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Abstract. In 1970, Morley introduced the notion of a sentence ϕ of the infinitary logic
Lω1ω being scattered. He showed that if ϕ is scattered then the class I(ϕ) of isomorphism
types of countable models of ϕ has cardinality at most ℵ1, and if ϕ is not scattered then
I(ϕ) has cardinality continuum. The absolute form of Vaught’s conjecture for ϕ says that
if ϕ is scattered then I(ϕ) is countable. Generalizing previous work of Ben Yaacov and
the author, we introduce here the notion of a separable randomization of ϕ, which is a
separable continuous structure whose elements are random elements of countable models
of ϕ. We improve a result by Andrews and the author, showing that if I(ϕ) is countable
then ϕ has few separable randomizations, that is, every separable randomization of ϕ
is isomorphic to a very simple structure called a basic randomization. We also show
that if ϕ has few separable randomizations, then ϕ is scattered. Hence if the absolute
Vaught conjecture holds for ϕ, then ϕ has few separable randomizations if and only if
I(ϕ) is countable, and also if and only if ϕ is scattered. Moreover, assuming Martin’s
axiom for ℵ1, we show that if ϕ is scattered then ϕ has few separable randomizations.

1. Introduction

The notion of a scattered sentence ϕ of the infinitary logic Lω1ω was introduced by
Michael Morley [13] in connection with Vaught’s conjecture. The notion of a random-
ization was introduced by the author in [10] and developed in the setting of continuous
model theory by Itäı Ben Yaacov and the author in [6]. The pure randomization the-
ory is a continuous theory with a sort K for random elements and a sort E for events,
and a set of axioms that say that there is an event corresponding to each first order for-
mula with random elements in its argument places, and there is an atomless probability
measure on the events. By a separable randomization of a first order theory T we
mean a separable model of the pure randomization theory in which each axiom of T has
probability one.

In [1], Uri Andrews and the author showed that if T is a complete theory with at
most countably many countable models up to isomorphism, then T has few separable
randomizations, which means that all of its separable randomizations are very simple
in a sense explained below. In this paper we generalize that result by replacing the
theory T with an infinitary sentence ϕ, and establish relationships between sentences
with countably many countable models, scattered sentences, sentences with few separable
randomizations, and Vaught’s conjecture.
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Let ϕ be a sentence of Lω1ω whose models have at least two elements, and let I(ϕ) be
the class of isomorphism types of countable models of ϕ. In [13], Morley showed that if
ϕ is scattered then I(ϕ) has cardinality at most ℵ1, and if ϕ is not scattered then I(ϕ)
has cardinality continuum. The absolute form of Vaught’s conjecture for ϕ says that if
ϕ is scattered then I(ϕ) is at most countable.

In the version of continuous model theory developed in [5], the universe of a structure
is a complete metric space with distance playing the role of equality, and formulas take
values in the unit interval [0, 1] with 0 interpreted as true. A model is separable if its
universe has a countable dense subset. The randomization signature LR has two
sorts, K for random elements and E for events. LR has a function symbol Jψ(·)K of sort
Kn → E for each first order formula ψ(~v) with n free variables. The continuous term

Jψ(~f)K is interpreted as the event that the formula ψ(~v) is satisfied by the n-tuple ~f of
random elements. In the event sort E, LR has the Boolean operations and a predicate µ.
The continuous formula µ(E) takes values in [0, 1] and is interpreted as the probability
of the event E.

In Theorem 5.1 we show that in any separable model of the pure randomization the-
ory, the function Jψ(·)K can be extended in a natural way from the case that ψ(~v) is
a first order formula to the case that ψ(~v) is a formula of Lω1ω. We can then define a
separable randomization of an infinitary sentence ϕ to be a separable model of the
pure randomization theory in which JϕK has probability one.

A basic randomization of ϕ is a very simple kind of separable randomization of
ϕ that is determined up to isomorphism by taking a countable subset J ⊆ I(ϕ) and
assigning a probability ρ(j) to each j ∈ J . A basic randomization of ϕ has a model
Mj of isomorphism type j for each j ∈ J , and a partition of [0, 1) into Borel sets Bj of
measure ρ(j). The events are the Borel subsets of [0, 1) with the usual measure, and the
random elements are the Borel functions that send Bj into Mj for each j ∈ J .

We say that ϕ has few separable randomizations if every separable randomization
of ϕ is isomorphic to a basic randomization of ϕ.

In Theorem 9.6, we show that if I(ϕ) is countable, then ϕ has few separable random-
izations. In Theorem 10.1 we show that if ϕ has few separable randomizations, then ϕ
is scattered. Therefore, if the absolute form of Vaught’s conjecture holds for ϕ, then ϕ
has few separable randomizations if and only if I(ϕ) is countable, and also if and only
if ϕ is scattered. In Theorem 10.3 we show that if Martin’s axiom for ℵ1 holds and ϕ is
scattered, then ϕ has few separable randomizations.

Section 2 reviews some results we need in the literature about scattered sentences
and Vaught’s conjecture. Section 3 contains a review of some previous results about
randomizations. In Section 4 we introduce the basic randomizations of ϕ. In Section
5 we introduce the separable randomizations of ϕ. In Section 6 we develop a key tool
for constructing separable randomizations, called a countable generator, and in Section
7 we show that every separable randomization of ϕ is isomorphic to one that can be
constructed in that way. In Section 8 we show that every separable randomization of ϕ
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can be elementarily embedded in some basic randomization if and only if only countably
many first order types are realized in countable models of ϕ. The methods developed
in Sections 6 through 8 are used to prove our main results are in Sections 9 and 10. In
Section 11 we list some open questions that are related to our results.

2. Scattered Sentences

We fix a countable1 first order signature L, and all first order structures mentioned
are understood to have signature L. We refer to [9] for the infinitary logic Lω1ω. Note
in particular that every formula of Lω1ω has at most finitely many free variables. By
a countable fragment LA of Lω1ω we mean a countable set of formulas of Lω1ω that
contains the first order formulas and is closed under subformulas, finite Boolean combi-
nations, quantifiers, and change of free variables.

In general, the class of countable first order structures is a proper class. To avoid this
problem, let M(L) be the class of countable structures with signature L, whose universe
is N or an initial segment of N. Then M(L) is a set, and every countable structure is
isomorphic to some element of M(L). We define the isomorphism type of a countable
structure M to be the set of all H ∈M(L) such that H is isomorphic to M.

Consider a sentence ϕ of Lω1ω that has at least one model. By the Löwenheim-Skolem
Theorem, ϕ has at least one countable model. We let I(ϕ) be the set of all isomorphism
types of countable models of ϕ. By a Scott sentence for a countable structure M we
mean an Lω1ω sentence θ such that M |= θ, and every countable model of θ is isomorphic
to M.

Result 2.1. (Scott’s Theorem, [15]) Every countable structure has a Scott sentence.

We let I be the set of all isomorphism types of countable structures of cardinality ≥ 2.
Thus I = I((∃x)(∃y)x 6= y). For each i ∈ I, we choose once and for all a Scott sentence θi
for the countable models of isomorphism type i. We say that two countable L-structures
M,H are α-equivalent if they satisfy the same Lω1ω-sentences of quantifier rank at most
α. By Scott’s theorem, M and H are isomorphic if and only if they are α-equivalent for
all countable α.

Several equivalent characterizations of scattered sentences were given in [4]. We will
take one of these as our definition.

Definition 2.2. An Lω1ω sentence ϕ is scattered if for each countable ordinal α, there
are at most countably many α-equivalence classes of countable models of ϕ. A first order
theory T is scattered if the sentence

∧
T is scattered.

Result 2.3. (Morley [13]) If ϕ is scattered then I(ϕ) has cardinality at most ℵ1, and if
ϕ is not scattered than I(ϕ) has cardinality 2ℵ0.

1In this paper, “countable” means “of cardinality at most ℵ0”.
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The Vaught conjecture for ϕ ([18]) says that I(ϕ) is either countable or has car-
dinality 2ℵ0 . The absolute Vaught conjecture for ϕ (see Steel [17]) says that if ϕ is
scattered, then I(ϕ) is countable. It is called absolute because its truth does not depend
on the underlying model of ZFC. In ZFC +GCH the Vaught conjecture trivially holds
for all ϕ. In ZFC + ¬CH, the absolute Vaught conjecture for ϕ is equivalent to the
Vaught conjecture for ϕ.

Definition 2.4. (Morley [13]) An enumerated structure (M, a) is a countable struc-
ture M with signature L together with a mapping a from N onto the universe M of
M.

Consider a countable fragment LA and an enumerated structure (M, a). We take 2LA

to be the Polish space whose elements are the functions from LA into {0, 1}. We say that
a point t ∈ 2LA codes (M, a) if for each formula ψ ∈ LA with at most the free variables
v0, . . . , vn−1, t(ψ) = 0 if and only if M |= ψ(a0, . . . , an−1). Note that each enumerated
structure is coded by a unique t ∈ 2LA .

The lemma below is a variant of Theorem 3.3 in [4], and follows from its proof.

Lemma 2.5. Let ϕ be a sentence of Lω1ω. The following are equivalent:

(i) ϕ is not scattered.
(ii) There is a countable fragment LA of Lω1ω and a perfect set P ⊆ 2LA such that

each t ∈ P codes an enumerated model (M(t), a(t)) of ϕ, and if s 6= t in P then
M(s) and M(t) do not satisfy the same LA-sentences.

