there is a single sequence
(g0,g1, . . .) such that for each n, (g0, . . . ,gn−1) realizes pn in (H[0,1),L). Therefore the
mapping fn 7→ gn can be extended to an elementary embedding of N into (H[0,1),L).
This shows that N is strongly separable. �6.2

We now return to our study of separable homogeneous structures.

Lemma 6.3. Two separable homogeneous continuous structures that realize the same
types are isomorphic.

Proof. Let N ,P be separable homogeneous continuous structures that realize the same
types. By a back and forth argument, there are dense sequences (f0, f1, . . .), (g0,g1, . . .)
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in N ,P respectively that realize the same types. By density, there is an isomorphism
from N onto P which sends each fi to gi. �6.3

The following result characterizes the set of purely atomic types that are realized in a
given separable homogeneous model. It is a converse of Remark 2.17 (ii), and should be
compared with Corollary 5.6.

Proposition 6.4. Suppose N is a separable homogeneous model of TR, p is a purely
atomic type, and p =

∑
i αip

?
i is a nice decomposition. Then p is realized in N if and

only if p?i is realized in N for each i.

Proof. By Remark 2.17 (i), for every model N of TR, if p?i is realized in N for each i
then p is realized in N .

For “only if” direction, let ~f realize p =
∑

i αip
?
i in N . We fix i and show that p?i is

realized in N . Since the decomposition is nice, αi > 0. Let us say that a tuple ~g realizes
pi on an event B if B v Jϕ(~g)K for each ϕ ∈ pi. Let S be the set of all β ∈ [0, 1] such
that some tuple in N realizes pi on some event of probability at least β. It is trivial that
0 ∈ S. We show that β ∈ S implies min(1, β + αi) ∈ S. It then follows that 1 ∈ S, and
hence that p?i is realized in N .

Suppose β ∈ S, so there is a tuple ~g in N realizes pi on an event B such that µ(B) ≥ β.

Since ~f realizes p, ~f realizes pi on some event A of measure αi. Since µ is atomless, there
is an event A′ of measure αi such that µ(BtA′) = min(1, β+αi). By Fact 2.8 (quantifier
elimination), tp(A) = tp(A′) in N . Therefore by separable homogeneity, there is a tuple
~f ′ in N such that tp(~f ,A) = tp(~f ′,A′). Then ~f ′ realizes pi on A′. By Corollary 2.7, there is

a tuple ~h in N such that ~h agrees with ~g on B and agrees with ~f ′ on ¬B. Then ~h realizes
pi on the event B t A′ of measure min(1, β + αi). This shows that min(1, β + αi) ∈ S,
and completes the proof. �6.4

Our next theorem gives a characterization of strongly separable homogeneous models
of TR.

Theorem 6.5. N is a strongly separable homogeneous model of TR if and only if N is
isomorphic to (M[0,1),L) for some countable homogeneous M |= T .

Proof. The “if” direction follows from Lemma 6.1.
For the other direction, we assume that N is a strongly separable homogeneous model

of TR. Since N is strongly separable, there is a countable model H of T and a pre-
structure P such that N ∼= P ≺ (H[0,1),L). By Theorem 4.5, we may take P so that the
event sort of P is all of L. By Fact 2.10, we may takeH to be countable homogeneous. By
Lemma 4.7, some countable part (K,A) of (H[0,1),L) is dense in P . To prove the theorem,
it suffices to show that P ∼= (M[0,1),L) for some countable homogeneous M ≺ H. Our
plan is to use the results in Section 4 to show that for almost all t, K(t) is isomorphic to
a fixed homogeneous modelM≺ H, and then show that P ∼= (M[0,1),L). To do this we
establish a series of claims.
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Claim 1. (Zero–one Law) For every Lω1ω sentence ϕ, either JϕKK .
= > or JϕKK .

= ⊥.

Proof of Claim 1: We first note that σ(A) ⊆ L, so by Lemma 4.11 we have JϕKK ∈ L.
Suppose Claim 1 fails. Then for some Lω1ω sentence ϕ, 0 < λ(JϕKK) < 1. Hence there are
two events A,B ∈ L such that A ⊆ JϕKK,B ⊆ ¬JϕKK, and 0 < λ(A) = λ(B). By Fact 2.8,
A and B have the same type in P . Since P is separable homogeneous, (P ,A) and (P ,B)
are separable homogeneous and realize the same types. Then by Lemma 6.3, there is an
automorphism h of P such that h(A) = B. Let (K′,A′) be the image of (K,A) under h.
Then (K′,A′) is also a countable part of (H[0,1),L) that is dense in P . By Lemma 4.10,
K(t) = K ′(t) for almost all t. But then by Lemma 4.11,

B = h(A) ⊆ h(JϕKK) = JϕKK
′
= JϕKK,

contradicting the assumption that B ⊆ ¬JϕKK. This proves Claim 1.

Claim 2. There is a Borel set E such that λ(E) = 1 and for all s, t ∈ E, K(s) and K(t)
realize the same types.

Proof of Claim 2: By Lemma 4.8, there is a Borel set E1 such that λ(E1) = 1 and
K(t) ≺ H for all t ∈ E1. For each type q ∈ Sn(T ), the Lω1ω sentence ϕq = (∃~v)

∧
q holds

in a structure K(t) if and only if q is realized in K(t). By Claim 1, for each type q, either
K(t) |= ϕq for almost all t, or K(t) |= ¬ϕq for almost all t. Moreover, if ϕq holds in K(t)
for some t ∈ E1, then q is realized in H. Since H is countable, the set

Q = {q ∈
⋃
n

Sn(T ) : (∃t ∈ E1)K(t) |= ϕq}

is countable. Hence there is a Borel set E ⊆ E1 such that λ(E) = 1 and for each q ∈ Q,
either K(t) |= ϕq for all t ∈ E, or K(t) |= ¬ϕq for all t ∈ E. Then E satisfies the
requirements for Claim 2.

