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FIRST ORDER QUANTIFIERS IN MONADIC SECOND ORDER LOGIC

H. JEROME KEISLER AND WAFIK BOULOS LOTFALLAH

Abstract. This paper studies the expressive power that an extra first order quantifier
adds to a fragment of monadic second order logic, extending the toolkit of Janin and
Marcinkowski [JM01].

We introduce an operation existsn(S) on properties S that says “there are n compo-
nents having S”. We use this operation to show that under natural strictness conditions,
adding a first order quantifier word u to the beginning of a prefix class V increases the
expressive power monotonically in u. As a corollary, if the first order quantifiers are not
already absorbed in V , then both the quantifier alternation hierarchy and the existential
quantifier hierarchy in the positive first order closure of V are strict.

We generalize and simplify methods from Marcinkowski [Mar99] to uncover limitations
of the expressive power of an additional first order quantifier, and show that for a wide
class of properties S, S cannot belong to the positive first order closure of a monadic prefix
class W unless it already belongs to W .

We introduce another operation alt(S) on properties which has the same relationship
with the Circuit Value Problem as reach(S) (defined in [JM01]) has with the Directed
Reachability Problem. We use alt(S) to show that Πn 6⊆ FO(Σn), Σn 6⊆ FO(∆n), and
∆n+1 6⊆ FOB(Σn), solving some open problems raised in [Mat98].

§1. Introduction. This paper studies the expressive power that an extra
first order quantifier adds to a fragment of monadic second order logic.

Second order logic embodies many of the outstanding open problems in com-
plexity theory. In [Fag74] Ronald Fagin showed that the class NP coincides with
the class of properties expressible by existential second order sentences. Thus
NP = co-NP if and only if the class of existential second order sentences is closed
under negation. Stockmeyer [Sto77] subsequently extended Fagin’s Theorem and
showed that the polynomial hierarchy coincides with the second order quantifier
alternation hierarchy, thus translating to logic the problem of the strictness of
the polynomial hierarchy.

These hierarchy problems have been hard to attack. Fagin suggested studying
monadic second order logic (MSO), a simplified fragment of full second order
logic, in which second order quantifiers are only allowed over unary relations, i.e.
subsets of the underlying universe. MSO was indeed tractable. In [Fag75] Fagin
himself used Ehrenfeucht-Fräıssé games to show that existential MSO (called
monadic NP) is not closed under negation, thus separating monadic NP from
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monadic co-NP. Matz and Thomas [MT97] showed that the monadic quantifier
alternation hierarchy is strict. In particular, they showed that Σn ⊂ B(Σn) ⊂
∆n+1 ⊂ Σn+1, where B denotes Boolean closure of Σn. Their argument was
based on growth rates of definable functions. In [Mat98] Matz used the growth
argument to investigate the role of the positive first order closure in the monadic
alternation hierarchy. Among other things, he showed that, on the class of finite
graphs, ∆n+2 6⊆ FOB(Σn), FO(Σn) ∩ FO(Πn) 6⊆ B(Σn), and FO(Σn+1) ∩
FO(Πn+1) 6⊆ FOB(Σn), where FO denotes the positive first order closure, and
FOB denotes the first order/Boolean closure.

Ajtai, Fagin, and Stockmeyer in [AFS98] and [AFS00] proposed closed monadic
NP, in which first order quantifiers are freely mixed with monadic second order
existential quantifiers, as the “right” monadic version of NP. They posed the
problem of whether the corresponding hierarchy is strict. Marcinkowski [Mar99]
showed that Directed Reachability is not in FO(Σ1), answering a question in
[AFS98]. The tools of [AFS00] and [Mar99] were put in an abstract form by
Janin and Marcinkowski in [JM01], to study the expressive power of fragments
of MSO defined by prefix classes.

A (monadic) prefix class is a regular expression V built from the first order
quantifiers ∀ , ∃, monadic second order quantifiers ∀ , ∃, and the Boolean closure
operator ⊕. The logic L(V ) is the set of formulas built from words in V and
finite conjunctions and disjunctions.

In [JM01] two operations on graph properties S were defined, bool(S) and
reach(S). They call a prefix class nontrivial if it ends in (∀ ∃⊕)? and contains
either an ∀ ? or an ∃?. They proved the following results for nontrivial prefix
classes V and W :

1) If both S and its complement are expressible in L(V ), but S is not express-
ible in L(W ), then bool(S) is expressible in L(∃ ∃V ) but not in B(L(W )).

2) If S is expressible in L(V ) but not in L(W ), then reach(S) is expressible
in L(∃ ∀ ∀V ) but not in FO(L(W )).

In this paper we introduce two more operations, existsn(S) and alt(S), and
prove the following results for arbitrary prefix classes V and W :

3) If S is expressible in L(V ) but not in L(W ), then for any (n− 1)-tuple u of
first order quantifiers, existsn(S) is expressible in L(u∃V ) but not in L(u∀ ?W ).
(Lemma 3.2).

4) If V contains ∀ ∀ and ∀ ∃, and S is expressible in L(V ) but not in L(W ),
then alt(S) is expressible in L(∃ ∀V )∩L(∀ ∃V ) but not in FO(L(W )). (Lemmas
6.6 and 6.7).

The operation existsn(S), introduced in Section 3, says “there are n com-
ponents having property S”. 3) above shows that this operation introduces an
“existential hardness”, so that adding a word u∃ of first order quantifiers before a
prefix class V increases the expressive power monotonically in u. As a corollary,
if the first order quantifiers are not already absorbed in V , then both the first
order quantifier alternation hierarchy and the first order existential quantifier hi-
erarchy inside FO(L(V )) are strict. This improves a theorem in [KW73], where
it is shown that (when V is empty) any two distinct first order quantifier words
v, w express different sets of properties.
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In Section 4 we simplify the proof of the result in [Mar99] that Directed Reach-
ability is not expressible in FO(Σ1). The method is extended in Section 5 to
show that for a wide class of properties S and for any monadic prefix class W , S
cannot be expressed in FO(L(W )) unless it is already expressible in L(W ), and
S cannot be expressed in FOB(L(W )) unless it is already expressed in B(L(W )).

In Section 6 we apply the ideas of Section 5 to define the operation alt and
prove the result 4) above. alt has the same relationship with the Circuit Value
Problem as reach has with the Directed Reachability Problem. The flexibility
of alt allows us to strengthen some results and solve some open problems in
[Mat98]. In particular, we show that Πn 6⊆ FO(Σn), Σn 6⊆ FO(Πn), and ∆n+1 6⊆
FOB(Σn).

§2. Basic definitions. For simplicity we only consider vocabularies contain-
ing one binary predicate E (for edge) and possibly several unary predicates and
constant symbols. As usual, the logic has the equality symbol, =, as a built-in
relation. We will not consider the case of logics with other built-in relations,
such as linear order. All of the results in this paper hold for the class of finite
models as well as the class of all models. That is, you can choose either one of
the following two options at the outset, and stay with that option throughout
the paper.

Finite option: Models are finite directed graphs with colors and distinguished
vertices.

Infinite option: Models are arbitrary directed graphs with colors and dis-
tinguished vertices.

We use ⊆ for inclusion, ⊂ for strict inclusion, and 6⊆ for the negation of
inclusion.

