
Quantifier Elimination for Neocompact Sets

H. Jerome Keisler

Abstract

We shall prove quantifier elimination theorems for neocompact formulas,
which define neocompact sets and are built from atomic formulas using fi-
nite disjunctions, infinite conjunctions, existential quantifiers, and bounded
universal quantifiers. The neocompact sets were first introduced to provide
an easy alternative to nonstandard methods of proving existence theorems
in probability theory, where they behave like compact sets. The quantifier
elimination theorems in this paper can be applied in a general setting to show
that the family of neocompact sets is countably compact. To provide the
necessary setting we introduce the notion of a law structure. This notion was
motivated by the probability law of a random variable. However, in this paper
we discuss a variety of model theoretic examples of the notion in the light of
our quantifier elimination results.

1 Introduction

A model is said to have (first order) elimination of quantifiers if every relation on the
model which can be defined by a first order formula can be defined by a quantifier-
free formula. Quantifier elimination theorems have been very useful in applications
of model theory to algebra, particularly Tarski’s theorem that real closed ordered
fields have elimination of quantifiers (see [Ta]). There have been spectacular recent
advances in the subject concerning exponential functions and restricted analytic
functions ([MW], [DMM]).

We shall obtain quantifier elimination theorems for certain infinitely long for-
mulas in a very different setting, which we shall call a law structure because it is
an abstraction of the law function in probability theory. Formally, a law structure
is a family of functions λ from the Cartesian powers Xn of a set X into Hausdorff
spaces Λ(Xn) where λ on Xm is related in a nice way to λ on Xn. Intuitively, one
should think of λ(~x) as the type of ~x—the collection of all properties of ~x which are
expressible in some language. The notion was originally motivated by the example
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of the law structure on a probability space Ω, where Xn is the set of all random
variables ~x : Ω → Rn, and λ(~x), the law of ~x, is the measure on Rn induced by ~x.
The abstract notion was introduced in order to handle more complicated examples
of law structures involving discrete time and continuous time adapted probability
spaces, which will be developed in the companion paper [K4]. In this paper we shall
prove the quantifier elimination results and interpret them in law structures which
are associated with first order models.

In the paper [HK] we introduced the notion of a saturated probability space and
an analogous notion for adapted probability spaces. These notions played a key
role in the model theory of adapted probability logic (see [K1]). A probability or
adapted space is saturated if it is atomless and has the following back and forth
property: whenever x, x̄ ∈ Xm, y ∈ Xn, and λ(x) = λ(x̄), there exists ȳ ∈ Xn such
that λ(x̄, ȳ) = λ(x, y). This property will play a central role in the general setting
of this paper.

The papers [K2], [FK1], and [FK2] introduced another model theoretic method
in probability theory, based on the notion of a neocompact set of random variables.
An overall survey of this method is in [K3]. The neocompact sets in a law structure
are the subsets of Xn which are definable by formulas built from basic formulas
of the form λ(~x, b) ∈ C, where C is compact and b is a parameter, using count-
able conjunctions, finite disjunctions, existential quantifiers, and bounded universal
quantifiers. Neocompact sets were used in [FK1] and [CK] to prove a variety of
existence theorems in probability theory. In these existence theorems the neocom-
pact sets play a role analogous to the compact sets in classical proofs. The results
hold for probability or adapted spaces with the property that the intersection of any
countable chain of nonempty neocompact sets is nonempty. Such spaces are called
rich.

This paper was motivated by the problem of finding the connection between
saturated and rich probability spaces. Our main results will be quantifier elimination
theorems showing that for many law structures with the back and forth property,
including those on probability spaces and on adapted spaces, the neocompact sets
can be represented in a simple form. It will follow that the back and forth property,
richness, and quantifier elimination are equivalent for these law structures. This
theorem is the key fact needed in the paper [K2] to prove that saturated probability
and adapted spaces are rich. Our general topological setting has other applications
beyond the case of probability spaces which served as the original motivation.

In Section 2 we introduce law structures. Several examples of law structures
from model theory, metric spaces, and probability theory are given in Section 3. In
Section 4 we introduce the basic sets, which will correspond to atomic formulas in
our language, and the basic sections, which correspond to atomic formulas with pa-
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rameters. In Section 5 we prove two quantifier elimination theorems for neocompact
formulas. The two theorems differ in the sets that can be used as bounds for the
universal quantifiers. For the universal quantifier step these results require certain
“open mapping” hypotheses in addition to the back and forth property. In Section 6
we take another look at the examples from Section 3 in the light of the quantifier
elimination theorems. In Section 7 we extend one of the quantifier elimination the-
orems to the case that the open mapping hypothesis only holds locally.

I wish to thank Sergio Fajardo and Siu-Ah Ng for helpful suggestions on this
article. This research was supported in part by the National Science Foundation
and the Vilas Trust Fund.

2 Law Structures

In this section we shall introduce the notion of a law structure, which will serve as
a framework for the quantifier elimination theorems later on in this paper.

To prepare the reader for our abstract definition, we first briefly describe two
particular law structures which are familiar objects of study in model theory and
in probability theory. We shall discuss these and other examples in more detail in
Section 3.

First, let A be a model with universe A for a first order logic L with equality.
For each n-tuple ~x ∈ An, let λel(~x) be the elementary type of ~x, that is, the set of all
formulas of L which are satisfied by ~x in A. The set Λel(An) of all elementary n-types
for the complete theory Th(A) of A has a natural topology, the Stone space. Given
a pair (x, y) of elements of A, the elementary type λel(x, y) of the pair will contain
more information than the pair of elementary types (λel(x), λel(y)). The mapping
λel(x, y) 7→ (λel(x), λel(y)) will be continuous and well-behaved but in general not
be one-one.

As a second example, let Ω = (Ω, P,G) be an atomless probability space, and
let X be the set of all measurable functions x : Ω → R. (The elements of X are
called random variables on Ω). Then the n-tuples ~x ∈ Xn correspond to measurable
functions from Ω into Rn. Each ~x ∈ Xn determines the Borel probability measure
law(~x) on Rn where the measure of a Borel set S ⊆ Rn is equal to the probability
P [~x(·) ∈ S]. The set of all Borel probability measures on Rn has a natural topology,
called the topology of weak convergence. Given a pair (x, y) of random variables,
the joint probability law law(x, y) will contain more information than the pair of
“marginal” laws (law(x), law(y)). The mapping law(x, y) 7→ (law(x), law(y)) is a
continuous function which is “well-behaved” but not one-one.

We shall now define the general notion of a law structure with the above examples
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as a guide.
Let M be a family of nonempty sets closed under finite Cartesian products, and

let X, Y, Z denote arbitrary elements of M. A subset of a topological space Λ is
relatively compact in Λ if it is contained in a compact subset of Λ. Given a
function λ : A → Λ from a set A into a topological space Λ, λ(A) will denote the
range of λ with the topology inherited from Λ, and λ̄(A) will denote the closure of
λ(A) in Λ(A).

Definition 2.1 A law structure (M, λ, Λ) on M is an object which assigns to
each X ∈ M a Hausdorff space Λ(X) and a function λ : X → Λ(X) such that:

(Identity Rule) If x, y, z ∈ X and λ(x, y) = λ(z, z) then x = y.

(Parameter Rule) For any set A ⊆ X ∈ M and element b ∈ Y ∈ M, λ(A× {b})
is relatively compact in Λ(X × Y ) if and only if λ(A) is relatively compact in
Λ(X).

(Projection Rule) Suppose

π : {1, . . . , k} → {1, . . . , m}, X1, . . . , Xm ∈ M,

and Fπ is the projection

Fπ(x1, . . . , xm) = (xπ1, . . . , xπk).

Then there is a continuous function

fπ : λ(X1 × · · · ×Xm) → λ(Xπ1 × · · · ×Xπk)

such that the following diagram is commutative:
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X1 × · · · ×Xm
-

λ
λ(X1 × · · · ×Xm)

?

fπ

λ(Xπ1 × · · · ×Xπk)

?

Fπ

-

λ
Xπ1 × · · · ×Xπk

Moreover, if π is a bijection then fπ is a homeomorphism.

We shall call the mapping fπ in the Projection Rule the projection map.
One may intuitively think of λ(x) as the set of all properties of x expressible in

some language. The Identity Rule says that the language can express equality, and
the Parameter and Projection Rules say that there is a nice relationship between
the law of a pair λ(x, y) and the pair of laws (λ(x), λ(y)).

We shall sometimes suppress λ and write a law structure in the short form (M, Λ)
instead of (M, λ, Λ). For each X ∈ M, we shall call λ(X) the image and Λ(X) the
target space.

For each x ∈ X and each C ⊆ Y , let

λ(x,C) = λ({x} × C) = {λ(x, y) : y ∈ C},

λ(C, x) = λ(C × {x}) = {λ(y, x) : y ∈ C}.
For a set C ⊆ Λ(X) we use the notation

λ−1(C) = {x ∈ X : λ(x) ∈ C}.

If U is open in Λ(X), we shall say that the inverse image λ−1(U) is inverse open
in X, and define inverse closed sets analogously.

Recall that a net is a family bν , ν ∈ N of points in Λ indexed by an upward
directed set 〈N,≤〉 (cf. Kelley [Ke]). A net bν converges to a point b if for each
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open neighborhood U of b there is a ν ∈ N such that bρ ∈ U whenever ν ≤ ρ. A
point b belongs to the closure of a set A in Λ if and only if some net of points in A
converges to b. A function f : Λ → Λ′ is continuous if and only if whenever a net bν

converges to b, f(bν) converges to f(b).
We now introduce some properties of law structures.

Definition 2.2 In each of the following, (M, Λ) is a law structure and X,Y are
arbitrary members of M.

(M, Λ) is said to be closed iff the image λ(X) is closed in the target space Λ(X)
for all X ∈ M.

(M, Λ) is said to be complete iff λ(x, Y ) is closed in the image λ(X × Y ) for
each x ∈ X ∈ M and Y ∈ M.

(M, Λ) has the back and forth property iff whenever x, x̄ ∈ X and λ(x) =
λ(x̄), we have λ(x, Y ) = λ(x̄, Y ). That is, if λ(x) = λ(x̄) then for every y ∈ Y there
exists ȳ ∈ Y such that λ(x, y) = λ(x̄, ȳ).

(M, Λ) is said to be dense iff whenever x, x̄ ∈ X, and λ(x) = λ(x̄), the sets
λ(x, Y ) and λ(x̄, Y ) have the same closure in λ(X × Y ).

(M, Λ) has the open mapping property iff for each X ∈ M, the projection
map from λ(X × Y ) to λ(X) is open.

(M, Λ) has the strong (open) mapping property iff for each X ∈ M and
y ∈ Y ∈ M, the projection map from λ(X, y) to λ(X) is open.

(M, Λ) is total iff it has all the above properties.

Notice that the only properties introduced in Definition 2.2 which mention the
target space Λ(X) are being closed and being total; all the other properties involve
the images λ(X) rather than the possibly larger target spaces Λ(X).