Claim 3. For almost every t ∈ E, K(t) is countable homogeneous.

Proof of Claim 3: It is sufficient to prove the following for each n, each pair ~a,~b ∈ Hn

such that tp(~a) = tp(~b) in H, and each c ∈ H:

(1) For almost all t, if ~a,~b ∈ K(t)n and c ∈ K(t) then there exists d ∈ K(t) such that

tp(~a, c) = tp(~b, d).

Fix ~a,~b, c such that tp(~a) = tp(~b) in H. Let A be the Borel set of all t ∈ [0, 1) such

that ~a,~b ∈ K(t)n and c ∈ K(t). If λ(A) = 0, then (1) is trivial, so we assume λ(A) > 0.
Then there is a partition A =

⋃
m Bm of A into Borel sets, such that for each m there is

a pair ~fm, ~gm ∈ Kn and an element hm ∈ K with ~fm(t) = ~a, ~gm(t) = ~b, and hm(t) = c for
all t ∈ Bm. Fix m, and let ~em be the n-tuple that agrees with ~gm on Bm and agrees with
~fm elsewhere. By Corollary 2.7, ~em belongs to Kn. We have tp(~fm(t)) = tp(~em(t)) for all
t ∈ [0, 1). Hence for each first order formula ϕ(~u),

λ(Bm u Jϕ(~fm)K) = λ(Bm u Jϕ(~em)K)
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and
λ((¬Bm) u Jϕ(~fm)K) = λ((¬Bm) u Jϕ(~em)K),

so tp(~fm,Bm) = tp(~em,Bm). Since P is separable homogeneous, there is an element km
in P such that

tp(~fm,hm,Bm) = tp(~em,km,Bm).

Then for each first order formula ψ(~u, v),

λ(Bm u Jψ(~fm,hm)K)) = λ(Bm u Jψ(~em,km)K).

Hence for each ψ(~u, v) ∈ tp(~a, c),

λ(Bm) = λ(Bm u Jψ(~b,km)K),

and thus tp(~a, c) = tp(~b,km(t)) for almost all t ∈ Bm. Moreover, since (K,A) is dense in
P , we have km ∈ Kcl, so by Lemma 4.9, km(t) ∈ K(t) for almost all t. This proves (1)
and Claim 3.

Claim 4. There is a countable homogeneous model M≺ H such that K(t) ∼=M for
almost all t.

Proof of Claim 4: By Claims 2 and 3, there is a Borel set E′ ⊆ E such that λ(E′) = 1
and for all s, t ∈ E′, K(s) and K(t) are countable homogeneous models that realize the
same types. By Fact 2.10, K(s) ∼= K(t) for all s, t ∈ E′. This proves Claim 4.

We will construct an isomorphism h : (M[0,1),L) ∼= P . If H is finite, the theorem
holds because TR is separably categorical, so we may assume H is countably infinite.
Arrange the elements of H in a list of length ω. This gives us a listing of M and of
K(t) for each t ∈ [0, 1). Also arrange the elements of K in a list of length ω. For each
t ∈ [0, 1) we will pick enumerations M = {a0(t), a1(t), . . .} and K(t) = {b0(t), b1(t), . . .}
as follows. When t /∈ E′, am(t) is the m-th element of M and bm(t) is the m-th element
of K(t). When t ∈ E′ we proceed inductively on m. We assume that a0(t), . . . , a3m−1(t)
and b0(t), . . . , b3m−1(t) have already been constructed so that

tp(a0(t), . . . , a3m−1(t)) = tp(b0(t), . . . , b3m−1(t))

in H. We take a3m(t) to be the first element of M \{a0(t), . . . , a3m−1(t)}, and take b3m(t)
to be the first element of K(t) such that

tp(a0(t), . . . , a3m−1(t), a3m(t)) = tp(b0(t), . . . , b3m−1(t), b3m(t)).

We then take b3m+1(t) to be the first element of K(t)\{b1(t), . . . , b3m−1(t)}, take b3m+2(t)
to be k(t) where k is the m-th element of K, and and take a3m+1(t) and a3m+2(t) to be
the first elements of M such that

tp(a0(t), . . . , a3m−1(t), a3m(t), a3m+1(t)a3m+2(t)) = tp(b0(t), . . . , b3m−1(t), b3m(t), b3m+1(t), b3m+2(t)).

This procedure can always be carried out because M and K(t) are countable ho-
mogeneous and realize the same types. The construction guarantees that for each t,
M = {a0(t), a1(t), . . .} and K(t) = {b0(t), b1(t), . . .}, that K = {b2(·), b5(·), . . .}, and that
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for each t ∈ E′, the mapping am(t) 7→ bm(t) is an isomorphism from M onto K(t). Be-
cause K is a countable set of L-measurable functions and K(t) = {f(t) : f ∈ K}, we see
by induction that for each m the functions am(t) and bm(t) are L-measurable functions
of t.

For each f ∈ M[0,1) let h(f) be the unique function g : [0, 1) → H such that for each
t and m, f(t) = am(t) if and only if g(t) = bm(t). Then (h(f))(t) ∈ K(t) for all t, and
K ⊆ h(M[0,1)). Since P has event sort L, A is dense in L. Then by Lemma 4.9, h maps
M[0,1) into Kcl, which is the sort K part of P . For each first order formula ϕ and tuple
~f in M[0,1),

Jϕ(~f)K .
= Jϕ(h(~f))K.

In the event sort, let h be the identity function on L. Since P has event sort L, we

have h : (M[0,1),L) ≺ P . The set M[0,1) is closed in M[0,1)
∞ , and h preserves distances,

so h(M[0,1)) is closed inM[0,1)
∞ . Since K ⊆ h(M[0,1)) and (K,A) is dense in P , it follows

that h : (M[0,1),L) ∼= P . �6.5

Corollary 6.6. The mapping

Θ: M 7→ completion of (M[0,1),L)

is a bijection from the set of isomorphism types of countable homogeneous models of T
onto the set of isomorphism types of strongly separable homogeneous models of TR, and
this mapping preserves elementary embeddability.

