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Abstract. We obtain an almost everywhere quantifier elimination for (the non-
critical fragment of) the logic with probability quantifiers, introduced by the first
author in [10]. This logic has quantifiers like 323/4y which says that “for at least
3/4 of all y”. These results improve upon the 0-1 law for a fragment of this logic
obtained by Knyazev [11]. Our improvements are:

1. We deal with the quantifier 32"y, where y is a tuple of variables.

2. We remove the closedness restriction, which requires that the variables in y

occur in all atomic subformulas of the quantifier scope.

3. Instead of the unbiased measure where each model with universe n has the
same probability, we work with any measure generated by independent atomic
probabilities pr for each predicate symbol R.

4. We extend the results to parametric classes of finite models (for example, the
classes of bipartite graphs, undirected graphs, and oriented graphs).

5. We extend the results to a natural (noncritical) fragment of the infinitary logic
with probability quantifiers.

6. We allow each pgr, as well as each r in the probability quantifier (HZTy), to
depend on the size of the universe.

81. Introduction. The 0-1 law is said to hold for a logic if for
each sentence ¢ of the logic, the probability that a model with uni-
verse n = {0,... ,n — 1} satisfies ¢ approaches either 0 or 1 as n
tends to infinity. One of the nicest theorems in finite model theory
is the 0-1 law for first order logic, proved by Glebskii et. al. [6] and
independently by Fagin [4].

More recently, 0-1 laws have been obtained for more powerful log-
ics such as the infinitary logic £F  with only k variables. Kolaitis
and Vardi [12], [7] proved the following almost everywhere quantifier
elimination theorem.

For each k, there is a class of finite models Cy, of asymptotic mea-
sure 1 on which any infinitary formula in L% is equivalent to a
quantifier-free first order formula with the same free variables.

If one allows the quantifier-free always true sentence T, the 0-1

law for infinitary sentences in £¥  becomes a special case of the a.e.
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quantifier elimination theorem. In fact, the latter theorem explains
the 0-1 law in a way that answers Fagin’s question “What really
causes there to be a 0-1 law?” [5].

The unbiased measure on the set of models with universe n, which
is the measure in which each model has the same probability, is
obtained by giving each atomic sentence the independent probability
1/2. It is well-known that the proof of the above 0-1 laws, as well
as the almost everywhere quantifier elimination theorem, still goes
through when the unbiased measure is replaced by the measure pu,, on
the models with universe n which is obtained by giving each atomic
sentence involving a predicate symbol R an independent probability
PR € (0, 1).

In this paper we will prove analogous results for an extension of
first order logic, introduced by the first author in [10], that allows
the use of probability quantifiers like 32%/%y, which means “for at
least 3/4 of all y”.

We will use the following convention on tuples of variables. When
we write a formula in the form ¢(x,y), it will be understood that
x and y are tuples of variables with no repeats and no variables in
common, and that the set of free variables of ¢ is equal to the set of
variables which occur in either x or y.

In [11], Knyazev proved a 0—1 law for the fragment of this logic over
the unbiased measure, but with three restrictions on the probability
quantifier (3=2"y)p(x,y):

e The probability quantifiers are simple, i.e. |y| = 1.

e The probability quantifiers are closed, i.e. y occurs in all atomic
subformulas of the quantifier scope.

e The probability quantifiers are noncritical, i.e. 7 # lim,, u, ().

We prove here a 0-1 law and an almost everywhere quantifier elim-
ination theorem for the larger fragment obtained by removing the
simplicity and the closedness restrictions. With different probabili-
ties on quantifiers, it is natural to also allow different probabilities
on atomic formulas. For this reason we replace the unbiased measure
by the more general measure p, described above. This enables us
to exhibit the interplay between the atomic probabilities pr and the
probability quantifiers.

Basic concepts and results are introduced in Section 2. In Section
3, we define the noncritical fragment of the finitary logic with proba-
bility quantifiers. We prove our main results in Section 4. In Section
5 we extend our main results to parametric classes of finite models,
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which include the classes of bipartite graphs, undirected graphs, and
oriented graphs. In Section 6 our main results are extended to infini-
tary logics with probability quantifiers. As in the case of ordinary
quantifiers, one must restrict attention to formulas with finitely many
variables. In the case of probability quantifiers, another restriction is
also needed, to formulas in which only finitely many different values
occur in the probability quantifiers. Finally, in Section 7 we extend
our results to logics in which the atomic probabilities pr(n) and the
quantifier probabilities r(n) depend on the universe size n.

82. Basic Definitions and Background Results. Let N be
the set of positive natural numbers. Fix a vocabulary v which is a
nonempty finite set of relation symbols, and consider only v-formulas
and finite v-models. As usual when considering 0—1 laws, the vocabu-
lary has only predicate symbols, no function symbols. For each pred-
icate symbol R € v, fix a probability pr € (0,1). For each n € N, let
M,, be the (finite) set of models with universe n = {0,... ,n — 1},
and let u, be the probability measure on M,, which is generated by
independent atomic probabilities pg. That is, if R € v is a predicate
symbol of arity k, then for each k-tuple a of elements of n, the event

{A€M,: A R(a)}

has probability pr, and these events are mutually independent.

Thus, the unbiased measure is generated by pr = 1/2 for all R € v.

Let M = (J, M, be the class of all finite models. For a class
C C M, u,(C) will denote the probability pu,(C N M,). We say
that the class C has asymptotic measure r if lim,, p,,(C) = r. We
define the probability of a sentence ¢ by 1, (¢) = p,(C) where C is
the class of all finite models of ¢, and we say that ¢ has asymptotic
measure r if the class of all finite models of ¢ has asymptotic measure
r.

We also define probabilities of formulas. Let p(x) be a formula
and let k£ = |x|. Given n € N and a tuple of constants a € n*, the
sentence p(a) has the probability

tn(p(@)) = pa{A € My: A = p(a)}.

The probability of the formula ¢(x) is obtained by choosing each a
with probability 1/n*, so that

(%) = Y {a((@))/n*: a€ {0,... ,n—1}4.
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In the case that the formula ¢(x) is a sentence, this definition of
() coincides with the definition in the preceding paragraph.

The classical 01 law states that every first order sentence ¢ has
asymptotic measure 0 or 1. We will write

p(x) a.e.

if the sentence Vx ¢(x) has asymptotic measure 1. We say that two
formulas p(x) and 1(x) are equivalent almost everywhere, written

o(x) = ¢Y(x) ae.
if the sentence (Vx)(¢(x) < 1(x)) has asymptotic measure 1. If the
sentence (Vx)(¢(x) <> 1(x)) holds in all finite models, we write

p(x) = ¥(x)
(without the a.e.).