3. Randomizations of Theories

3.1. Continuous Structures. We assume familiarity with the basic notions about con-
tinuous model theory as developed in [5]. We give some brief reminders here.

In continuous model theory, the universe of a structure is a complete metric space, and
the universe of a pre-structure is a pseudo-metric space. A structure (or pre-structure) is
said to be separable if its universe is a separable metric space (or pseudo-metric space).
Formulas take truth values in [0, 1], and are built from atomic formulas using continuous
connectives on [0, 1] and the quantifiers sup, inf. The value 0 in interpreted as truth, and
a model of a set U of sentences is a continuous structure in which each Φ ∈ U has truth
value 0.

We extend the notions of embedding and elementary embedding to pre-structures in
the natural way. Given pre-structures P, N, we write h : P ≺ N (h is an elementary
embedding) if h preserves the truth values of all formulas. If h : P ≺ N where h is
the inclusion mapping, we write P ≺ N and say that P is an elementary submodel
of N (leaving off the ‘pre-’ for brevity). If h : P ≺ N, h preserves distance but is not
necessarily one-to-one. Note that compositions of elementary embeddings are elementary
embeddings. We write h : P ∼= N if h : P ≺ N and every element of N is at distance
zero from some element of h(P). We say that P and N are isomorphic, and write
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P ∼= N, if h : P ∼= N for some h. By Remark 2.4 of [1], ∼= is an equivalence relation on
pre-structures.

We call N a reduction of P if N is obtained from P by identifying elements at distance
zero, and call N a completion of P if N is a structure obtained from a reduction of
P by completing the metrics. Every pre-structure has a reduction, that is unique up
to isomorphism. The mapping that identifies elements at distance zero is called the
reduction mapping, and is an isomorphism from a pre-structure onto its reduction.
Similarly, every pre-structure P has a completion, that is unique up to isomorphism, and
the reduction map is an elementary embedding of P into its completion.

Following [6], we say that P is pre-complete if the metrics in a reduction of P are
already complete. Thus if P is pre-complete, the reductions and completions of P are the
same, and P is isomorphic to its completion.

3.2. Randomizations. We assume that:

• L is a countable first order signature.
• T2 is the theory with the single axiom (∃x)(∃y)x 6= y.
• T is a theory with signature L that contains T2.
• ϕ is a sentence of Lω1ω that implies T2.

Note that T2 is just the theory whose models have at least two elements, and I(ϕ) ⊆
I(T2) = I. The randomization theory of T is a continuous theory TR whose signature
LR has two sorts, a sort K for random elements of models of T , and a sort E for events in
an underlying probability space. The probability of the event that a first order formula
holds for a tuple of random elements will be expressible by a formula of continuous logic.
The signature LR has an n-ary function symbol Jθ(·)K of sort Kn → E for each first order
formula θ of L with n free variables, a [0, 1]-valued unary predicate symbol µ of sort E
for probability, and the Boolean operations >,⊥,u,t,¬ of sort E. The signature LR

also has distance predicates dE of sort E and dK of sort K. In LR, we use B,C, . . . for
variables or parameters of sort E, and B

.
= C means dE(B,C) = 0. For readability we

write ∀,∃ for sup, inf.
The axioms of TR, which are taken from [6], are as follows:

Validity Axioms
∀~x(Jψ(~x)K .

= >)

where ∀~xψ(~x) is logically valid in first order logic.
Boolean Axioms The usual Boolean algebra axioms in sort E, and the statements

∀~x(J(¬θ)(~x)K .
= ¬Jθ(~x)K)

∀~x(J(ϕ ∨ ψ)(~x)K .
= Jθ(~x)K t Jψ(~x)K)

∀~x(J(θ ∧ ψ)(~x)K .
= Jθ(~x)K u Jψ(~x)K)

Distance Axioms

∀x∀y dK(x, y) = 1− µJx = yK, ∀B∀C dE(B,C) = µ(B4C)
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Fullness Axioms (or Maximal Principle)

∀~y∃x(Jθ(x, ~y)K .
= J(∃xθ)(~y)K)

Event Axiom
∀B∃x∃y(B

.
= Jx = yK)

Measure Axioms

µ[>] = 1 ∧ µ[⊥] = 0

∀B∀C(µ[B] + µ[C] = µ[B t C] + µ[B u C])

Atomless Axiom
∀B∃C(µ[B u C] = µ[B]/2)

Transfer Axioms

JθK .
= >

where θ ∈ T .

By a separable randomization of T we mean a separable pre-model of TR. In this
paper we will focus on the pure randomization theory TR2 . TR2 has the single transfer
axiom J(∃x)(∃y)x 6= yK .

= >. Note that for any theory T ⊇ T2, any model of TR is a
model of the pure randomization theory. By a separable randomization we mean a
separable randomization of TR2 . A separable randomization is called complete if it is a
model of TR2 , and pre-complete if it is a pre-complete model of TR2 .

We will use M,H to denote models of T2 with signature L, and use N and P to denote
models or pre-models of TR2 with signature LR. The universe of M will be denoted by
M . A pre-model of TR2 will be a pair N = (K,E) where K is the part of sort K and E is

the part of sort E. We write Jθ(~f)KN for the interpretation of Jθ(~v)K in a pre-structure N

at a tuple ~f , and write Jθ(~f)K for Jθ(~f)KN when N is clear from the context.

Result 3.1. ([6], Theorem 2.7) Every model or pre-complete model N = (K,E) of TR2
has perfect witnesses, i.e.,

(i) for each first order formula θ(x, ~y) and each ~g in Kn there exists f ∈ K such that

Jθ(f , ~g)K .
= J(∃xθ)(~g)K;

(ii) for each B ∈ E there exist f ,g ∈ K such that B
.
= Jf = gK.

We let L be the family of Borel subsets of [0, 1), and let ([0, 1),L, λ) be the usual
probability space, where λ is the restriction of Lebesgue measure to L. We let M[0,1) be
the set of functions with countable range from [0, 1) into M such that the inverse image
of any element of M belongs to L. The elements of M[0,1) are called random elements
of M.
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Definition 3.2. The Borel randomization of M is the pre-structure (M[0,1),L) for
LR whose universe of sort K is M[0,1), whose universe of sort E is L, whose measure µ is
given by µ(B) = λ(B) for each B ∈ L, and whose Jψ(·)K functions are

Jψ(~f)K = {t ∈ [0, 1) : M |= ψ(~f(t))}.

(So Jψ(~f)K ∈ L for each first order formula ψ(~v) and tuple ~f in M[0,1)). Its distance
predicates are defined by

dE(B,C) = µ(B4C), dK(f ,g) = µ(Jf 6= gK),

where 4 is the symmetric difference operation.

Result 3.3. ([6], Corollary 3.6) Every Borel randomization of a countable model of T2 is
a pre-complete separable randomization (in other words, a pre-complete separable model
of TR2 ).

Result 3.4. ([1], Theorem 4.5) Suppose N is pre-complete and elementarily embeddable
in the Borel randomization (M[0,1),L) of a countable model of T2. Then N is isomorphic
to an elementary submodel of (M[0,1),L) whose event sort is all of L.

4. Basic Randomizations

Basic randomizations are generalizations of Borel randomizations. They are very sim-
ple continuous pre-structures of sort LR. Intuitively, a basic randomization is a combi-
nation of countably many Borel randomizations of first order structures. [1] considered
basic randomizations that are combinations of Borel randomizations of models of a single
complete theory T , and called them called product randomizations.

Definition 4.1. Suppose that

• J is a countable subset of I;
• [0, 1) =

⋃
j∈J Bj is a partition of [0, 1) into Borel sets of positive measure;

• for each j ∈ J , Mj has isomorphism type j;

•
∏

j∈J M
Bj

j is the set of all functions f : [0, 1)→
⋃
j∈JMj such that for all j ∈ J ,

(∀t ∈ Bj)f(t) ∈Mj and (∀a ∈Mj){t ∈ Bj : f(t) = a} ∈ L;

• (
∏

j∈J M
Bj

j ,L) is the pre-structure for LR whose whose measure and distance

functions are as in Definition 3.2. and Jψ(·)K functions are

Jψ(~f)K =
⋃
j∈J

{t ∈ Bj : Mj |= ψ(~f(t))},

(
∏

i∈J M
Bi
i ,L) is called a basic randomization. Given a basic randomization, we let

Mt = Mj whenever j ∈ J and t ∈ Bj. By a basic randomization of ϕ we mean a
basic randomization such that Mj |= ϕ for each j ∈ J .

Remark 4.2.
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(1) In a basic randomization, the set
⋃
j∈JMj is countable, so each f ∈

∏
j∈J M

Bj

j

has countable range.

(2) If Mj
∼= Hj for each j ∈ J , then (

∏
j∈J M

Bj

j ,L) ∼= (
∏

j∈J H
Bj

j ,L).

(3) Every basic randomization (
∏

j∈J M
Bj

j ,L) is isomorphic to a basic randomization

(
∏

j∈J H
Bj

j ,L) such that for each j ∈ J , Hj ∈ M(L) (so the universe of Hj is N
or an initial segment of N).

(4) If Mj ≺ Hj for each j ∈ J , then (
∏

j∈J M
Bj

j ,L) ≺ (
∏

j∈J H
Bj

j ,L). (In this part

we do not require that Hj has isomorphism type j).