Proof. By Lemma 6.1, Θ maps countable homogeneous models to strongly separable
homogeneous models. If Θ(M) ∼= Θ(H), then Θ(M) and Θ(H) realize the same types,
so by Corollary 5.6,M and H realize the same types, and by Fact 2.10,M∼= H. Thus Θ
is one-to-one up to isomorphism. It is clear that Θ preserves elementary embeddability.
Theorem 6.5 shows that Θ is onto. �6.6

Example 6.7. Baldwin and Lachlan [BL] showed that if T is ω1-categorical but not
ω-categorical, then all the countable models of T are countable homogeneous and form
an elementary chain of length ω + 1. Corollary 6.6 shows that in that case, the strongly
separable homogeneous models of TR also form an elementary chain of length ω + 1.

Corollary 6.8. Let κ be the number of countable homogeneous models of T . Then TR has
exactly κ separable homogeneous models, and exactly κ strongly separable homogeneous
models.

Proof. By Theorem 6.5, TR has exactly κ strongly separable homogeneous models. Sup-
pose first that T has countably many complete types. Then by Fact 2.11, T has a
countable saturated model. By Proposition 5.7, every separable model of TR is strongly
separable, so T has exactly κ separable homogeneous models.

Now suppose that T has uncountably many complete types. Then for some n, Sn(T ) is
uncountable. Sn(T ) is a Polish space, and every uncountable Polish space has cardinality
2ω, so T has 2ω complete types. By Fact 2.10, every type p ∈ Sn(T ) is realized in
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some countable homogeneous model of T . Moreover, every countable model realizes only
countably many complete types. Since the signature is countable, T has at most 2ω

countable models. TR also has a countable signature, so TR has at most 2ω countable
pre-models, and hence at most 2ω separable models. It follows that T has exactly 2ω

countable homogeneous models, so κ = 2ω. Then TR has exactly 2ω strongly separable
homogeneous models, and exactly 2ω separable homogeneous models. �6.8

The paper [KM] gives an example of a complete first order theory T with exactly m
countable homogeneous models for each positive integer m. By the above corollary, such
a theory has exactly m separable homogeneous models.

In Theorem 6.5, we used nice decompositions of purely atomic types to characterize the
class of all strongly separable homogeneous models of the randomization theory. An open
problem is to find a similar characterization of the class of all separable homogeneous
models of the randomization theory.

7. Product Randomizations

We now introduce a construction that is like the Borel randomization (M[0,1),L) but
has a finite or countable family of elementary substructures of M in place of M.

Definition 7.1. Let M |= T , let I be a finite or countable non-empty set, let [0, 1) =⋃
i∈I Bi be a partition of [0, 1) into Borel sets3, and for each i ∈ I let Mi ≺ M. We

define ∏
i∈I

MBi
i = {f ∈M[0,1) : (∀i ∈ I)(for almost all t ∈ Bi)f(t) ∈Mi}.

It is clear that (
∏

i∈IM
Bi
i ,L) is a pre-structure and (

∏
i∈IM

Bi
i ,L) ⊆ (M[0,1,L). We call

the (
∏

i∈IM
Bi
i ,L) a product randomization in M.

Intuitively, an element of
∏

i∈IM
Bi
i is an experiment in which an element i ∈ I is

chosen with probability λ(Bi) and then an element of Mi is chosen at random. We say
that

∏
i∈IM

Bi
i is the result of sampling from Mi with probability λ(Bi) for each i ∈ I.

We will see in Theorem 8.8 that for a given family of models Mi, i ∈ I, the product
randomization is characterized up to isomorphism by the real numbers λ(Bi), i ∈ I.

Remark 7.2. (i) If two product randomizations have isomorphic parts, then they
are isomorphic. Formally, if Mi

∼= Hi for each i ∈ I, then

(
∏
i∈I

MBi
i ,L) ∼= (

∏
i∈I

HBi
i ,L).

(ii) Two product randomizations that agree on the parts of positive measure are
isomorphic.

3We allow the possibility that some of the sets Bi are empty.
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(iii) A product randomization is unchanged if a part is split into several parts with
the same elementary substructure. Formally, two product randomizations

(
∏
i∈I

MBi
i ,L), (

∏
j∈J

HCj

j ,L)

are equal if for each j ∈ J there exists an i ∈ I such that Cj ⊆ Bi and Hj =Mi.

Theorem 7.3. Every product randomization in M is a pre-complete elementary sub-
structure of the Borel randomization (M[0,1),L).

Proof. Let (
∏

i∈IM
Bi
i ,L) be a product randomization inM. Let fm,m ∈ N be a Cauchy

sequence in
∏

i∈IM
Bi
i with respect to the pseudo-metric dK. By Fact 2.5, (M[0,1),L) is

pre-complete. Therefore fm converges to some function f in M[0,1). So λ({t : fm(t) =
f(t)}) converges to 1 as m→∞. Therefore for each i, f(t) ∈Mi for almost all t ∈ Bi, so
f ∈

∏
i∈IM

Bi
i . This shows that (

∏
i∈IM

Bi
i ,L) is pre-complete.

We will now show that (
∏

i∈IM
Bi
i ,L) has perfect witnesses. Since L is atomless, it

will then follow from Fact 2.9 that (
∏

i∈IM
Bi
i ,L) ≺ (M[0,1),L). Since each model of T

has at least two elements, it is clear that (
∏

i∈IM
Bi
i ,L) has property 2.6 (ii). To prove

2.6 (i), let ϕ(y, ~x) be a first order formula and let ~g be a tuple in
∏

i∈IM
Bi
i of length |~x|.