We remark that if (M, Λ) is closed and complete then λ(x, Y ) is closed in the
target space Λ(X × Y ) for each x ∈ X ∈ M and Y ∈ M. Also, the strong mapping
property implies the open mapping property.

Proposition 2.3 (M, Λ) has the back and forth property if and only if (M, Λ) is
complete and dense.

Proof: Suppose (M, Λ) has the back and forth property. (M, Λ) is dense because
given x, x̄ ∈ X with λ(x) = λ(x̄), the sets λ(x, Y ) and λ(x̄, Y ) are equal and thus
have the same closures. To prove that (M, Λ) is complete, let λ(x, yν) converge to
λ(x̄, ȳ). By the Projection Rule, λ(x) = λ(x̄). By the back and forth property there
exists y ∈ Y such that λ(x, y) = λ(x̄, ȳ), as required.
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Now assume that (M, Λ) is complete and dense. Let x, x̄ ∈ X with λ(x) = λ(x̄),
and let y ∈ Y . By density the sets λ(x, Y ) and λ(x̄, Y ) have the same closure. Thus
there exist yν ∈ Y such that λ(x̄, yν) converges to λ(x, y). By completeness there
exists ȳ ∈ Y such that λ(x̄, yν) converges to λ(x̄, ȳ), and hence λ(x̄, ȳ) = λ(x, y).
Therefore (M, Λ) has the back and forth property. 2

Corollary 2.4 A law structure is total if and only if it is closed and has the back
and forth and strong mapping properties. 2

Here is a natural sufficient condition for the strong mapping property.

Proposition 2.5 Suppose (M, Λ) has the back and forth property and for each X
and Y , the map h : λ(X × Y ) → λ(X)× λ(Y ) is open, where f : λ(X × Y ) → λ(X)
and g : λ(X × Y ) → λ(Y ) are the projections and h(c) = (f(c), g(c)). Then (M, Λ)
has the strong mapping property.

Proof: Let (x, y) ∈ X × Y , and let U be an open neighborhood of λ(x, y) in
λ(X, y). Then U = U ′ ∩ λ(X, y) for some open set U ′ ⊆ λ(X × Y ). By hypothesis
there is an open neighborhood V of h(λ(x, y)) = (b, c) such that V ′ ⊆ h(U ′). Then
the section V = {b̄ : (b̄, c) ∈ V ′} of V ′ is an open neighborhood of f(λ(x)) = b
in λ(X). Let b̄ ∈ V . Then (b̄, c) = h(a) for some a = (λ(x′, y′)) ∈ U ′. We have
λ(y′) = g(a) = c = λ(y), and by density there exists x” such that λ(x”, y) = a.
Thus a ∈ U and f(a) = b̄, so V ⊆ f(U) as required. 2

We conclude this section with the notion of an isomorphism between two law
structures on the same M.

Definition 2.6 Let (M, λ, Λ) and (M, λ′, Λ′) be two law structures with the same
M. By an isomorphism F from (M, λ, Λ) to (M, λ′, Λ′) we mean a family of
homeomorphisms

FX : λ̄(X) → λ̄′(X), X ∈ M

such that whenever x ∈ X ∈ M, FX(λ(x)) = λ′(x). (M, λ, Λ) and (M, λ′, Λ′) are
isomorphic if there is an isomorphism from one to the other.

Notice that any law structure (M, λ, Λ) is isomorphic to the law structure (M, λ, Λ′)
which is formed by replacing each space Λ(X) by the closure of the image of X, so
that Λ′(X) = λ̄(X). The next proposition is easily checked.

Proposition 2.7 Suppose (M, Λ) and (M, Λ′) are isomorphic law structures. Then
each of the properties introduced in Definition 2.2 holds for (M, Λ) if and only if it
holds for (M, Λ′). 2
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3 Examples of Law Structures

In this section we shall look at some examples of law structures. Several of these
examples will be constructed from an arbitrary model A for a first order logic. Given
A, MA will be the set of all finite powers of the universe set A of A.

Example 1 (Identity law structure)

The identity law structure is the triple (M, λ, Λ) where M is the family of all
Hausdorff spaces, Λ(X) = X, and λ is the identity function on each X ∈ M. The
identity law structure is obviously total. All of our results in this paper will be very
easy in the case of the identity law structure.

Example 2 (Elementary types)

Given a model A for a first order vocabulary L with equality, let Λel(An) be the
Stone space of elementary types of n-tuples in the complete theory Th(A) of A (so
that the set of all elementary types satisfying a formula is a basic clopen set). For
~a ∈ An let λel(~a) be the elementary type of ~a. Then for each n, Λel(An) is a compact
Hausdorff space, and the image λel(An) is a dense subset.

(MA, Λel) is a law structure.

Here are model-theoretic necessary and sufficient conditions for (MA, Λel) to
have the properties introduced in Definition 2.2

Density: Always.

Hint: Use the fact that A |= ϕ(~a,~b) implies A |= ∃~vϕ(~a,~v).

Open mapping: Always.

Closed: A realizes all n-types of Th(A).

Closed and Complete: A is ω-saturated.

Back and forth: A is ω-homogeneous in the usual model theoretic sense.

Strong mapping: A is an atomic model, that is, every elementary n-type realized
in A is isolated. (Hint: For each ~a ∈ An, λel(~a,~a) is isolated in λel(An,~a) by
the formula

∧

i<n vi = vi. The strong mapping property implies that the point
λel(~a) is isolated in λel(An).)
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Total: For each n, there are only finitely many elementary n-types over A. (This
implies that either A is finite or Th(A) is ω-categorical; if L is at most count-
able and A is infinite, this is equivalent to ω-categoricity.)

Since (MA, Λel) is always dense, it is complete if and only if it has the back and
forth property. Every model has an elementary extension A such that (MA, Λel) is
closed and complete, since every model has an ω-saturated elementary extension. If
L is at most countable, then the target spaces Λ(An) will have countable bases.

Example 3 (Quantifier-free types)

Given a model A for a first order vocabulary L with equality, a quantifier-free
n-type over A is a set of quantifier-free (first order) formulas in the first n variables
which is maximal finitely satisfiable in A. For each n ∈ N, let Λqf (An) be the Stone
space of all quantifier-free n-types over A. This is the topology in which the set
of all quantifier-free types containing a quantifier-free formula is a basic clopen set.
Each ~a ∈ An realizes a quantifier-free n-type λqf (~a) over A. For each n, Λqf (An) is
a compact Hausdorff space, and the image λqf (An) is dense in Λqf (An).

(MA, Λqf ) is a law structure.

Here are model-theoretic necessary and sufficient conditions for some of the prop-
erties from Definition 2.2 in (MA, Λqf ).

Closed: Every quantifier-free n-type over A is realized in A.

Complete: For any ~a ∈ Am, every quantifier-free n-type which is finitely satisfiable
in (A,~a) and is realized in (A,~b) for some ~b ∈ Am is realized in (A,~a).

Closed and complete: For any ~a ∈ Am, every quantifier-free n-type which is
finitely satisfiable in (A,~a) is realized in (A,~a).

Dense: For each m, any two m-tuples which satisfy the same quantifier-free formu-
las in A also satisfy the same existential (or universal) formulas in A.

Back and forth: If ~a and ~b satisfy the same quantifier-free formulas in A then
they satisfy the same L∞ω formulas in A.

Dense and open mapping: For each ~a ∈ Am and quantifier-free formula ϕ(~x, ~y)
in m + n variables, if A |= ∃~y ϕ(~a, ~y) then there is a quantifier-free formula
ψ(~x) such that

A |= ψ(~a) ∧ ∀~x(ψ(~x) → ∃~y ϕ(~x, ~y)).

9



Strong mapping: Each quantifier-free n-type is realized in A if and only if it is
isolated in Λqf (An).

Total: Th(A) admits first order elimination of quantifiers and has finitely many
elementary n-types for each n.

Here are some consequences:
If (MA, Λqf ) has the strong mapping property then it is complete.
(MA, Λqf ) is closed and has the strong mapping property if and only if there are

only finitely many quantifier-free n-types over A for each n.
If Th(A) admits first order elimination of quantifiers, then (MA, Λqf ) is isomor-

phic to (MA, Λel), and is dense and has the open mapping property by Example 2.
Note that if (MA, Λel) is closed then (MA, Λqf ) is closed. If (MA, Λel) is closed

and complete, then A is ω-saturated and thus (MA, Λqf ) is closed and complete.
But, for example, if A is a linear order of type ω∗+ω+ω∗+ω (two copies of Z), then
(MA, Λqf ) is closed and complete while (MA, Λel) is neither closed nor complete.

We shall return to the example of the law structures of quantifier-free types
in Section 6, where we shall apply a general quantifier elimination theorem to
(MA, Λqf ).

Example 4 (Types in infinitely many variables)

This example is like the preceding example but with types in infinitely many
variables. Let κ be an infinite cardinal and work with a first order logic with κ
variables.

Given a model A, let Mκ
A be the set of all Cartesian powers Aα of A where

α < κ. We identify Aα × Aβ with Aα+β. For each α < κ, Λqf (Aα) is the Stone
space of quantifier-free α-types over A, where the basic clopen sets are determined
by single finite quantifier-free formulas. This is a compact Hausdorff space. For
~a ∈ Aα, λqf (~a) is the quantifier-free α-type of ~a over A.

(Mκ
A, Λqf ) is a law structure.

Example 5 (Quantifier-free types with restricted topology)

We can get a wider variety of law structures from first order models by allowing
the target space to be a subspace of the Stone space with the restricted topology. In
this example we consider the case where the target space is as small as possible–the
target space is the image of the mapping λ.

As in Example 3, we let A be a model for a first order vocabulary L with equality
and for each ~a ∈ An, λqf (~a) is the quantifier-free type of ~a in A. But this time we
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define the target space Λrst(An) to be the image λqf (An) with the restricted topology
of the Stone space. Thus the basic clopen sets are the sets of all quantifier-free n-
types which are realized in A and contain a given quantifier-free formula.

In this case, the triple (MA, λqf , Λrst) will not necessarily be a law structure.
The target spaces will always be Hausdorff spaces, and the Projection and Identity
Rules will always hold. However, the Parameter Rule will depend on the model A.

Lemma 3.1 A set B ⊆ An has a relatively compact image λqf (B) in Λrst(An) if
and only if every quantifier-free n-type which is finitely satisfiable by tuples in B is
realized in A.

Proof: Since Λrst(An) is a subspace of the compact space Λqf (An), the set λqf (B)
is relatively compact if and only if its closure in Λqf (An) is contained in Λrst(An).
A quantifier-free n-type p belongs to the closure of λqf (B) if and only if it is finitely
satisfiable by tuples in B, and belongs to Λrst(An) if and only if it is realized in A.
2

Proposition 3.2 (MA, Λrst) satisfies the Parameter Rule, and thus is a law struc-
ture, if and only if whenever B ⊆ Am and every quantifier-free m-type over A which
is finitely satisfiable by tuples in B is realized in A, then for each n and c ∈ An, ev-
ery quantifier-free m+n-type over A which is finitely satisfiable by tuples in B×{c}
is realized in A.