Lemma 4.3. Every basic randomization P = (
∏

j∈J M
Bj

j ,L) is a pre-model of the pure
randomization theory.

Proof. All of the axioms for TR2 except the Fullness Axioms hold trivially. Therefore P

is a pseudo-metric space in both sorts. By Result 3.3, (M
[0,1)
j ,L) satisfies the Fullness

Axioms for each j ∈ J , and it follows easily that P also satisfies the Fullness Axioms,
and thus is a pre-model of TR2 . �4.3

We next introduce useful mappings from a basic randomization (
∏

j∈J M
Bj

j ,L) to the

Borel randomizations (M
[0,1)
j ,L).

Definition 4.4. Suppose B ∈ L and λ(B) > 0. We say that a mapping ` stretches B
to [0, 1) if ` is a Borel bijection from B to [0, 1), `−1 is also Borel, and for each Borel set
A ⊆ B, λ(`(A)) = λ(A)/λ(B).

Let P = (
∏

j∈J M
Bj

j ,L) be a basic randomization, and for each j ∈ J , choose an `j

that stretches Bj to [0, 1). Define the mapping `j : P→ (M
[0,1)
j ,L) by

(`j(f))(t) = f(`−1
j (t)), `j(E) = `j(Bj ∩ E).

Remark 4.5. Let P = (
∏

j∈J M
Bj

j ,L) be a basic randomization.

(1) For each j ∈ J , there exists a mapping `j that stretches Bj to [0, 1).

(2) `j maps P onto Pj := (M
[0,1)
j ,L).

(3) For each first order formula ψ(~v) and tuple ~f of elements of P of sort K.

λ(Jψ(~f)KP) =
∑
j∈J

λ(Bj)λ(Jψ(`j~f)KPj).

(4) dPK(f ,g) =
∑

j∈J λ(Bj)d
Pj

K (`j(f), `j(g)).

Proof. Since ν(A) = λ(A)/λ(Bj) is a probability measure on Bj, (1) follows from Theorem
17.41 in [8]. (2)–(4) are clear �4.5

The following result is a generalization of Theorem 7.3 of [1], but the proof we give
here is different.
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Theorem 4.6. Every basic randomization is pre-complete and separable.

Proof. Let P = (
∏

j∈J M
Bj

j ,L) be a basic randomization. By Result 3.3, P is separable
and pre-complete in the event sort. For each j ∈ J , pick a mapping `j that stretches Bj
to [0, 1). Pick an element a ∈

∏
j∈J M

Bj

j .
Separability in sort K: By 3.3, for each j ∈ J , there is a countable set Cj that is dense

in M
[0,1)
j . For each finite F ⊆ J , let DF be the set of all f such that for all j ∈ F , f

agrees with some element of `−1
j Cj on Bj, and f agrees with a on [0, 1) \

⋃
i∈F Bj. Then

D =
⋃
F DF is a countable subset of

∏
j∈J M

Bj

j . For each ε > 0, there is a finite F ⊆ J

such that
∑

j∈F µ(Bj) ≥ 1−ε. It follows that for each g ∈
∏

j∈J M
Bj

j , there exists f ∈ DF

such that for each j ∈ F , dK(`j(f), `j(g)) < ε/(|F | + 1), and therefore by Remark 4.5,

dK(f ,g) < 2ε. Hence D is dense in
∏

j∈J M
Bj

j .

Pre-completeness in sort K: Suppose that 〈fn〉n∈N is a Cauchy sequence of sort K. By

Remark 4.5, for each j ∈ J , 〈`j(fn)〉n∈N is a Cauchy sequence in M
[0,1)
j . By Result 3.3,

M
[0,1)
j is pre-complete, so there exists gj in M

[0,1)
j such that limn→∞ dK(`j(fn),gj) = 0.

Let g be the function that agrees with `−1
j gj on Bj for each j ∈ J . Then gj = `j(g))

for each j ∈ J , so limn→∞ dK(`j(fn), `j(g)) = 0. By Remark 4.5, limn→∞ dK(fn,g) = 0 in
P. �4.6

Definition 4.7. By a probability density function on I we mean a function ρ : I →
[0, 1] such that ρ(i) = 0 for all but countably many i ∈ I, and

∑
i ρ(i) = 1.

For each basic randomization P = (
∏

j∈J M
Bj

j ,L), the function ρ(i) = λ(Bi) for i ∈ J ,

and ρ(i) = 0 for i ∈ I \ J , is called the density function of P.

Remark 4.8. It easily seen that ρ is a probability density function on I if and only if ρ
is the density function of some basic randomization.

The following result is a generalization of Theorem 7.5 of [1], and is proved in the same
way.

Theorem 4.9. Two basic randomizations are isomorphic if and only if they have the
same density function.

If a continuous structure N is isomorphic to a basic randomization P, the density
function of P is also called a density function of N. Thus such an N has a unique density
function, which characterizes N up to isomorphism.

5. Events Defined by Infinitary Formulas

In this section we consider arbitrary complete separable randomizations. By definition,
each complete separable randomization has an event function Jψ(·)KN of sort Kn → E for
each first order formula ψ(~v) with n free variables. The following theorem extends this
to the case where ψ(~v) is a formula of the infinitary logic Lω1ω.
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Theorem 5.1. Let N = (K,E) be a complete separable randomization, and let Ψn be
the class of Lω1ω formulas with n free variables. There is a unique family of functions
Jψ(·)KN, ψ ∈

⋃
n Ψn, such that:

(i) When ψ ∈ Ψn, Jψ(·)KN : Kn → E.
(ii) When ψ is a first order formula, Jψ(·)KN is the usual event function for the struc-

ture N.
(iii) J¬ψ(~f)KN = ¬Jψ(~f)KN.

(iv) J(ψ1 ∨ ψ2)(~f)KN = Jψ1(~f)KN t Jψ2(~f)KN.
(v) J

∨
k ψk(

~f)KN = supkJψk(~f)KN.
(vi) J(∃u)θ(u,~f)KN = supg∈KJθ(g,~f)KN.

Moreover, for each ψ ∈ Ψn, the function Jψ(·)KN is Lipschitz continuous with bound one,

that is, for any pair of n-tuples ~f , ~h ∈ Kn we have

dE(Jψ(~f)KN, Jψ(~h)KN) ≤
∑
m<n

dK(fm,hm).

Proof. We argue by induction on the complexity of formulas. Assume that the result
holds for all subformulas of ψ. If ψ is a first order formula or a negation or finite
disjunction, it is clear that the result holds for ψ.

Suppose ψ =
∨
k ψk. We show that the supremum exists. For each m ∈ N we have

J
m∨
k=0

ψk(~f)KN =
m⊔
k=0

Jψk(~f)KN.

This is increasing in k, so by the completeness of the metric dE on E, limk→∞J
∨k
j=0 ψj(

~f)KN

exists and is equal to supkJψk(~f)KN. By hypothesis, the Lipschitz condition holds for each
ψk. It follows that the Lipschitz condition also holds for ψ.

Now suppose ψ(~v) = (∃u)θ(u,~v). We again show first that the supremum exists. By
separability, there is a countable dense subset D = {dk : k ∈ N} of K. It follows from the
axioms of TR2 that there is a sequence 〈gk〉k∈N of elements of K such that g0 = d0 and

for each k, gk+1 agrees with gk on the event Jθ(gk,~f)KN and agrees with dk elsewhere.
Then for each m ∈ N we have

Jθ(gm,~f)KN =
m⊔
k=0

Jθ(dk,~f)KN.

So whenever k ≤ m, we have

Jθ(gk,~f)KN v Jθ(gm,~f)KN,

and hence
E := lim

k→∞
Jθ(gk,~f)KN = sup

k∈N
Jθ(gk,~f)KN

exists in E.
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Consider any h ∈ K. To show that the supremum suph∈KJθ(h,~f)KN exists in E, it

suffices to show that Jθ(h,~f)KN v E, because it will then follow that E is the desired
supremum. Let ε > 0. For some k ∈ N we have dK(dk,h) < ε. Moreover,

Jdk = h ∧ θ(h,~f)KN = Jdk = h ∧ θ(dk,~f)KN v Jθ(gk,~f)KN v E.

Then

Jθ(h,~f)KN u ¬E v Jdk 6= hKN,

so

µ(Jθ(h,~f)KN u ¬E) ≤ µ(Jdk 6= hKN) = dK(dk,h) < ε.

Since this holds for all ε > 0, we have Jθ(h,~f)KN v E.

To prove the Lipschitz condition for ψ, we consider a pair of n-tuples ~f , ~h ∈ Kn. By
the preceding paragraph we have

Jψ(~f)KN = lim
k→∞

Jθ(gk,~f)KN, Jψ(~h)KN = lim
k→∞

Jθ(gk, ~h)KN.

Therefore for each ε > 0 there exists k ∈ N such that

dE(Jθ(gk,~f)KN, Jψ(~f)KN) < ε, dE(Jθ(gk, ~h)KN, Jψ(~h)KN) < ε.

By the Lipschitz condition for θ(u,~v) we have

dE(Jθ(gk,~f)KN, Jθ(gk, ~h)KN) ≤
∑
i<n

dK(fj,hj).