Following [7], we say that a logic L reduces to a logic L' weakly
almost everywhere (in symbols £ <, ... L') if every formula p(x) in
L is equivalent almost everywhere to a formula ¢'(x) in £'. We say
that £ reduces to £ almost everywhere (written £ <,. L') if there
is a class of models C C M of asymptotic measure 1 such that, for
every ¢(x) € L, there is a ¢/(x) € L', with

C = ¥x(p(x) < ¢'(x)).
Thus £ <, L implies £ < 4. L'. We say that £ admits (weak) al-

most everywhere quantifier elimination if £ reduces to its quantifier-
free fragment (weakly) almost everywhere.

Let L. (Lo0) be the set of first order (quantifier-free) formulas, let
LF (LF;) be the fragment that uses only k variables. We allow £
to include the two quantifier-free sentences T and F, denoting the
always true and always false sentences respectively. Let L., be the
infinitary logic, where we allow infinite conjunction and disjunction,
let £*  be the fragment of L., that uses only k variables, and let
E:ow = Uk ‘C};ow

It is known that the 0-1 law for first order logic (or even the in-
finitary logic with finitely many variables) come as an easy corollary
from the following theorem [6, 12]*.

THEOREM 2.1. For the unbiased measure, first order logic with k
variables admits almost everywhere quantifier elimination, that is,

k k
‘wa Sa.e. ‘CWO‘

!Theorem 2.1 was essentially proved in [6], though not explicitly mentioned
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In other words, for each k, there is a class Cy. of asymptotic measure
1, such that for every formula o(x) in LE_, there is a quantifier-free
formula 6(x) in LF, such that

Cr = (V) (p(x) — 0(x)).
_|

An easy induction can lift this result to the infinitary logic with
k variables. Also, taking x to be empty, the theorem says that
each first order sentence with k& variables collapses to T or F almost
everywhere, leading to the 0—1 law. Thus we get:

COROLLARY 2.2. 1. LF <,. Lk,
2. ‘C(gow Sw.a.e. ‘CwO-
3. The 0-1 law holds for the infinitary logic L.
_|

We point out, however, that it is not true that £  <,. Lo, or
even L, <ge Loo. To see this, note that there is no class C C M
of asymptotic measure 1 such that, for every first order sentence ¢,
either C = ¢ « T, or C | ¢ <« F. For example, the first order
sentence stating that the model is of size > n is equivalent to T
almost everywhere but only on the class of models of size > n.

83. Logic with Probability Quantifiers. The probability logic
L, p, introduced in [10], is the first order logic augmented with all
probability quantifiers of the forms (3="y) where r € (0, 1). To avoid
exceptional cases, we do not allow the quantifiers (3=%) and (3='y).
We thus have the usual formation rules for first order logic, and the
following additional formation rule:

If p(x,y) is a formula with (x,y) being a list of syntactically dis-
tinct variables, then (3=7y)p(x,y) is a formula for each r € (0, 1),
with bound variables y. The semantical interpretation of the formula
(F7'y)e(x,y) is:

Let k = |x|, £ = |y|, A € M, be a finite model with universe A of
size n, and a € A*¥ be a k-tuple of elements of A. Then:

A @y)pla,y) i (R EA AL ola.b)

Thus, (3="y)p(x,y) says that the fraction of the tuples y in the
model that satisfy the formula ¢(x,y) is > r.

If we further allow infinitary conjunctions we get the infinitary
counterpart Lo p, which is also introduced in [10].

H
oy >,
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It is clear that the formula

(Fy)exy) = Fy)e(x,y)

is valid whenever r > s, and that

(Fy)e(x,y) = =(F°y)-p(x,y)

is valid whenever r + s > 1.

As usual, the universal and existential quantifiers are formally ap-
plied to single variables. Vy means Yy, ... Vyi, and similarly for Jdy.
Note that for each formula ¢(x,y) and each r € (0, 1), the formulas

Vy o(x,y) = (F7y)e(x,y)
and

(F=Y)e(x,y) = Iy p(x,y)
are valid.

The goals of this paper are to exhibit the interplay between the
predicate probabilities pr and the quantifier probabilities r, and to
obtain almost everywhere quantifier elimination as well as 0-1 laws.

The papers [2], [8], and [9] gave some conditions on a set of gen-
eralized quantifiers Q that lead to a 0-1 law for the logic £,.(Q).
Those conditions are not fulfilled even for the single quantifier 32/
In fact, the 0-1 law fails here even for the unbiased measure (pr =
1/2 for each R € v). An easy counterexample is the sentence
(32Y22)R(z) (in the simple unary vocabulary {R}), which has an
asymptotic probability %

If we further allow binary predicates we lose even the convergence
property, as seen in the following:

PROPOSITION 3.1. If the underlying vocabulary contains a binary
predicate, then L,p does not have a convergence law for the unbiased
measure.

PROOF. Let R be a binary predicate. Consider the sentence
p = (3z) [(F*y)R(z,y) A (F7?y)~R(z,y)] .

Since ¢ can be read as (3z)(3=Y/%y)R(z,y), one can see that if n
is odd then p,(¢) = 0. However, to show that lim, u2,(¢) = 1, we
use independence to get

L= pnl) = 1= () (172 :
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Then, using Stirling’s Formula, we get an asymptotic upper bound of
the right hand side of the form exp(—cn) for some positive constant

C. =

To avoid these examples, Knyazev [11] considered a fragment of
L. p with the following restrictions on the measure p,, and the prob-
ability quantifier (3="y)p(x,y):

A. p, is taken to be unbiased.

B. The quantifier (3="y) is simple, i.e. |y| = 1.

C. The quantifier (3=7y) is closed, i.e. y occurs in all atomic sub-

formulas of ¢(x,y).

D. The quantifier is non-critical, i.e. r # lim,, u,(¢(x,y)).

He then proved that the restricted fragment satisfies the 0-1 law for
the unbiased measure.

In this section we will remove the first three restrictions A—C, and
in the next section we will prove that the resulting fragment admits
weak almost everywhere quantifier elimination, as well as a 01 law.