Proof: By the preceding lemma. 2

If (MA, Λrst) is a law structure, then it is automatically closed. (MA, Λrst) is
complete, dense, has the back and forth property, the open mapping property, or
the strong mapping property, if and only if (MA, Λqf ) has that property. Thus the
necessary and sufficient conditions for these properties given in Example 3 are also
valid in this case. The following proposition shows when (MA, Λrst) is a total law
structure.

Proposition 3.3 (MA, Λrst) is a total law structure if and only if it has the back
and forth property, each Λrst(An) has the trivial topology where every set is open,
and whenever C ⊆ Am and λqf (C) is finite, λqf (C × {d}) is finite for all n and
d ∈ An.

Proof: (MA, Λrst) has the strong mapping property iff (MA, Λqf ) has the strong
mapping property iff every quantifier-free n-type realized in A is isolated in Λqf (An).
Λrst(An) is dense in Λqf (An), so a point is isolated in Λrst(An) if and only if it is
isolated in Λqf (An). Thus (MA, Λrst) has the strong mapping property if and only if
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Λrst(An) has the trivial topology. In the trivial topology, a set is relatively compact
if and only if it is finite. Thus if the target spaces of (MA, Λrst) have the trivial
topology, the Parameter Rule holds if and only if whenever C ⊆ Am and λqf (C)
is finite, λqf (C × {d}) is finite for all n and d ∈ An. The result now follows from
Corollary 2.4. 2

The next proposition shows that the key properties for the law structures (MA, Λrst)
are preserved under unions of directed families of quantifier-free definable submodels,
and thus can arise in models which omit quantifier-free types.

Proposition 3.4 Suppose that the model A is the union of an upward directed
family of submodels Ai, i ∈ I such that for each i ∈ I, the universe of Ai is defined
by a quantifier-free formula without parameters, and (MAi , Λ

rst) is a law structure
with the back and forth property. Then:

(i) A is a law structure with the back and forth property.
(ii) If each (MAi , Λ

rst) has the open mapping property, then (MA, Λrst) has the
open mapping property.

(iii) If each (MAi , Λ
rst) is total, then (MA, Λrst) is total.

Proof sketch: The set of formulas {¬Ai(v) : i ∈ I} is not realized in A. It follows
that whenever C ⊆ A and λ(C) is relatively compact, C ⊆ Ai for some i ∈ I. Now
use Proposition 3.2 to show that (MA, Λrst) is a law structure. The back and forth
property is easily verified. Use the criterion in Example 3 to prove (ii), and use
Proposition 3.3 to prove (iii). 2

The property of being total is a very severe restriction for law structures of
the form (MA, Λrst), since it forces the topology of the target space to be trivial.
However, more interesting total law structures can arise in other settings (see the
next two examples). We can get a some additional total law structures from first
order models by allowing languages without equality.

If A be a model for a first order vocabulary L without equality, we define
(MA, λqf , Λrst) as before. In this case, the target spaces will always be Hausdorff
spaces, and the Projection Rule will always hold, but both the Identity Rule and
the Parameter Rule will depend on the model A.

The following exercise gives one way of constructing total law structures associ-
ated with models without equality.

Exercise: For each i ∈ I, let Ai be a model for a vocabulary L with equality.
Form a new vocabulary LI without equality by replacing each predicate symbol P of
L, including the equality symbol, by a family of predicate symbols {Pi : i ∈ I} with
the same arity as P . Let A =

∏

i∈I Ai be the model with vocabulary LI without
equality where the universe

∏

i∈I Ai and the function symbols are defined as is the
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full direct product of the models Ai, and each Pi is interpreted in A by the rule
A |= Pi(~a) iff Ai |= P (~a(i)). Assume that for each i, (MAi , Λ

rst) is a total law
structure. Prove that (MA, Λrst) is a total law structure.

Hint: For ~a ∈ An, the quantifier-free type λqf (~a) can be identified with the family
of types 〈λqf (~a(i)) : i ∈ I〉, and Λrst(An) may be identified with the topological
product of the spaces Λrst((Ai)n).

Example 6 (Metric models)

In this example we shall associate a law structure with a metric space with
additional continuous functions. This law structure will have the same relationship
to the metric space model theory of Henson and Iovino [HI] as the law structure of
quantifier-free types has to classical first order model theory. Baratella and Ng [BN]
studied this law structure in detail in the case of Hilbert and Banach spaces, and
applied the methods of this paper to obtain quantifier elimination results.

Let E = (E, ρ, c) be a metric space with a distinguished point c, and let R =
(R, 0, 1, +,−, ∗,≤) be the ordered field of real numbers. By a metric model over
E we shall mean a structure

A = 〈E,R, fi : i ∈ I〉

with a sort for the metric space E and a sort for the ordered field of reals R, and
symbols for continuous functions fi : Ej×Rk → E or fi : Ej×Rk → R. In addition
to the function symbols fi,, the vocabulary for A also has the symbols of E and R—
the metric function ρ : E ×E → R, the constant c, and the symbols 0, 1, +,−,×,≤
of R.

Banach spaces with function symbols for vector addition, scalar multiplication,
and the norm, and Hilbert spaces with the Banach space function symbols and a
symbol for the inner product, are examples of metric models.

We define the notion of a bounded (m,n)-type over A, define a topology on the
set of bounded (m,n)-types, and use these topologies as the target spaces for a law
structure.

It will be convenient to add an absolute value symbol | · | and let |u| ≤ K stand
for the formula ρ(u, c) ≤ K if u has sort E and for −K ≤ u ∧ u ≤ K if u has sort
R. For each natural number K, the particular set of formulas

|~x| ≤ K = {|x1| ≤ K, . . . , |xm| ≤ K},

which says that the ~x is bounded by K, plays a special role.
By an approximation of a positive quantifier-free formula ϕ we mean a formula

obtained from ϕ by replacing each inequality σ ≤ τ in ϕ by a weaker inequality
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σ ≤ τ + r where r is a positive rational. A positive quantifier-free formula is
approximable in A if each approximation of the formula is satisfiable in A.

Let MA be the set of all finite Cartesian products Em × Rn,m, n ∈ N, and let
~v have sort (m,n). We allow the possibility that m or n is zero. By a bounded
(m,n)-type over A we mean a set p(~v) of positive quantifier-free formulas which
contains |~v| ≤ K for some K ∈ N and which is maximal with respect to the property
that every finite subset is approximable in A. We let Λ(Em × Rn) be the set of all
bounded (m,n)-types over A.

Give Λ(X) the topology whose basic closed sets are the sets of all bounded (m,n)-
types which contain a given positive quantifier-free formula. For each ~a ∈ X ∈ MA,
let λ(~a) be the set of all positive quantifier-free formulas satisfied by ~a in A.

Proposition 3.5 If A is a metric model then (MA, Λ) is a law structure.

Proof sketch: First show that each λ(x) is a bounded type, so the functions
λ : X → Λ(X) are well-defined. Then show that Λ(X) is Hausdorff. To prove the
Parameter Rule, show that for each B ⊆ X ∈ MA, the image λ(B) is relatively
compact if and only if B is bounded. 2

In the literature (see [He], [HI]), metric structures are usually required to be
uniformly continuous on bounded sets in the following sense. We say that a metric
model A is uniformly continuous on bounded sets iff for each function symbol
f and each K ∈ N, f is bounded and uniformly continuous on {~a : |~a| ≤ K}.

Uniform continuity on bounded sets was not needed in order to prove that
(MA, Λ) is a law structure. However, it is needed in order to extend A to a metric
model H whose law structure is closed and complete but has the same target spaces
as (MA, Λ). Such an extension can be built using the nonstandard hull construc-
tion, which is a basic tool in the model theory of Banach spaces (see Henson [He]).
The following is a law structure reformulation of a well-known result.

Proposition 3.6 Let A be a metric model. The following are equivalent.
(i) A is uniformly continuous on bounded sets.
(ii) A has an extension H whose law structure (MH, Λ) is closed and complete

and has the same target spaces as (MA, Λ). 2

Corollary 3.7 If A is a metric model whose law structure (MA, Λ) is closed, then
A is uniformly continuous on bounded sets.

Proof: If A is not uniformly continuous on bounded sets, then there is a bounded
type over A which is not realized in any metric model. 2

The paper [BN] showed that the law structures for Hilbert spaces are total, and
investigated the properties of the law structures for nonstandard hulls of Banach
spaces.
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Example 7 (Random variables)

This is the example which originally motivated our work. Let Ω = (Ω, P,G) be
an atomless probability space. For each complete separable metric space (M, ρ), let
M = (L0(Ω, M), ρ0) be the metric space of all equivalence classes of P -measurable
functions from Ω into M . Here two functions are equivalent if they are equal P -
almost surely, and ρ0 is the metric of convergence in probability on M,

ρ0(x, y) = inf{ε : P [ρ(x(ω), y(ω)) ≤ ε] ≥ 1− ε}.

The product topology M × N of two complete separable metric spaces M and N
again has a complete separable metric, and with this metric L0(Ω,M ×N) has the
same topology as L0(Ω,M)× L0(Ω, N).

We let MΩ be the family of all metric spaces M = (L0(Ω,M), ρ0) where M is a
complete separable metric space. We form a law structure where λ(x) is the law of
x, that is, the measure on M induced by x. In order to fit this into our framework
we need λ(x) to be an element of an appropriate topological space Λ(M). The space
of Borel probability measures on M with the Prohorov metric

d(µ, ν) = inf{ε : µ(C) ≤ ν(Cε) + ε for all closed C ⊆ M}

is again a complete separable metric space, denoted by Meas(M). We take Λ(M) =
Meas(M). Convergence in Meas(M) is the same as weak convergence (e.g. see [Bi]).

Each measurable function x : Ω → M induces a measure law(x) ∈ Meas(M),
where

(law(x))(S) = P [x−1(S)].

The function
law : L0(Ω,M) → Meas(M)

is uniformly continuous, and in fact,

d(law(x), law(y)) ≤ ρ0(x, y).

This example is developed in detail in [K4]. We show in that paper that for every
atomless probability space Ω, (MΩ, law,Meas) is a closed dense law structure with
the strong mapping property, and the law function maps L0(Ω,M) onto Meas(M)
for every complete separable M . Thus (MΩ, law,Meas) is complete if and only if it
has the back and forth property, and also if and only if it is total.

Examples of atomless probability spaces (Ω, P,G) such that (MΩ, law,Meas) is
or is not total are given in the papers [HK] and [K4]. It is shown in [HK] that if Ω
is an uncountable power of Lebesgue measure on [0, 1], or if Ω is an atomless Loeb
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probability space, then (MΩ, law,Meas) has the back and forth property and thus
is total. On the other hand, it is shown in [K4] that if Ω is a separable metric space
and G is the σ-algebra of Borel subsets of Ω (or its P -completion, as in the case of
Lebesgue measure), then (MΩ, law,Meas) does not have the back and forth property
and thus is not total.