Then by the triangle inequality, for every ε > 0 we have

dE((Jψ(~f)KN, dE(Jψ(~h)KN) <
∑
i<n

dK(fj,hj) + 2ε,

so

dE((Jψ(~f)KN, dE(Jψ(~h)KN) ≤
∑
i<n

dK(fj,hj).

�5.1

Remark 5.2. The proof of Theorem 5.1 only used the metric completeness of the sort
E part of N. Hence the result also holds in the case that N is a separable randomization
that has a metric in sort K and a complete metric in sort E.

Corollary 5.3. Suppose that N,P are complete separable randomizations and h : N ∼= P.

Then for every Lω1ω formula ψ(~v) and every tuple ~f of sort K in N, we have h(Jψ(~f)KN) =

Jψ(h~f)KP.

Proof. By Theorem 5.1 and an easy induction on the complexity of ψ. �5.3
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When P is a pre-complete separable randomization, h is the reduction map from P

onto its completion N, and ψ(~v) is a formula of Lω1ω, then Jψ(h~f)KN is uniquely defined

by Theorem 5.1. In that case, we will sometimes abuse notation and write µ(Jψ(~f)KP)

for µ(Jψ(h~f)KN).
We can now define the notion of a separable randomization of ϕ.

Definition 5.4. We say that N is a complete separable randomization of ϕ if
N is a complete separable randomization such that JϕKN is the true event >. We call
P a separable randomization of ϕ if the completion of P is a complete separable
randomization of ϕ. We say that ϕ has few separable randomizations if every
complete separable randomization of ϕ is isomorphic to a basic randomization.

Thus when ϕ has few separable randomizations, each complete separable randomiza-
tion N of ϕ has a unique density function ρ, and ρ characterizes N up to isomorphism.

Corollary 5.5. Let P = (
∏

j∈J M
Bj

j ,L) be a basic randomization with completion N, and

let h : P ∼= N be the reduction map. For each Lω1ω formula ψ(~v) and tuple ~f in
∏

j∈J M
Bj

j ,

Jψ(h~f)KN is the reduction of the event⋃
j∈J

{t ∈ Bj : Mj |= ψ(~f(t))}.

Hence P is a basic randomization of ϕ if and only if P is a basic randomization and P is
a separable randomization of ϕ.

Proof. In the case that ψ(~v) is an atomic formula, the result holds by definition. A routine
induction on the complexity of formulas gives the result for arbitrary Lω1ω formulas. �5.5

Note that the complete separable randomizations of the sentence
∧
T are exactly

the separable models of the continuous theory TR. With more overhead, we could have
taken an alternative approach in which the complete separable randomizations of an Lω1ω

sentence ϕ are exactly the separable models of a theory ϕR in an infinitary continuous
logic such as the logic in [7]. The idea would be to consider a countable fragment LA of
Lω1ω, and have the randomization signature (LA)R contain a function symbol Jψ(·)K for
each formula ψ(~v) of LA. Then Theorem 5.1 shows that every separable randomization
can be expanded in a unique way to a model with the signature (LA)R that satisfies the
infinitary sentences corresponding to the conditions (i)–(v). In this approach, ϕR would
be the theory in infinitary continuous logic with the axioms of the pure randomization
theory plus the above infinitary sentences and an axiom stating that JϕK .

= >.

6. Countable Generators of Randomizations

In this section we give a general method of constructing pre-complete separable ran-
domizations. In the next section we will show that every pre-complete separable ran-
domization is isomorphic to one that can be constructed in that way.
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Definition 6.1. Assume that (Ω,E, ν) is an atomless probability space such that the
metric space (E, dE) is separable, and for each t ∈ Ω, Mt is a countable model of T2.

A countable generator (in 〈Mt〉t∈Ω over (Ω,E, ν)) is a countable set C of elements
c ∈

∏
t∈ΩMt such that:

(a) Mt = {c(t) : c ∈ C} for each t ∈ Ω, and

(b) For every first order atomic formula ψ(~v) and tuple ~b in C,

{t ∈ Ω : Mt |= ψ(~b(t))} ∈ E.

Theorem 6.2. Let C be a countable generator in 〈Mt〉t∈Ω over (Ω,E, ν). There is a
unique pre-structure P(C) = (K,E) such that:

(c) K is the set of all f ∈
∏

t∈Ω Mt such that {t ∈ Ω: f(t) = c(t)} ∈ E for each c ∈ C;
(d) >,⊥,t,u,¬ are the usual Boolean operations on E, and µ is the measure ν;

(e) for each first order formula ψ(~x) and tuple ~f in K, we have

Jψ(~f)K = {t ∈ Ω : Mt |= ψ(f(t))};

(f) dE(B,C) = ν(B4C), dK(f ,g) = µ(Jf 6= gK).
Moreover, P(C) is a pre-complete separable randomization.

Proof of Theorem 6.2. It is clear that P(C) is unique. We first show by induction on the
complexity of formulas that condition (b) holds for all first order formulas ψ. The steps
for logical connectives are trivial. For the quantifier step, suppose (b) holds for ψ(u,~v).
Then by (a) and (c)–(f),

J(∃u)ψ(u, ~b)K = {t : Mt |= (∃u)ψ(u, ~b(t))} = {t : (∃c ∈Mt)Mt |= ψ(c, ~b(t))} =

= {t : (∃c ∈ C)Mt |= ψ(c(t), ~b(t))} =
⋃
c∈C

Jψ(c, ~b)K ∈ E,

so (b) holds for (∃u)ψ(u,~v). By the definition of K, for each tuple ~g in K and ~b in C,

we have J~g = ~bK ∈ E. Then for every first order formula ψ(~v) and tuple ~g in K,

Jψ(~g)K =
⋃
{Jψ(~b) ∧ ~g = ~bK : ~b is a tuple in C}.

We therefore have

(b’) For each first order formula ψ(~v) and tuple ~g in K, Jψ(~g)K ∈ E.

This shows that P(C) is a pre-structure with signature LR.
It is easily seen that P(C) satisfies all the axioms of TR2 except possibly the Fullness

and Event Axioms. We next show that P(C) has perfect witnesses. Once this is done,
it follows at once that P(C) also satisfies the Fullness and Event Axioms, and hence is a
pre-model of TR2 .

Consider a first order formula ψ(u,~v) and a tuple ~g in K. For each t ∈ Ω, there is a
least n(t) ∈ N such that Mt |= (∃u)ψ(u,~g(t)) → ψ(cn(t)(t), ~g(t)). Since (b’) holds and
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C ⊆ K, the function f such that f(t) := cn(t)(t) belongs to K. Therefore

Jψ(f , ~g)K .
= J(∃u)ψ(u,~g)K.

Now consider an event E ∈ E. Since each Mt |= T2, we have J(∃u)u 6= c0K
.
= >. Therefore

there exists f ∈ K such that Jf 6= c0K
.
= >. Then the function g such that g(t) = f(t) for

t ∈ E and g(t) = c0(t) for t /∈ E belongs to K, and Jf = gK .
= E. This shows that P(C)

has perfect witnesses, so P(C) is a pre-model of TR2 .
We now show that P(C) is pre-complete. This means that when d is either dK or dE, for

every Cauchy sequence 〈xn〉n∈N with respect to d, there exists x such that d(xn, x) → 0
as n →∞. This is clear for dE because (Ω,E, ν) is countably additive. Suppose 〈fn〉n∈N
is a Cauchy sequence for dK. Let C = {ck : k ∈ N}, and Cm = {c0, . . . , cm}. For each
k ∈ N, 〈Jfn = ckK〉n∈N is a Cauchy sequence with respect to dE. Therefore there exists
Bk ∈ E such that limn→∞ dE(Jfn = ckK,Bk) = 0. Then µ(Bk) = limn→∞ µ(Jfn = ckK). We
now cut the sets Bk down to disjoint sets with the same unions. Let A0 = B0, and for
each m, let Am+1 = Bm+1 \

⋃m
k=0 Bk. Note that for all m,

m⋃
k=0

Ak =
m⋃
k=0

Bk, Ak ⊆ Bk, (∀k < m)Ak ∩ Am = ∅.

Claim. µ(
⋃∞
k=0 Ak) = 1.

Proof of Claim: Fix an ε > 0. We show that there exists m such that µ(
⋃m
k=0 Bk) >

1− ε. Note that for each m,

µ(
m⋃
k=0

Bk) = lim
n→∞

µ(Jfn ∈ CmK).

Therefore it suffices to show that

(∃m)(∀n)µ(Jfn ∈ CmK) > 1− ε.
Suppose this is not true. Then

(∀m)(∃n)µ(Jfn /∈ CmK) ≥ ε.

Since C =
⋃
mCm,

(∀n)(∃h)µ(Jfn ∈ ChK) ≥ 1− ε/2,
so

(∀m)(∃n)(∃h)µ(Jfn ∈ (Ch \ Cm)K) ≥ ε/2.

It follows that there are sequences n0 < n1 < . . . and m0 < m1 < . . . such that

(∀k)µ(Jfnk
∈ (Cmk+1

\ Cmk
)K) ≥ ε/2.

Therefore
(∀k)(∀h > k)dK(fnk

, fnh
) ≥ ε/2.

