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1 Introduction

Nonstandard analysis is often used to prove that certain objects exist, i.e., that
certain sets are not empty. In the literature one can find many existence theorems
whose only known proofs use nonstandard analysis; see, for example, [AFHL].

This article will survey a new method for existence proofs, based on the concept
of a neometric space. We shall state definitions and results (usually without proofs)
from several other papers, and try to explain how the ideas from these papers fit
together as a whole. The purpose of the neometric method is twofold: first, to make
the use of nonstandard analysis more accessible to mathematicians, and second, to
gain a deeper understanding of why nonstandard analysis leads to new existence
theorems. The neometric method is intended to be more than a proof technique—
it has the potential to suggest new conjectures and new proofs in a wide variety
of settings. However, it bypasses the notion of an internal set and the lifting and
pushing down arguments which are the main feature of many nonstandard existence
proofs.

The central notion is that of a neocompact family, which is a generalization of
the classical family of compact sets. A neocompact family is a family of subsets of
metric spaces with certain closure properties. In applications, nonstandard analysis
is needed at only one point—to obtain neocompact families which are countably
compact. From that point on, the method can be used without any knowledge of
nonstandard analysis at all.

This program grew out of earlier work on adapted probability distributions ([K2],
[HK]) and a first approach to neocompactness in the paper [K3]. Various aspects
of our program will appear in the papers [CK], [FK1], [FK2], [FK3], [FK4], [K4],
and [K5]. In this article we shall give an overview of the entire program. We shall
explain how the method can be painlessly applied, and discuss the relationship of
the method to nonstandard practice and to adapted probability distributions.

Let’s take an informal look at a common way of solving existence problems in
analysis (or in a metric space): We want to show that within a set C there exists an
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object x with a particular property φ(x), that is, (∃x ∈ C)φ(x). If we cannot find a
solution x directly, we may proceed to find “approximate” solutions; we construct
an object which is close to C, but perhaps not in C, and which almost has property
φ. What is usually done is the following: define a sequence 〈(xn)〉 of approximations
which get better and better as n increases; if we do things right the sequence has a
limit and that limit is the desired x.

The hard part is to show that the limit exists. In the classical setting, the
most common way to get a limit is to show that the sequence xn is contained in
a compact set, and to use the fact that every sequence in a compact set has a
convergent subsequence.

A simple example of an existence proof by approximation is Peano’s existence
theorem for differential equations: One first constructs a sequence of natural ap-
proximations (i.e Euler polygons). Then, using Arzela’s theorem, a consequence
of compactness that guarantees that under certain conditions a sequence of func-
tions converges, one shows that the limit exists and is precisely the solution wanted.
Written in symbolic form, the theorem is a statement of the form

(∃x ∈ C)(f(x) ∈ D).

The approximation procedure gives us the following property:

(∀ε > 0)(∃ ∈ Cε)(f(x) ∈ Dε).

Here Cε is the set {x : ρ(x, C) ≤ ε} with ρ the metric on the space where C lives,
and similarly for Dε. Then, if we choose a sequence εn approaching 0, we obtain
a sequence of approximations. The compactness argument (Arzela’s theorem) gives
the existence of the limit.

The centerpiece of our method is a result (called the Approximation Theorem)
which intuitively says “it is enough to approximate”, or “if you can find approximate
solutions then you can conclude that an exact solution exists without going through
the convergence argument.” In the above notation, the theorem states that:

If (∀ε > 0)(∃x ∈ Cε)(f(x) ∈ Dε) then (∃x ∈ C)(f(x) ∈ D). (1)

The reader should have no problem showing that condition (1) holds in the
following case: C is a compact subset of a complete separable metric space M, D is
a closed subset of another complete separable metric space N , and f is a continuous
function from M into N .

The main point of the neometric method is that our Approximation Theorem
goes beyond the familiar case of convergence in a compact set. First, we work in
metric spaces that are not necessarily separable. Second, we identify new families
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C,D and F of sets C,D and functions f , such that (1) holds. These are the families
of neocompact sets, neoclosed sets, and neocontinuous functions. The family of
neocompact sets is much larger than the family of compact sets, and provides a
wide variety of new opportunities for proving existence theorems by approximation.