In this paper we consider only monadic second order extensions of first order
logic. By a logic we will mean a set of monadic second order formulas which is
positive Boolean closed, that is, closed under finite conjunctions and disjunctions.
As usual, sentences are formulas with no free variables.

To clarify the different roles of universal and existential quantifiers, we assume
that all negation signs are pushed inside. We shall sometimes view formulas as
trees with nodes labelled by conjunction signs, disjunction signs, first order and
monadic second order quantifications, and leafs labelled by literals, i.e. atomic
and negation of atomic formulas.

Following [JM01], a pattern is a word over the alphabet {∀ , ∃, ∀ , ∃,⊕}, where
∀ , ∃ are first order quantifiers, ∀ , ∃ are monadic second order quantifiers, and ⊕
is the Boolean closure operator.

We let τ be a finite signature which contains at least one binary relation
symbol and remains fixed throughout. For each signature τ and each pattern w,
we define the logic L(w) supported by w by induction as follows.
• The empty word supports the set of all quantifier-free MSO formulas with

signature τ .
• L(∀w) is the positive Boolean closure of the set L(w) ∪ {∀xϕ : ϕ ∈ L(w)}.
• L(∃w) is the positive Boolean closure of the set L(w) ∪ {∃xϕ : ϕ ∈ L(w)}.
• L(∀w) is the positive Boolean closure of the set L(w)∪{∀Xϕ : ϕ ∈ L(w)}.
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• L(∃w) is the positive Boolean closure of the set L(w)∪{∃Xϕ : ϕ ∈ L(w)}.
• L(⊕w) is the Boolean closure of L(w), so L(⊕w) = B(L(w)).

Example 1. The prenex sentence (∀x)(∃y)(∀Y )(E(x, y)∧Y (x)) is supported
by the pattern ∀ ∃∀ , while the sentence (∀x)((∃y)E(x, y)∧(∀ Y )Y (x)) is supported
by the pattern ∀ ∃∀ as well as by ∀∀ ∃.

We shall freely make use of regular expressions which do not contain union
to denote classes of patterns, which we will call prefix classes. The logic L(W )
supported by a prefix class W is defined to be the union of the logics L(w), w ∈ W .
Note that each L(W ) is positive Boolean closed.

Example 2. The positive first order closure of a logic L(V ) is the logic

FO(L(V )) = L((∀ ∃)?V ).

First order logic is the logic FO = L((∀ ∃)?).
Monadic NP is the logic Σ1 = L(∃?(∀ ∃)?) = L((∃ ∃)?(∀ ∃)?).
Monadic co-NP is Π1 = L(∀ ?(∀ ∃)?) = L((∀ ∀ )?(∀ ∃)?).
Closed monadic NP is L((∃ ∀ ∃)?).
Closed monadic co-NP is L((∀ ∀ ∃)?).
Σn+1 = L(∃?V ) = L((∃ ∃)?V ) where Πn = L(V ),
Πn+1 = L(∀ ?V ) = L((∀ ∀ )?V ) where Σn = L(V ),
∆n = Σn ∩Πn.

We do not allow regular expressions with unions, such as ∃(∃ ∪ ∀ )2, in the
definition of a prefix class, because we do not have a corresponding Ehrenfeucht-
Fräıssé game in Theorem 2.2 below.

The reader should be warned that for certain prefix classes W , it is not true
that for every formula in L(W ) is equivalent to a prenex formula in L(W ), as
the following example shows.

Example 3. The sentence

∃x∃y(E(x, y) ∧ E(y, x)) ∧ ∃x∃y(E(x, y) ∧ ¬E(y, x))

is supported by the pattern ∃ ∃, but there is no equivalent prenex sentence which
is supported by ∃ ∃. To support an equivalent prenex sentence one must go to the
pattern ∃ ∃ ∃ ∃.

In this paper, it will always be understood that S denotes a property of (en-
riched) graphs, and that V and W denote prefix classes.

We shall identify a class of MSO sentences with the class of graph properties
expressible by those sentences, where a graph property is the set of graphs having
this property. Thus we write S ∈ L(W ) if the property S is expressible by a
sentence in L(W ).

The complement of a graph property S is the class S of all graphs that do not
have S. The dual w of a pattern w is the pattern obtained by switching ∃ with ∀

and ∃ with ∀ . The dual of a prefix class W is the class W = {w : w ∈ W}. Note
that S ∈ L(W ) if and only if S ∈ L(W ). Thus, when we get an expressibility
statement about S or W , we also get for free a dual statement about S or W .

Since our convention is to push negations inside, the Boolean closure B(L(W )) =
L(⊕W ) of a logic is defined as the positive Boolean closure of L(W ) ∪ L(W ).
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We recall from [JM01] that each pattern w naturally corresponds to an Ehrenfeucht-
Fräıssé game between two players (Spoiler and Duplicator) played on a pair of
(colored) graphs with distinguished points. For brevity, we will call a colored
graph with distinguished points an enriched graph. Consider a pair A,B of en-
riched graphs with the same signature.

The game w on the pair A,B proceeds according to the following rules:

w = ∃v (w = ∀ v):
(1) Spoiler chooses a vertex c ∈ A (d ∈ B).
(2) Duplicator chooses a vertex d ∈ B (c ∈ A).
(3) Spoiler and Duplicator play v on the enriched pair (A, c), (B, d).

w = ∃v (w = ∀ v): The game proceeds according to the following rules:
(1) Spoiler chooses a subset C ⊆ A (D ⊆ B).
(2) Duplicator chooses a subset D ⊆ B (C ⊆ A).
(3) Spoiler and Duplicator play v on the enriched pair (A, C), (B, D).

w = ⊕v:
(1) Spoiler chooses either the pattern v or the dual pattern v.
(2) Spoiler and Duplicator play the pattern chosen by Spoiler on A,B.

w = ∅ (the empty word): Game is over.
Duplicator wins the game ∅ on A,B if and only if A and B satisfy the same

atomic sentences. (In other words, the tuples of distinguished vertices a, b are ei-
ther empty or the mapping ai 7→ bi is an isomorphism from the colored subgraph
generated by a to the colored subgraph generated by b.)

We write A ⇁w B if Duplicator wins the game w on the pair A,B; otherwise
we write A 6⇁w B.

Remark 2.1. Let v = w.
(i) L(⊕v) = L(⊕w).
(ii) A ⇁v B if and only if B ⇁w A.
(iii) A ⇁⊕w B if and only if A ⇁w B and B ⇁w A.
(iv) A ⇁⊕w B if and only if B ⇁⊕w A.

The following basic theorem clarifies the role of games (see, for example,
[EF99]). It depends on the fact that the logic L(w) is positive Boolean closed.

Theorem 2.2. S ∈ L(w) if and only if for all (enriched) graphs A and B,
A ∈ S and A ⇁w B implies B ∈ S. a

Thus, to show that some property S /∈ L(w), we construct two graphs A ∈
S,B 6∈ S and show that A ⇁w B. Quite often, these graphs will be built from
smaller graphs by means of some operations. Here is a simple lemma which is
often used without explicit mention when working with such graphs.

Lemma 2.3. If A ⇁w B then A ⇁v B for each substring v of w.