For formulas ¢(x,y) which satisfy A-C, Knyazev defined the crit-
ical value of ¢ as the limit lim, u,(©(x,y)). The critical value of a
formula plays a crucial role in the study of probability quantifiers
on finite structures. In the absence of restrictions A—C, the notion
of a critical value will take a more general form, and will be defined
formally in Definitions 3.4 and 3.6. Heuristically, a critical value of
a formula ¢(x,y) is a value r such that the formula (3="y)p(x,y)
threatens to violate the 0-1 law. To get an idea of where we are
headed, we make some preliminary observations.

First, a critical value of a formula may depend on the variable we
want to quantify over, so we will need to introduce the notion of a
y-critical value of a formula for each tuple y of free variables. For
example, for the unbiased measure, the formula

Ri(z) A Ri(y) A Ry(y)

should have the z-critical value 1/2 and the y-critical value 1/4, (i.e.
if we quantify over one of these variables using the corresponding
critical value for r, we may end up with a sentence that does not
have an asymptotic measure 0 or 1).

Moreover, a formula may have more than one y-critical value for
some variable y. For example, for the unbiased measure, one can
check that the formula

(Ri(z) A Ri(y)) V (Ri(x) A Ra(z) A =Ri(y))



8 H. JEROME KEISLER AND WAFIK BOULOS LOTFALLAH

should have both the z-critical values 1/2 and 1/4.

To define the set of y-critical values of a complicated formula ¢,
we will first need to reduce ¢ to an almost everywhere equivalent
quantifier-free formula ¢, which we will call the quantifier-free con-
tent of ¢. We can then define the critical values of ¢ to be those of
@’
In our formal definition, the y-critical values of a quantifier-free
formula «(x,y) will be sensitive to the choice of the variable string
y, as well as to the equalities that hold between the variables in the
string x. We will simultaneously define, by induction on complex-
ity of formulas, the property of a formula being noncritical and the
quantifier-free content of a formula.

To prepare the way, we first compute the asymptotic probabilities
of some formulas built from equalities. Given an equivalence relation
E on the set {1,..,k} of indices of the (syntactically) distinct vari-
ables x = (1, ..,2), we define the formula Dg(x) which says that
r; = x; exactly when (i,j) € E, i.e.

Dg(x) = /\ (; = ;) A /\ (x; # ;).
(i.j)eE (1.))¢E

We use D(x) to denote Dg(x) when E is the equality, i.e.

D(x) == [\ (i # ).
i#]
Thus D(x) says that the elements of x are pairwise distinct. We
define the tuple xg = (2gq),... ,Tew) ), where E(i) denotes the
equivalence class of i.

Thus xg is a renaming of the variables x, where variables are iden-
tified iff their indices belong to the same equivalence class. Intuitively
we assume an interpretation of x and y that respects the equivalence
relation E but otherwise gives distinct values to distinct variables.

We define Dg(xg) to be the formula that says that TG # TEg)
whenever (i,7) ¢ E.

For example, if F is the equivalence relation on {1, 2, 3} with equiv-
alence classes {1,3} and {2}, then

(531, $2,$3)E = (93{1,3}, 93{2}755{1,3})7

Dg(x) is equivalent to x; = x3 A 11 # x9, and Dg(xg) is equivalent

to xy13y # T2}
For each equivalence relation F on {1,... ,k}, Dg(xg) is a con-
junction of fewer than k? inequalities, so u,(—~Dg(xg)) < k*/n, and
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therefore
lim 11, (Dp(xp)) = 1.

It follows as a special case that lim,_, i, (D(x)) = 1. Moreover, if
E is an equivalence relation but is not the equality relation, then
limy, 00 fin(Dp(x)) = 0.

By a literal we mean an atomic or negated atomic formula.

We now define the notion of a quantifier-free type. Given k > 1
and a k-tuple of variables x, a quantifier-free type [(x) is a maxi-
mal consistent conjunction of literals in the variables x. Since the
vocabulary v is finite, each quantifier-free type ((x) is a finite con-
junction of literals, and hence is a first order quantifier-free formula.
Moreover, the set of all quantifier-free types in x is also finite.

For each quantifier-free type ((x), the relation £ on {1,... k}
defined by

E={(i,)): B(x) | x; = z;}
is an equivalence relation, which we call the equivalence relation
induced by [(x).

Note that if 3(x) induces E, then [(x) logically implies Dg(x),
and ((xg) logically implies Dg(xg).

LEMMA 3.2. Let 3(x) be a quantifier-free type and let E be the
equivalence relation induced by $(x). Then lim, o pn(5(XxEg)) exists
and 1s greater than 0.

PROOF. [(xg) is equivalent to the conjunction
DE(XE) A /\ 92
i=1

where each 6; is either of the form R(z) or of the form —R(z). Let
p =11, p; where
_J pr if 0; is of the form R(z)
Pi= 1—pp if 6;is of the form -R(z).

We have m > 0 and p > 0. By the definition of p,, for each k-

tuple a of constants such that Dg(a) holds, we have u,(B(ag)) = p.
Therefore

P in(De(xp)) < pn(B(x2)) < p+ pn(-Dp(xE)).
Since lim,, 0 pin(Dp(xg)) = 1, it follows that

Tim 11, (5(xp)) = p-
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_|

Note that for each quantifier-free type (3(x) we have p,(6(x)) >0
for all n > |x|, so we can introduce the conditional probability of a
formula given ((x) in the natural way.

For a formula p(x,y) and a quantifier-free type 5(x), and for each
n > |x|, we define the u, conditional probability of p(x,y) given
f(x) as

B tn(0(x,¥) A B(x))
Hnlp(x y)IBE] = === =y

In the next lemma we show that the conditional probability of
a quantifier-free formula given a quantifier-free type converges as
n — 00. The proof gives a formula for the limit.

LEMMA 3.3. Let a(x,y) be a quantifier-free formula and let B(x)
be a quantifier-free type. Then lim,, o p,a(x,y)|5(x)] exists.

PROOF. Let E be the equivalence relation induced by G(x). Then
B(xg) is a quantifier-free type in xg, and

 pn(a(xp,y) A B(xE))
tnlo(xE,y)|8(xEp)] = o (302)) :

We note that f(xg) implies Dg(xg), and for each k-tuple a of con-
stants such that Dg(a) holds, we have

a(aa}I) = a(aE7Y)7 ﬁ(a) Eﬁ(aE)
Therefore
pnla(x,¥)|B(x)] = pla(xp, ¥)|8(xE)]-

We may assume that each atomic subformula of a(xg,y) contains
a variable in y, since each atomic subformula which contains only
variables in xg can be replaced by T if it follows from ((xg), and by
F otherwise. Starting from a(xg,y), form the equality-free formula
ap by replacing each equality between distinct variables by F, and
replacing each equality between the same variable by T.