As we indicated in the introduction, our principal motivation in this research
was to develop tools for studying adapted probability spaces, which are probability
spaces with the additional structure of a family of increasing σ-algebras indexed by
time. There are law structures associated with adapted probability spaces where λ
is the adapted law of [HK]. These law structures are considered in the sequel [K4]
of this paper. As in the case of probability spaces, adapted Loeb spaces give rise to
total law structures.

4 Basic Sections

In this section we shall study the family of basic sections for a law structure (M, Λ).

Definition 4.1 A set B ⊆ X is basic for a law structure (M, Λ) if B is of the
form B = λ−1(B̂) for some compact subset B̂ of Λ(X).

Definition 4.2 Let z ∈ Z. A set C ⊆ X is called a basic section with param-
eter z if C has the form

C = {x ∈ X : λ(x, z) ∈ Ĉ}

for some compact subset Ĉ of Λ(X × Z).

We remark that if B is basic, x ∈ B, and λ(x̄) = λ(x), then x̄ ∈ B. Similarly, if
B is a basic section with parameter z, x ∈ B, and λ(x̄, z) = λ(x, z), then x̄ ∈ B.

Proposition 4.3 For every basic section C ⊆ X, the image λ(C) is relatively com-
pact in Λ(X).

Proof: Let C be the basic section

C = {x ∈ X : λ(x, z) ∈ Ĉ}

where Ĉ is compact. Then λ(C × {z}) is a subset of Ĉ, and hence is relatively
compact. By the Parameter Rule, λ(C) is relatively compact. 2

Proposition 4.4 For every z ∈ Z, every basic set for (M, Λ) is a basic section with
parameter z.
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Proof: Let B = λ−1(B̂) be a basic set where B̂ is compact. Let Ĉ be the closure
of the set λ(B, z). By the Parameter Rule, λ(B, z) is relatively compact, so Ĉ is
compact. We show that B is the basic section

B = {x ∈ X : λ(x, z) ∈ Ĉ}.

It is clear that B is contained in the right side. Suppose λ(x, z) ∈ Ĉ. Then there is
a net xν in B such that λ(xν , z) converges to λ(x, z). By the Projection Rule, λ(xν)
converges to λ(x). Since xν ∈ B, λ(xν) ∈ B̂, and therefore λ(x) ∈ B̂ and x ∈ B. 2

Proposition 4.5 (i) Let y ∈ Y and z ∈ Z. Every basic section B ⊆ X with
parameter y is a basic section with parameter (y, z).

(ii) If A ⊆ X and B ⊆ X are basic sections then A ∩ B and A ∪ B are basic
sections.

Proof: The proof of (i) is the same as in the preceding lemma, but carrying the
extra parameter y along. To prove (ii), we observe that by (i) we may assume that
A and B both have the same parameter, say z ∈ Z. Then

A = {x ∈ X : λ(x, z) ∈ Â}, B = {x ∈ X : λ(x, z) ∈ B̂},

where Â and B̂ are compact. Then

A ∩B = {x ∈ X : λ(x, z) ∈ Â ∩ B̂},

which is again a basic section, and similarly for A ∪B. 2

Proposition 4.6 For each X ∈ M, every finite subset A = {x1, . . . , xm} of X is a
basic section with parameter z = (x1, . . . , xm) in the Cartesian power Z = Xm.

Proof: Let Â be the finite (and hence compact) set

Â = {λ(xi, z) : i = 1, . . . , m}.

If x ∈ A then obviously λ(x, z) ∈ Â. Conversely, if λ(x, z) = λ(xi, z) ∈ Â, then
by the Projection Rule we have λ(x, xi) = λ(xi, xi), and hence x = xi ∈ A by the
Identity Rule. 2

Since finite unions and arbitrary intersections of compact sets are compact, we
see that for each X ∈ M the family of basic subsets of X is closed under finite unions
and arbitrary intersections. Moreover, for each z ∈ Z, the family of basic sections
B ⊆ X with parameter z is closed under finite unions and arbitrary intersections.
We now consider finite Cartesian products of basic sets.
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Proposition 4.7 (i) If B ⊆ X and C ⊆ Y are basic sets and λ(B×C) is relatively
compact, then B × C is a basic set in X × Y .

(ii) If B ⊆ X and C ⊆ Y are basic sections with parameter z ∈ Z and λ(B×C)
is relatively compact, then B × C is a basic section in X × Y with parameter z.

(iii) Let B ⊆ X × Z and C ⊆ Y × Z be basic sets, and let

D = {(x, y, z) ∈ X × Y × Z : (x, z) ∈ B and (y, z) ∈ C}.

If λ(D) is relatively compact then D is a basic set.

Proof: (i) and (ii) follow easily from (iii). We prove (iii). We have

B = λ−1(B̂), C = λ−1(Ĉ),

where B̂ and Ĉ are compact. Let D̂ be the closure of λ(D). λ(D) is relatively
compact by hypothesis, so D̂ is compact. We show that

D = λ−1(D̂). (1)

It is clear that D ⊆ λ−1(D̂). Suppose (x, y, z) ∈ λ−1(D̂), that is, d = λ(x, y, z) ∈ D̂.
Then some net dν converges to d in λ(D). For each ν, choose (xν , yν , zν) ∈ D such
that λ(xν , yν , zν) = dν . Then (xν , zν) ∈ B and (yν , zν) ∈ C, so λ(xν , zν) ∈ B̂,
λ(yν , zν) ∈ Ĉ. By the Projection Rule, λ(xν , zν) converges to λ(x, z), and λ(yν , zν)
converges to λ(y, z). Therefore λ(x, z) ∈ B̂ and λ(y, z) ∈ Ĉ. Hence (x, z) ∈ B and
(y, z) ∈ C, so (x, y, z) ∈ D. 2

Corollary 4.8 If B is a basic section with parameter y, then B × {z} is a basic
section with parameter (y, z). 2

Proposition 4.9 (i) If (M, Λ) is closed then λ(A) is compact for every basic set
A.

(ii) If (M, Λ) is closed and complete then for every basic section B ⊆ X, λ(B)
is compact in Λ(X).

Proof: (i) Let A ⊆ X be the basic set A = λ−1(Â) where Â in compact in
Λ(X). Then λ(A) = Â∩ λ(X). Since (M, Λ) is closed, the image λ(X) is closed, so
Â ∩ λ(X) is compact.

(ii) Let B be the basic section

B = {x ∈ X : λ(x, z) ∈ Â}

where Â is compact. By Proposition 4.3 and Corollary 4.8, the closures λ̄(B) and
λ̄(B, z, z) are compact. We must show that λ̄(B) = λ(B).
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By hypothesis the sets λ(X × Z, z), and λ(X, z, z) are closed in their target
spaces. We have B × {z} ⊆ A where A is the basic set A = λ−1(Â). Thus

λ̄(A, z) ⊆ λ(X × Z, z),

λ̄(B, z, z) ⊆ λ(X, z, z) ∩ λ̄(A, z).

By the projection rule, the projection function continuously maps λ(X, z, z) onto
λ(X). Therefore the projection maps the compact set λ̄(B, z, z) onto λ̄(B). Simi-
larly, the projection maps the compact set λ̄(A, z) onto λ̄(A). By part (i), λ̄(A) =
λ(A).

Let b ∈ λ̄(B, z, z). Then there exist x, x′ ∈ X and z′ ∈ Z such that

b = λ(x, z, z) = λ(x′, z′, z) ∈ λ̄(A, z).

It follows that (x′, z′) ∈ A. By the Projection Rule, λ(z, z) = λ(z′, z), and thus
by the Identity Rule, z′ = z. Therefore (x′, z) ∈ A and hence x′ ∈ B. Thus the
projection λ(x′) of b belongs to λ(B). This shows that λ(B) = λ̄(B) as required. 2

Definition 4.10 We say that a family A of sets is compact iff every subsets of A
which has the finite intersection property has a nonempty intersection.

Proposition 4.11 (i) If (M, Λ) is closed then for each X ∈ M, the family of basic
sets B ⊆ X is compact.

(ii) If (M, Λ) is closed and complete then for each X, Z ∈ M and z ∈ Z, the
family of basic sections B ⊆ X with parameter z is compact.

Proof: We prove (ii); the proof of (i) is similar. Let {Ci : i ∈ I} be a set of basic
sections in X with parameter z with the finite intersection property. The sets Ci

have the form
Ci = {x ∈ X : λ(x, z) ∈ Ĉi}

where Ĉi is compact. By Corollary 4.8, each product Ci × {z} is a basic section,
and by Proposition 4.9 each image B̂i = λ(Ci, z) is compact. This set has the finite
intersection property. Therefore there is a point b ∈ ⋂

i∈I B̂i. Then b = λ(x, z) for
some x ∈ X. For each i ∈ I we have B̂i ⊆ Ĉi, so b ∈ Ĉi and x ∈ Ci. 2

A Hausdorff space is said to be a k-space, or to be compactly generated, if
whenever A ∩C is closed for every compact set C, then A is closed (e.g. see Kelley
[Ke]). For example, each first countable space, and each locally compact space, is
compactly generated. Let us call a law structure (M, Λ) compactly generated if
each of its target spaces is compactly generated.

Remark 4.12 If (M, Λ) is compactly generated, then the converse holds for each
part of Propositions 4.9 and 4.11. 2
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5 Elimination of Quantifiers

The following result will give the existential step for each of our quantifier elimination
theorems. It shows that the back and forth property for a closed law structure is
equivalent to the closure of the family of basic sets under existential projection.

Theorem 5.1 For any law structure (M, Λ), (i) implies (ii) and (ii) implies (iii).
(i) (M, Λ) is closed and has the back and forth property.
(ii) For every basic set A ⊆ X × Y , the set

B = {x ∈ X : (∃y ∈ Y )(x, y) ∈ A} (2)

is basic.
(iii) (M, Λ) has the back and forth property.

Proof: Assume (i). Let A ⊆ X × Y be basic and B be the set defined in
equation (2). By Proposition 4.9, λ(A) is compact. Let f : λ(X × Y ) → λ(X)
be the projection map which is continuous by the Projection Rule. The image
B̂ = f(λ(A)) is compact. We show that B is the basic set

B = λ−1(B̂). (3)

If x ∈ B, then (x, y) ∈ A for some y ∈ Y , whence λ(x, y) ∈ λ(A) and λ(x) =
f(λ(x, y)) ∈ B̂. On the other hand, if λ(x) ∈ B̂, then there exists (x̄, ȳ) ∈ A such
that λ(x̄) = λ(x). Since (M, Λ) has the back and forth property, there exists y ∈ Y
such that λ(x, y) = λ(x̄, ȳ). Thus (x, y) ∈ A and x ∈ B. This proves (3). Thus B is
basic and (ii) holds.