Proof. Duplicator can win the v game by playing the w game, but choosing
imaginary moves for Spoiler and making imaginary responses at times which are
in w but not in v. a

The following definition and easy lemma are essentially in [JM01].
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Definition 2.4. If A is a graph, cone(A) is the graph formed by adding a
new vertex r, called the root of cone(A), and adding a directed edge from r to
each vertex of A.

If A1, . . . ,An are graphs, A1 ] . . . ] An denotes the union of disjoint copies
of cone(A1) through cone(An). We also write nA = A ] . . . ] A (n times).

Lemma 2.5. (i) If A ⇁w B, then cone(A) ⇁w cone(B).
(ii) If π is a permutation on {1, . . . , n} and Ai ⇁w Bπ(i) for all i = 1, . . . , n,

then (A1 ] . . . ] An) ⇁w (B1 ] . . . ] Bn).

Proof. Like many results later on, this lemma is proved by induction on the
pattern w. We mention here that in order to carry out such inductions, one
needs to prove an analogous result for enriched graphs. For part (ii), define
(C1] . . .]Cn) when C1, . . . , Cn are disjoint enriched graphs whose signatures all
have the same set k of colors but have disjoint sets di of distinguished elements.
The signature of (C1 ] . . . ] Cn) has the set k of colors again, and its set of
distinguished elements is the union d1∪· · ·∪dn. The interpretation of each color
in the sum is the union of its interpretations in the Ci.

We remark that this proof, like many later proofs in this paper, needs Lemma 2.3
to deal with the fact that a first order move is made in just one Ai or Bi at a
time. a

§3. The power of a new first order quantifier. In this section we will
define a simple operation on graph properties and inductively apply it to show
that if L(V ) 6= L(∃V ) and L(V ) 6= L(∀V ), then the expressive power of the logics
L(uV ) increase monotonically as the string of first order quantifiers u grows.

Definition 3.1. If n > 0, existsn(S) is the colored graph property with two
new colors green and white, saying that the graph has at least n components,
each of which is a cone of a white graph which has property S and has a green
root.

The reader may wonder why the new colors are introduced in this definition,
since the root of a cone is already distinguished as the unique vertex with indegree
zero. The reason is that it takes a universal quantifier to say that a vertex has
indegree zero, and the new colors avoid this quantifier. Note that Part (i) of the
next lemma would be false without the new colors. However, it can be easily
fixed if we require that all words in V contain at least one universal first order
quantifier.

Lemma 3.2. Let n > 0, and suppose that u ∈ (∃ ∪ ∀ )n−1.
(i) If S ∈ L(V ), then existsn(S) ∈ L(u∃V ).
(ii) If S /∈ L(W ), then existsn(S) /∈ L(u∀ ?W ).

Proof. (i) The proof is by induction on n. The result is clear for n = 1.
Assume the result holds for n. Let ψ be a sentence in L(u∃V ) which expresses
existsn(S). Let x be a new variable and let θ(x) be the formula obtained from ψ
by replacing each existential quantifier from the outer u∃ by the corresponding
relativized quantifier ∃y 6= x. Then the sentence ∀xθ(x) expresses existsn+1(S),
and belongs to L(∀u∃V ). The sentence
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∃x[x is a green root of a white S-component and θ(x)]
also expresses existsn+1(S) but belongs to L(∃u∃V ).

(ii) Let w ∈ W . Since S /∈ L(W ), there are two graphs A ∈ S, B /∈ S, such
that Duplicator wins w on A,B. Given m, we need to show that existsn(S) /∈
L(u∀mw). Let C = nA] (n + m− 1)B and D = (n− 1)A] (n + m)B. Then C ∈
existsn(S) and D /∈ existsn(S). We describe a winning strategy for Duplicator
in the game u∀mw on C,D.

In the u part of the game, Duplicator’s first n−1 moves exactly mirror Spoiler’s
first n − 1 moves. This is possible because whenever Spoiler moves in a new
component on one side, there will still be a new component of the same kind on
the other side. Spoiler’s next m moves will choose vertices of D. These moves
can also be mirrored by Duplicator, because for each new component in D there
will still be a new component of the same kind in C. At this point there is at least
one A-component A0 of C and one B-component B0 of D which have not been
pebbled. The game position is given by a pair of enhanced graphs (C, c), (D,d)
which satisfies the hypotheses of Lemma 2.5, where the permutation π matches
A0 with B0, and matches each other component of C with an exact copy in D.
By Lemma 2.5, Duplicator can win w on (C, c), (D,d), and thus can win the
original game u∀mw on C,D. a

The next corollary follows at once. Part (b) is the dual of part (a).

Corollary 3.3. Let V and W be prefix classes such that L(V ) 6⊆ L(W ).
Then for each m ≥ 0,

(a)
⋂

{L(u∃V ) : u ∈ (∃ ∪ ∀ )m} 6⊆
⋃

{L(u∀ ? W ) : u ∈ (∃ ∪ ∀ )m}.
(b)

⋂

{L(u∀V ) : u ∈ (∃ ∪ ∀ )m} 6⊆
⋃

{L(u∃? W ) : u ∈ (∃ ∪ ∀ )m}. a

Note that part (a) says that there is a single property, namely existsm(S),
which is expressible in every one of the logics L(u∃V ), u ∈ (∃ ∪ ∀ )m, and is not
expressible in any of the logics L(u∀ ? W ), u ∈ (∃∪∀ )m. Following our convention,
we do not write L((∃∪∀ )m∀ ? V ) because the expression (∃∪∀ )m∀ ? V has a union,
and does not correspond to an Ehrenfeucht-Fräıssé game in Theorem 2.2.

Corollary 3.3 can be sharpened as follows. Given a first order quantifier word
u, let F (u) be the set of all prefix classes obtained by replacing each ∃ in u by
either ∃ or ∀ ?, and replacing each ∀ in u by either ∀ or ∃?. For example, after
absorbing single quantifiers into starred quantifiers and omitting duplicates, we
have

F (∃ ∀ ∃) = {∃ ∀ ∃, ∀ ?∃, ∃?, ∃∀ ?, ∀ ?∃?, ∀ ?, ∃?∀ ?, ∀ ?∃?∀ ?},
F (∀ ∃ ∃) = {∀ ∃ ∃, ∃?, ∀ ?∃, ∀ ∃ ∀ ?, ∃?∀ ?∃, ∃?∀ ?, ∀ ?}.

Corollary 3.4. Suppose that L(V ) 6⊆ L(W ), and let m ≥ 0, u ∈ (∃ ∪ ∀ )m,
and U ∈ F (u). Then:

(a) L(u∃V ) 6⊆ L(U∀ ? W ).
(b) L(u∀V ) 6⊆ L(U∃? W ).

Proof. We prove (a). The proof is by induction on m. When m = 0 the
result follows from Corollary 3.3. Assume the result holds for all n < m, and let
u ∈ (∃∪ ∀ )m and U ∈ F (u). If U = u then the result follows from Corollary 3.3.