Now expand ap into the full disjunctive normal form without
equality:

m 1
ar =\ N\,
i=1j=1

where each conjunction corresponds to a row in the truth table rep-
resentation of ap.
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We claim that
m l
Tim (pn[a(x, ¥)|B(x)]) = > 11pi=ps
i=1 j=1

where pg is defined by the above equation, and

e if 6;; is of the form R(z)
Pi = 1-pp if 0;; is of the form —R(z).

By convention, pg =0if ag =F, and pg =1if ag = T.

We now prove the claim. For each tuple (ag,b) of distinct ele-
ments of n, the sentences a(ag,b) A f(ag) and ag(ag,b) A B(ag)
are equivalent in all models A € M,,, and the sentence ag(ag,b)
has probability

tn(ap(ag, b)) = ps.
Since distinct atomic sentences have independent probabilities,

_ tm(op(ap, b) A fS(ap))
Nn(ﬁ(aE>> '

Therefore the conditional probability p,[a(x,y)|5(x)] differs from
pp by at most the probability ¢(n) that the elements of (xg,y) are
not all distinct. But ¢(n) < (|x| + |y|)?/n, so lim, ., ¢(n) = 0 and
the claim follows. -

,Un(aE<aE7 b))

The above lemma lets us make the following definition.

DEFINITION 3.4. Let a(x,y) be a quantifier-free formula. For each
quantifier-free type B(x), we define

pla(x,y)|6(x)] = lim pula(x,y)|5(x)].

The y-critical values of a(x,y) are the values pla(x,y)|5(x)]
where B(X) is a quantifier-free type.

PROPOSITION 3.5. Every quantifier-free formula has finitely many
y-critical values for each tuple of variables y. Moreover, each y-
critical value is equal to a polynomial in pr, R € v, with integer
coefficients. In particular, if each probability pr is a rational number,
then each y-critical value of a quantifier-free formula is a rational
number.

Proor. This follows easily from the proof of Lemma 3.3. -



12 H. JEROME KEISLER AND WAFIK BOULOS LOTFALLAH

We now give our main definition, which simultaneously defines the
set of noncritical formulas of £ p and the quantifier-free content
" of a formula . The limits mentioned in this definition exist by
Lemma 3.3.

DEFINITION 3.6. Let ¢ be a formula in the infinitary logic Leop
with only finitely many free variables.

1. If @ is quantifier-free, we stipulate that @ is noncritical and that
00 is @ itself.

2. If o = =), then  is noncritical if and only if 1 is noncritical,
and we define ©° = = ().

3. If o = A, i, then ¢ is noncritical if and only if 1; is noncritical
for each i, and we define o* = \,((¢4)°).

4. If p(x) = Jyv(x,y), then ¢ is noncritical if and only if 1 is
noncritical, and we define

= \/{8(): plt’(x,9)|Bx)] > 0} v \/ ¢°(x, ;).
i<|x]
5. If o(x) = (F=2"y)(x,y), then ¢ is noncritical if and only if 1 is

noncritical and r is not a y-critical value for ¢¥°, and we define

— V{869 ule°(x,y)|860)] > 7}

The noncritical fragment L_p is defined as the set of all noncritical
formulas of L,p. The noncritical fragment L__ p is defined as the
set of all noncritical formulas of L.p with only finitely many free
variables.

Warning: The noncritical fragment L_p and the quantifier-free
content function ¢ — ¢ depend on the given atomic formula prob-
abilities pr, R € v.

Note that in the special case when 1(x,y) is noncritical and

Ul (x, ) B(x)] = 0 for all A(x),

the formula (3"y)v(x,y) is also noncritical and has quantifier-free
content F.
On the other hand, if ¢(x,y) is noncritical and

p[e" (%, y)|8(x)] = 1 for all B(x),

the formula (3="y )1 (x,y) is also noncritical and has quantifier-free
content T.
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The language L£,p has uncountably many formulas because there
are uncountably many probability quantifiers. But if we restrict the
language to formulas with rational probability quantifiers, then the
set of formulas is countable. We now observe that if each atomic
probability pr, R € v is also rational, the set of critical formulas and
the quantifier-free content are computable.

PROPOSITION 3.7. Suppose that pr is a rational number for each
R € v. Call a formula ¢ € L,p rational if for every probability
quantifier (327y) in @, 1 is a rational number, and let Lo be the set
of rational formulas of L,p. Then each of the following is primitive
recursive:

1. The relation “a is quantifier-free and r is a y-critical value of
a’.

2. The set L,o N L, p of rational noncritical formulas.

3. The quantifier-free content function @ — @° restricted to Lo N

L p.

PROOF. The proof of Lemma 3.3 gives a primitive recursive algo-
rithm for computing the y-critical values of a quantifier-free formula,
establishing (7). Parts (2) and (%) follow easily from Part (1) and
Definition 3.6. .

84. Elimination of Probability Quantifiers. In this section
we prove our main result, which shows that each noncritical formula
¢ is almost everywhere equivalent to its quantifier-free content °.
As we mentioned in the introduction, it is well-known that the proof
of Theorem 2.1 goes through for the measure u,, instead of the unbi-
ased measure, so that every first order formula is almost everywhere
equivalent to a quantifier-free formula. In fact, from that proof one
can easily see that every first order formula is almost everywhere
equivalent to its quantifier-free content as defined in Definition 3.6.
We will not repeat that proof here, but we will need the following
special case of the result.

LEMMA 4.1. For each quantifier-free first order formula ¥ (x,y),
Jy(x,y) is almost everywhere equivalent to its quantifier-free con-

tent (3y(x,y))". .

The formula below for the conditional probability of the negation
is easily checked.
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LEMMA 4.2. For any quantifier-free formula o(x,y) and quantifier-
free type B(x), we have

pe(x, y)|8(x)] = 1 — plp(x,y)|8(x)].
_|

We next observe that every quantifier-free first order formula can
be represented in the following normal form. We omit the proof,
which is routine.

LEMMA 4.3. FEach quantifier-free first order formula ¢(x,y) can
be represented in the normal form
h
P y) = \(@i(x,y) A Bi()),
i=1
where the (;(x) are quantifier-free types in x, and each atomic subfor-
mula of each o;(X,y) contains a variable fromy. This representation
15 unique up to renumbering and logical equivalence. .