2 Neometric Families

In this section we summarize the central notion of a neometric family from the paper
[FK1], and state the main approximation theorem.

We use script letters
M = (M, ρ),N = (N, σ)

for complete metric spaces which are not necessarily separable. Given two metric
spaces M and N , the product metric is the metric space M×N = (M×N, ρ×σ)
where

(ρ× σ)((x1, x2), (y1, y2)) = max(ρ(x1, y1), σ(x2, y2)).

The first notion we need is that of a neocompact family.

Definition 2.1 Let M be a collection of complete metric spaces which is closed
under finite products, and for each M ∈ M let B(M) be a collection of subsets of
M, which we call basic sets. By a neocompact family over (M,B) we mean a
triple (M,B, C) where for each M∈ M, C(M) is a collection of subsets of M with
the following properties, where M,N vary over M:

(a) B(M) ⊂ C(M);

(b) C(M) is closed under finite unions; that is, if A,B ∈ C(M) then A∪B ∈ C(M);

(c) C(M) is closed under finite and countable intersections;

(d) If C ∈ C(M) and D ∈ C(N ) then C ×D ∈ C(M×N );

(e) If C ∈ C(M×N ), then the set

{x : (∃y ∈ N )(x, y) ∈ C}

belongs to C(M), and the analogous rule holds for each factor in a finite Carte-
sian product;
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(f) If C ∈ C(M×N ), and D is a nonempty set in B(N ), then

{x : (∀y ∈ D)(x, y) ∈ C}

belongs to C(M), and the analogous rule holds for each factor in a finite Carte-
sian product.

The sets in C(M) are called neocompact sets. The neocompact family (M,B, C)
induces a family of metric spaces with extra structure, (M,B(M), C(M)), which we
call neometric spaces. A neometric space thus consists of a complete metric space
M∈ M and two families B(M) and C(M) of subsets of M. The properties (a)–(f)
not only give conditions on single neometric spaces, but also on finite Cartesian
products of neometric spaces.

We call (M,B, C) the neocompact family generated by (M,B) if C(M) is
the collection of all sets obtained by finitely many applications of the rules (a)–(f).

The classical example of a neocompact family is the family generated by (S,B)
where S is the collection of all complete metric spaces, and for each M∈ S, B(M)
is equal to the set of all compact subsets of M. It is not hard to see that the
family of compact sets is closed under all of the rules (a)–(f). Thus the collection of
neocompact sets C(M) generated by (S,B) is just B(M) itself, i.e. every neocompact
set is compact.

It is easy to produce neocompact families by first choosing the basic sets and
then closing them under the rules (a)–(f). The interesting neocompact families have
an extra feature expressed in the following property, which is a familiar property of
the family of compact sets in a topological space and plays a key role in the new
theory of neometric spaces (see [FK1]).

Definition 2.2 We say that a neocompact family (M,B, C) is countably compact
if for each M∈ M, every decreasing chain C0 ⊃ C1 ⊃ · · · of nonempty sets in C(M)
has a nonempty intersection

⋂

n Cn (which, of course, also belongs to C(M)).

The classical neocompact family (S,B, C) of compact sets is clearly countably
compact. The interesting question is whether there are other, nontrivial, neocom-
pact families which have it. The only examples we know are built using nonstandard
analysis! (See [FK2]).

We now introduce notions for neocompact families analogous to familiar notions
for metric spaces, and then introduce the slightly stronger notion of a neometric
family.

Definition 2.3 (a) A set C ⊂ M is neoclosed in M if C ∩ D is neocompact in
M for every neocompact set D in M.
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(b) Let D ⊂M. A function f : D → N is neocontinuous from M to N if for
every neocompact set A ⊂ D in M, the restriction f |A = {(x, f(x)) : x ∈ A} of f
to A is neocompact in M×N .

(c) A set A is said to be neoseparable in M if A is the closure of the union of
countably many basic subsets of M.

Definition 2.4 We call a neocompact family (M,B, C) a neometric family if the
distance functions in M and the projection functions for finite Cartesian products
in M are neocontinuous. That is, the metric space R of reals is contained in some
member R of M, and for each M∈ M the distance function ρ of M is neocontinu-
ous from M×M into R. Moreover, for each M,N ∈ M, the projection functions
from M×N to M and to N are neocontinuous.