This contradicts the fact that 〈fn〉n∈N is a Cauchy sequence, and the Claim is proved.
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By Condition (c), there is an f in P(C) such that f agrees with ck on Ak for each
k ∈ N. For each n and h we have

dK(fn, f) = µ(Jfn 6= fK) =
∞∑
k=0

µ(Jfn 6= fK ∩ Ak) =
∞∑
k=0

µ(Jfn 6= ckK ∩ Ak) ≤

≤
h∑
k=0

µ(Jfn 6= ckK ∩ Ak) + µ(
⋃
k>h

Ak) ≤
h∑
k=0

µ(Jfn 6= ckK ∩ Bk) + µ(
⋃
k>h

Ak)

≤
h∑
k=0

dE(Jfn = ckK,Bk) + µ(
⋃
k>h

Ak).

By the Claim, for each ε > 0 we may take h such that µ(
⋃
k>h Ak) < ε/2. For all

sufficiently large n we have

h∑
k=0

dE(Jfn = ckK,Bk) < ε/2,

and hence dK(fn, f) < ε. It follows that limn→∞ dK(fn, f) = 0, so P(C) is pre-complete.
We have not yet used the hypothesis that (E, dE) is separable. We use it now to show

that P(C) is separable. The Boolean algebra E has a countable subalgebra E0 such that

E0 is dense with respect to dE, and Jψ(~b)K ∈ E0 for each first order formula ψ(~v) and

tuple ~b in C. Let D be the set of all f ∈ K such that for some k ∈ N, Jf ∈ CkK = > and
Jf = cnK ∈ E0 for all n ≤ k. Then D is countable and D is dense in K with respect to
dK, so P(C) is separable. �6.2

Remark 6.3. Suppose C is a countable generator in 〈Mt〉t∈Ω over (Ω,E, ν), and let
P(C) = (K,E). Then:

(1) C ⊆ K.
(2) If C ⊆ D ⊆ K and D is countable, then D is a countable generator in 〈Mt〉t∈Ω.
(3) For each t ∈ Ω, Mt = {f(t) : f ∈ K}.
(4) If Mt

∼= Ht for all t, then there is a countable generator D in 〈Ht〉t∈Ω such that
P(D) ∼= P(C).

Proof. We prove (4). For each t, choose an isomorphism ht : Mt
∼= Ht. For each c ∈ C,

define hc by (hc)(t) = ht(c(t)) and let D = {hc : c ∈ C}. Then D is a countable
generator in 〈Ht〉t∈Ω and P(D) ∼= P(C). �6.3

The next corollary connects countable generators to basic randomizations.

Corollary 6.4. Let N = (
∏

j∈J M
Bj

j ,L) be a basic randomization.

(i) There is a countable generator C in 〈Mt〉t∈[0,1) over ([0, 1),L, λ) such that C ⊆∏
j∈J M

Bj

j .

(ii) If C is as in (i), then P(C) = N.
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(iii) If C is a countable generator in 〈Ht〉t∈[0,1) over ([0, 1),L, λ), C ⊆
∏

j∈J M
Bj

j , and

Ht ≺Mt for all t, then P(C) ≺ N.

Proof. (i) For each j ∈ J , choose an enumerated structure (Mj, aj,0, aj,1, . . .). Let C =
{cn : n ∈ N} where cn(t) = aj,n whenever j ∈ J and t ∈ Bj. C has the required properties.

(ii) Let P(C) = (K,L). Since C ⊆
∏

j∈J M
Bj

j , for all j ∈ J, a ∈ Mj, and c ∈ C we

have {t ∈ Bj : c(t) = a} ∈ L. It follows that for each j ∈ J and f ,

(∀a ∈Mj){t ∈ Bj : f(t) = a} ∈ L⇔ (∀c ∈ C){t ∈ Bj : f(t) = c(t)} ∈ L.

Therefore K =
∏

j∈J M
Bj

j , and (ii) holds.

(iii) Let P(C) = (K,L). For each f ∈ K we have [0, 1) =
⋃

c∈C{t : f(t) = c(t)}, and

{t : f(t) = c(t)} ∈ L for all c ∈ C. Therefore K ⊆
∏

j∈J M
Bj

j . Since Ht ≺Mt, Jψ(·)K has

the same interpretation in P(C) as in N for every first order formula ψ(~v). Therefore
(K,L) is a pre-substructure of N. By quantifier elimination (Theorem 2.9 of [6]) we have
P(C) ≺ N. �6.4

The next result gives a very useful “pointwise” characterization of the event correspond-
ing to an infinitary formula in a complete separable randomization that is isomorphic to
P(C).

Proposition 6.5. Suppose N is a complete separable randomization, C is a countable
generator in 〈Mt〉t∈Ω over (Ω,E, ν), and h : P(C) ∼= N. Then for every Lω1ω formula

ψ(~v) and tuple ~f of sort K in P(C), we have

{t : Mt |= ψ(~f(t))} ∈ E, Jψ(h~f)KN = h({t : Mt |= ψ(~f(t))}).
Moreover, N is a separable randomization of ϕ if and only if µ({t : Mt |= ϕ}) = 1.

Proof. This is proved by a straightforward induction on the complexity of ψ(~v) using
Theorems 5.1 and 6.2. �6.5

7. A Representation Theorem

In this section we show that every complete separable randomization of ϕ is isomorphic
to P(C) for some countable generator C in countable models of ϕ.

We will use the following result, which is a consequence of Theorem 3.11 of [3], and
generalizes Proposition 2.1.10 of [2].

Proposition 7.1. For every pre-complete model N′ of TR, there is an atomless probability
space (Ω,E, ν) and a family of models 〈Mt〉t∈Ω of T such that N′ is isomorphic to a pre-
complete model N = (K,E) of TR such that K ⊆

∏
t∈ΩMt and N satisfies Conditions

(d), (e), and (f) of Theorem 6.2.

Proof. Proposition 2.1.10 of [2] gives this result in the case that T is a complete theory,
with the additional conclusion that there is a single model M of T such that Mt ≺ M
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for all t ∈ Ω 2. The same argument works in the general case, but without the model
M. �7.1

Proposition 7.2. Suppose N′ is pre-complete and elementarily embeddable in a basic
randomization. Then N′ is isomorphic to a pre-complete elementary submodel N of a

basic randomization (
∏

j∈J M
Bj

j ,L) such that the event sort of N is all of L. Moreover,

Conditions (d), (e), and (f) of Theorem 6.2 hold for N = (K,L) and (
∏

j∈J M
Bj

j ,L).

Proof. Suppose N′ ∼= N′′ ≺ (
∏

j∈J M
Bj

j ,L). For each j ∈ J , let `j be a mapping that

stretches Bj to [0, 1). Then `j maps N′′ onto a pre-complete elementary submodel Nj

of (M
[0,1)
j ,L). By Result 3.4, Nj is isomorphic to a pre-complete elementary submodel

of (M
[0,1)
j ,L) with event sort L. Using the inverse mappings `−1

j , it follows that N′′ is

isomorphic to a pre-complete elementary submodel N = (K,L) ≺ (
∏

j∈J M
Bj

j ,L) with

event sort L. It is easily checked that N satisfies Conditions (d), (e), and (f) of Theorem
6.2. �7.2

Theorem 7.3. (Representation Theorem) Every pre-complete separable randomization
N of ϕ is isomorphic to P(C) for some countable generator C in a family of countable
models of ϕ. Moreover, if N is elementarily embeddable in some basic randomization,
then C can be taken to be over the probability space ([0, 1),L, λ).

Proof. Let N′ be a pre-complete separable randomization of ϕ. By Proposition 7.1, there
is an atomless probability space (Ω,E, ν) and a family of models 〈Mt〉t∈Ω such that N′

is isomorphic to a pre-complete model N = (K,E) of TR2 where K ⊆
∏

t∈Ω Mt and N

satisfies Conditions (d), (e), and (f) of Theorem 6.2. If N′ is elementarily embeddable in
a basic randomization, then by Proposition 7.2, we may take (Ω,E, ν) = ([0, 1),L, λ).

Since N is separable, there is a countable pre-structure (J0,A0) ≺ N that is dense in
N. We will use an argument similar to the proofs of Lemmas 4.7 and 4.8 of [1]. By Result
3.1, N has perfect witnesses. Hence by listing the first order formulas, we can construct
a chain of countable pre-structures (Jn,An), n ∈ N such that for each n:

• (Jn,An) ⊆ (Jn+1,An+1) ⊆ N;
• for each first order formula θ(u,~v) and tuple ~g in Jn there exists f ∈ Jn+1 such

that

Jθ(f , ~g)K .
= J(∃uθ)(~g)K;

• For each B ∈ An there exist f ,g ∈ Jn+1 such that B
.
= Jf = gK.

The union

P = (J,A) =
⋃
n

(Jn,An)

2In [2], P is called a neat randomization of M
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is a countable dense elementary submodel of N that has perfect witnesses. Therefore for
each first order formula θ(u,~v) and each tuple ~g in J, there exists f ∈ J such that

J(∃u)θ(u,~g)KN = J(∃u)θ(u,~g)KP .
= Jθ(f , ~g)KP = Jθ(f , ~g)KN.

Since J is countable, there is an event E ∈ E such that ν(E) = 1 and for every tuple ~g in
J there exists f ∈ J so that

(∀t ∈ E)Mt |= [(∃u)θ(u,~g(t))↔ θ(f(t), ~g(t))].

For each t ∈ Ω let Ht = {f(t) : f ∈ J}. By the Tarski-Vaught test, we have Ht ≺ Mt,
and hence Ht |= T2, for each t ∈ E.