The next lemma gives the asymptotic probabilities of the formulas
Q; (X> y) .
LEMMA 4.4. Let a(x,y) be a first order quantifier-free formula in

which every atomic subformula contains a variable from'y. Let B3(x)
be a quantifier-free type and let E be the equivalence relation induced

by B(x). Then
lim p,((xp,y)) = pla(x,y)|B(x)]-

n—oo

PROOF. Since

plax,y)18(x)] = pla(xe, y)I6(xe)],

and ((xg) is a quantifier-free type which implies u # v for every
pair of syntactically distinct variables u,v in the tuple xg, we may
assume that E is the equality relation. By hypothesis, a(x,y) and
B(x) have no atomic subformulas in common. Therefore for any
constants a and b which have no elements in common, we have

fn((a,b) A G(a)) = pn(a(a, b)) - pn(B(a)).
Let g(n) be the probability that some element of y equals some
element of x. Then

[n(a(x,y) A B(X)) = pn(a(x,y)) - i (B(X))] < g(n),
[l (3, ¥)B(x)] = pn(@(x, ¥))| < (1) /1 (B(x)).
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We have ¢(n) < |z| - |y|/n, so lim, . ¢(n) = 0. The result now
follows form Lemmas 3.2 and 3.3 by taking the limit as n — oco.

The next lemma is implicit in the paper [11]. For completeness we
give a proof here.

LEMMA 4.5. Let 1(x,y) be a first order quantifier-free formula
such that y appears in every atomic subformula. Let

L= Tim pn(¢(x,y))

(which ezists by Lemma 4.4). Then

1. If r < L, then D(x) — (F="y)v(x,y) a.e.
2. If r > L, then D(x) — —(F="y)v(x,y) a.e.

PROOF. Let 3(x) be a quantifier-free type which induces the equal-
ity relation. By Lemma 4.4, L = p[i(x,y)|3(x)]. As in the proof of
Lemma 3.3, we can compute L by starting from ¢ (x, y), forming the
equality-free formula «(x,y) by replacing each equality between dis-
tinct variables by F, and replacing each equality between the same
variable by T, and putting « into the full disjunctive normal form
without equality:

a=\/

0;;.

l
=1

s
Il

—
<

We have
L=> T]prs
i=1 j=1
where

1 —pg if 6;; is of the form —~R(z).
It follows from the theory of independent Bernoulli trials that for
each real ¢ > 0 there exist ¢ > 0 and N € N such that for each
n > N and each tuple of distinct constants a € nXl,

o (‘\{yen: vy,

n

Dy = { DR if 6;; is of the form R(z)
] —

> 5) < e .

But lim,,_,. n¥le=® = 0. Thus for each £ > 0 we have
Tim g, (¥x (D(x) = (37" y)v(x.y))) = 1,
so (1) holds. Similarly,
lim g, (Vx (D(x) = =(F*y)i(x,y))) =1,

n—oQ
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and (2) follows. =

Lemma 4.5 deals with the simple case, where the probability quan-
tifier is on a single variable y. To handle the general case, we prove a
stronger lemma, which almost everywhere eliminates the quantifiers

(F"y).

LEMMA 4.6. Let ¢ (x,y) be a first order quantifier-free formula, in
which each atomic subformula contains at least one of the variables
in'y. Let L =lim,,_ pn(¥(x,y)). Then

1. If r < L, then D(x) — (F="y)v(x,y) a.e.

2. Ifr > L, then D(x) — —(3="y)v(x,y) a.e.

PRrooOF. By induction on |y]|.
Basis: (Jy| = 1) This is Lemma 4.5.

Induction Step: (Assume the result for |y| and quantify over y, 2)
For (1), we assume that r < L, and put 9 (x,y, z) in the full disjunc-
tive normal form, so that the disjuncts are exclusive. We’ll show by
an example that if (1) is proved for the exclusive disjuncts, it will
then follow that it holds for the full disjunction.

Say w(x7 Yy, Z) = ¢1(Xa Yy, Z) N w2(xa Yy, Z), where ¢1<X7 Y, Z) and
19(X,y, 2) are exclusive and may or may not contain z. Thus we
have that L = L; + Ly where Ly = lim, o p,(¥1(x,y, 2)), and
Ly = limy, oo ptn(¢2(X, Y, 2)).

Since L—r = L1+ Ls—r > 0, we can find rq, 79 such that r = r{+r,,
0<ry<Lj,and 0 < ry < Lo.

Now it is readily seen that the implication

(37 y2)Yi(x,y, 2) A (FF2y2)a(x,y, 2) — (37 y2)i(x,y, 2)

is logically valid.
Thus, if both

D(x) — (F7"y2)U(x,y, 2) ae.
and
D(x) — (F72yz)ua(x,y, 2) ae.
then
D(x) = (Fy2)v(x,y,2) ae.

So it is enough to prove (1) for the disjuncts, i.e. without loss
of generality we assume that ¥ (x,y, z) is a conjunction of literals.
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Let’s write it as:
b(x,y, 2 /\azxy, A/\ﬁzxy

where z appears in each o;(x,y, 2).
From the form of ¥(x,y,z) we can see that L = H;nJrlk p; for

suitable values of p;, 7 =1,...,m + k. Since r < L, we can again

find 7, and 7y such that r = 77y, H;nzlpj >r; > 0 and H;ntfﬂp]

ro > 0.
Now one can check that the implication

(372y) (D(y) — (I 2)0(x,y,2) — (Fy2)(x,y, 2)

is valid almost everywhere. Thus, we just need to prove that

D(x) — (F7"2y) (D(y) — (37" 2)9(x,y,2)) ae.
But we have that:

D(y) — (7" 2)v(x,y, 2)

= D(y)— E|>’”1 (/\azxy, /\/\ﬁzxy)
D(y) — <((3>”)/\ozzxy,) /\ﬁzxy>
5
H‘/\ﬁi(x,y)ae

where in the last a.e. equivalence we used Lemma 4.5, which states
that

D) — (F"2) \ailx,y, 2) ac. |
=1

since

rLILHoloMn (/\ XY,z ) pr > T

=

—_

Now, since

m—+k

i g (/\ i y>) = n>n
=1

j=m+1
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we can use the induction hypothesis to get:

D(x) — (32rzy) /\ﬁi(x, y) a.e.

i=1
Thus, we get

D(x) — (372y) (D(y) — (F"2)0(x,y,2)) ae.
which completes the proof of (1).