In the classical family (S,B, C) a set is neoclosed if and only if it is closed, and
neoseparable if and only if it is closed and separable, and a function is neocontinuous
if and only if it is continuous. Since the distance and projection functions on any
metric space are continuous, (S,B, C) is a neometric family.

The following is a list of facts taken from [FK1]. Taken together, these facts show
that the notions of neocompactness, neoclosedness, and neocontinuity behave in a
manner analogous to the classical notions of compactness, closedness, and continuity.

Blanket Hypothesis 1 For the rest of this section, we assume that M is a collec-
tion of complete metric spaces closed under finite Cartesian products, and (M,B, C)
is a countably compact neometric family such that for each M∈ M, B(M) contains
at least all compact sets in M.

Basic Facts 1 1. Every neocompact set in M is neoclosed and bounded.

2. Every section of a neocompact set is neocompact. That is, if C is neocompact
in M×N and z ∈ N then the set {x ∈M : (x, z) ∈ C} is neocompact in M.

3. If f : D → N is neocontinuous from M to N and A ⊂ D is neocompact in
M, then the set f(A) = {f(x) : x ∈ A} is neocompact in N .

4. If f : C → N is neocontinuous from M to N , C is neoclosed in M, and D
is neoclosed in N , then f−1(D) = {x ∈ C : f(x) ∈ D} is neoclosed in M.

5. Compositions of neocontinuous functions are neocontinuous.

6. Every closed separable subset of M is neoseparable in M.

7. Every neoclosed set in M is closed in M.

8. If f : D → N is neocontinuous from M to N , then f is continuous on D.
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We now introduce one more property of a well behaved neometric family which
is crucial for the deeper applications. This property is called closure under diagonal
intersections.

Definition 2.5 A neometric family (M,B, C) is said to be closed under diagonal
intersections if the following holds. Let M ∈ M, let An ∈ C(M) for each n ∈ N,
and let limn→∞ εn = 0. Then

A =
⋂

n
((An)εn) ∈ C(M).

The paper [FK1] has several consequences of closure under diagonal intersections.
One example is a neometric analogue of Arzela’s theorem. The most important
consequence is the approximation theorem which was mentioned in the introduction.

Theorem 2.6 (Approximation Theorem) Suppose (M,B, C) is closed under diago-
nal intersections. Let A be neoclosed in M and f : A → N be neocontinuous from
M to N . Let B be neocompact in M and D be neoclosed in N . Suppose that for
each ε > 0, we have

(∃x ∈ A ∩Bε)f(x) ∈ Dε.

Then
(∃x ∈ A ∩B)f(x) ∈ D.

In the paper [A2], Anderson proved a form of the approximation theorem for the
classical neometric family (S,B, C), and gave several applications. To go further, we
need other examples of neometric families which are countably compact and closed
under diagonal intersections, and also need a library of useful neocompact sets and
neocontinuous functions. In the next section we discuss a neometric family which
has been studied in detail and was the was original motivation for our method, the
family of neocompact sets in a rich adapted probability space. Other interesting
neometric families will be discussed later on in this paper.

3 Rich Adapted Spaces

Anderson’s construction of Brownian motion in [A1] and the lifting method for
proving existence theorems for stochastic differential equations on an adapted Loeb
space in [K1] were among the earliest applications of the Loeb measure construction
in nonstandard analysis. These results were the primary motivation for both the
adapted probability distributions in [K2] and [HK] and for the neometric method
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being discussed in this paper. In this section we shall review the neometric family
on a rich adapted space which was introduced in the paper [FK1].

Let B be the set of dyadic rationals in R+. We say that Ω = (Ω, P,G,Gt)t∈B is a
B-adapted (probability) space if P is a complete probability measure on G, Gt

is a σ-subalgebra of G for each t ∈ B, and Gs ⊂ Gt whenever s < t in B. Let Ω be a
B-adapted probability space which will remain fixed throughout our discussion. For
s ∈ R+ we let Fs be the P -completion of the σ-algebra

⋂{Gt : s < t ∈ B}. Then
the filtration Fs is right continuous, that is, for all s < ∞ we have Fs =

⋂{Ft :
s < t}. Each B-adapted space (Ω, P,G,Gt)t∈B has an associated right continuous
adapted space (Ω, P,F ,Ft)t∈R+ .