Now assume (ii). Let x, x̄ ∈ X, y ∈ Y , and λ(x) = λ(x̄). Then the set

C = λ−1({λ(x, y)})

is basic, and by (ii) the set

D = {x′ ∈ X : (∃y′ ∈ Y )(x′, y′) ∈ C}

is basic. Since x ∈ D and λ(x) = λ(x̄), we have x̄ ∈ D, and thus there exists ȳ ∈ Y
such that λ(x̄, ȳ) = λ(x, y). This proves (iii). 2

We now turn to the universal quantifier. The following easy lemma shows that
the universal quantifier over Y is trivial unless λ(Y ) is relatively compact. Since
we do not wish to restrict our attention to the case that the target spaces λ(Y ) are
relatively compact, we shall allow bounded universal quantifiers (∀y ∈ C) as well as
ordinary universal quantifiers over Y .
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Lemma 5.2 Let A be a basic subset of X × Y . If the universal projection

B = {x ∈ X : (∀y ∈ Y )(x, y) ∈ A}

is nonempty then λ(Y ) is relatively compact.
More generally, if C ⊆ Y and the universal projection

D = {x ∈ X : (∀y ∈ C)(x, y) ∈ A}

is nonempty then λ(C) is relatively compact.

Proof: Suppose D is nonempty and take x ∈ D. Then C is a subset of the basic
section {y ∈ Y : (x, y) ∈ A}. By Proposition 4.3, λ(C) is relatively compact. 2

The following theorem shows that density with the open mapping property im-
plies the closure of the family of basic sets under universal projections bounded by
inverse open sets.

Theorem 5.3 Let (M, Λ) be a law structure. If (M, Λ) is dense and has the open
mapping property, then for each basic set A ⊆ X × Y and nonempty inverse open
set C ⊆ Y , the set

D = {x ∈ X : (∀y ∈ C)(x, y) ∈ A}
is basic.

Proof: We have A = λ−1(Â) where Â is compact, and C = λ−1(Ĉ) where Ĉ is
open. Since C is nonempty we may choose y0 ∈ C. Then D is contained in the basic
section

E = {x ∈ X : (x, y0) ∈ A}.
The image λ(E) is relatively compact by Proposition 4.3. Therefore λ(D) is rela-
tively compact, and thus has a compact closure D̂.

To show that D is basic, we shall prove that

D = λ−1(D̂). (4)

We prove the nontrivial inclusion. Suppose that x /∈ D. Choose y ∈ C such that
(x, y) /∈ A. Let f, g be the projection maps from λ(X × Y ) to λ(X) and to λ(Y ).
By the Projection Rule, g is continuous, so the set g−1(Ĉ) is open, and therefore

U = g−1(Ĉ)− Â

is open in λ(X × Y ). By the open mapping property, the set V = f(U) is open in
λ(X). We have g(λ(x, y)) = λ(y) ∈ Ĉ and λ(x, y) /∈ Â, so λ(x, y) ∈ U . Therefore
λ(x) ∈ V .
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Whenever λ(x̄) ∈ V there exists ȳ ∈ Y such that λ(x̄, ȳ) ∈ U . Then ȳ ∈ C and
(x̄, ȳ) /∈ A, so x̄ /∈ D. Thus V ∩ λ(D) = ∅. Therefore λ(x) does not belong to the
closure D̂ of λ(D), and x /∈ λ−1(D̂). This proves (4), so D is a basic set. 2

Remark 5.4 If (M, Λ) is compactly generated, then the converse of Theorem 5.3
also holds. 2

The following theorem will give the universal step in a second quantifier elimi-
nation theorem which requires the strong mapping property.

Theorem 5.5 Let (M, Λ) be a law structure with the back and forth and strong
mapping properties. Then for each basic set A ⊆ X × Y and nonempty basic set
C ⊆ Y , the set

D = {x ∈ X : (∀y ∈ C)(x, y) ∈ A}
is basic.

Proof: We have A = λ−1(Â) and C = λ−1(Ĉ) for some compact sets Â and Ĉ.
As in the proof of Theorem 5.3, λ(D) has a compact closure D̂. To show that D

is basic, we prove that
D = λ−1(D̂). (5)

Suppose x /∈ D. Let U be the complement of Â, which is open. Then there exists
y ∈ C such that (x, y) /∈ A, so λ(x, y) ∈ U . Let f be the projection from λ(X×{y})
to λ(X). By the strong mapping property, the set V = f(U ∩ λ(X × {y}) is open,
and λ(x) ∈ V .

Suppose λ(x̄) ∈ V . There exists x′ ∈ X such that λ(x′, y) ∈ U and f(λ(x′, y)) =
λ(x′) = λ(x̄). By the back and forth property, there exists ȳ such that λ(x̄, ȳ) =
λ(x′, y). Then λ(x̄, ȳ) ∈ U , so (x̄, ȳ) /∈ A. Moreover, λ(ȳ) = λ(y), so ȳ ∈ C.
Therefore x̄ /∈ D. This shows that V ∩ λ(D) = ∅, so λ(x) does not belong to the
closure D̂ of λ(D), and x /∈ λ−1(D̂). This proves (5). 2

Remark 5.6 If (M, Λ) is compactly generated and has the back and forth property,
then the converse of Theorem 5.5 holds. 2

We shall now apply the last few theorems to obtain two quantifier elimination
theorems which involve infinitely long formulas. To give us the flexibility that we
need, we shall define a language that depends on two families of sets A,B, where
the universal quantifiers will be bounded by sets in A and the basic formulas will
be taken from B. This is the language of neocompact formulas, which corresponds
to the neocompact sets studied in [K2] and [FK1]. This language depends only on
the family M and the families A and B, and does not require a law structure.
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Let M be a family of nonempty sets closed under finite Cartesian products. For
each X ∈ M let A(X) and B(X) be families of subsets of X. We shall usually refer
to these families as A and B, dropping the X. In our first quantifier elimination
theorem B will be the family of basic sets for (M, Λ) and A will be the family of
inverse open sets. Later we will use other families A,B.

Let us fix an index set I, and for each i ∈ I let Xi ∈ M and let vi be a variable
of sort Xi. We allow the possibility that Xi = Xj even though i 6= j in I. Given a
finite set J ⊆ I of indices, we shall let XJ be the product space XJ =

∏

j∈J Xj. We
shall use the notation aJ = 〈aj : j ∈ J〉 for a finite sequence indexed by J .

Definition 5.7 By an atomic formula with support J over B we mean an
expression vJ ∈ B where B ∈ B(XJ). A neocompact formula over (A,B) with
support J is an expression which belongs to every set E(XJ) of expressions such that:

(a) Every atomic formula over B with support J belongs to E(XJ).

(b) If ϕ and ψ belong to E(XJ), then ϕ ∨ ψ belongs to E(XJ).

(c) If ϕ ∈ E(XH), ψ ∈ E(XJ), and H ⊆ J , then ϕ ∧ ψ belongs to E(XJ).

(d) If {ϕk : k ∈ K} is a nonempty subset of E(XJ), then the conjunction
∧

k∈K ϕk

belongs to E(XJ).

(e) If ϕ belongs to E(XJ) and H ⊆ J , then (∃vH) ϕ belongs to E(XJ−H).

(f) If ϕ belongs to E(XJ), H ⊆ J , and D is a nonempty set in A(XH), then
(∀vH ∈ D) ϕ belongs to E(XJ−H).

Notice that the list of formation rules (a)–(f) contains no negation rule and no
infinite disjunction rule.

The notion of an element xJ ∈ XJ satisfying a neocompact formula over (A,B)
in a law structure (M, Λ) is defined in the natural way. As usual, the set of all
elements which satisfy a neocompact formula is called the set defined by the for-
mula. Each atomic formula with support J defines a set in B(XJ). Two neocompact
formulas are said to be equivalent if they define the same set.

Here is our first quantifier elimination theorem. By a QE law structure we shall
mean a closed law structure with the back and forth and open mapping properties.

Theorem 5.8 (First QE Theorem) Suppose (M, Λ) is a QE law structure. Let A
be the family of inverse open sets and B be the family of basic sets for (M, Λ). Then
each neocompact formula over (A,B) is equivalent in (M, Λ) to an atomic formula
with the same support, and thus defines a basic set for (M, Λ).

23



Proof: The proof is by induction on the complexity of neocompact formulas.
Theorems 5.1 and 5.3 are used in the quantifier steps (e) and (f). 2

In applications, the family M is often closed under countable as well as finite
Cartesian products. For example, the family MΩ in the law structure (MΩ,Meas)
for a probability space Ω is closed under countable Cartesian products. In this
case, a countable sequence of parameters zn ∈ Zn ∈ M can be combined to form a
single parameter z = 〈zn〉 ∈

∏

n Zn ∈ M. Thus neocompact formulas can be built
starting from basic sections rather than basic sets, as long as only countably many
parameters are used in one formula.

A neocompact formula over (A,B) is countable if all the conjunctions occurring
in the formula (using (d)) are countable. The First QE Theorem has the following
form for countable neocompact formulas with parameters.

Theorem 5.9 Let (M, Λ) be a QE law structure such that M is closed under count-
able Cartesian products. Let A be the family of inverse open sets and B be the family
of basic sections for (M, Λ). Then every countable neocompact formula over (A,B)
defines a basic section over (A,B).

Proof: For each z ∈ Z ∈ M, let Bz be the family of all basic sections with
parameter z. The First QE Theorem shows that for each z ∈ Z ∈ M, every
neocompact formula over (A,Bz) defines a basic section with parameter z. Consider
a sequence z = 〈zn : n ∈ N〉 where zn ∈ Zn ∈ M and Z =

∏

n Zn. We show that
for each n, each basic section B = {x : (x, zn) ∈ A} with parameter zn is a basic
section with parameter z. The set A is basic, so by the Parameter Rule, λ(A×{z})
is relatively compact. Thus A×{z} is contained in a basic set D. By the Projection
Rule, the projection f : λ(Z) → λ(Zn) is continuous. We have f(λ(z)) = λ(zn) and

B = {x : ∃y[(x, y, z) ∈ D ∧ ((x, y) ∈ A) ∧ f(λ(z)) = λ(y)]}.

This is a neocompact formula over (A,Bz), so B is a basic section with parameter
z.

Any countable neocompact formula ϕ over (A,B) is built from countably many
basic sections with parameters zn, n ∈ N. By the preceding paragraph, there is a
single parameter z such that ϕ is a neocompact formula over (A,Bz). Therefore ϕ
defines a basic section with parameter z. 2

We now proceed to our second quantifier elimination theorem, which has uni-
versal quantifiers bounded by basic sets rather than by inverse open sets, and thus
concerns neocompact formulas over (B,B). Neocompact formulas over (B,B) are
sometimes called neocompact formulas over B (this convention is used in [K4]).
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Theorem 5.10 (Second QE Theorem) Let (M, Λ) be a total law structure. Let B
be the family of basic sets for (M, Λ). Then each neocompact formula over (B,B) is
equivalent in (M, Λ) to an atomic formula over B with the same support, and thus
defines a basic set for (M, Λ).