For (2), we assume that r > L, or equivalently, 1 —r < 1 — L. By
Lemma 4.2, 1— L is the y-critical value of =)(x,y, z). Choose s such
that 1 —r < s < 1— L. Applying (1) to the formula =) (x,y, z), we
see that

D(x) — (F*°y2)~(x,y,2) ae.
We have r + s > 1, and it follows that
D(x) — =(FFy2)(x,y, 2) ae. ,
and we conclude that (2) holds. =

This removes Restriction B (quantifier simplicity). As an easy
corollary we have:

LEMMA 4.7. Let ¥ (x,y) be a first order quantifier-free formula, in
which each atomic subformula contains at least one of the variables
iny. Let E be an equivalence relation on the indices of X, and let

L =lim, o0 pin(¥V(xg,y)). Then
1. If r < L, then Dg(x) — (3="y)Y(x,y) a.e.
2. Ifr > L, then Dp(x) — —(F="y)u(x,y) a.e.
_|

We now deal with general quantifier-free formulas. The following
lemma allows us to remove Restriction C (quantifier closedness).

LEMMA 4.8. Let ¥(x,y) be a first order quantifier-free formula.
and assume that r € (0,1) is not a y-critical value for 1. Then

(Fy)(xy) = ((Fy)v(x, y))o a.e.

That is, (32"y)(x,y) is almost everywhere equivalent to its quantifier-
free content.

Proor. We first write ¢ in the normal form of Lemma 4.3:

m

v(xy) = \(ailxy) A Bi(x)).

i=1
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For each i, we have f3;(x) — Dg(x) where E is the equivalence
relation induced by f;(x). Therefore by Lemma 4.7, whenever r <

plai(x,y)|Bi(x)], we have
ﬁl(x) - (Elzry)ai(xvy) a.c. ,
and hence
Bi(x) = (F77y)ai(x,y) A Bi(x) ae.
On the other hand, when r > ua;(x,y)|B:(x)], we have
Bi(x) = ~(F"y)ai(x,y) ae.
and hence
F = (37"y)as(x,y) A Bi(x) a.e
Since each f;(x) is a quantifier-free type, for each i we have
w(xu y) A ﬁl(x) = ai(X7 y) A ﬂi(x)a
SO
u[v(x,y)[0:(x)] = plai(x, y)|6i(x)]-
It follows that

(Fy)uxy)=3F"y) \/ (axy) ABi(x))

=

=1

_ \/ (Fy)u(x,y) A Bi(x))

= \/{@ x): 7 < plaa(x,y)|B:(x)]} ae.
= \/{6:(x): 7 < o (x,¥))5: ()]}

= ((Fy)(x,y))".
_|

Using this lemma, we obtain our main result, which extends The-
orem 2.1 to the probability logic £,

THEOREM 4.9. Every formula ¢ in L_p is a.e. equivalent to its
quantifier-free content.

PrOOF. By induction on the complexity of ¢. The basis step is
trivial, and the induction steps for connectives are easy.

For the induction step for existential quantifiers, we let p(x) =
Jy (%, y) where ¥)(x, y) is noncritical, and assume the inductive hy-
pothesis that v (x,y) is a.e. equivalent to ¥°(x,y). Then ¢(x) is
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a.e. equivalent to Jy¢°(x,y). By definition, ¢(x) has the same
quantifier-free content as Jy ¢°(x, y), and by Lemma 4.1, Jy "(x, )
is a.e. equivalent to its quantifier-free content, so ¢(x) is a.e. equiv-
alent to its quantifier-free content.

It remains to give the induction step for probability quantifiers.
For this step, we let ¢(x) be a noncritical formula of the form
(F2"y)h(x,y), assume the induction hypothesis that 1(x,y) is a.e.
equivalent to 1°(x,y), and use Lemma 4.8 to get:

o(x) = (Fy)(x,y) = (Fy) (x,y) = (Fy)y’(x,y))° ae.
_|

COROLLARY 4.10. 1. £ 5 <yae Luwo-
2. The 01 law holds for the logic L.

PRrOOF. Part 1 is a corollary of Theorem 4.9, and part 2 follows
because the quantifier-free content of a sentence must be T or F. -

We conclude this section with a discussion of almost everywhere
reducibility for fragments of £_,. For k € N, let £, be the set
of formulas of £, with at most k variables. For each finite subset
Py € (0,1), let £, be the set of formulas of £, with probability
quantifiers only from F,. Thus L,p is the union of the fragments
L5 over all k € N and all finite P, C (0, 1).

We observe that Ei} <ae. Lo does not hold. To see this, suppose
that Ei} <ge. Lyo holds for the unbiased measure, and R € v is
a unary relation. Then there is a set C of finite models of asymp-
totic measure 1 such that for each A € C' and n € N we have A |=
(32(/2=1/my) R(y). But then each A € C satisfies A |= (32Y/2y) R(y),
which contradicts the fact that (32!/2y)R(y) has asymptotic proba-
bility 1/2.

THEOREM 4.11. For each k € N and finite set Py C (0,1) we have
EZ;JO Sa.e. £w0~

PROOF. Let F be the set of all formulas ¢(x) in £ such that
for some quantifier-free formula «, either

p(x) = ya(x,y)

e(x) = (Fy)a(x,y)
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for some r € F,. Since k and F, are finite, the set F' is finite. By
Theorem 4.9 and the fact that finite intersections of sets of asymp-
totic measure 1 have asymptotic measure 1, there is a set of finite
structures C' of asymptotic measure 1 such that for each formula
o(x) € F and each A € C,

A E Vx (p(x) < ¢"(x)) -
Now let S be the set of all formulas ¥ (x) € L, such that

A | Vx (1 (x) < ¢°(x))
for all A € C. Then every quantifier-free formula belongs to S, and
also F' C S. An easy induction on the complexity of formulas will
show that every formula of ¥ (x) € ﬁf)}o belongs to S.
The probability quantifier step of this induction is as follows. Sup-
pose that ¢(x,y) € S and ¢(x) = (I="y)1(x, y) is noncritical. Then
©O(x) = ((F"y)Y ' (x,y))°. Let A € C. Since ¢(x,y) € S we have

A | VxVy (9(x,y) < 9°(x,y)),

and hence

AEVYx ((Fy)e(xy) « (Fy)P'(xy)).
Since (I="y)y°(x,y) € F C S, we have

A Evx ((Fy)¢(xy) < ¢"(x)) .
Therefore
A EVx (p(x) < ¢’(x))
that is, ¢(x) € S. The other steps of the induction are similar.