Then there is a countable partition C0,C1, . . . of [0, 1) such that each m, Cm ∈ L and ~g
is constant on Cm. So there is a function f : [0, 1) → M such that for each i ∈ I and
each m, f is constant on Cm ∩ Bi with a value in Mi, and for each t ∈ Bi,

Mi |= ϕ(f(t), ~g(t))↔ (∃y)ϕ(y, ~g(t)).

Then f ∈
∏

i∈IM
Bi
i . Since Mi ≺M for each i ∈ I, for all t ∈ [0, 1) we have

M |= ϕ(f(t), ~g(t))↔ (∃y)ϕ(y, ~g(t)),

so

(M[0,1),L) |= Jϕ(f , ~g)K .
= J(∃y)ϕ(y, f , ~g)K.

Since (
∏

i∈IM
Bi
i ,L) ⊆ (M[0,1,L),

(
∏
i∈I

MBi
i ,L) |= Jϕ(f , ~g)K .

= J(∃y)ϕ(y, f , ~g)K.

Thus Condition 2.6 (i) holds. This shows that (
∏

i∈IM
Bi
i ,L) has perfect witnesses. �7.3

The next theorem shows that up to isomorphism, a product randomization in M
depends only on the structures Mi and the measures of the Borel sets Bi. For this
reason, a product randomization (

∏
i∈IM

Bi
i ,L) can be regarded as a combination of the

randomizations (M[0,1)
i ,L), i ∈ I, weighted by the measures λ(Bi). The proof will use

the following fact from descriptive set theory.
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Fact 7.4. (By Theorem 17.41 in Kechris [Kec]) Suppose B,C ∈ L and λ(B) = λ(C) > 0.
Then there is a Borel bijection h : B → C such that λ(D) = λ(h(D)) for every Borel set
D ⊆ B.

Theorem 7.5. Let I be a finite or countable non-empty set, let Mi ≺ M for each
i ∈ I, and let [0, 1) =

⋃
i∈I Bi and [0, 1) =

⋃
i∈I Ci be two partitions of [0, 1) into Borel

sets. Suppose that λ(Bi) = λ(Ci) for each i ∈ I. Then the product randomizations
(
∏

i∈IM
Bi
i ,L) and (

∏
i∈IM

Ci
i ,L) are isomorphic.

Proof. By Remark 7.2 (ii), we can rearrange things so that λ(Bi) = λ(Ci) > 0 for each
i ∈ I, and the new product randomizations will be isomorphic to the original ones.
By Fact 7.4, for each i ∈ I there is a Borel bijection hi : Bi → Ci such that λ(D) =
λ(hi(D)) for every Borel set D ⊆ Bi. Then the union h =

⋃
i∈I hi is a Borel bijection

h : [0, 1)→ [0, 1) such that h(Bi) = Ci for each i ∈ I, and λ(D) = λ(h(D)) for each D ∈ L.
Hence the mapping f 7→ f ◦ h−1,B 7→ h(B) gives an isomorphism from (

∏
i∈IM

Bi
i ,L) to

(
∏

i∈IM
Ci
i ,L). �7.5

The following theorem gives a key sufficient condition for a pre-model of TR to be
isomorphic to a product randomization.

Theorem 7.6. Suppose M is a countable model of T and (
∏

i∈IM
Ai
i ,L) is a product

randomization in M. Let (K,A) be a countable part of (M[0,1),L) with closure P =
(Kcl,L). If K(t) ∼=Mi for each i ∈ I and t ∈ Ai, then P ∼= (

∏
i∈IM

Ai
i ,L).

Proof. By Remark 4.4 (iv), P is a pre-complete model of TR.
By hypothesis, A is dense in L. Then by Lemma 4.9, the closure Kcl of K is the set

of all f ∈ M[0,1) such that f(t) ∈ K(t) for almost all t. Let C be the set of all g ∈ Kcl
such that g(t) ∈ K(t) for all t. Then every f ∈ Kcl is at distance zero from an element
g ∈ C (take a g that agrees with f on a Borel set D of λ-measure one, and agrees with
an element of K on the complement of D). Thus K ⊆ C ⊆ Kcl, and C is dense in Kcl.

By Theorem 7.3, the set
∏

i∈I(Mi)
Ai is closed in M[0,1). Let D be the set of all

f ′ ∈
∏

i∈I(Mi)
Ai such that f ′(t) ∈ Mi for all i ∈ I and t ∈ Ai. Then each function in∏

i∈I(Mi)
Ai is at distance zero from some f ′ ∈ D, so D is dense in

∏
i∈I(Mi)

Ai .
We now show that the product randomization (

∏
i∈I(Mi)

Ai ,L) is isomorphic to P .
Let us list the elements of the countable set K, K = {f1, f2, . . .}. Let 〈g′1,g′2, . . .〉 be a
sequence that is dense in D.

Claim 1. There is a sequence 〈g1,g2, . . .〉 in C, and a sequence 〈f ′1, f ′2, . . .〉 in D, such
that for each n ∈ N,

(M[0,1),L, f1, . . . , fn,g1, . . . ,gn) ≡ (M[0,1),L, f ′1, . . . , f ′n,g′1, . . . ,g′n).

Claim 1 implies that there is an isomorphism

h : P ∼= (
∏
i∈I

(Mi)
Ai ,L)
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such that h(fn) = f ′n and h(gn) = g′n for each n, and hence P is isomorphic to (
∏

i∈I(Mi)
Ai ,L).

We will use a back-and forth construction, and argue by induction on n. We will
actually prove the following statement that is stronger than Claim 1:

Claim 2. There is a sequence 〈g1,g2, . . .〉 in C, and a sequence 〈f ′1, f ′2, . . .〉 in D, such
that the following statement S(n) holds for each n ∈ N:

For all i ∈ I and t ∈ Ai,

(K(t), (f1, . . . , fn,g1, . . . ,gn)(t)) ∼= (Mi, (f
′
1, . . . , f

′
n,g

′
1, . . . ,g

′
n)(t)).