Proof: By induction on complexity of neocompact formulas, using Theorem 5.1
at the existential quantifier step and Theorem 5.5 at the universal quantifier step.
2

The following remark shows that every neocompact formula in the First QE
Theorem is equivalent to a neocompact formula in the Second QE Theorem.

Remark 5.11 Let A be the set of inverse open sets, and let B be the set of basic sets
for a law structure (M, Λ). Then every neocompact formula over (A,B) is equivalent
to a neocompact formula over (B,B) with the same support.

Proof: By induction on the complexity of neocompact formulas over (A,B). For
the universal quantifier step, we replace the universal quantifier

(∀y ∈ C) ϕ,

where C ⊆ Y is a nonempty inverse open set, by the infinite conjunction
∧

c∈C

(∀y ∈ B(c)) ϕ,

where B(c) is the basic set λ−1(λ(c)). 2

The Second QE Theorem, like the First QE Theorem, has the following conse-
quence for countable neocompact formulas with parameters.

Theorem 5.12 Let (M, Λ) be a total law structure such that M is closed under
countable Cartesian products. Let A be the family of basic sets and B be the family
of basic sections for (M, Λ). Then every countable neocompact formula over (A,B)
defines a basic section. 2

The neocompact sets in [FK1] and other papers were built from the basic sets
using the formation rules (a)–(f) for countable neocompact formulas (so the con-
junctions in (d) are countable). However, [FK1] used the following more generous
rule (c̃) in place of (c).

(c̃) The Cartesian product of two neocompact sets is neocompact.
In terms of formulas, this rule says:
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(c̃) If ϕ belongs to E(XH), ψ belongs to E(XJ), and H, J are disjoint, then ϕ∧ψ
belongs to E(XH∪J).

The next proposition shows that in many cases, including those in [FK1], the
formation rules (c) and (c̃) lead to equivalent classes of neocompact formulas, even
if H, J are not required to be disjoint.

Proposition 5.13 Let A and B be families of sets in a law structure (M, Λ), such
that B is closed under finite Cartesian products, and whenever C ∈ B(X × Y ) there
exist A ∈ B(X) and B ∈ B(Y ) such that C ⊆ A×B. Then for any neocompact for-
mulas ψ, ϕ over (A,B) with finite supports H, J , ψ∧ϕ is equivalent to a neocompact
formula over (A,B) with support H ∪ J .

Proof: First show by induction on the complexity of formulas that the set defined
by any neocompact formula ϕ(vJ) over (A,B) is contained in a finite union of sets
in B(XJ).

We may therefore let C be a finite union of sets in B(XH) which contains the
set defined by ψ, and let D be a finite union of sets in B(XJ) which contains the set
defined by ϕ. Then the projection of D to XJ−H is contained in a finite union E of
sets in B(XJ−H). We see that the set defined by ψ∧ϕ is contained in C ×E, which
is a finite union of sets in B(XH∪J). Thus C ×E is defined by a finite disjunction θ
of atomic formulas with support H∪J . Using formation rule (c), ψ∧ϕ is equivalent
to the neocompact formula ψ ∧ (ϕ ∧ θ). 2

A family of sets is said to be countably compact if every countable subfamily
with the finite intersection property has nonempty intersection. A set which is
defined by a countable neocompact formula over (A,B) is called a neocompact
set over (A,B).

Many applications, such as those in [K2], [FK1], and [CK], make use of families
(A,B) over which the family of neocompact sets is countably compact. For this
reason, they can be used to prove existence theorems in a manner analogous to the
use of compact sets in classical proofs. To get the applications, one does not need
to introduce the law function at all. Instead, one can directly introduce smaller
but simpler families of sets (A,B), which may have no obvious connection to a law
structure, and then work with the neocompact formulas built from them. Some-
times, as in the case of adapted spaces, the law function is very complicated and
one can greatly simplify applications by building neocompact formulas from more
elementary sets.

We can get countable compactness for the neocompact sets from the following
lemma and corollary.
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Lemma 5.14 Let (M, Λ) be a closed and complete law structure such that M is
closed under countable products. Then for each X ∈ M the family of basic sections
B ⊆ X for (M, Λ) is countably compact.

Proof: For each n ∈ N let Bn ⊆ X be a basic section with parameter zn ∈ Zn ∈
M. Suppose the countable set {Bn : n ∈ N} has the finite intersection property.
As in the proof of Proposition 5.9, there is a single parameter z ∈ Z ∈ M such
that each Bn is a basic section with parameter z. By Proposition 4.11, the family of
basic sections in X with parameter z is compact. Therefore the intersection

⋂

n Bn

is nonempty. 2

Corollary 5.15 Let M be a family of sets closed under countable Cartesian prod-
ucts, and let A(X),B(X) be families of subsets of X for each X ∈ M. Suppose that
either

(i) There is a QE law structure (M, Λ) such that every A ∈ A(X) is inverse
open and every B ∈ B(X) is a basic section, or

(ii) There is a total law structure (M, Λ) such that every A ∈ A is a basic set
and every B ∈ B(X) is a basic section.

Then for each X the family of neocompact subsets of X over (A,B) is countably
compact.

Proof: We give the proof in case (ii); case (i) is similar. Let A′ be the family of
all basic sets and B′ the family of all basic sections for (M, Λ). Then A ⊆ A′ and
B ⊆ B′. By Theorem 5.12, each neocompact set over (A′,B′) in X belongs to B′(X).
By Lemma 5.14, the family B′(X) is countably compact. The desired conclusion
follows. 2

The quantifier elimination theorems for neocompact formulas lead to quantifier
elimination theorems for a larger class of formulas, called the neoclosed formulas
over (A,B). The neoclosed formulas are built using the same formation rules as the
neocompact formulas, except that there is a larger collection of atomic formulas and
that the existential quantifiers are bounded by basic sets. A set which is defined by
a countable neoclosed formula over (A,B) is called a neoclosed set. As the name
implies, the neoclosed sets play a role analogous to the closed sets in applications
such as those in [FK1].

In the following definition, M is a family of nonempty sets closed under finite
Cartesian products, and for each X ∈ M, A(X) and B(X) are families of subsets of
X.

Definition 5.16 By an atomic neoclosed formula with support J over B we
mean an expression (vJ ∈ A) where A is a subset of XJ such that A ∩ B ∈ B(XJ)
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for each B ∈ B(XJ). A neoclosed formula over (A,B) with support J is an
expression which belongs to every set E(XJ) of expressions such that (b), (c), (d),
(f) from Definition 5.7 hold, and:

(ã) Every atomic neoclosed formula over B belongs to E(XJ).

(ẽ) If ϕ belongs to E(XJ), C ∈ B(XH), and H ⊆ J , then (∃vH ∈ C) ϕ belongs to
E(XJ−H).

Note that if each X ∈ M is a Hausdorff space and B is the family of all compact
sets, then every neoclosed formula over (A,B) defines a closed set. However, this
would not be true if the existential quantifier rule (ẽ) allowed unbounded existential
quantifiers, because unbounded existential projections of closed relations need not
be closed.

The following result is a general principle for obtaining quantifier elimination for
neoclosed formulas from quantifier elimination for neocompact formulas.

Proposition 5.17 Suppose that B is closed under finite Cartesian products, and
that each A ∈ A(X) is a union of sets C ∈ A(X) such that C ⊆ B for some
B ∈ B(X). Then for each neoclosed formula ϕ over (A,B) with support J and each
B ∈ B(XJ), ϕ(xJ) ∧ (xJ ∈ B) is equivalent to a neocompact formula over (A,B)
with support J . Thus if each neocompact formula over (A,B) is equivalent to an
atomic formula with the same support, then every neoclosed formula over (A,B) is
equivalent to an atomic neoclosed formula with the same support.

Proof: We argue by induction on ϕ. All but the quantifier steps are trivial.
For the existential quantifier step (ẽ), let C ∈ B(XH) and let ψ(xJ−H) = (∃xH ∈
C) ϕ(xJ). Let B ∈ B(XJ−H). Then ψ(xJ−H) ∧ (xJ−H ∈ B) is equivalent to the
neocompact formula

(∃xJ−H)[ϕ(xJ) ∧ (xJ ∈ B × C)].

For the universal step (f) let D ∈ A(XH) and let ψ(xJ−H) = (∀xH ∈ D) ϕ(xJ).
Then there are sets Di ∈ A(XH), Ci ∈ B(XH), i ∈ I such that D =

⋃

i∈I Di and
Di ⊆ Ci for each i ∈ I. Let B ∈ B(XJ−H). Then ψ(xJ−H)∧(xJ−H ∈ B) is equivalent
to the neocompact formula

∧

i∈I

(∀xH ∈ Di)[ϕ(xJ) ∧ (xJ ∈ B × Ci)].

This completes the induction. 2
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6 Examples Revisited

In this section we shall revisit some of the examples from Section 3 and see what
our quantifier elimination theorems say about them.

Example 1: The identity law structure is total. For the identity law structure
the Second QE Theorem says that every neocompact formula over (B,B) defines a
compact set, where B is the family of compact sets. This can be easily seen directly
by observing that the family of compact sets is closed under all the operations (a)–(f)
which are used to build neocompact formulas.

Example 3: We revisit the law structure (MA, Λqf ) of quantifier-free types
where A is a model for a first order logic with equality. In order to distinguish
between formulas of first order logic and the atomic and neocompact formulas which
appear in our quantifier elimination theorems, we shall call formulas of first order
logic finite formulas here.

The atomic formulas with support J are the finite or infinite conjunctions of finite
quantifier-free formulas with free variables from vj, j ∈ J . The basic sets C ∈ B are
the sets defined by these formulas. The inverse open sets C ∈ A are defined by finite
or infinite disjunctions of finite quantifier-free formulas. The neocompact formulas
over (A,B) are built from the atomic formulas using the rules (a)-(f). Although the
list of rules (a)-(f) contains no formation rule for negations, negations may appear
“inside” atomic formulas within neocompact formulas.

For example, in an ordered field the atomic formula x 6= y ∧ ∧

n n× |x− y| ≤ 1
says that x is infinitely close but not equal to y. Given a neocompact formula θ(y, ~z),
the neocompact formula

∀x∃y(θ(y, ~z) ∧
∧

n
n× |x− y| ≤ 1)

says that every element is infinitely close to an element of the set {y : θ(y, ~z)}, and
the formula

∀y[
∨

n
|y| < n → ϕ(y, ~z)]

says that ϕ(y, ~z) holds for all finite y.
In a group, the atomic formula

∧

n xn 6= 1 says that x has infinite order, the
neocompact formula

∧

n
∃x(

∧

m<n
xm 6= 1 ∧ xn = 1)

says that there exist elements of all finite orders, and the neocompact formula

∀x[
∨

m
xm = 1 → ∃y(xy = yx ∧

∧

n
yn 6= 1)]
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says that every element of finite order commutes with some element of infinite order.