§5. Parametric Classes. In [14], W. Oberschelp showed that
the first order 0—1 law holds for the class of all finite models of certain
universal first order sentences, called parametric sentences (see also
[3], Section 4.2). In this section we get similar generalizations of the
almost everywhere quantifier elimination theorem and the 0-1 law
for the probability logic £_p.

DEFINITION 5.1. A first order sentence m is said to be paramet-
ric if it is a finite conjunction of sentences of the form
Vx[D(x) — 7(x)] where 7(x) is a Boolean combination of literals
Ti,...,Te Such that each element of X occurs at least once in each
7;. The class of finite models of a parametric sentence is called a
parametric class.
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For example, the class of all bipartite graphs, and the class of all
oriented graphs, are parametric. The class of all models in which
certain relations are symmetric and irreflexive is also parametric. In
particular, the class of all undirected graphs is parametric.

If k is the maximum arity of the relations in v, then any parametric
sentence which has a model of cardinality > k has models of all
cardinalities.

We assume throughout this section that 7 is a parametric formula

/\Vzi[D(zi) — 7(2)]

which has models in all finite cardinalities. For any n and formula
p(x), we define

) AT)
(il (o)) = 2

Since m has models of all finite cardinalities, (u,|7) is a probability

measure on the class of all models with universe n.

All of the notions and results in Sections 3 and 4 will carry over to
the class of finite models of 7 with the measure (yu,|7) in place of .
Instead of considering all quantifier-free types 3(x), we consider only
the quantifier-free types which are consistent with 7. We will define
the m-noncritical fragments of L,p and Lop, denoted by L_ ()
and L£__p(m). The following lemma lets us compute (fu,|7)(¢(x))
from p,(¢(x)), and to pass to the limit as n — oo

LEMMA 5.2. For each k and each n > k, there is a constant ¢, >
1 such that for each k-tuple of distinct variables x:

(1) For every quantifier-free type B(x) which is consistent with
and induces the identity relation on X,

(kn| ™) (B(%)) = pn (B(x)) - -

(11) im,, o0 Cp i €xists.

PROOF. Let y be a tuple of distinct variables such that xNy = ()
and |x Uy| = n. Let 0(x,y) be the conjunction of D(x,y) and
all instances 7;(z;) of parts of m where z; is a subsequence of x,y
that contains at least one variable from y. Let a, b be sequences of
distinct elements of n of length |a| = |x| and |b| = |y| such that
aUb = n. Using the hypothesis that 7 is a parametric sentence, we
note that in any model A € M,,, for each quantifier-free type 3(x),
B(a) A is equivalent to F(a) Af(a, b). Since each atomic subformula
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of 6 is either an inequality in D(x,y) or contains a variable in y, 5(x)
is independent of 0(x,y). Let ¢, r = pn(0(x,y))/tn(m). It is clear
that ¢, depends only on n and k (and ), and not on the k-tuple
of variables x.

(i) We have ¢, > 1, and for any quantifier-free type (5(x) consis-
tent with m we have

pn(B(2) AT) = pn(B(a)) - pn(0(a, b)) = pn(B(a)) - pin () - -

Therefore
pn(B(x) A7) = pn(B(x)) - () - ok,
and (i) follows.

(ii) Let B be the set of all quantifier-free types 3(x) such that
B(x) induces the identity relation on x and is consistent with 7. Let
1(x) be the conjunction of D(x) and all instances 7;(x;) of parts of
m where x; is a subsequence of x. Then

1 () (0% y) AY(X)
ok n(0(xy)) 1 (0(x,y)) = pn (Y(x)[0(x,y))
= (%)) =Y _{ma(B(x)) : B € B}.

By Lemma 3.2, the limit of the right side exists and is > 0, so (ii)
holds. 1

The analogue of Lemma 3.2 is:

LEMMA 5.3. Let 3(x) be a quantifier-free type which is consistent
with m and let E be the equivalence relation induced by B(x). Then

Tim (1) (3(x5)
exists and is greater than 0.
ProoF. By Lemmas 3.2 and 5.2. .

The conditional probability (u,|7)[a(x,y)|(x)] is then defined in
the obvious way when ((x) is consistent with 7. We have the fol-
lowing analogue of Lemma 3.3:

LEMMA 5.4. Let a(x,y) be a quantifier-free formula and let 5(x)
be a quantifier-free type consistent with w. Then

Jim (g, [m)[e(x, y)|6(x)]
exists.

Proor. By Lemmas 3.2, 3.3, and 5.2. -
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This lemma lets us make the following definition.

DEFINITION 5.5. Let a(x,y) be a quantifier-free formula. For each
quantifier-free type B(x) which is consistent with 7, we define

(), y) [B(x)] = Timn (s m)fer(x, ) [B(x)]

The 7, y-critical values of a(x,y) are the values (u|m)[a(x,y)|B(x)]
where B(X) is a quantifier-free type consistent with 7.

We can now define the m-quantifier-free content ¢™ of ¢ and the
m-noncritical fragments of £,p and L, p by a small modification of
Definition 3.6.

DEFINITION 5.6. Let ¢ be a formula in the infinitary logic Loop
with only finitely many free variables.

1. If ¢ 1s quantifier-free, we stipulate that @ is w-noncritical and
that ©™ s @ itself.

2. If p = =, then ¢ is m-noncritical if and only if 1 is T-noncritical,
and we define ™ = —(Y7).

3. If ¢ = N\, ¥, then ¢ is m-noncritical if and only if 1; is w-
noncritical for each i, and we define ™ = \,((¢;)™).

4. If p(x) = Jy(x,y), then ¢ is m-noncritical if and only if 1 is
m-noncritical, and we define

= V{8 (ulm)[™ (x 9)[B)] > 0} v \/ 47 (x, ;).
i<|x|
5. If (x) = (F="y)(x,y), then ¢ is m-noncritical if and only if
Y 1s m-noncritical and r is not a w,y-critical value for Y™, and
we deﬁne

= V{B8x): (um) W (x,y)|8(x)] > r}.

The m-noncritical fragment L p(m) is defined as the set of all -
noncritical formulas of L,p. The m-noncritical fragment L p(m) is
defined as the set of all m-noncritical formulas of L.p with only
finitely many free variables. Two formulas ¢p(x), (x) of L ,(7) are
said to be a.e.(m)-equivalent if

Tim (s ) (Vxlip () = () = 1.

The following analogue of Theorem 4.9 is obtained by a routine
modification of its proof, using Lemma 5.2.
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THEOREM 5.7. Every formula ¢ in L p(7) is a.e.(m)-equivalent
to its m-quantifier-free content.