We say that P is atomless if any set of positive measure can be partitioned into
two sets of positive measure, and that P is atomless on a σ-algebra F ⊂ G if the
restriction of P to F is atomless.

We let M = (M,ρ) and N = (N, σ) be complete separable metric spaces. We
use the corresponding script letter M = L0(Ω,M) to denote the space of all P -
measurable functions from Ω into M with the metric ρ0 of convergence in probability,

ρ0(x, y) = inf{ε : P [ρ(x(ω), y(ω)) ≤ ε] ≥ 1− ε}.

(We identify functions which are equal P -almost surely). Note that the product
metric M×N is topologically equivalent to the space L0(Ω,M ×N).

The space of Borel probability measures on M with the Prohorov metric

d(µ, ν) = inf{ε : µ(K) ≤ ν(Kε) + ε for all closed K ⊂ M}

is denoted by Meas(M). It is again a complete separable metric space, and con-
vergence in Meas(M) is the same as weak convergence. Each measurable function
x : Ω → M induces a measure law(x) ∈ Meas(M), and the function

law : M→ Meas(M)

is continuous.

Definition 3.1 Let Ω = (Ω, P,G,Gt)t∈B be a B-adapted space, and let MΩ be the
family of all the metric spaces M = L0(Ω,M) where M is a complete separable
metric space. A subset B of M will be called basic, B ∈ BΩ(M), if either

(1) B is compact, or

(2) B = law−1(C) for some compact set C ⊂ Meas(M), or

(3) B = {x ∈ law−1(C) : x is Gt −measurable} for some compact C ⊂ Meas(M)
and t ∈ B.
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We say that a B-adapted space Ω is rich if the measure P is atomless on G0, Ω
admits a Brownian motion, and the neocompact family (MΩ,BΩ, CΩ) generated by
(MΩ,BΩ) is countably compact. The sets in CΩ(M) are said to be neocompact for
the B-adapted space Ω.

It is convenient to identify each complete separable metric space M with the set
of all constant functions in M = L0(Ω, M). With this identification we get a notion
of a neocontinuous function from M into N , and a neocontinuous function from N
into M .

The simpler notion of a rich probability space is defined in the same way as
a rich B-adapted space except that condition (3) is left out of the definition of the
basic sets.

The paper [FK1] gives examples showing that the usual probability spaces and
adapted spaces considered in the classical literature are not rich. Moreover, the
universal projection condition (f) cannot be strengthened by allowing the set D to
be neocompact rather than basic. We shall discuss the existence of rich probability
and adapted spaces later on.

An extensive library of neocompact sets and neocontinuous functions for a rich
B-adapted space is developed in [FK1], and is extended further in [CK]. Here is a
sampling from this library.

Blanket Hypothesis 2 For the rest of this section we assume that Ω is a rich
B-adapted space and that M, N are complete separable metric spaces.

Theorem 3.2 The family of neocompact sets for Ω is a neometric family which is
closed under diagonal intersections.

Thus the distance and projection functions are neocontinuous.
Let T > 0. A stochastic process x ∈ L0(Ω, L0([0, T ],M)) or a continuous stochas-

tic process x ∈ L0(Ω, C([0, T ],M)) is said to be adapted if x(·, t) is Ft-measurable
for each t ∈ [0, T ].

Theorem 3.3 The following sets are neocompact.
(a) The set L0(Ω, C) where C is a compact subset of M .
(b) The set of all Ft-stopping times in L0(Ω, [0, T ]).
(c) The set of all Brownian motions on Ω × [0, T ], that is the set of continu-

ous adapted processes on Ω with values in R whose law is the Wiener measure on
C([0, T ],R).

(d) The set of all x ∈ L0(Ω,R) such that E[|x|] ≤ r where r > 0 is fixed.

The proof of (d) uses closure under diagonal intersections.
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Theorem 3.4 The following sets are neoclosed.
(a) The set of all Ft-measurable x ∈M, where t ∈ R+ is fixed.
(b) The set of adapted stochastic processes on [0, T ] with values in M .
(c) The set of continuous adapted stochastic processes on [0, T ] with values in

M .