Suppose U 6= u, and ∃ is replaced by ∀ ? at the first place where U differs from
u. Then we have u = s∃t and U = s∀ ?T where T ∈ F (t). (One or both of s, t



8 H. JEROME KEISLER AND WAFIK BOULOS LOTFALLAH

can be empty). Then t has length less than m, and by inductive hypothesis,
L(t∃V ) 6⊆ L(T ∀ ?W ). Let V ′ = t∃V,W ′ = T ∀ ?W . Then L(V ′) 6⊆ L(W ′). Using
Corollary 3.3 again, we have L(s∃V ′) 6⊆ L(s∀ ?W ′). But s∃V ′ = s∃t∃V = u∃V
and s∀ ?W ′ = s∀ ?T ∀ ?W = U∀ ?W , so L(u∃V ) 6⊆ L(U∀ ?W ) and the induction is
complete.

The proof is similar in the case that ∀ is replaced by ∃? at the first place where
U differs from u, so (a) holds in all cases. (b) is the dual of (a). a

Now let V = W , and consider the first order quantifier alternation hierarchy
over V . This hierarchy is defined by

Σ0
2n(V ) = L((∃?∀ ?)nV ), Σ0

2n+1(V ) = L((∃?∀ ?)n∃?V ),

Π0
m(V ) is the dual of Σ0

m(V ), and ∆0
m(V ) = Σ0

m(V )∩Π0
m(V ). The union of each

of these hierarchies is the logic FO(L(V )) = L((∀ ∃)?V ), the positive first order
closure of L(V ).

Corollary 3.5. (i) If L(∃V ) 6= L(V ) and L(∀V ) 6= L(V ), then the hierarchy
is strict, that is, the logics Σ0

n(V ), Π0
n(V ), ∆0

n(V ), n = 1, 2, . . . are all different.

(ii) If L(∃V ) 6= L(V ) and L(∀V ) = L(V ), then for each n > 0,

Π0
2n−1(V ) ⊂ Σ0

2n−1(V ) = Σ0
2n(V ) ⊂ Π0

2n(V ) = Π0
2n+1(V ).

(iii) If L(∃V ) = L(V ) and L(∀V ) 6= L(V ), then for each n > 0,

Σ0
2n−1(V ) ⊂ Π0

2n−1(V ) = Π0
2n(V ) ⊂ Σ0

2n(V ) = Σ0
2n+1(V ).

(iv) If L(∃V ) = L(V ) = L(∀V ), then the hierarchy collapses to L(V ). a

Proof. All the inclusions are clear. We use Corollary 3.4 to prove the
strict inclusions. Suppose L(∃V ) 6= L(V ). Put V ′ = ∃V , so that L(V ′) 6⊆
L(V ). Let u = (∃∀ )n−1, so U = (∀ ?∃?)n−1 ∈ F (u) in the notation of 3.4.
Then L(u∃V ′) 6⊆ L(U∀ ?V ). We have L(u∃V ′) = L(u∃ ∃V ) ⊆ Σ0

2n−1(V ) and
L(U∀ ?V ) = Π0

2n−1(V ), so

Σ0
2n−1(V ) 6⊆ Π0

2n−1(V ).

Similarly, starting from t = ∀u we get

Π0
2n(V ) 6⊆ Σ0

2n(V ).

Part (ii) now follows, and we get (iii) by duality. Finally, (i) is proved by putting
all of these non-inclusions together. a

In the next corollary we consider the hierarchy W, ∃W, ∃2W, . . . , which is a
refinement of Σ0

1(W ), and W, ∀W, ∀ 2W, . . . , which is a refinement of Π0
1(W ).

Corollary 3.6. (i) If L(W ) ⊂ L(∃W ), then L(∃nW ) ⊂ L(∃n+1W ) for each
n.

(ii) If L(W ) ⊂ L(∀W ), then L(∀ nW ) ⊂ L(∀ n+1W ) for each n. a

Proof. (i) Suppose L(W ) ⊂ L(∃W ). By Corollary 3.3 with V = ∃W , we
have L(∃W ) ⊂ L(∃ ∃V ) = L(∃ ∃ ∃W ). If L(∃ ∃W ) = L(∃W ), then we would also
have L(∃ ∃ ∃W ) = L(∃ ∃W ), contradicting L(∃W ) ⊂ L(∃ ∃ ∃W ). Therefore we
must have L(∃W ) ⊂ L(∃ ∃W ). The desired result now follows by induction. Part
(ii) is the dual of (i). a
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Finally, we prove that if adding one first order quantifier increases the ex-
pressive power of L(W ), then the expressive power of L(uW ) is almost always
increased by adding one quantifier anywhere within u, and is always increased
by adding two quantifiers anywhere within u.

Theorem 3.7. Suppose that L(W ) ⊂ L(∃W ) and L(W ) ⊂ L(∀W ). Let t, u ∈
(∃ ∪ ∀ )? be two first order quantifier words such that:

(a) t is a proper substring of u, and
(b) u is not t∀ or t∃.

Then L(tW ) ⊂ L(uW ).

Proof. Let V = ∃W and Z = ∀W , so L(W ) ⊂ L(V ) and L(W ) ⊂ L(Z) by
hypothesis.

Suppose first that |u| = |t| + 1. Then t = rs and u = rqs where q ∈ {∀ , ∃}.
We give the proof when q = ∃. The case q = ∀ is similar. By hypothesis (b), the
string s is nonempty, and is not of the form ∃n. We may also position q at the
right end of an ∃-block in u, so that s begins with an ∀ .

Suppose s = ∀ . Then uW = r∃∀W = r∃Z, and by Corollary 3.3, L(uW ) =
L(r∃Z) 6⊆ L(r∀ ?W ), so L(tW ) = L(r∀W ) ⊂ L(uW ).

Now suppose |s| = 2. Then either s = ∀ ∃ or s = ∀ ∀ . If s = ∀ ∃, then
uW = r∃ ∀ ∃W = r∃ ∀V . By Corollary 3.3, L(uW ) = L(r∃ ∀V ) 6⊆ L(r∀ ? ∃? W ),
so L(tW ) = L(r∀ ∃W ) ⊂ L(uW ). If s = ∀ ∀ , then uW = r∃ ∀ ∀W = r∃ ∀Z, and
L(uW ) = L(r∃ ∀Z) 6⊆ L(r∀ ? ∃? W ), so L(tW ) = L(r∀ ∀W ) ⊂ L(uW ).

We next suppose that |s| > 2. Then either s = x∃ ∃, s = x∃ ∀ , s = x∀ ∃,
or s = x∀ ∀ for some nonempty string x which starts with an ∀ . Form X by
replacing each ∀ in x by ∃? and replacing each ∃ in x by ∀ ?. Then X starts with
an ∃?.

If s = x∃ ∃, then by Corollary 3.4,

L(uW ) = L(r∃x∃ ∃W ) = L(r∃x∃V ) 6⊆ L(r∀ ? X∀ ? W ),

and L(tW ) = L(rx∃ ∃W ). By checking all cases, one can see that the string x∃ ∃
fits inside ∀ ?X; each block in x goes to the preceding block in ∀ ?X, and the final
∃ ∃ goes to the last ∃? in X. Therefore L(tW ) ⊂ L(uW ).