Pick a countable model H of ϕ. For any set D ⊆ E such that D ∈ E and ν(D) = 1, let
CD be the set of all functions that agree with an element of J on D and take a constant
value in H on Ω \ D. Let HD

t = Ht for t ∈ D, and HD
t = H for t ∈ Ω \ D. Then HD

t is
a model of T2 for each t ∈ Ω, and CD is a countable generator in 〈HD

t 〉t∈Ω. By Theorem
6.2, P(CD) is a pre-complete separable randomization. The reduction of (J,A) is dense
in the reductions of N and of P(CD), and both N and P(CD) are pre-complete. Therefore
N ∼= P(CD).

In particular, CE is a countable generator in 〈HE
t 〉t∈Ω, and N ∼= P(CE). Now let

D = {t ∈ E : HE
t |= ϕ}. Since N is a pre-complete randomization of ϕ, we see from

Proposition 6.5 that µ(D) = 1. Then HD
t |= ϕ for all t ∈ Ω, P(CD) ∼= N, and CD is a

countable generator in a family of countable models of ϕ. �7.3

8. Elementary Embeddability in a Basic Randomization

Let Sn(T ) be the set of first order n-types realized in countable models of T , and Sn(ϕ)
be the set of first order types realized in countable models of ϕ. Note that S0(ϕ) =
{Th(M) : M |= ϕ}.

Theorem 3.12 in [6] and Proposition 5.7 in [1] show that:

Result 8.1. Let T be complete. The following are equivalent:

(i)
⋃
n Sn(T ) is countable.

(ii) Every complete separable randomization of T is elementarily embeddable in the
Borel randomization of a countable model of T .

(iii) For every complete separable randomization N of T , n ∈ N, and n-tuple ~f of sort

K in N, there is a type p ∈ Sn(T ) such that µ(J
∧
p(~f)KN) > 0.

In Theorem 8.3 below, we generalize this result by replacing a complete theory T and
a Borel randomization by an arbitrary Lω1ω sentence ϕ and a basic randomization.

We will use Proposition 6.2 of [1], which can be formulated as follows.

Result 8.2. Let T be complete. The following are equivalent:

(i) N is a complete separable randomization of T and for each n and each n-tuple ~f

in K,
∑

q∈Sn(T ) µ(J
∧
q(~f)KN) = 1.
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(ii) N is elementarily embeddable in the Borel randomization of a countable model of
T .

Theorem 8.3. The following are equivalent:

(i)
⋃
n Sn(ϕ) is countable.

(ii) Every complete separable randomization of ϕ is elementarily embeddable in a basic
randomization.

(iii) For every complete separable randomization N of ϕ, n ∈ N, and n-tuple ~f in K,

there is a type p ∈ Sn(ϕ) such that µ(J
∧
p(~f)KN) > 0.

In (ii), we do not know whether the basic randomization can be taken to be a basic
randomization of ϕ.

Proof of Theorem 8.3. We first assume (i) and prove (ii). Let N be a complete separable
randomization of ϕ. By Theorem 7.3, there is a countable generator C in a family of
countable models 〈Mt〉t∈Ω of ϕ over an atomless probability space (Ω,E, ν), such that
N ∼= P(C) = (K,E). For each t ∈ Ω, Mt is a countable model of ϕ, so Th(Mt) ∈ S0(ϕ).
By (i), S0(ϕ) is countable. Let BT = {t ∈ Ω: Mt |= T}. By Proposition 6.5, BT ∈ E.
Let G = {T ∈ S0(ϕ) : ν(BT ) > 0}, and consider any T ∈ G. Let νT be the atomless
probability measure on (Ω,E) such that νT (E) = ν(E ∩ BT )/ν(BT ). (Note that νT is the
conditional probability of ν with respect to BT .) Let NT be the structure (K,E) with the
probability measure νT instead of ν. Then NT is a pre-complete separable randomization
of both ϕ and T . Let Sn = Sn(T ) ∩ Sn(ϕ). Since Sn(ϕ) is countable, (∀~v)

∨
q∈Sn

∧
q(~v)

is a sentence of Lω1ω and is a consequence of ϕ. Therefore

νT (J(∀~v)
∨
q∈Sn

∧
q(~v)K) = 1.

Then for every n-tuple ~f in K,
∑

q∈Sn(T ) νT (J
∧
q(~f)K) = 1. Hence by Result 8.2, there is

a countable model HT of T and an elementary embedding

hT : NT ≺ (H
[0,1)
T ,L).

Let {AT : T ∈ G} be a Borel partition of [0, 1) such that λ(AT ) = ν(BT ) for each T .
Let J be the set of isomorphism types of the models {HT : T ∈ G}. For each T ∈ G
let Hj = HT , hj = hT , and Aj = AT where j is the isomorphism type of HT . Then

P = (
∏

j∈J H
Aj

j ,L) is a basic randomization. For each j ∈ J , let `j be a mapping that

stretches Aj to [0, 1), and let `j : P → (H
[0,1)
j ,L) be the mapping defined in Definition

4.4. We then get an elementary embedding of N into P by sending each E ∈ E to the set⋃
j∈J `

−1
j (hj(E)), and sending each f ∈ K to the function that agrees with `−1

j (hj(f)) on
Aj for each j ∈ J .

We next assume (ii) and prove (iii). Let N = (K,E) be a complete separable random-

ization of ϕ, and let ~f be an n-tuple in K. By (ii), there is an elementary embedding
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h from N into a basic randomization P = (
∏

j∈J H
Aj

j ,L). Then there is a j ∈ J and a

set B ⊆ Aj such that λ(B) > 0 and (h~f) is constant on B. Let r = λ(B). Let p be the

type of h(~f) in Hj. Then for each θ(~v) ∈ p we have P |= µ(Jθ(h~f)K) ≥ r. Since h is an

elementary embedding, for each θ ∈ p we have N |= µ(Jθ(~f)K) ≥ r. Therefore

µ(J
∧

p(~f)KN) = inf
θ∈p

µ(Jθ(~f)KN) ≥ r > 0,

and (iii) is proved.

Finally, we assume that (i) fails and prove that (iii) fails. Since (i) fails, there exists
n such that Sn(ϕ) is uncountable. We introduce some notation. Let L0 be the set of
all atomic first order formulas. Let 2L0 be the Polish space whose elements are the
functions s : L0 → {0, 1}. As in Section 2, we say that a point t ∈ 2L0 codes an
enumerated structure (M, a) if for each formula θ(v0, . . . , vn−1) ∈ L0, t(θ) = 0 if and only
if M |= θ[a0, . . . , an−1]. We note for each t ∈ 2L0 , any two enumerated structures that
are coded by t are isomorphic. When t codes an enumerated structure, we choose one
and denote it by (M(t), a(t)). For each Lω1ω formula ψ(v0, . . . , vn−1), let [ψ] be the set
of all t ∈ 2L0 such that (M(t), a(t)) exists and M(t) |= ψ[a0(t), . . . , an−1(t)].

Claim. There is a perfect set P ⊆ [ϕ] such that for all s, t in P , we have

(M(s), a0(s), . . . , an−1(s)) ≡ (M(t), a0(t), . . . , an−1(t))

if and only if s = t.
Proof of Claim: By Proposition 16.7 in [8], for each Lω1ω formula ψ, [ψ(~v)] is a Borel

subset of 2L0 . In particular, [ϕ] is Borel. Let E be the set of pairs (s, t) ∈ [ϕ]× [ϕ] such
that

(M(s), a0(s), . . . , an−1(s)) ≡ (M(t), a0(t), . . . , an−1(t)).

E is obviously an equivalence relation on [ϕ]. Since Sn(ϕ) is uncountable, E has un-
countably many equivalence classes. We show that E is Borel. Let F be the set of all
first order formulas θ(v0, . . . , vn−1). For each θ ∈ F , let

Eθ = {(s, t) ∈ [ϕ]× [ϕ] : s ∈ [θ]↔ t ∈ [θ]}.
Since [ϕ] and [θ] are Borel, Eθ is Borel. Moreover, F is countable, and E =

⋂
θ∈F Eθ.

Therefore E is a Borel equivalence relation. By Silver’s theorem in [14], there is a perfect
set P ⊆ [ϕ] such that whenever s, t ∈ [ϕ], we have (s, t) ∈ E if and only if s = t, as
required in the Claim.

By Theorem 6.2 in [8], P has cardinality 2ℵ0 . By the Borel Isomorphism Theorem
(15.6 in [8]), there is a Borel bijection β from [0, 1) onto P whose inverse is also Borel.
Each s ∈ P codes an enumerated model (M(s), a(s)) of ϕ. For each t ∈ [0, 1) and n ∈ N,
an(β(t)) ∈ M(β(t)), so for each n the composition cn = an ◦ β is a function such that
cn(t) ∈M(β(t)). Let C = {cn : n ∈ N}. Then for each t, we have

{c(t) : c ∈ C} = {an(β(t)) : n ∈ N} = M(β(t)),
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so C satisfies Condition (a) of Definition 6.1.
We next show that C is a countable generator. We will then show that the completion

of P(C) is a separable randomization of ϕ that is not elementarily embeddable in a basic
randomization.

For each θ ∈ L0, the set

P ∩ [θ] = {s ∈ P : M(s) |= θ[a0(s), . . . , an−1(s)]}
is Borel. Since β and its inverse are Borel functions, it follows that

{t ∈ [0, 1) : M(β(t)) |= θ(c0(t), . . . , cn−1(t))} ∈ L.