Each of Theorems 5.3 and 5.1 by itself gives a sufficient condition for Th(A)
to admit first order quantifier elimination. The First QE Theorem combines these
two theorems to give a quantifier elimination theorem for the (infinite) neocompact
formulas over A.

Corollary 6.1 (i) If (MA, Λqf ) is dense and has the open mapping property, then
every universal formula (∀~y ∈ C)ϕ(~x, ~y) is equivalent in A to a conjunction of
quantifier-free formulas

∧

Γ(~x).
(ii) If (MA, Λqf ) is closed, dense, and has the open mapping property, then

Th(A) admits first order elimination of quantifiers.

Proof: Part (i) follows from Theorem 5.3. Assume the hypotheses of (ii) and let
∀~yϕ(~x, ~y) be a finite universal formula. By (i), the set of quantifier-free formulas
Γ(~x) ∪ {¬ϕ(~x, ~y)} is not satisfiable in A. Since (MA, Λqf ) is closed, this set is
not finitely satisfiable in A. It follows that ∀~yϕ(~x, ~y) is equivalent in A to the
conjunction of a finite subset Γ0(~x) ⊆ Γ(~x). First order quantifier elimination now
follows by induction on the complexity of formulas. 2

The next corollary is proved by a similar argument but uses Theorem 5.1 instead
of 5.3.

Corollary 6.2 (i) If (MA, Λqf ) has the back and forth property and is closed, then
every existential formula ∃~yϕ(~x, ~y) is equivalent in A to a conjunction of quantifier-
free formulas

∧

Γ(~x).
(ii) Suppose (MA, Λqf ) has the back and forth property, and for every set of

quantifier-free formulas Σ(~x) and universal formula ψ(~x), if Σ(~x)∪{ψ(~x)} is finitely
satisfiable in A then it is satisfiable in A. Then Th(A) admits first order elimination
of quantifiers. 2

One of the easiest ways to prove that a theory admits first order elimination of
quantifiers is to take an ω-saturated model B and show that any pair ~a,~b in B which
satisfy the same quantifier-free formulas satisfy the same finite existential formulas,
i.e. that (MB, Λqf ) is dense. Using ω-saturation, this shows that the hypotheses of
Corollary 6.2(ii) hold for (MB, Λqf ). For example, one can show in this way that
the theories of dense linear order, algebraically closed fields, and real closed ordered
fields admit first order elimination of quantifiers.

Things are especially simple if the vocabulary of A has no function symbols.
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Corollary 6.3 If A is a model whose vocabulary is finite and has no function sym-
bols, and (MA, Λqf ) is dense, then Th(A) admits first order elimination of quanti-
fiers.

Proof: For each n, A has only finitely many quantifier-free n-types, so the hy-
potheses of Corollary 6.2(ii) hold for (MB, Λqf ). 2

Example 4: We revisit the law structure of quantifier-free types in countably
many variables. Let A be a model, and consider the law structure (Mω1

A , Λqf ). In
this case the corresponding language has formulas with countably many variables, so
the support J of a formula will be a finite or countable set. A basic set B ∈ B with
support J will be defined by an infinite conjunction of finite quantifier-free formulas
whose variables are included in the set vJ , and an inverse open set C ∈ A will be
defined by an infinite disjunction of finite quantifier-free formulas. The neocompact
formulas over (A,B) will contain quantifiers over countable sets of variables. In this
case the First QE Theorem says the following.

Corollary 6.4 Suppose that the law structure (MA, Λqf ) of finite quantifier-free
types is dense and has the open mapping property, and for all α < ω1 and ~a ∈
Aα, every set of finite quantifier-free formulas with constants for ~a and countably
many variables which is finitely satisfiable in (A,~a) is realized in (A,~a). Then
every neocompact formula over (A,B) is equivalent in A to a conjunction of finite
quantifier-free formulas. 2

Since the set M is closed under countable products, we may also apply Theo-
rem 5.9 to obtain:

Corollary 6.5 Assume the hypotheses of Corollary 6.4. Let B′ be the family of
basic sections for (Mω1

A , Λqf ). Then every countable neocompact formula over (A,B′)
defines a basic section, and for each α < ω1 the family of neocompact sets over Aα

is countably compact. 2

Example 5: We now revisit the law structures (MA, Λrst) of quantifier-free
n-types which are realized in a model A with the restricted topology.

Proposition 3.2 gave a criterion for (MA, Λrst) to be a law structure. If (MA, Λrst)
is a law structure then it is automatically closed, and has the completeness, density,
open mapping, or strong mapping property if and only if (MA, Λqf ) has that prop-
erty. However, (MA, Λrst) may have fewer basic sets, and hence fewer neocompact
formulas, than the corresponding law structures (MA, Λqf ).

In the corollaries below, let A be the family of inverse open sets, which are
defined by disjunctions of quantifier-free formulas. Also, let B be the family of basic
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sets for (MA, Λrst). A basic set is defined by the conjunction of a finite or infinite
set Γ(~v) of quantifier-free formulas such that every quantifier-free type p over A
which contains Γ(~v) is realized in A. In general, the model A will not realize all
quantifier-free types over A.

Corollary 6.6 Suppose (MA, Λqf ) has the back and forth and open mapping proper-
ties, and (MA, Λrst) is a law structure. Then every neocompact formula over (A,B)
defines a basic set for (MA, Λrst) with the same support.

Proof: (MA, Λrst) is closed and has the back and forth and open mapping prop-
erties, so the First QE Theorem applies. 2

Proposition 3.4 gave us a supply of models A which satisfy the hypotheses of
the above corollary.

Corollary 6.7 Suppose Th(A) admits first order elimination of quantifiers and
(MA, Λrst) is a complete law structure. Then every neocompact formula over (A,B)
defines a basic set for (MA, Λrst) with the same support.

Proof: First order quantifier elimination for Th(A) implies that (MA, Λqf ) is
dense with the open property, and since it is complete it has the back and forth
property. 2

Example 7: We now revisit the law structure of random variables. Let Ω
be a probability space whose law structure (MΩ, law,Meas) is complete. Then
(MΩ, law,Meas) is total, so the Second QE Theorem applies. Let B be the fam-
ily of basic sets for (MΩ, law,Meas). Thus the atomic formulas over B are the
formulas stating that law(~x) ∈ B where B is a compact set in Meas(M) for some
separable metric space M . It is shown in [FK1] that many of the central notions in
probability theory can be expressed by neocompact formulas in the law structures
of probability spaces or adapted probability spaces. Some examples are the notions
of a Brownian motion, martingale, stopping time, adapted process, and stochastic
integral.

See [K4] for more examples of total law structures from probability theory, and
[BN] for Banach space examples.

7 Products of Law Structures

In this section we extend the Second QE Theorem to law structures in which the
strong mapping property only holds “locally”. This will be needed for the applica-
tions of our results to continuous time stochastic processes in the forthcoming paper
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[K4]. We shall introduce the notion of a product of a sequence of law structures, and
show that under appropriate hypotheses a countable product admits elimination of
quantifiers for neocompact formulas where A is the family of sets which are basic for
some finite product. At the end of this section we shall again revisit the examples
of law structures of quantifier-free types with the full and restricted topologies.

Let (M, λ1, Λ1) and (M, λ2, Λ2) be two law structures over the same family M.
Then (M, λ, Λ) is a law structure where λ(x) = (λ1(x), λ2(x)), and Λ(X) is the
topological product of Λ1(X) and Λ2(X).

Now let (M, λk, Λk) be a law structure on M for each k ∈ N. For each X ∈ M
let λ(x) be the sequence λ(x) = 〈λk(x) : k ∈ N〉 and let Λ(X) be the topological
product of Λk(X), k ∈ N.

We emphasize that in this section we are dealing with a sequence of law structures
all of which are over the same family M, and we form a product of the target
spaces Λk(X). This is different from the law structures (MA, Λrst) considered in
Example 5 where A is a countable Cartesian product of models Ak, and from the
parameter forms of the QE theorems, where M is assumed to be closed under
countable Cartesian products.

Proposition 7.1 The product (M, λ, Λ) is a law structure.

Proof: The Parameter Rule follows from Tychonoff’s theorem on products of
compact sets. 2

Let (M, ~λk, ~Λk) be the product of the first k + 1 law structures in the sequence,
that is, ~λk = 〈λ0, . . . , λk〉, and ~Λk(X) is the topological product Λ0(X)×· · ·×Λk(X).

In the examples at the end of this section we shall see that law structures of
quantifier-free types over an infinite vocabulary are isomorphic to products of law
structures of quantifier-free types over finite reducts of the vocabulary. For a similar
reason, the law structures of continuous time stochastic processes in [K4] will be
products of law structures of finite discrete time stochastic processes.

The next few results give relationships between a countable infinite product of
law structures and the finite subproducts.

Proposition 7.2 Suppose that (M, ~Λk) is a dense law structure for each k ∈ N.
Then (M, Λ) is a dense law structure.

Proof: Let x, x̄ ∈ X, λ(x) = λ(x̄), and y ∈ Y . Then for each k ∈ N we have
~λk(x) = ~λk(x̄). Since (M, ~λk) is dense, for each k ∈ N and neighborhood U of
~λk(x, y) there exists ȳ ∈ Y such that λk(x̄, ȳ) ∈ U . Let

f : Λ(X × Y ) → ~Λk(X × Y )
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be the natural projection map. Let V be a neighborhood of λ(x, y). Then for some
k ∈ N and neighborhood U of ~λk(x, y), f−1(U) ⊆ V . Therefore there exists ȳ ∈ Y
such that λ(x̄, ȳ) ∈ V . This shows that (M, Λ) is dense. 2

Proposition 7.3 Suppose that for each k ∈ N, (M, ~Λk) is dense and has the open
mapping property . Then (M, Λ) is dense and has the open mapping property.

Proof: (M, Λ) is dense by Proposition 7.2. Let x ∈ X ∈ M, y ∈ Y and let U be
an open neighborhood of λ(x, y). Then for some k and open set Uk in ~λk(X × Y ),
U = f−1(Uk) where f is the projection from λ(X × Y ) to ~λk(X × Y ). By the open
mapping property for (M, ~Λk), the projection gk from ~λk(X × Y ) to ~λk(X) is open,
so the set Vk = gk(Uk) is open in ~λk(X). Then V = f−1(Vk) is open in Λ(X) and
V = g(U) where g is the projection from λ(X × Y ) to λ(X). 2

Proposition 7.4 Let (M, Λm) be a sequence of first countable law structures. Sup-
pose k ∈ N and whenever ~λk(B) is relatively compact, λ(B) is relatively compact.

(i) If (M, Λ) is closed, then (M, ~Λm) is closed for each m ≥ k.
(ii) If (M, Λ) is closed and complete, then (M, ~Λm) is closed and complete for

each m ≥ k.