If s = x∃ ∀ , then Corollary 3.4 gives

L(uW ) = L(r∃x∃ ∀W ) = L(r∃x∃Z) 6⊆ L(r∀ ? X∀ ? W ),

and L(tW ) = L(rx∃ ∀W ). This time x∃ ∀ fits inside ∀ ? X∀ ?, and again L(tW ) ⊂
L(uW ). The cases s = x∀ ∃ and s = x∀ ∀ are similar.

Finally, we suppose that |u| ≥ |t|+2. By adding terms to t we may assume that
|u| = |t|+2. We need only consider the cases that u = t∃ ∃ and u = t∀ ∀ , because
in all other cases we can add one more term to t and satisfy hypotheses (a) and
(b). If u = t∃ ∃ then by Corollary 3.3 we have L(uW ) = L(t∃V ) 6⊆ L(t∀ ? W ), so
L(tW ) ⊂ L(uW ). The case u = t∀ ∀ is similar. This completes the proof. a

Question 3.8. Is Theorem 3.7 still true without hypothesis (b)?

For example, do the hypotheses of Theorem 3.7 imply that L(∃∀ nW ) ⊂
L(∃ ∀ n+1W ), or even L(∃W ) ⊂ L(∃ ∀W )? Note that we always have L(∃ ∀ nW ) ⊂
L(∃ ∀ n+2W ), so either L(∃∀ nW ) ⊂ L(∃ ∀ n+1W ) or L(∃∀ n+1W ) ⊂ L(∃ ∀ n+2W ).
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Question 3.9. Suppose L(∃W ) 6⊆ L(∀W ) and L(∀W ) 6⊆ L(∃W ). If u, v ∈
(∃ ∪ ∀ )? and L(uW ) ⊆ L(vW ), must u be a subsequence of v?

§4. Directed Reachability. In this section we will work with graphs A
which have two distinguished points, called the source and the sink. A graph
has the Directed Reachability property, DIR.REACH , if it contains a directed
path from the source to the sink.

It was shown in [Mar99] that DIR.REACH does not belong to the positive
first order closure FO(Σ1) of Σ1 =monadic NP. In this section we give a simpler
proof of this fact. Since DIR.REACH is not in monadic NP, a fact shown in
[AF90] and already used in the proof given in [Mar99], the desired result easily
follows from the next lemma.

Lemma 4.1. Let W be a prefix class such that DIR.REACH /∈ L(W ). Then
DIR.REACH /∈ FO(L(W )).

Proof. The hypothesis can be viewed as asserting that for each w ∈ W ,
there exists two graphs A,B, such that A is in DIR.REACH , B is not, and
Duplicator can win w on A,B. Let a0, a1 be the source and sink of A, and b0, b1
be the source and sink of B. It suffices to prove:

(1) DIR.REACH /∈ L(∀W ).
(2) DIR.REACH /∈ L(∃W ).

(1) Let C = A+ B and D = B + B. Here the “sum” of two graphs (A+ B) is
the graph obtained by connecting disjoint copies of A and B in “parallel”. That
is, we first form the union of a copy of A, a disjoint copy of B, and two new
vertices c0 (the new source) and c1 (the new sink). Then we connect c0 to both
of the old sources a0, b0, and connect both of the old sinks a1, b1 to c1. The sum
has the same signature as the original graphs, with just the two distinguished
vertices c0, c1.

It is clear that C is in DIR.REACH and D is not. By Theorem 2.2, to prove
that DIR.REACH /∈ L(∀W ) it is enough to show that C ⇁∀w D.

Duplicator wins ∀w on C,D as follows. Spoiler picks a vertex d in one of the
copies of B in D. Duplicator responds by picking the corresponding vertex c in
the copy of B in C. Lemma 2.5 still holds for sums of the form A + B, with a
minor change in the proof to take care of the source and sink. It follows that
(C, c) ⇁w (D, d), and thus C ⇁∀w D.

(2) Let C = A · A + A · A and D = A · B + B · A. Here the “product” of
two graphs (A · B) is the graph that results from connecting A and then B in
“series”.

The product A · B is like the sum A + B except for the connections between
the new and old distinguished vertices. For the product we connect c0 to a0, a1

to b0, and b1 to c1.
Again, C is in DIR.REACH and D is not. By Theorem 2.2, it now suffices

to prove that C ⇁∃w D.
Duplicator can win ∃w on C,D with the following strategy. Spoiler’s first move

c is in C. If c is in the left half of the product A · A, Duplicator chooses the



FIRST ORDER QUANTIFIERS IN MONADIC SECOND ORDER LOGIC 11

corresponding vertex d in the left half of the product A·B in D. It is easily seen
that (A · A, c) ⇁w (A · B, d), and again (C, c) ⇁w (D, d) and C ⇁∃w D.

If c is in the right half of A · A, Duplicator chooses d in the right half of the
product B·A in D, and we have (A·A, c) ⇁w (B·A, d), and again (C, c) ⇁w (D, d)
and C ⇁∃w D. a

The above proof fully utilizes the concept of connecting graphs in parallel and
in series, which already appeared in [Mar99].

§5. Limits on the power of a first order quantifier. We will now extend
the method of the preceding section to give a general method of proving that
some property S is not expressible by a sentence in L(W ).

The idea is to have two operations on graphs (“addition” and “multiplication”)
that play the roles of connecting graphs in “parallel” and in “series” with respect
to Property S, such that the addition operation is commutative, and a winning
strategy for Duplicator is congruent with respect to both operations.

We consider enhanced graphs with a fixed finite signature σ, and let k be the
number of distinguished vertices. Our main tool will be the general notion of
a disjoint binary operation (A,B) 7→ A ∗ B, where A,B, and A ∗ B are graphs
with signature σ. Informally, a disjoint binary operation takes a disjoint union
of A and B, adds new distinguished vertices c1, . . . , ck, and adds edges between
the old and new distinguished vertices in a way prescribed by a fixed graph C0
called the connector.

Definition 5.1. A connector is a graph C0 which has 3k vertices
a1, . . . , ak, b1, . . . , bk, c1, . . . , ck, such that the distinguished vertices are c1, . . . , ck,
none of the pairs (ai, aj) or (bi, bj) are edges of C0, and none of the vertices ai
or bj are colored.

The disjoint operation with connector C0 is the binary operation (A,B) 7→ A∗B
constructed as follows.

Make copies of A and B with distinguished vertices a1, . . . , ak and b1, . . . , bk

respectively, such that A,B, and the set {c1, . . . , ck} are disjoint. Then the set
of vertices of A ∗ B is the union of the sets of vertices of A,B, C0, the set of
edges of A ∗ B is the union of the sets of edges of A,B, C0, each color in A ∗ B
is the union of its values in A,B, C0, and the distinguished vertices of A ∗ B are
c1, . . . , ck.

A disjoint operation ∗ is commutative if and only if for all A and B, A ∗B is
isomorphic to B ∗ A.

Note that a disjoint operation ∗ is completely determined by its connector up
to isomorphism. That is, if A is isomorphic to A′, and B is isomorphic to B′,
then A ∗ B is isomorphic to A′ ∗ B′. Moreover, ∗ is commutative if and only if
the mapping which sends each ai to bi and fixes each ci is an automorphism of
the connector C0.