Theorem 3.5 The following functions are neocontinuous.
(a) (Randomization Lemma) The function g : M → N defined by (g(x))(ω) =

f(x(ω)) where f : M → N is continuous.
(b) The law function from M to Meas(M).
(c) The stochastic integral function

(y, b) 7→
∫ t

0
y(ω, s)db(ω, s)

where r is finite, y belongs to the neoclosed set of adapted stochastic processes on Ω
with values in [−r, r], and b belongs to the neocompact set of Brownian motions.

Moreover, the range of the function (c) is contained in a neocompact set of con-
tinuous adapted stochastic processes.

Theorem 3.6 The following functions are neocontinuous on each uniformly inte-
grable subset of L1(Ω,R).

(a) The expected value function x 7→ E[x(ω)].
(b) The conditional expectation function x 7→ E[x(ω)|Gt] where t ∈ B.
(c) The conditional expectation function x 7→ E[x(ω)|F·] where the value is a

stochastic process.

The paper [FK1] has an example which complements Theorem 3.4 (a) and 3.6
(c). The example shows that for each t, the neocompact set of all Ft-measurable x
with law(x) ∈ [0, 1] cannot be basic, and the continuous function x 7→ E[x(ω)|Ft]
cannot be neocontinuous from L(Ω, [0, 1]) to itself.

A variety of optimization and existence theorems for rich B-adapted spaces are
proved in [FK1]. In [CK] the method is applied to obtain new optimization and
existence theorems for stochastic Navier-Stokes equations. To give an idea of what
can be done, we give two examples here.

Theorem 3.7 Let Ω be a rich B-adapted space and let T > 0. For each continuous
stochastic process x ∈ L0(Ω, C([0, T ],R) there is a Brownian motion on Ω × [0, T ]
whose ρ0-distance from x is a minimum.
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Proof sketch: The function f(b) = ρ0(x, b) is neocontinuous from the neocompact
set B of Brownian motions on Ω× [0, T ] into the reals. Therefore its range f(B) is
neocompact and hence closed and bounded in the reals, and thus has a minimum.

The next result was proved for adapted Loeb spaces by the lifting method in
[K1]. It is a stochastic analogue of the Peano existence theorem, and improves the
weak existence theorem of Skorokhod [Sk] for stochastic differential equations,

Theorem 3.8 Let T, r > 0, let g be an adapted stochastic process on Ω× [0, T ] with
values in C(R, [−r, r]), and let b be a Brownian motion on Ω × [0, T ]. Then there
exists a continuous adapted stochastic process x such that

x(ω, t) =
∫ t

0
g(ω, s)(x(ω, s))db(ω, x).

Moreover, the set A of all such solutions x is neocompact, and hence any neocon-
tinuous function f from A into the reals has a minimum (i.e. and optimal solution
with respect to f).

Proof sketch: Our library of neocontinuous functions shows that the function

h(x, u) =
∫ t

0
g(ω, s)(x(ω, s− u))db(ω, s),

with the convention that x(ω, u) = 0 when u < 0, is neocontinuous and its range is
contained in a neocompact set D of continuous stochastic processes. Since A is the
set of all x such that h(x, 0)− x = 0 and A ⊂ D, it follows that A is neocompact.

The set C of all u ∈ [0, 1] such that (∃x ∈ D)h(x, u) = x is also neocompact.
Thus C is a closed subset of the unit interval [0, 1]. By successively integrating
over subintervals [0, u], [u, 2u], . . . , for each u ∈ (0, 1] we get an x ∈ D such that
h(x, u) = x. It follows that (0, 1] ⊂ C. Since C is closed, we have 0 ∈ C, and
therefore the set A of solutions is nonempty.

The above proof used the basic facts about neocontinuous functions and neocom-
pact sets in a direct manner. To illustrate the use of the Approximation Theorem,
we give a second proof.

Alternative Proof by Approximation: Let h and D be the neocontinuous function
and neocompact set from the first proof. By successively integrating over subinter-
vals we see that

(∃(x, u) ∈ (D × {0})ε)h(x, u)− x ∈ {0}ε.