It is clear that the displayed equation in Claim 1 follows from S(n), so Claim 2 implies
Claim 1.

Proof of Claim 2: Note that the statement S(0) just says that K(t) ∼= Mi for all
i ∈ I and t ∈ Ai, and is true by hypothesis. Let n ∈ N and assume that we already have
functions g1, . . . ,gn−1 in C and f ′1, . . . , f

′
n−1 in D such that the statement S(n− 1) holds.

Thus for each i ∈ I and each t ∈ Ai, there is an isomorphism

hit : (K(t), (f1, . . . , fn−1,g1, . . . ,gn−1)(t)) ∼= (Mi, (f
′
1, . . . , f

′
n−1,g

′
1, . . . ,g

′
n−1)(t)).

We will find functions gn ∈ C, f ′n ∈ D such that S(n) holds.
Some care is needed to insure that gn and f ′n are measurable. For instance, we cannot

simply take f ′n(t) = hit(fn(t)) for each i ∈ I and t ∈ Ai, because that function may not
be measurable.

Note that every function from [0, 1) into M that is constant on each set in a Borel
partition 〈Ck, k ∈ N〉 of [0, 1) belongs toM[0,1). Our plan will be to find a Borel partition
〈Ck, k ∈ N〉 that is a refinement of 〈Ai, i ∈ I〉, and functions gn, f

′
n : [0, 1)→M such that

gn(t) ∈ K(t) for all t, f ′(t) ∈Mi for all i ∈ I and t ∈ Ai, and all of the functions involved
are constant on each partition set Ck (this insures that gn ∈ C and f ′n ∈ D), and S(n)
holds.

SinceM is countable and each function inM[0,1) is Borel, there is a partition 〈Ej, j ∈ N〉
of [0, 1) into Borel sets and such that:

• for each j, each of the functions

f1, . . . , fn, f
′
1, . . . , f

′
n−1,g1, . . . ,gn−1,g

′
1, . . . ,g

′
n

is constant on Ej, and
• there is a function α : N→ I such for each j, Ej ⊆ Aα(j) (i.e., the Ej’s refine the
Ai’s.)).

Fix j ∈ N, consider a point t ∈ Ej, and let i = α(j). Then t ∈ Ai. Hence, by taking
b = hit(fn(t)) and c = h−1it (g′n(t)), we see that there exist b ∈Mi and c ∈ K(t) such that

(K(t), (f1, . . . , fn−1,g1, . . . ,gn−1)(t), fn(t), c) ∼= (Mi, (f
′
1, . . . , f

′
n−1,g

′
1, . . . ,g

′
n−1)(t), b,g

′
n(t)).

For each j ∈ N and b, c ∈ M , let C′(j, b, c) be the set of all t ∈ Ej such that c ∈ K(t),
b ∈Mi, and the above isomorphism relation holds. Then we always have C′(j, b, c) ⊆ Ej,
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and
[0, 1) =

⋃
{C′(j, b, c) : (j, b, c) ∈ N×M ×M}.

We now show that each of the sets C ′(j, b, c) is Borel. Let (j, b, c) ∈ N ×M ×M and
i = α(j). If b /∈Mi then C ′(j, b, c) = ∅, so we may assume that b ∈Mi. Since f−1(c) ∈ A
for each f ∈ K, there is a function c ∈ C such that c(t) = c whenever c ∈ K(t). Since
Ai is Borel and b ∈ Mi, there is a function b ∈ D such that b(t) = b whenever t ∈ Ai.
Therefore C′(j, b, c) is the set of all t ∈ Ej such that c ∈ K(t), b ∈Mi, and

(K(t), (f1, . . . , fn−1,g1, . . . ,gn−1, fn, c)(t)) ∼= (Mi, (f
′
1, . . . , f

′
n−1,g

′
1, . . . ,g

′
n−1),b,g

′
n)(t)).

Since M and K are countable, the set

{t : c ∈ K(t)} =
⋃
f∈K

f−1(c)

is Borel. It follows from Fact 2.12 and Lemma 4.11 on Lω1ω formulas that C′(j, b, c) is
Borel.

We now cut the family of Borel sets C′(·) down to a family of Borel sets C(·) that form
a partition of [0, 1). Let β be a bijection from the countable set N ×M ×M onto N,
and when k = β(j, b, c) put C′k = C ′(j, b, c). Let C0 = C′0 and Ck+1 = C′k+1 \

⋃
`≤k C`.

Then Ck is Borel, Ck ⊆ C′k for each k, and 〈Ck, k ∈ N〉 is a partition of [0, 1). We put
C(j, b, c) = Ck when k = β(j, b, c).

Let f ′n be the function that has the constant value b on each set C(j, b, c), and let gn be
the function that has the constant value c on each set C(j, b, c). Then f ′n and gn are Borel
and thus belong to M[0,1), and we have f ′n ∈ D and gn ∈ C. The construction insures
that the functions f ′n and gn satisfy the condition S(n). This completes the induction
and proves Claim 2.

Therefore Claim 1 holds. As we have already observed, it follows that P is isomorphic
to the product randomization (

∏
i∈I(Mi)

Ai ,L). �7.6

8. Theories with ≤ ω Countable Models

We will say that a theory T has ≤ ω countable models if there is a finite or countable
set S of countable models of T such that every countable model of T is isomorphic to
some member of S. Our main result in this section, Theorem 8.6, will characterize all
the separable models of TR when T has ≤ ω countable models.

Note that if T has ≤ ω countable models, then
⋃
n Sn(T ) is obviously countable, so T

has a countable saturated model by Fact 2.11.
We now give some examples of theories with ≤ ω countable models. In Section 9 we

will be interested in theories with the additional property that all countable models are
homogeneous, so we will keep track of that property here.