Example 4. In the proof of Lemma 4.1, the sum A+B is a commutative dis-
joint operation, and the connector is the graph with vertices {a0, a1, b0, b1, c0, c1},
distinguished vertices c0, c1, and edges (c0, a0), (c0, b0), (a1, c1), (b1, c1).
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In the same proof, the product A · B is a noncommutative disjoint operation.
Its connector has the same vertices and distinguished points as above, but has
the edges (c0, a0), (a1, b0), (b1, c1).

Example 5. In the trivial case that k = 0 (where the signature σ has no
distinguished vertices), there is only one disjoint operation. This operation, the
disjoint union of a copy of A and a copy of B, is commutative and its connector
is the empty graph.

We remark that commutative disjoint operations are not possible for logics
with built-in linear order (e.g.as in [Imm99]), where it is more difficult to obtain
lower bounds on the expressive power of a fragment.

Proposition 5.2. Let · be a disjoint operation, + be a commutative disjoint
operation, A, B and C be graphs with k distinguished vertices, and w be a pattern
such that A ⇁w B. Then:

(i)
(a) A · C ⇁w B · C and
(b) C · A ⇁w C · B,
(i.e. ⇁w is a congruence relation with respect to ·.)

(ii)
(a) A+A ⇁∃w A+ B.
(b) A+ B ⇁∀w B + B.

(iii)
(a) (A · A) + (A · A) ⇁∃w (A · B) + (B · A).
(b) (A · B) + (B · A) ⇁∀w (B · B) + (B · B).

Proof. (i) (a). Duplicator can win the w game on A · C,B · C as follows.
When Spoiler moves in a copy of C or in the connector on either side, Duplicator
moves in the same place on the other side. When Spoiler moves in the copy of
A or B, Duplicator follows her winning strategy for the w game on A,B. The
proof of part (i) (b) is similar.

The proof of (ii) is essentially the same as the proof of Lemma 4.1. For (a),
Spoiler must first move in a copy of B or the connector in the right side, and
Duplicator moves in the same place in the copy of B or the connector in the left
side. After that, Duplicator follows her w strategy. The proof of (b) is similar.

For (iii), Duplicator’s first move must match Spoiler’s first move; if Spoiler
moves in the left half of a product, so must Duplicator, and if Spoiler moves
in a copy of A (B), so must Duplicator. After that, Duplicator uses her w
strategy. a

Note that commutativity of the +-operation is vital in the proof of each Part
of this lemma. The (possible) non-commutativity of the ·-operation is the reason
behind the necessary complexity of Part (iii).

Theorem 5.3. Let · be a disjoint operation and + be a commutative disjoint
operation. Suppose that

(i) Whenever
A ∈ S, B /∈ S,
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we have
A+ B ∈ S, B + B /∈ S,

and
(A · A) + (A · A) ∈ S, (A · B) + (B · A) /∈ S.

Then for any prefix class W :
(a) If S /∈ L(W ), then S /∈ FO(L(W )).
(b) If S 6∈ L(W ), then S 6∈ FO(L(W )).
(c) If S /∈ B(L(W )), then S /∈ FOB(L(W )).

Proof. (a) By Proposition 5.2, whenever A ⇁w B, then
(1) A+ B ⇁∀w B + B,
(2) (A · A) + (A · A) ⇁∃w (A · B) + (B · A).

Now suppose S /∈ L(W ). For each w ∈ W , S /∈ L(w), and by Theorem 2.2 there
are graphs A ∈ S, B /∈ S such that A ⇁w B.

By hypotheses (i), the left hand sides of (1) and (2) belong to S while the
right hand sides do not. Thus by Theorem 2.2 again, S 6∈ L(∀w) and S /∈ L(∃w).
Therefore S 6∈ L(∀W ) and S /∈ L(∃W ). It now follows by induction that S 6∈
FO(L(W )).

(b) This follows from Part (a) by a duality argument. If S 6∈ L(W ), then
S 6∈ L(W ). By Part (a), S 6∈ FO(L(W )). Thus S 6∈ FO(L(W )).

(c) Suppose S /∈ B(L(W )). Let V = ⊕W . Then B(L(W )) = L(V ) and
S /∈ L(V ). By Part (a), S /∈ FO(L(V )) = FO(L(W )). a

Corollary 5.4. Theorem 5.3 holds when the hypothesis (i) is replaced by the
following simpler properties:

(ii) A+ B ∈ S if and only if A ∈ S or B ∈ S.
(iii) A · B ∈ S if and only if A ∈ S and B ∈ S.

Proof. It is easily seen that (ii) and (iii) imply hypothesis (i) of Theorem
5.3. a

Some simple (and typical) examples of properties having addition and mul-
tiplication operations which satisfy Theorem 5.3 (i) are those dealing with the
values of logical formulas, where addition and multiplication simply correspond
to disjunction and conjunction.

We use “rooted” colored graphs to encode propositional formulas, with a dif-
ferent color for each proposition symbol and connective. By a graphical formula
we mean a colored graph which encodes a formula in the following way. A graph-
ical formula has one distinguished vertex, called the root, which has indegree 0
and represents the main symbol in the formula.

An atomic formula, which is just a predicate symbol by itself, is encoded by a
single vertex which is a root with the corresponding color. The symbol ∨ is blue,
and the symbol ∧ is yellow. Thus, the graphical formula encoding φ ∨ ψ has a
blue root with two outgoing edges pointing to (the roots of) graphical formulas
encoding φ and ψ. Similar encoding can be done if the main connective is ∧ or
¬.
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The colors serve as a convenient tool for classifying the vertices. However,
they are not essential to the encoding mechanism and can be replaced if we wish
by suitable “gadgets” connected to the classified vertices.

We extend this encoding in the obvious way to stronger languages, such as
FO, SO, or MSO.

Now define the disjunction (conjunction) of graphical formulas A and B, de-
noted by A ∨ B (A ∧ B), by forming the union of a copy of A, a disjoint copy
of B, and a new root r, then coloring r blue (yellow), and connecting r to the
roots of A and B.

Proposition 5.5. The operations of disjunction and of conjunction on graph-
ical formulas are both commutative disjoint operations. a

We next observe that the disjunction and conjunction operations behave like
addition and multiplication in Theorem 5.3 for a very broad class of properties
S.

Definition 5.6. Let L be a (positive Boolean closed) logic and M be any class
of structures for L. A graph is in SAT (L,M) if and only if it encodes a sentence
in L which is true in some structure in M .

For example, if L is propositional logic and M is the class of all propositional
structures, then SAT (L,M) is the Satisfiability Problem for propositional logic.

If L is first order logic with equality and the constant symbol TRUE, and M
is the class of L-structures with universe {TRUE,FALSE}, then SAT (L,M)
is a version of the Quantified Satisfiability Problem for propositional logic.

Note that if the set M contains only one structure, then the stronger conditions
Corollary 5.4 (ii), (iii) hold for SAT (L,M). For example, if L is propositional
logic and M = {A} for a particular assignment A of truth values to propositional
symbols, then SAT (L,M) is the Circuit Value Problem for A.

Proposition 5.7. Let L be a logic, M be a class of structures for L, and let
S = SAT (L,M). If A ∈ S and B /∈ S then

(i) A ∨ B ∈ S and B ∨ B /∈ S.
(ii) A ∧A ∈ S and (A ∧ B) ∨ (B ∧ A) /∈ S.