By the approximation theorem we have

(∃x ∈ D)h(x, 0)− x = 0
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as required.
The preceding examples are illustrations of a general approach to the discovery

of new conjectures and proofs. In a wide variety of situations, one can ask whether a
given set is neocompact, or whether a given function is neocontinuous. Neocompact-
ness can often be proved by checking through the definition of the set to see that it
can be constructed from basic sets using the operations (a)—(f). Once neocompact-
ness and neocontinuity are established, the Approximation Theorem immediately
suggests a way to prove an existence theorem by proving that approximate solu-
tions exist. In many cases, such as in the preceding theorem, one can then go on to
ask if the set of solutions itself is neocompact, and continue the process.

4 Saturated Adapted Spaces

In the paper [HK] the notions of an adapted distribution and of a saturated adapted
probability space were introduced. The adapted distribution of a random variable on
an adapted space (with values in a complete separable metric space) is the natural
analogue of the distribution of a random variable on a probability space. The
results of [HK] suggest that two stochastic processes on possibly different spaces
may be considered alike if they have the same adapted distribution. For stochastic
differential equations and a wide variety of other existence problems, every existence
theorem which holds on some adapted space holds on a saturated adapted space.
The relationship between saturated and rich adapted spaces was studied in the
papers [K4] and [K5]. The key result was a quantifier elimination theorem showing
that every neocompact set can be represented in a simple form by means of the
adapted distribution.

We begin with the simple notion of a saturated probability space, and then take
up the more complicated notions of a saturated B-adapted space and a saturated
right continuous adapted space.

Definition 4.1 A probability space Ω is saturated if for any random variable
x ∈ L0(Ω,M) and pair of random variables x̄ ∈ L0(Γ,M) and ȳ ∈ L0(Γ, N) on
another probability space Γ such that law(x) = law(x̄), there is a random variable
y ∈ L0(Ω, N) such that law(x, y) = law(x̄, ȳ).

The following theorem was proved in [K5].

Theorem 4.2 A probability space is rich if and only if it is saturated.

The main tool in the proof was a quantifier elimination theorem which is of
interest in its own right.
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Theorem 4.3 (Quantifier Elimination for Probability Spaces) In a saturated prob-
ability space Ω, a set is neocompact in M if and only if it is of the form

{x ∈M : law(x, z) ∈ C}

for some compact set C ⊂ Meas(M×N ) and some z ∈ N .

We now present analogous results for B-adapted spaces. In order to state these
results we need the notion of an adapted function, which was essentially introduced
in [HK].

Definition 4.4 Let R = L0(Ω,R). The class of B-adapted functions on M is
the least class of functions from M into R such that:

(i) For each bounded continuous function φ : M → R, the function (φ̂(x))(ω) =
φ(x(ω)) is a B-adapted function on M;

(ii) If f1, . . . , fm are B-adapted functions on M and g : Rm → R is continuous,
then h(x) = g(f1(x), . . . , fm(x)) is a B-adapted function on M;

(iii) If f is a B-adapted function on M and t ∈ B, then g(x)(ω) = E[f(x)|Gt](ω)
is a B-adapted function on M.

Two random variables x ∈ L0(Ω,M) and x̄ ∈ L0(Γ,M) have the same B-
adapted distribution, in symbols x ≡B x̄, if E[f(x)] = E[f(x̄)] for every B-
adapted function f on M.

A B-adapted space Ω is saturated if for every other B-adapted space Γ, every
x ∈ L0(Ω,M), and every pair x̄ ∈ L0(Γ,M), ȳ ∈ L0(Γ, N) such that x ≡B x̄, there
exists y ∈ L0(Ω, N) such that (x, y) ≡B (x̄, ȳ).

With this definition, the following theorem is proved in [K5] using results from
[K4].

Theorem 4.5 A B-adapted space Ω is rich if and only if it is saturated.

The main tool for the implication from left to right is the following consequence
of our library of neocontinuous functions.

Theorem 4.6 If Ω is a rich B-adapted space then every B-adapted function for Ω
is neocontinuous.

The main tool for the other direction is the following quantifier elimination the-
orem which is again of interest in its own right.
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Theorem 4.7 (Quantifier Elimination for B-adapted Spaces) Let Ω be a rich B-
adapted space. A set is neocompact in M if and only if it is the intersection of a
set of the form

{x ∈M : law(x, z) ∈ C}

and countably many sets of the form

{x ∈M : E[fn(x, z)] ∈ Dn}

where each fn is a B-adapted function on M×N , z ∈ N , C is compact in Meas(M×
N), and each Dn is compact in R.