Thus C satisfies condition (b) of Definition 6.1, and hence is a countable generator in the
family 〈M(β(t))〉t∈[0,1) of countable models of ϕ over the probability space ([0, 1),L, λ).

By Theorem 6.2 and Proposition 6.5, P(C) is a pre-complete separable randomization
of ϕ. Then the completion N of P(C) is a complete separable randomization of ϕ. By
the properties of P , for each first-order n-type p, there is at most one t ∈ [0, 1) such that
(c0(t), . . . , cn−1(t)) realizes p in M(β(t)). Then

µ(J
∧

p(c0, . . . , cn−1)KN) = 0.

Therefore N cannot be elementarily embeddable in a basic randomization. This shows
that (iii) fails, and completes the proof. �8.3

9. Sentences with Few Separable Randomizations

In this section we show that any infinitary sentence that has only countably many
countable models has few separable randomizations (Theorem 9.6 below). We begin by
stating a result from [1].

Result 9.1. ([1], Theorem 6.3). If T is complete and I(T ) is countable, then T has few
separable randomizations.

Theorem 9.6 below will generalize this result by replacing the complete theory T by
an arbitrary Lω1ω sentence ϕ.

The following lemma is a consequence of Theorem 7.6 in [1]. The underlying definitions
are somewhat different in [1], so for completeness we give a direct proof here.

Lemma 9.2. Let N = (H[0,1),L) be the Borel randomization of a countable model H of
T2. Suppose Mt

∼= H for each t ∈ [0, 1), and C is a countable generator in 〈Mt〉t∈[0,1)

over ([0, 1),L, λ). Then P(C) ∼= N.

Remark 9.3. In the special case that Mt = M for all t ∈ [0, 1) and C ⊆M[0,1), Corollary
6.4 and Remark 4.2 (ii) immediately give

P(C) = (M[0,1),L) ∼= N.

This argument does not work in the general case, where the structures Mt may vary with
t and there is no measurability requirement on the elements of C.
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Proof of Lemma 9.2. Let P(C) = (J,L). Let H denote the universe of H. Let {f1, f2, . . .}
and {g′1,g′2, . . .} be countable dense subsets of J and H[0,1) respectively.

Claim. There is a sequence 〈g1,g2, . . .〉 in J, and a sequence 〈f ′1, f ′2, . . .〉 in H[0,1), such
that the following statement S(n) holds for each n ∈ N:

For all t ∈ [0, 1),

(Mt, (f1, . . . , fn,g1, . . . ,gn)(t)) ∼= (H, (f ′1, . . . , f
′
n,g

′
1, . . . ,g

′
n)(t)).

Once the Claim is proved, it follows that for each first order formula ψ(~u,~v),

Jψ(~f , ~g)KP(C) = Jψ(~f ′, ~g′)KN,

and hence there is an isomorphism h : P(C) ∼= N such that h(E) = E for all E ∈ L, and
h(fn) = f ′n and h(gn) = g′n for all n.

Proof of Claim: Note that the statement S(0) just says that Mt
∼= H for all t ∈

[0, 1), and is true by hypothesis. Let n ∈ N and assume that we already have functions
g1, . . . ,gn−1 in J and f ′1, . . . , f

′
n−1 in H[0,1) such that the statement S(n− 1) holds. Thus

for each t ∈ [0, 1), there is an isomorphism

ht : (Mt, (f1, . . . , fn−1,g1, . . . ,gn−1)(t)) ∼= (H, (f ′1, . . . , f
′
n−1,g

′
1, . . . ,g

′
n−1)(t)).

We will find functions gn ∈ J, f ′n ∈ H[0,1) such that S(n) holds.
Let Z be the set of all isomorphism types of structures

(H, a1, . . . , an−1, b1, . . . , bn−1, a, b),

and for each z ∈ Z let θz be a Scott sentence for structures of isomorphism type z.
Since H is countable, Z is countable. For each a ∈ H and t ∈ [0, 1) let z(a, t) be the
isomorphism type of

(H, (f ′1, . . . , f
′
n−1,g

′
1, . . . ,g

′
n−1)(t), a,g′n(t)).

Then z(a, t) ∈ Z.
For each a ∈ H and c ∈ C, let B(a, c) be the set of all t ∈ [0, 1) such that

(Mt, (f1, . . . , fn−1,g1, . . . ,gn−1)(t), fn(t), c(t)) |= θz(a,t).

By Proposition 6.5, each of the sets B(a, c) is Borel. By taking a ∈ H such that a =
ht(fn(t)), and c ∈ C such that c(t) = h−1

t (g′n(t)), we see that for every t ∈ [0, 1) there
exist a ∈ H and c ∈ C with t ∈ B(a, c). Thus

[0, 1) =
⋃
{B(a, c) : a ∈ H, c ∈ C}.

Every countable family of Borel sets with union [0, 1) can be cut down to a countable
partition of [0, 1) into Borel sets. Thus there is a partition

〈D(a, c) : a ∈ H, c ∈ C〉
of [0, 1) into Borel sets D(a, c) ⊆ B(a, c).
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Let f ′n be the function that has the constant value a on each set D(a, c), and let gn
be the function that agrees with c on each set D(a, c). Then f ′n is Borel and thus belong
to H[0,1), and gn belongs to J. Moreover, whenever t ∈ D(a, c) we have t ∈ B(a, c) and
hence

(Mt, (f1, . . . , fn,g1, . . . ,gn)(t)) ∼= (H, (f ′1, . . . , f
′
n,g

′
1, . . . ,g

′
n)(t)).

So the functions f ′n and gn satisfy the condition S(n). This completes the proof of the
Claim and of Lemma 9.2. �9.3

Recall that for each i ∈ I, θi is a Scott sentence for structures of isomorphism type i.

Lemma 9.4. Let P = (
∏

j∈J(Hj)
Aj ,L) be a basic randomization. Then for each complete

separable randomization N, the following are equivalent:

(i) N is isomorphic to P.
(ii) µ(JθjKN) = λ(Aj) for each j ∈ J .

Proof. Assume (i) and let h : P ∼= N. By Corollary 6.4, P = P(C) for some countable
generator C in 〈Ht〉t∈[0,1) over ([0, 1),L, λ). By Proposition 6.5, for each j ∈ J we have

JθjKN = h({t ∈ [0, 1) : Ht |= θj}) = h(Aj),

so (ii) holds.
We now assume (ii) and prove (i). Since the events Aj, j ∈ J form a partition of

[0, 1),
∑

j∈J λ(Aj) = 1, so by (ii) we have
∑

j∈J µ(JθjKN) = 1. Therefore J
∨
j∈J θjK

N =

>, so N is a randomization of the sentence ϕ =
∨
j∈J θj. Since I(ϕ) is countable,⋃

n Sn(ϕ) is countable. Then by Theorem 8.3, N is elementarily embeddable in a basic
randomization. By Theorem 7.3, N is isomorphic to P(C) for some countable generator
C in a family 〈Mt〉t∈[0,1) of countable models of ϕ over the probability space ([0, 1),L, λ).
By Proposition 6.5, for each j ∈ J the set Bj = {t ∈ [0, 1) : Mt |= θj} ∈ L and λ(Bj) =
µ(JθjKN) = λ(Aj). By Theorem 4.9, P ∼= P′ = (

∏
j∈J(Hj)

Bj ,L). For each j ∈ J , let `j be

a mapping that stretches Bj to [0, 1).
Our plan is to use Lemma 9.2 to show that the images of P(C) and P′ under `j are

isomorphic for each j. Intuitively, this shows that for each j, the part of P(C) on Bj
is isomorphic to the part of P′ on Aj. The isomorphisms on these parts can then be
combined to get an isomorphism from P(C) to P′.

Here are the details. For each j, Pj = (H
[0,1)
j ,L) is the Borel randomization of Hj,

and `j maps P′ to Pj and maps C to a countable generator `j(C) in 〈M′t〉t∈[0,1) over
([0, 1),L, λ), where M′t = M`−1

j (t). Note that for each j ∈ J and t ∈ `j(Bj), we have

M′t
∼= Hj. Therefore by Lemma 9.2, we have an isomorphism hj : P(`j(C)) ∼= Pj for each

j ∈ J . By pulling these isomorphisms back we get an isomorphism h : P(C) ∼= P′ as
follows. For an element f of P(C) of sort K, h(f) is the element of P′ that agrees with
`−1
j (hj(`j(f))) on the set Bj for each j. Since N ∼= P(C) and P′ ∼= P, (i) holds. �9.4

Lemma 9.5. The following are equivalent.
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(i) ϕ has few separable randomizations.
(ii) For every complete separable randomization N of ϕ, there is a countable set J ⊆ I

such that J
∨
j∈J θjK

N = >.

(iii) For every complete separable randomization N of ϕ, µ(JθiKN) > 0 for some i ∈ I.

Proof. It follows from Lemma 9.4 that (i) implies (ii). It is trivial that (ii) implies (iii).
We now assume (ii) and prove (i). Let N be a complete separable randomization of

ϕ and let J be as in (ii). By removing j from J when JθjKN = ⊥, we may assume that
µ(JθjKN) > 0 for each j ∈ J . We also have∑

j∈J

µ(JθjKN) = µ(J
∨
j∈J

θjKN) = 1.