Proof. (i) is obvious. For (ii), note that if A ∈ S then A ∧ A ∈ S, and if
B /∈ S then A ∧ B /∈ S. a

Now putting Propositions 5.5 and 5.7 together with Theorem 5.3, the following
corollary is immediate.

Corollary 5.8. Let W be a prefix class, L be a logic, and M be any class
of structures for L. Then SAT (L,M) does not belong to FO(L(W )) unless it
already belongs to L(W ). a

§6. A sharper version of reach. In [JM01] Janin and Marcinkowski defined
the operation reach on properties. (The following definition, suggested to them
by Sockmeyer, is somewhat simpler than their original definition.)

For any property S of graphs with a distinguished vertex, reach(S) holds for a
graph G with distinguished vertices s and t if and only if there is a directed path
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from s to t such that for every x on this path and every y not on the path with
E(x, y), the connected component of G \{x} with y as a distinguished vertex has
the property S.

Recall from the introduction that a prefix class is nontrivial if it ends with
(∀ ∃⊕)? and contains either an ∀ ? or an ∃?. They showed the following:

Lemma 6.1. [JM01] If V and W are nontrivial prefix classes and S is a prop-
erty of graphs that belongs to L(V ) but not to L(W ), then reach(S) belongs to
L(∃ ∀ ∀V ) but not to FO(L(W )). a

Their proof was an adaptation of Marcinkowski’s proof in [Mar99] of the fact
that Directed Reachability does not belong to the positive first order closure of
monadic NP.

In this section we will apply the results of the previous section to define an
analog of reach called alt, for which a sharper lemma can be proved.

We consider only enriched graphs with a distinguished vertex r (called the
root) and the disjoint colors blue, yellow, green and white. Note that having
four colors may be thought of the result of having two possibly overlapping
unary predicates B(x) and Y (x), where x is blue means B(x) ∧ ¬Y (x), x is
yellow means Y (x)∧¬B(x), x is green means B(x)∧Y (x), and x is white means
¬B(x) ∧ ¬Y (x).

We call an enriched graph a potential tree if the following holds:
1) Each vertex has exactly one of the colors blue, yellow, green, or white.
2) r is nonwhite and has indegree 0.
3) Each nonwhite vertex has indegree at most 1.
4) Each white vertex has an incoming edge from at most one green vertex.
5) A blue or yellow vertex cannot have an outgoing edge to a white vertex.
6) Green and white vertices have outgoing edges only to white vertices.
7) If a, b are white vertices and there is an edge from a to b, then for each

green vertex g, there is an edge from g to a if and only if there is an edge from
g to b.

Thus in a potential tree, the connected component of the root is a tree with
blue and yellow vertices possibly leading to green vertices, which then point to
disjoint white graphs.

Lemma 6.2. The property Potential Tree is in L(∀ ∀ ∀ ) ∩ L(∀ ∃ ∀ ).

Proof. It is clear that each condition 1-7 can be expressed in L(∀ ∀ ∀ ). For
L(∀ ∃ ∀ ), note that 4 and 7 can be replaced by:

4a) For each white a there exists g such that for each green h, E(h, a) implies
h = g.

7a) For each white a, if there is a green g with E(g, a) then there is a green g
such that E(g, a) and for all b, E(a, b) implies E(g, b). a

For each green vertex g in a potential tree, the fruit of g is (the subgraph
generated by) the set G = {x : E(g, x)}. g is then called the root of the fruit
G. Note that each fruit G is a white graph (if the reader finds white fruits to
be unappetizing, he can replace them by white flowers). Any vertex which is
connected to a vertex in G by an edge belongs to G ∪ {g}, and any two distinct
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fruits are disjoint. Also, the graph G ∪ {g} with g as a distinguished vertex is
cone(G).

In a potential tree, an alternating tree is a set of vertices T satisfying:
1) r ∈ T .
2) If x ∈ T and x is blue (indicating an “or” node), then there exists a vertex

y such that E(x, y) and y ∈ T .
3) If x ∈ T and x is yellow (indicating an “and” node), then all vertices y with

E(x, y) belong to T .
4) T has no white vertices.

A co-alternating tree is a set T satisfying Conditions 1-4 with “blue” and
“yellow” interchanged in Conditions 2 and 3, thus interchanging the roles of
“or” and “and” nodes.

By a fruit of an alternating (co-alternating) tree T we mean the fruit of a
green vertex which belongs to T .

The connected part of an alternating (co-alternating) tree T is the connected
component of T that contains the root r. Note that for any alternating (co-
alternating) tree T , the connected part of T is also an alternating (co-alternating)
tree.

Definition 6.3. alt(S) is the property of enriched graphs saying that the
graph is a potential tree that contains an alternating tree T such that each fruit
of T is an S-graph.

A potential tree is said to be trivial if the root r is green. In a trivial potential
tree, the root r has a fruit G, the connected component G ∪ {r} is cone(G), and
T = {r} is both an alternating and a co-alternating tree. Thus for any graph
property S, cone(G) has alt(S) if and only if G ∈ S. Here is a simple application
of Lemma 2.5.

Lemma 6.4. Let W be a prefix class. If S /∈ L(W ) then alt(S) /∈ L(W ).

Proof. Let w ∈ W . By Theorem 2.2, there are A ∈ S and B /∈ S such that
A ⇁w B. By Lemma 2.5, cone(A) ⇁w cone(B). As noted above, cone(A) ∈
alt(S) and cone(B) /∈ alt(S). Then by Theorem 2.2 again, alt(S) /∈ L(W ). a

Lemma 6.5. Let A be a potential tree. A does NOT have alt(S) if and only if
A has a co-alternating tree T such that no fruit of T is an S-graph.

Proof. Let n(A) be the cardinality of the set of nonwhite vertices in the
connected component of the root r. The proof is by induction on n(A). In this
proof, it will be understood that all trees mentioned are connected.

For the basis step, suppose n(A) = 1, and let T = {r}. If r is an “and” vertex,
then T is an alternating tree with no fruits, so A has alt(S), and there are no
co-alternating trees.

If r is an “or” vertex, then T is a co-alternating tree with no fruits, and there
are no alternating trees, so A does not have alt(S). If r is green, then T is both
alternating and co-alternating, and A has alt(S) if and only if the fruit at r is
an S-graph.

Now suppose that n(A) > 1 and the lemma holds for every potential tree B
such that n(B) < n(A). Then r is either an “and” vertex or an “or” vertex, and
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has indegree 0 and outdegree k > 0. Let s1, . . . , sk be the vertices connected to
r by an edge. For each i ≤ k, let Bi be the enhanced subgraph of A with root si

consisting of all vertices which can be reached from si by a directed path. Then
n(Bi) < n(A).

Suppose first that r is an “and” vertex. Note that T is a (connected) alter-
nating tree in A if and only if T ∩ Bi is an alternating tree in Bi for all i ≤ k.
Therefore A has alt(S) if and only if Bi has alt(S) for all i ≤ k. Moreover, for
each i ≤ k, a set U ⊆ Bi is a co-alternating tree in Bi if and only if U ∪ {r} is a
co-alternating tree in A. Thus A has a co-alternating tree such that no fruit is
an S-graph if and only if for some i ≤ k, Bi has a co-alternating tree such that
no fruit is an S-graph. Using the inductive hypothesis, it follows that A does
not have alt(S) if and only if A has a co-alternating tree such that no fruit is an
S-graph.