Examples 8.1. In each of the following cases, T has ≤ ω countable models, and every
countable model of T is homogeneous.
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• T is ω-categorical.
• T is ω1-categorical (Baldwin and Lachlan [BL]).
• T is the complete theory of an equivalence relation.
• T is the complete theory of a unary function in which all elements have the same

number of pre-images.
• T is the complete theory of a module, is ω-stable, and has ≤ ω countable models

(Garavaglia [Ga]).
• T is the disjoint union of countably many ω-categorical relational theories T0, T1, . . .

4.
In this case the countable models of T are characterized by the number of elements
outside the union.

Examples 8.2. In each of the following cases, T has ≤ ω countable models, but T may
have countable models that are not homogeneous.

• T has Morley rank at most 2 (Cutland [Cu]).
• T is the complete theory of a structureM~a, whereM is a model of a theory with
≤ ω countable models, and ~a is a finite tuple in M.
• (Ehrenfeucht, first published in [Va]) T is the theory of the rationals with order

and a constant symbol for each natural number. This theory has three countable
models up to isomorphism.
• T is the disjoint union of finitely many relational theories each with ≤ ω countable

models.
• For some complete relational theory U with finitely many countable models, T is

the theory of an equivalence relation such that the restriction to each equivalence
class is a model of U .

Remark 8.3. Vaught’s Conjecture, that any theory with < 2ω countable models has
≤ ω countable models, has been proved for many special classes of theories (e.g. see
Buechler [Bue], Mayer [May], Shelah et.al. [SHM], and Steel [St]).

We now turn to our main result in this section, Theorem 8.6.
The next lemma shows that when T has ≤ ω countable models, every separable model

of TR can be represented as a product randomization of countable models of T .

Lemma 8.4. Suppose T has ≤ ω countable models, and let M be a countable saturated
model of T . Then every separable model N of TR is isomorphic to a product random-
ization (

∏
i∈IM

Ai
i ,L) in M. Moreover, the models Mi can be taken to be pairwise

non-isomorphic.

Proof. By Proposition 5.7, N is strongly separable. Then N is elementarily embeddable
in the Borel randomization of some countable model of T . Every countable model of T
is elementarily embeddable in M, so by Remark 2.3, N is elementarily embeddable in

4The disjoint union of T1, T2, . . . is the complete theory of a disjoint union of models of T1, T2, . . . with
disjoint signatures and an extra unary predicate symbol for each universe
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(M[0,1),L), and hence N is isomorphic to a pre-complete model P ≺ (M[0,1),L). By
Theorem 4.5, we may take P so that its event sort is L. By Lemma 4.7, there is a
countable part (K,A) of (M[0,1),L) that is dense in P . By Remark 4.4 (iv), P ∼= Pcl.
We may therefore take P so that P = Pcl = (Kcl,Acl).

Since T has ≤ ω countable models and M is countable saturated, there is a finite
or countable set {Mi : i ∈ I} of elementary submodels Mi ≺ M such that for every
countable model H |= T there is a unique i ∈ I with H ∼=Mi. Then theMi are pairwise
non-isomorphic. By Fact 2.12, for each i ∈ I there is an Lω1ω sentence ϕi that defines
Mi. Then by Lemma 4.11, for each i ∈ I the set

Ai = {t ∈ [0, 1) : K(t) ∼=Mi} = {t ∈ [0, 1) : K(t) |= ϕi}

is Borel, and by Lemmas 4.8 and 4.9, the countable part (K,A) can be taken so that the
sets {Ai : i ∈ I} form a partition of [0, 1).

Therefore, by Theorem 7.6,

N ∼= P ∼= (
∏
i∈I

(Mi)
Ai ,L).

�8.4

Our next theorem will show that when T has ≤ ω countable models, the separable
models of TR are characterized up to isomorphism by a countable family of real numbers
that assign a probability to each isomorphism type of countable models of T .

Given a theory T with ≤ ω countable models, we letM(T ) be the countable saturated
model of T , which is unique up to isomorphism. The isomorphism type of a model
H ≺ M(T ) is the set of all elementary submodels of M(T ) that are isomorphic to H,
and we let I(T ) be the set of all isomorphism types of elementary submodels of M(T ).
The set I(T ) is finite or countable, and a (probability) density function on I(T ) is a
function ρ : I(T ) → [0, 1] such that

∑
i∈I(T ) ρ(i) = 1. We will show that each separable

model of T is characterized up to isomorphism by a density function on I(T ).

Definition 8.5. Let N be a separable model of TR. A density function for N is a
density function ρ on I(T ) such that N is isomorphic to some product randomization

(
∏
i∈I(T )

(Mi)
Ai ,L)

in M(T ) where Mi has isomorphism type i and λ(Ai) = ρ(i) for each i ∈ I(T ).

Theorem 8.6. (Representation Theorem) Suppose that T has ≤ ω countable models.

(i) Every separable model of TR has a unique density function;
(ii) any two separable models of TR with the same density function are isomorphic;

(iii) for every density function ρ on I(T ), there is a separable model N of TR with
density function ρ.
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Proof. (ii) follows from Theorem 7.5, and (iii) follows from Theorem 7.3.
(i) Let N be a separable model of TR. We show that N has a density function.

By Lemma 8.4, there is a product randomization (
∏

j∈J(Mj)
Bj ,L) in M(T ) that is

isomorphic to N , and the models Mj are pairwise non-isomorphic. We may then take
J to be a subset of I(T ), so Mj belongs to the isomorphism type j for each j ∈ J .
Put Ai = Bi for i ∈ J , and Ai = ∅ for i ∈ I(T ) \ J . Then [0, 1) =

⋃
i∈I(T ) Ai is a

partition of [0, 1) into Borel sets, and (
∏

j∈J(Mj)
Bj ,L) is equal to (

∏
i∈I(T )(Mi)

Ai ,L), so

N is isomorphic to the product randomization (
∏

i∈I(T )(Mi)
Ai ,L). Hence the function

ρ : i 7→ λ(Ai) is a density function for N .
The uniqueness of the density function for N is a consequence of the general result

below, Theorem 8.8. �8.6

Remark 8.7. For a given density function ρ on I(T ), the Borel sets Ai can always be
taken to be intervals. If � is a well ordering of I(T ), we may take Ai to be the interval
[ri, si) where ri =

∑
j� i ρ(j) and si = ri + ρ(i), so the model with density function ρ will

be isomorphic to the product randomization

(
∏
i∈I(T )

(Mi)
[ri,si),L).