For each j ∈ J , choose Hj ∈ j. Choose a partition {Aj : j ∈ J} of [0, 1) such that Aj ∈ L

and λ(Aj) = µ(JθjKN) for each j ∈ J . Then by Lemma 9.4, N is isomorphic to the basic

randomization (
∏

j∈J H
Aj

j ,L). Therefore (i) holds.

We assume that (ii) fails and prove that (iii) fails. Since (ii) fails, there is a complete
separable randomization N of ϕ such that for every countable set J ⊆ I, µ(J

∨
i∈I θjK

N) <
1. The set J = {i ∈ I : µ(JθjKN) > 0} is countable. By Theorem 7.3, N is isomorphic
to P(C) for some countable generator C in a family 〈Mt〉t∈Ω of countable models of ϕ
over a probability space (Ω,E, ν). By Proposition 6.5, the set E = {t : Mt |=

∨
j∈J θj}

belongs to E, and ν(E) = µ(J
∨
j∈J θjK

N) < 1. Let P′ be the pre-structure P(C) but with

the measure ν replaced by the measure υ defined by υ(D) = ν(D \ E)/ν(Ω \ E). This is
the conditional probability of D given Ω \E. Then the completion N′ of P′ is a separable
randomization of ϕ such that µ(JθiKN

′
) = 0 for every i ∈ I, so (iii) fails. �9.5

Here is our generalization of Result 9.1.

Theorem 9.6. If I(ϕ) is countable, then ϕ has few separable randomizations.

Proof. Suppose J = I(ϕ) is countable. Then ϕ has the same countable models as the
sentence

∨
j∈J θj. Let N be a complete separable randomization of ϕ. By Theorem 7.3,

N ∼= P(C) for some countable generator C in a family of 〈Mt〉t∈Ω countable models of ϕ.
By Proposition 6.5,

µ(J
∨
j∈J

θjKN) = µ(J
∨
j∈J

θjKP(C)) = µ({t : Mt |=
∨
j∈J

θj}) = µ({t : Mt |= ϕ}) = 1.

Therefore J
∨
j∈J θjK

N = >, so ϕ satisfies Condition (ii) of Lemma 9.5. By Lemma 9.5, ϕ
has few separable randomizations. �9.6

10. Few Separable Randomizations Versus Scattered

In this section we prove two main results. First, any infinitary sentence with few
separable randomizations is scattered. Second, Martin’s axiom for ℵ1 implies that every
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scattered infinitary sentence has few separable randomizations. We also discuss the
connection between these results and the absolute Vaught conjecture.

Theorem 10.1. If ϕ has few separable randomizations, then ϕ is scattered.

Proof. Suppose ϕ is not scattered. By Lemma 2.5, there is a countable fragment LA of
Lω1ω and a perfect set P ⊆ 2LA such that:

• Each s ∈ P codes an enumerated model (M(s), a(s)) of ϕ, and
• If s 6= t in P then M(s) and M(t) do not satisfy the same LA-sentences.

By Theorem 6.2 in [8], P has cardinality 2ℵ0 . By the Borel Isomorphism Theorem (15.6
in [8]), there is a Borel bijection β from [0, 1) onto P whose inverse is also Borel. For
each s ∈ P , (M(s), a(s)) can be written as (M(s), a0(s), a1(s), . . .). For each t ∈ [0, 1),
let Mt = M(β(t)). It follows that:

(i) Mt |= ϕ for each t ∈ [0, 1), and
(ii) If s 6= t in P then Ms and Mt do not satisfy the same LA-sentences.

For each n ∈ N, the composition cn = an◦β belongs to the Cartesian product
∏

t∈[0,1)Mt.

For each t ∈ [0, 1), we have

{cn(t) : n ∈ N} = {an(β(t)) : n ∈ N} = M(β(t)) = Mt.

Consider an atomic formula ψ(~v) and a tuple (ci1 , . . . , cin) ∈ C. ψ belongs to the fragment
LA. The set

{s ∈ P : M(s) |= ψ(ai1(s), . . . , ain(s))} = {s ∈ P : s(ψ(vi1 , . . . , vin)) = 0}

is Borel in P . Since β and its inverse are Borel functions, it follows that

{t ∈ [0, 1) : Mt |= ψ(ci1(t), . . . , cin(t)) ∈ L.

Thus C satisfies conditions (a) and (b) of Definition 6.1, and hence is a countable gener-
ator in 〈Mt〉t∈[0,1) over ([0, 1),L, λ).

By (ii), for each i ∈ I, there is at most one t ∈ [0, 1) such that Mt |= θi. By Theorem
6.2 and Proposition 6.5, the randomization N = P(C) generated by C is a separable
pre-complete randomization of ϕ. The event sort of N is ([0, 1),L, λ). Therefore, for
each i ∈ I, the event JθiKN is either a singleton or empty, and thus has measure zero. So
by Lemma 9.5, ϕ does not have few separable randomizations. �10.1

Corollary 10.2. Assume that the absolute Vaught conjecture holds for the Lω1ω sentence
ϕ. Then the following are equivalent:

(i) I(ϕ) is countable;
(ii) ϕ has few separable randomizations;

(iii) ϕ is scattered.

Proof. (i) implies (ii) by Result 9.1. (ii) implies (iii) by Theorem 10.1. The absolute
Vaught conjecture for ϕ says that (iii) implies (i). �10.2
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Our next theorem will show that if ZFC is consistent, then the converse of Theorem
10.1 is consistent with ZFC.

The Lebesgue measure is said to be ℵ1-additive if the union of ℵ1 sets of Lebesgue
measure zero has Lebesgue measure zero. Note that the continuum hypothesis implies
that Lebesgue measure is not ℵ1-additive. Solovay and Tennenbaum [16] proved the
relative consistency of Martin’s axiom MA(ℵ1), and Martin and Solovay [12] proved that
MA(ℵ1) implies that the Lebesgue measure is ℵ1-additive. Hence if ZFC is consistent,
then so is ZFC plus the Lebesgue measure is ℵ1-additive. See [11] for an exposition.

Theorem 10.3. Assume that the Lebesgue measure is ℵ1-additive. If ϕ is scattered, then
ϕ has few separable randomizations.

Proof. Suppose ϕ is scattered. Then there are at most countably many ω-equivalence
classes of countable models of ϕ, so there are at most countably many first order types
that are realized in countable models of ϕ. Thus

⋃
n Sn(ϕ) is countable.

Let N be a complete separable randomization of ϕ. By Theorem 8.3, N is elementarily
embeddable in some basic randomization. By Theorem 7.3, there is a countable generator
C in a family 〈Mt〉t∈[0,1) of countable models of ϕ over ([0, 1),L, λ) such that N ∼= P(C).
By Proposition 6.5, for each i ∈ I(ϕ) we have Bi := {t : Mt |= θi} ∈ L. Moreover,
the events Bi are pairwise disjoint and their union is [0, 1). By Result 2.3, I(ϕ) has
cardinality at most ℵ1.

Let J := {i ∈ I(ϕ) : λ(Bi) > 0}. Then J is countable. The set I(ϕ) \ J has cardinality
at most ℵ1, so by hypothesis we have λ(

⋃
j∈J Bj) = 1. Pick an element j0 ∈ J . For j 6= j0

let Aj = Bj. Let Aj0 contain the other elements of [0, 1), so Aj0 = Bj0 ∪ ([0, 1) \
⋃
j∈J Bj).

Then 〈Aj〉j∈J is a partition of [0, 1). For each j ∈ J , choose a model Hj of isomorphism

type j. Then P = (
∏

j∈J H
Aj

j ,L) is a basic randomization of ϕ. For each j ∈ J we have

λ(JθjKN) = λ(Aj), so by Lemma 9.4, N is isomorphic to P. This shows that ϕ has few
separable randomizations. �10.3

Corollary 10.4. Assume that the Lebesgue measure is ℵ1-additive. Then the following
are equivalent.

(i) For every ϕ, the absolute Vaught conjecture holds.
(ii) For every ϕ, if ϕ has few separabable randomiztions then I(ϕ) is countable.

Proof. Corollary 10.2 shows that (i) implies (ii).
Assume that (i) fails. Then there is a scattered sentence ϕ such that |I(ϕ)| = ℵ1. By

Theorem 10.3, ϕ has few separable randomizations. Therefore (ii) fails. �10.4

11. Some Open Questions

Question 11.1. Suppose N and P are complete separable randomizations. If

µ(JϕKN) = µ(JϕKP)

for every Lω1ω sentence ϕ, must N be isomorphic to P?
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Question 11.2. Suppose C and D are countable generators in 〈Mt〉t∈Ω, 〈Ht〉t∈Ω over
the same probability space (Ω,E, ν). If Mt

∼= Ht for ν-almost all t ∈ Ω, must P(C) be
isomorphic to P(D)?

Question 11.3. (Possible improvement of Theorem 8.3.) If
⋃
n Sn(ϕ) is countable, must

every complete separable randomization of ϕ be elementarily embeddable in a basic
randomization of ϕ?

Question 11.4. Can Theorem 10.3 be proved in ZFC (without the hypothesis that the
Lebesgue measure is ℵ1-additive)?

Added in December, 2016: The above question was answered affirmatively in a forth-
coming paper, “Scattered Sentences Have Few Separable Randomizations”, by Uri An-
drews, Isaac Goldbring, Sherwood Hachtman, H.Jerome Keisler, and David Marker.
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