The proof when r is an “or” vertex is similar. a

Lemma 6.6. Let W be a prefix class. Suppose that either S /∈ L(W ) or
alt(S) /∈ L(W ). Then alt(S) /∈ FO(L(W )).

Proof. Recall that FO(L(W )) = L((∀ ∃)?W ). By Lemma 6.4, alt(S) /∈
L(W ). alt(S) has addition and multiplication operations on graphs, which con-
nect two graphs with “or” and “and” roots respectively. The hypotheses of
Theorem 5.3 are easily verified for these operations, and the result follows. a

Lemma 6.7. Suppose V is a prefix class such that some v ∈ V contains ∀ ∀

and ∀ ∃ as substrings. For each natural number n:
(i) If S ∈ L(V ), then alt(S) ∈ L(∃ ∀V ) ∩ L(∀ ∃V ).
(ii) If S ∈ L(∃nV ), then alt(S) ∈ L(∃n+1∀V ).
(iii) If S ∈ L(∀ nV ), then alt(S) ∈ L(∀ n+1∃V ).

Proof. (i) follows from (ii) and (iii) if we let n = 0.
(ii) We call A good if it has property S, and bad otherwise. Since S ∈ L(∃nV ),

there is some v ∈ V such that for all good A and bad B, Spoiler wins ∃nv on
A,B. Since V is directed, we may assume that v also contains the substrings
∀ ∀ , ∀ ∃.

Let C ∈ alt(S) and D /∈ alt(S). We first show how Spoiler wins ∃n+1∀ v on
C,D. If D is not a potential tree, then by Lemma 6.2, Spoiler wins by using the
moves ∀ ∀ ∀ in ∀ v to point out the problem in D.

Otherwise, he starts by choosing in C an alternating tree X such that every
fruit of X is good. Duplicator must respond with an alternating tree Y in D.
(If she doesn’t, Spoiler can win the game using ∀ ∀ against a bad “and” vertex,
and ∀ ∃ against a bad “or” vertex). Then at least one fruit B of Y is bad. Since
all fruits of X are good, Spoiler can combine his winning strategies to play ∃n

in each good fruit of X against the bad fruit B of Y . In other words, in each ∃-
move, Spoiler plays the union of the subsets of the (good) fruits of X determined
by his winning strategies against the fixed bad fruit B. (Note that, since C is
a potential tree, fruits with different roots are disjoint.) Spoiler then uses the
∀ -move to pebble the root of B. Duplicator must respond by pebbling the root
of a (good) fruit G of X. Finally, Spoiler can now win the game by playing his
winning strategy for v on the pair G,B.
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(iii) We now show how Spoiler wins ∀ n+1∃v on C,D. Suppose first that D
is not a potential tree. Spoiler can use the ∀ ∃ moves to simulate an ∀ move
d ∈ D by choosing the set Y = {d} ⊆ D and then choosing an element of
Duplicator’s response X ⊆ C (if Duplicator chooses X empty, Spoiler can easily
win by choosing d with a later ∀ move). v contains the substring ∀ ∀ , so again
Lemma 6.2 shows that Spoiler can win by pointing out the problem in D.

Otherwise, Spoiler starts by choosing in D a co-alternating tree Y such that
every fruit of Y is bad. Duplicator must respond with a co-alternating tree X
in C. (If X is not co-alternating, Spoiler wins as before, because v contains both
∀ ∀ and ∀ ∃ as substrings). From this point we argue as in part (ii) to complete
the proof. a

Let Σn, Πn, ∆n be the levels of the monadic second order quantifier hierarchy
(defined in Section 2).

Corollary 6.8. Let n > 0, let L be any of the logics Σn, Πn or ∆n, and W
be a prefix class.

(i) If L 6⊆ L(W ), then L 6⊆ FO(L(W )).
(ii) If L 6⊆ B(L(W )), then L 6⊆ FOB(L(W )).

Proof. (i) For the case L = Σn, suppose S ∈ Σn \ L(W ). By Lemma 6.6,
alt(S) /∈ FO(L(W )). For some m, S ∈ L(∃mU) where L(U) = Πn−1. By
Lemma 6.7, alt(S) ∈ L(∃m+1∀U) ⊆ Σn. The case L = Πn is similar.

Some care is needed in the case L = ∆n because ∆n is not a logic of the
form L(V ), but is the intersection of two such logics, ∆n = Σn ∩ Πn. Suppose
∆n 6⊆ L(W ) and let S ∈ ∆n \ L(W ). Again, alt(S) /∈ FO(L(W )) by Lemma
6.6. For some m, S ∈ L(∃mU) ∩ L(∀ mU), where L(U) = Πn−1 as before. By
Lemma 6.7,

alt(S) ∈ L(∃m+1∀U) ∩ L(∀ m+1∃U) ⊆ ∆n.

(ii) follows by applying (i) to the prefix class ⊕W . a
We do not know whether Lemma 6.7 holds for reach in place of alt, or whether

there is a way to obtain Corollary 6.8 using reach instead of alt.

It was shown in [MT97] that Πn 6⊆ Σn, Σn 6⊆ Πn, and ∆n+1 6⊆ B(Σn).
Combining these results with Corollary 6.8, we get the following corollary which
solves some open problems from [Mat98].

Corollary 6.9. In the monadic second order quantifier hierarchy,
1) Πn 6⊆ FO(Σn).
2) Σn 6⊆ FO(Πn).
3) ∆n+1 6⊆ FOB(Σn). a

§7. Conclusion and open problems. We introduced the operation existsn(S)
saying “there are n components having S”, and used it to show that if a single
new first order existential (or universal) quantifier strictly increases expressive
power, then additional new first order quantifiers continue to strictly increase
expressive power. This implies the strictness of all the natural quantifier hier-
archies in the positive first order closure of a fragment of monadic second order
logic.
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An important problem is to find a similar operation for the second order
(monadic) quantifiers. This could be used to get lower bounds on the expressive
power of second order fragments, and perhaps to improve the strictness results
on the monadic hierarchy and solve the strictness problem for the closed monadic
hierarchy.

We introduced an abstract concept of addition and multiplication of graphs.
As an application we showed that for any logic L and any class of structures
M for L, the set of sentences in L which are satisfiable in M is not expressible
in the positive first order closure FO(L(W )) unless it is already expressible in
L(W ).

We introduced another operation which converts a property S which is ex-
pressible in L(V ) but not in logic L(W ) to a new property alt(S) which is ex-
pressible in both L(∃ ∀V ) and L(∀ ∃V ) but not in the positive first order closure
FO(L(W )). This was applied to the monadic second order hierarchy, showing
that Πn 6⊆ FO(Σn) and ∆n+1 6⊆ FOB(Σn).

A related problem is to find operations which convert a property not express-
ible in L(W ) to a property not expressible in L(∃W ) or L(∀W ). A solution
to this problem could give upper bounds on expressive power, and answer some
outstanding open questions in monadic second order logic.
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