In the motivating case where T is an ω1-categorical theory, it is natural to take the set
of isomorphism types to have order type ω + 1, where for each k ≤ ω, ik is the class of
models of dimension k.

We now prove a uniqueness result for product randomizations that applies to all com-
plete first order theories T .

Theorem 8.8. (Uniqueness) Let M be a countable model of T and let I be a finite or
countable set. Suppose that

• Mi ≺M for each i ∈ I;
• the models Mi are pairwise non-isomorphic;
• [0, 1) =

⋃
i∈I Bi and [0, 1) =

⋃
i∈I Ci are partitions of [0, 1) into Borel sets;

• (
∏

i∈I(Mi)
Bi ,L) and (

∏
i∈I(Mi)

Ci ,L) are isomorphic.

Then λ(Bi) = λ(Ci) for each i ∈ I.

Proof. By Theorem 7.3, P = (
∏

i∈I(Mi)
Bi ,L) and P ′ = (

∏
i∈I(Mi)

Ci ,L) are pre-complete

elementary substructures of (M[0,1),L). By hypothesis, there is an isomorphism h : P ∼=
P ′. By Lemma 4.7, there is a countable part (K,A) of (M[0,1),L) that is dense in P . We
may also take (K,A) so that

{Bi : i ∈ I} ∪ {h−1(Ci) : i ∈ I} ⊆ A.

It follows that the image (J , h(A)) = h(K,A) is a countable part of (M[0,1),L) that is
dense in P ′.
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Claim. For each i ∈ I we have K(t) = Mi for almost all t ∈ Bi, and J(t) = Mi for
almost all t ∈ Ci.

Proof of Claim: For each f ∈ K we have f(t) ∈Mi for almost all t ∈ Bi, so K(t) ⊆Mi

for almost all t ∈ Bi. Let c ∈ Mi. There exists a g ∈
∏

i∈I(Mi)
Bi that has the constant

value c on Bi. Since (K,A) is dense in P , we have c ∈ K(t) for almost all t ∈ Bi. Since
Mi is countable, it follows that Mi ⊆ K(t) for almost all t ∈ Bi. This proves the Claim.

By Fact 2.12, for each i ∈ I there is an Lω1ω sentence ϕi that definesMi. Since theMi

are pairwise non-isomorphic, we have Mj |= ϕi if and only if j = i. By Lemma 4.11, for
each i ∈ I the set {t : K(t) |= ϕi} is Borel, and λ(Bi4{t : K(t) |= ϕi}) = 0. Similarly,
{t : J (t) |= ϕi} is Borel, and λ(Ci4{t : J (t) |= ϕi}) = 0. We see by induction on
complexity that for each Lω1ω formula ψ(v1, . . . , vn), and n-tuple (f1, . . . , fn) in K,

λ({t : K(t) |= ψ(f1(t), . . . fn(t))}) = λ({t : J (t) |= ψ(hf1(t), . . . hfn(t))}).

Therefore for each i ∈ I we have

λ(Bi) = λ({t : K(t) |= ϕi}) = λ({t : J (t) |= ϕi}) = λ(Ci).

�8.8

9. Homogeneity and Minimality over Events

In this section we will introduce the notion of a TR-structure being homogeneous over
events, which is weaker than being homogeneous, and the notion a prime TR-structure
being minimal over events, which is weaker than being minimal. We will see that a prod-
uct randomization of countable homogeneous models of T is not always homogeneous,
but is always homogeneous over events. Also, no prime model of TR is minimal, but the
Borel randomization of a prime minimal model of T is minimal over events.

9.1. Homogeneity over Events. In the next paragraph we will define the notion of a
TR-structure being homogeneous over events. In Examples 8.1 we listed some first order
theories with ≤ ω countable models in which every countable model is homogeneous. On
the other hand, we will see in Theorem 9.5 that unless T is ω-categorical, TR will have
continuum many non-isomorphic separable models that are homogeneous over events but
not homogeneous.

Definition 9.1. Two n-tuples~f , ~g inK realize the same type over events if tp(~f , ~B)N =

tp(~g, ~B)N for every tuple ~B in B. N is homogeneous over events if for every pair of

n-tuples ~f , ~g in K that realize the same type over events in N , and every f ′ in K, there

exists g′ in K such that (~f , f ′) and (~g,g′) realize the same type over events in N .

Remark 9.2. If P is a separable pre-complete model of TR, then P is homogeneous, or
homogeneous over events, if and only if its completion is.
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Theorem 9.3. (i) Every product randomization of countable homogeneous models of T
is homogeneous over events.

(ii) Suppose M is a countable model of T , P = (
∏

i∈I(Mi)
Bi ,L) is a product random-

ization in M, and P is homogeneous over events. Then for each i ∈ I with λ(Bi) > 0,
Mi is homogeneous.

Proof. (i) Let M be a countable model of T and let P = (
∏

i∈NM
Bi
i ,L), where each

Mi ≺M is countable homogeneous. P is pre-complete by Theorem 7.3. We must show

that P is homogeneous over events. Let ~f , ~g be n-tuples in
∏

iM
Bi
i which have the same

type over events in P , and let f ′ ∈
∏

iM
Bi
i . There is a partition Cm,m ∈ N of [0, 1) such

that each Cm belongs to L and ~f , ~g, f ′ are constant on Cm. Then for each m ∈ N and
i ∈ I,

tp(~f ,Bi ∩ Cm)P = tp(~g,Bi ∩ Cm)P .