COROLLARY 5.8. The 0-1 law holds for the logic L p(m) with re-
spect to the measures (pu,|).

86. Infinitary Logic. We continue to work with a finite vocab-
ulary v, and an underlying atomic probability pr for each predicate
symbol R € v.

We first note that the 0-1 law fails for the infinitary probability
logic Lo.p, even if we limit the number of variables used and allow
only noncritical formulas. For example, let R be a unary predicate
symbol in v, and for each natural n define the sentence

O = (32(1/2_1/"):1:)1?(33).

Then ¢, is a noncritical sentence in £, which has asymptotic mea-
sure 0, but one can easily check that

\/ ¢n = (37°2)R(x)

which has asymptotic measure 1/2.
If we allow binary predicates then we can imitate the example given
in Proposition 3.1 to get a nonconvergent sentence. However, if we
allow only finitely many values of r to occur in quantifiers 32" within
a single infinitary formula, then we get both an almost everywhere
quantifier elimination as well as a 01 law.
Thus, for each k € N and each finite Py C (0, 1) let’s define £

oo Py
to be the set of formulas of £, (where we allow infinitary conjunc-
tions and disjunctions) with at most k variables and with probability
quantifiers only from F,.

Then we have

THEOREM 6.1. Let k € N and let Py C (0,1) be finite.
L LY <ae L5

w07
2. Every formula of EIZO_PO 1s a.e. equivalent to its quantifier-free

content.

PRrROOF. The proof is the same as the proof of Theorem 4.11, but
with infinitely many formulas at the conjunction step of the induc-
tion. -

Define £, to be the union of £ p, for all k& € N and all finite
Py € (0,1). Thus each particular formula of £, has only finitely
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many variables and finitely many distinct probabilities occurring in
quantifiers.

COROLLARY 6.2. 1. L5 <yae Loo-
2. The 0-1 law holds for the logic L p.
_|

We note that the probability logics E’;o_ p, and L3 p correspond to
the logics £F  and £ respectively. For each noncritical formula ¢
of £27,, the quantifier-free content ¢° is a first order quantifier-free
formula, so by Proposition 3.5 it has finitely many y-critical values,
each of which is equal to a polynomial in pgr, R € v with integer
coefficients.

87. Logic with Probability Functions. In this section we treat
the case where the atomic probabilities pr(n) and quantifier proba-
bilities (EIZT(”)y) are allowed to depend on the universe size n. L, pp)
will be first order logic augmented by the probability quantifiers
(32"™y) where r(n) € (0,1) for each n € N, and Lop(n) will be the
corresponding extension of the infinitary logic L.

The dependency of the ratio 7(n) on n puts the quantifiers (32" ™y)
in correspondence with the general monotone numerical quantifier
(Q'y), which says that the number of tuples y in a model of size n
is > f(n). Here, r(n) = f(n)/n’, when { = |y|.

The ordinary existential quantifier 3y has the same semantic inter-
pretation as the probability quantifier (32*/™y), but our definitions of
a noncritical formula and quantifier-free content will differ for these
two quantifiers. (It will be easier for Jyp(x, y) to be noncritical than
for (321/"y)p(x, y) to be noncritical).

For the usual infinitary logic £F  with k variables and ordinary
existential quantifiers, the proofs of the 0-1 law as well as the almost
everywhere quantifier elimination theorem go through when the in-
dependent atomic probabilities pg(n) vary with n, as long as they
are bounded away from 0 and 1.

If pr(n) — 0 or 1 as n — oo, the 0-1 law may not hold, as shown in
[15] and [13], where one can find a nearly complete characterization
of those pr(n) for which the 0-1 law holds.

As the atomic probabilities change with n, y-critical values also
change with n, and will now be called y-critical sequences. One
difficulty we face is that the analogue of Lemma 3.3 will fail, that
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is, the conditional probability u,[a(x,y)|3(x)] of a quantifier-free
formula given a quantifier-free type need not converge.
In the present setting, we define a y-critical sequence as follows.

DEFINITION 7.1. Let a(x,y) be a quantifier-free first order for-
mula. A sequence r(n) is y-critical for a(x,y) if for some quantifier-
free type B(x) we have

L. liminf(u,[a(x,y)|B(x)] —r(n)) <0 and

2. liminf(r(n) — p,la(x,y)|6(x)]) < 0.

The simultaneous definition of the noncritical fragment and the
quantifier-free content now takes the following form.

DEFINITION 7.2. Let ¢ be a formula in the infinitary logic Loopn)
with only finitely many free variables.

1. If p is quantifier-free, we stipulate that @ is noncritical and that
00 is ¢ itself.

2. If o = =), then @ is noncritical if and only if ¢ is noncritical,
and we define ©° = = ().

3. If o = N\, i, then ¢ is noncritical if and only if ; is noncritical

for each i, and we define o* = \,((¢;)°).
4. If p(x) = Jyv(x,y), then ¢ is noncritical if and only if 1 is
noncritical and for each quantifier-free type B(x), either

lim inf 2, [¢°(x, )| 6(x)] > 0

or

x| B(x) = \/ ©0x @) |
i<|x|
and we define
#’(x) = \/{B(x): liminf u,[0°(x,9)8(x)] > 0} v \/ ¢°(x, 2).
i<|x|
5. If o(x) = (FZ"My)(x,y), then ¢ is noncritical if and only if
Y is noncritical and r(n) is not a y-critical sequence for ¥°, and
we define

P (x) = \/{B(x): liminf(u,[¢"(x,y)|B(x)] = r(n)) > 0}.

The noncritical fragment E;P(n) is defined as the set of all noncriti-

cal formulas of L, p(n). The noncritical fragment L__ Pn) 18 defined as
the set of all noncritical formulas of £ p(,) with only finitely many
free variables.
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For each k£ € N and finite set Py of sequences r(n) € (0,1) we
define £’;;P0(n) to be the set of formulas in ‘C;OP(n) with at most k
free variables and with probability quantifiers only from F. We let
£:O_P(n) be the union of E';O_ Po(n) OVer all £ € N and all finite F,.

With this definition, our earlier proofs go through, and we have

the following theorem.

THEOREM 7.3. Let k € N and let Py be a finite set of sequences of
elements of (0,1).

k— k
L L o Sae Ll

oo Py
2. EBvery formula ¢ € ‘CISO_PO(
free content.

n) 18 a.e. equivalent to its quantifier-

_|

COROLLARY 7.4. 1. “;O;(n) <Zw.ae. Loo-
2. The 0-1 law holds for the logic E‘:o_P(n).
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