Proof: (i) Let xn be a sequence in X ∈ M such that ~λm(xn) converges to b in
~Λm(X). Let B = {xn : n ∈ N}. Then ~λm(B) is relatively compact. Since m ≥ k,
~λk(B) is relatively compact. By hypothesis, λ(B) is relatively compact. Therefore
the sequence λ(xn) has a subsequence λ(xf(n)) which converges to a point c. Since
(M, Λ) is closed, c = λ(x) for some x ∈ X. Then ~λm(xf(n)) converges to ~λm(x), so
b = ~λm(x) and thus (M, ~Λm) is closed.

(ii) Let xn be a sequence in X ∈ M and y ∈ Y ∈ M be such that ~λm(xn, y)
converges to b in ~Λm(X×Y ). As in part (i), the sequence λ(xn, y) has a subsequence
λ(xf(n), y) which converges to a point c in Λ(X × Y ). Since (M, Λ) is closed and
complete, there exists x ∈ X such that λ(x, y) = c. Then ~λm(xn, y) converges to
~λm(x, y) = b, so (M, ~Λm) is closed and complete. 2

As a preparation for our next quantifier elimination theorem we prove some
lemmas relating basic sets for (M, ~Λk) and for (M, Λ).

Lemma 7.5 Let A, B ⊆ X. If k ≤ m, A is basic for (M, ~Λk), and B is basic for
(M, ~Λm), then A ∩B is basic for (M, ~Λm).
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Proof: Let
A = ~λ−1

k (Â), B = ~λ−1
m (B̂),

where Â is compact in ~Λk(X) and B̂ is compact in ~Λm(X). Let p : ~Λm(X) → ~Λk(X)
be the natural projection map. Then

A ∩B = {x ∈ X : ~λm(x) ∈ p−1(Â) ∩ B̂}.

Since p is continuous, p−1(Â) is closed, so p−1(Â) ∩ B̂ is compact. This shows that
A ∩B is basic for (M, ~Λm). 2

Lemma 7.6 A set B ⊆ X is basic for (M, Λ) if and only if B =
⋂

k Bk for some
sequence of basic sets Bk for (M, ~λk), k ∈ N. Moreover, the sets Bk may be taken
to be a decreasing chain B0 ⊇ B1 ⊇ · · ·.

Proof: Suppose first that Bk ⊆ X is basic for (M, ~λk) for each k ∈ N. Let
B =

⋂

k Bk, and let Bk = ~λ−1
k (B̂k) where B̂k is compact in ~Λk(X). For each k,

~λk(B) ⊆ B̂k is relatively compact, so λ(B) is relatively compact by the Tychonoff
product theorem. Therefore the closure B̂ of λ(B) is compact. Let λ(x) ∈ B̂. Since
the projection is continuous and ~λk(B) ⊆ B̂k, ~λk(x) ∈ B̂k. Therefore x ∈ Bk. Since
this holds for all k, x ∈ B. This proves that B = λ−1(B̂), so B is basic for (M, Λ).

For any compact subset C of Λ(X), we have

{x ∈ X : λ(x) ∈ C} =
⋂

k

{x ∈ X : ~λk(x) ∈ pk(C)}

where pk is the projection onto the first k coordinates. Each set pk(C) is compact
in ~Λk(X). This shows that any basic set for (M, Λ) can be put into the required
form

⋂

k Bk.
Moreover, by Lemma 7.5, for each k the finite intersection Ck =

⋂k
m=0 Bm is

basic for (M, ~Λk), so B is an intersection of a decreasing chain of sets Ck basic for
(M, ~Λk). 2

Corollary 7.7 If Bn is basic for (M, ~Λn) for each n ≥ k, then B =
⋂∞

n=k Bn is
basic for (M, Λ).

Proof: Since Bk is basic for (M, ~Λk), ~λk(Bk) is relatively compact in ~Λk(X). By
continuity of the projection maps, ~λn(Bk) is relatively compact in ~Λn(X) for each
n < k. Therefore for each n < k there is a basic set Bn for (M, ~Λn) such that
Bn ⊇ Bk. Then B =

⋂

n Bn and so B is basic for (M, Λ) by Lemma 7.6. 2
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Corollary 7.8 Suppose B ⊆ X is basic for (M, ~Λk). The following are equivalent.
(i) For each m ≥ k, B is basic for (M, ~Λm).
(ii) B is basic for (M, Λ).
(iii) λ(B) is relatively compact.

Proof: (i) implies (ii) by Corollary 7.7. (ii) implies (iii) by the definition of a
basic set. Assume (iii), and let B̂ be a compact set in Λ(X) which contains λ(B).
Then Ĉ = p(B̂) is a compact set in ~Λm(X) which contains ~λm(B), where p is the
projection map. So C = ~λ−1

m (Ĉ) is basic for (M, ~Λm) and C ⊇ B. By Lemma 7.5,
B = B ∩ C is basic for (M, ~Λm). This proves (i). 2

Corollary 7.9 Suppose that X ∈ M and Λ(X) is compact. Then every set B ⊆ X
which is basic for (M, ~Λk) is also basic for (M, Λ) and for (M, ~Λm) whenever m > k.
2

Lemma 7.10 Let (M, Λk) be a sequence of law structures, each with the back and
forth and strong mapping properties. For each k ∈ N, basic set A ⊆ X × Y for
(M, Λ), and nonempty basic set C ⊆ Y for (M, ~λk), the set

B = {x ∈ X : (∀y ∈ C)(x, y) ∈ A}

is basic for (M, Λ).

Proof: By Lemma 7.6, A has the form A =
⋂

n An where An is basic for (M, ~Λn).
By Lemma 7.5, we may assume that Ak =

⋂k
n=0 An, so that A =

⋂∞
n=k An. Then

B =
∞
⋂

n=k

{x ∈ X : (∀y ∈ C)(x, y) ∈ An} =
∞
⋂

n=k

Bn.

If B is empty then it is basic for (M, Λ). Suppose B is nonempty. Let n ≥ k.
By Lemma 5.2, λ(C) is relatively compact. Hence by Corollary 7.8, C is basic for
(M, ~Λn). Then by Proposition 5.5, Bn is basic for (M, ~Λn), and by Corollary 7.7, B
is basic for (M, Λ). 2

The following result is a generalization of the Second QE theorem. The strong
mapping property is only assumed locally, and the universal quantifiers are elimi-
nated only locally, where “local” means over the finite subproducts.

Theorem 7.11 (Local QE Theorem) Let (M, Λk) be a sequence of law structures
such that (M, Λ) is closed and complete, and for each k, (M, ~Λk) has the back and
forth and strong mapping properties.

36



Let Ak be the set of all basic sets B for (M, ~Λk), and let A =
⋃

kAk. Let B be
the family of basic sets for (M, Λ). Then every neocompact formula over (A,B) is
equivalent in (M, Λ) to an atomic formula over B with the same support, and thus
defines a basic set for (M, Λ).

Proof: By Proposition 7.2, (M, Λ) is dense, and by Proposition 2.3 it has the
back and forth property. Argue by induction on the complexity of neocompact
formulas over (A,B), using Theorem 5.1 and Lemma 7.10 at the quantifier steps. 2

Here is the corresponding theorem with parameters.

Theorem 7.12 Suppose M is closed under countable Cartesian products. Let (M, Λk)
and A be as in the preceding theorem. Let B be the family of all basic sections for
(M, Λ).

(i) Every countable neocompact formula over (A,B) defines a basic section for
(M, Λ).

(ii) The family of neocompact subsets of X over (A,B) is countably compact. 2

Example 3 (Quantifier-free types) revisited again:
Let L be a first order vocabulary which is the union of a countable chain L =

⋃

k Lk of first order vocabularies Lk, A be a model for L, Ak be the reduct of A
to Lk, and Λqf

k (An) be the space of all quantifier-free n-types for Ak. Then the law
structure (MA, Λqf ) of quantifier-free types is isomorphic to the product of the law
structures (MAk , Λ

qf
k ). Similarly, the law structure (MA, Λel) of elementary types

over A is isomorphic to the product of the law structures (MAk , Λ
el).

Hint: Let F n be the mapping from Λqf (An) into
∏

k Λqf
k (An) such that (F n(p))(k)

is the reduct of p to Lk. Then F n is a homeomorphism from Λqf (An) to a closed
subspace of

∏

k Λqf
k (An) and induces a law structure isomorphism.

For the law structure (MA, Λqf ), the Local QE Theorem gives nothing beyond
the First QE Theorem 5.8, because in this case it turns out that the universal
quantifiers bounded by sets in A are easily replaced by universal quantifiers bounded
by inverse open sets.

If each (MAk , Λ
qf
k ) has a property but (MA, Λqf ) does not, we can conclude that

the property is not preserved under countable products of law structures. As an
illustration, let Lk have k + 1 unary predicates U0, . . . , Uk and one binary relation
E. Let A be a model of the complete theory where the Uk are disjoint, E has
two equivalence classes, and each equivalence class of E contains infinitely many
elements of each Uk. This theory admits elimination of quantifiers, so the law
structures of quantifier-free and elementary types are the same. For each k, Th(Ak)
is ω-categorical, so (MAk , Λ

qf
k ) is a total law structure.
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Now let each equivalence class of E in A have a different finite number of elements
realizing the type {¬Un(x) : n ∈ N}. Then (MA, Λqf )) is not closed and has neither
the back and forth property nor the strong mapping property. Thus the back and
forth property, the strong mapping property, and closedness are not preserved under
countable products.

Example 5 (Restricted topology) revisited again:
Again let L be a first order vocabulary which is the union of a countable chain

L =
⋃

k Lk of first order vocabularies Lk. Let A be a model for L and let Ak be
the reduct of A to Lk. Assume that each (MAk , Λ

rst
k ) is a law structure. Assume

further that whenever each Lk-reduct of a quantifier-free n-type p ∈ Λqf (An) over
A is realized in Ak, p is realized in A.

Proposition 7.13 (MA, Λrst) is a law structure and is isomorphic to the product
of the law structures (MAk , Λ

rst
k ), k ∈ N.

Hint: As in the preceding example, let F n be the mapping from Λrst(An) to a
closed subset of

∏

k Λrst
k (An) such that (F n(p))(k) is the reduct of p to Lk. Show

that the closure of F n(Λrst(An)) in the topological product
∏

k Λrst
k (An) is the set of

all F n(p) such that for each k the reduct of p to Lk is realized in Ak. 2

A set C ⊆ XJ belongs to the family Ak of sets which are basic for (MAk , Λ
rst
k ) iff

C is defined by a conjunction of quantifier-free formulas
∧

t∈T ψt(~v) such that each
ψt belongs to Lk, and every quantifier-free type p ⊇ {ψt : t ∈ T} over Ak is realized
in Ak. We let A =

⋃

kAk and let B be the set of basic sets for (MA, Λrst).
In this case the Local Quantifier Elimination Theorem says the following:

Corollary 7.14 If (MAk , Λ
rst
k ) is a total law structure for each k and (MA, Λrst)

is complete, then every neocompact formula over (A,B) is equivalent in A to a
conjunction of quantifier-free formulas with the same support. 2
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