Hence for each first order formula ϕ(~x),

µ[Jϕ(~f)K u (Bi ∩ Cm)] = µ[Jϕ(~g)K u (Bi ∩ Cm)].

It follows that whenever λ(Bi∩Cm) > 0, the constant values of~f(t) and ~g(t) for t ∈ Bi∩Cm
must realize the same type in Mi. Since each Mi is countable homogeneous, for each
(i,m) there is an element c(i,m) ∈Mi such that whenever t ∈ Bi∩Cm and λ(Bi∩Cm) > 0,

(M,~f(t), f ′(t)) ≡ (M, ~g(t), c(i,m)). Let g′ be the function that has the constant value

c(i,m) on each set Bi∩Cm. Then g′ ∈
∏

i∈I(Mi)
Bi , and (~f , f ′) and (~g,g′) realize the same

type over events in P . It follows that P is homogeneous over events.
(ii) Suppose that for some i ∈ I, λ(Bi) > 0 but Mi is not homogeneous. Then there

are tuples ~a,~b and an element c in Mi such that (Mi,~a) ≡ (Mi,~b) but there is no d in

Mi such that (Mi,~b, d) ≡ (Mi,~a, c). Let ~f , ~g,h be functions in
∏

i∈I(Mi)
Bi such that:

• ~f(t) = ~a, ~g(t) = ~b, and h(t) = c for all t ∈ Bi;

• ~f(t) = ~g(t) for all t ∈ [0, 1) \ Bi.
Then f ,g realize the same type over events in P , but there is no h′ in

∏
i∈I(Mi)

Bi such
that

tp(~g,h′,Bi)
P = tp(~f ,h,Bi)

P .

This contradicts the hypothesis that P is homogeneous over events. �9.3

Corollary 9.4. Suppose T has ≤ ω countable models. Then every countable model of T
is homogeneous if and only if every separable model of TR is homogeneous over events.

Theorem 9.5. If T is not ω-categorical, then TR has continuum many non-isomorphic
separable models that are homogeneous over events but not homogeneous.

Proof. If Sn(T ) is countable for each n, then by Facts 2.11 and 3.1, T has a prime model
M1 and a countable saturated model M2. These models are countable homogeneous,
and M1 ≺ M2 but there is a type p ∈ Sn(T ) that is realized in M2 but not in M1. If
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Sn(T ) is uncountable for some n, then by Fact 2.10, T again has two countable homo-
geneous models M1 and M2 such that M1 ≺ M2 and some type p ∈ Sn(T ) is realized
in M2 but not in M1. In either case, for each r ∈ (0, 1) let Pr be the product random-
ization ((M1)

[0,r)× (M2)
[r,1),L). By Theorems 7.3 and 9.3, each Pr is pre-complete and

homogeneous over events. By Theorem 8.8, the pre-models Pr, r ∈ (0, 1) are pairwise
non-isomorphic.

We show that for 0 < r < 1, Pr is not homogeneous. Let a, b ∈ M1 with a 6= b. Let a
be the constant function with value a. Let f ,g be the functions such that f maps [0, r)
to a and [r, 1) to b, and g maps [1− r, 1) to a and [0, 1− r) to b. Then (a, f) and (a,g)

have the same type in Pr. There is a tuple ~h in Pr such that ~h(t) realizes p whenever

f(t) 6= a(t). But there cannot be a tuple ~h′ in Pr such that ~h′(t) realizes p whenever

g(t) 6= a(t), so there cannot be a tuple ~h′ in Pr such that (a,g, ~h′) has the same type as

(a, f , ~h) in Pr. Therefore Pr is not homogeneous. �9.5

9.2. Minimality over Events. In this subsection we answer a question posed by the
anonymous referee. Recall that by Proposition 3.5, TR cannot have a prime model that
is minimal. The referee asked whether TR can have a prime model that is minimal over
events.

Definition 9.6. A prime model N of TR is minimal over events if every elementary
submodel of N that contains all the events of N is equal to N .

Theorem 9.7. Let M be a prime model of T . Then M is minimal if and only if the
completion of (M[0,1),L) is minimal over events.

Proof. (M[0,1),L) is prime by Lemma 3.3.
Suppose first thatM is not minimal. Then there is a modelH ≺M such thatH 6=M,

so there is an element a ∈M \H. By Remark 2.3 we have (H[0,1),L) ≺ (M[0,1),L), and
the constant function with value a is a distance one from every element of H[0,1), so the
completion of (M[0,1),L) is not minimal over events.

Now suppose that the completion of (M[0,1),L) is not minimal over events. Then
there is a pre-complete (K,L) ≺ (M[0,1),L) and an element f ∈M[0,1) \Kcl. By Fact 2.6,
(K,L) has perfect witnesses, so by Lemma 4.7, (M[0,1),L) has a countable part (K0,A)
that is dense in (K,L). Then Kcl0 = Kcl and A0 is dense in L. By Lemma 4.9, it is not
true that f(t) ∈ K0(t) for almost all t ∈ [0, 1), but by Lemma 4.8, we have K0(t) ≺ M
for almost all t ∈ [0, 1). Therefore there exists t ∈ [0, 1) such that f(t) ∈ M \ K0(t) and
K0(t) ≺M. Hence M is not minimal. �9.7

Corollary 9.8. T has a prime model that is minimal if and only if TR has a prime model
that is minimal over events.

Proof. The forward direction follows at once from Theorem 9.7. For the converse, suppose
N is a prime model of TR that is minimal over events. By Theorem 3.4 (ii), N is
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isomorphic to (M[0,1),L) for some prime model M of T . Then by Theorem 9.7, M is
minimal. �9.8
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