We now turn to right continuous adapted spaces.

Definition 4.8 The notion of an R+-adapted function is defined in exactly the
same way as a B-adapted function except that times are taken from the set R+ and
conditional expectations are taken with respect to the right continuous filtration Ft.

We shall say that two random variables x and x̄ on right continuous adapted
spaces Ω and Γ have the same adapted distribution, in symbols x ≡ x̄, if E[f(x)] =
E[f(x̄)] for each R+-adapted function f .

A right continuous adapted space Ω is saturated if for every other right continu-
ous adapted space Γ, every x ∈ L0(Ω,M), and every pair x̄ ∈ L0(Γ,M), ȳ ∈ L0(Γ, N)
such that x ≡ x̄, there exists y ∈ L0(Ω, N) such that (x, y) ≡ (x̄, ȳ).

It is shown in [K5] that rich right continuous adapted spaces do not exist, and
that nontrivial R+-adapted functions of the form E[f(x)|Ft] for a right continuous
adapted space can never be neocontinuous.

Here is the main result on right continuous adapted spaces which is proved in
[K5].

Theorem 4.9 For every rich B-adapted space, the associated right continuous adapted
space is saturated.

5 The Huge Neometric Family

Our discussion up to this point has not involved nonstandard analysis at all, but
we have postponed the proof that rich B-adapted spaces exist until this section.
Now it is time to enter the nonstandard world. We present the huge neometric
family (H,B, C) associated with each ℵ1-saturated nonstandard universe, which was
introduced in [FK2]. The huge neometric family is constructed by giving an explicit

13



definition of basic and neocompact sets that captures the way internal sets are used
in nonstandard probability practice. The idea is that basic sets should be standard
parts of internal sets, and neocompact sets should be standard parts of countable
intersections of internal sets. The huge neometric family lives up to its name and
contains all neometric spaces studied so far.

We shall see that the huge neometric family contains the neometric family over a
B-adapted Loeb space. It follows that B-adapted Loeb spaces are rich, and therefore
that rich B-adapted spaces exist.

The huge neometric family is a generalization of the approach to neocompactness
originally developed in [K3]. In that paper, the neometric family over a rich B-
adapted space was introduced in a nonstandard setting. From our current viewpoint,
this neometric family is a subfamily of the huge neometric family.

We fix an ℵ1-saturated nonstandard universe. We shall use the notions of a
∗metric space and a ∗probability measure, which are obtained from the corre-
sponding standard notions by transfer: a ∗metric space is a structure (M̄, ρ̄) where
M̄ is an internal set and ρ̄ is an internal function ρ̄ : M̄ × M̄ → ∗R which satisfies
the transfer of the usual rules for a metric. We now quickly review the nonstandard
hull construction.

If X,Y ∈ M̄ , we write X ≈ Y if ρ̄(X,Y ) ≈ 0. The standard part of an element
X ∈ M̄ is the equivalence class

oX = {Y ∈ M̄ : X ≈ Y }.

If x = oX, we say that X lifts x.

Definition 5.1 Consider a ∗metric space (M̄, ρ̄) and a point c ∈ M̄ . The galaxy
of c is the set G(M̄, c) of all points X ∈ M̄ such that ρ̄(X, c) is finite. By the
nonstandard hull of M̄ at c we mean the metric space (H(M̄, c), ρ) where

H(M̄, c) = {oX : X ∈ G(M̄, c)}, ρ(oX,o Y ) = st(ρ̄(X, Y )).

Note that any two points b, c ∈ M̄ such that ρ̄(b, c) is finite have the same
galaxies and nonstandard hulls,

G(M̄, b) = G(M̄, c) and H(M̄, b) = H(M̄, c).

The neometric spaces in our huge family H will be the closed subspaces of nonstan-
dard hulls. We need more definitions.

Given a set B ⊂ G(M̄, c), the standard part of B is the set

oB = {oX : X ∈ B}
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of standard parts of elements of B. In the opposite direction, for a set A ⊂ H(M̄, c)
the monad of A is the set

monad(A) = {X : oX ∈ A}.

By a Σ0
1 (Π0

1 ) set we mean the union (intersection) of countably many internal
subsets of the galaxy G(M̄, c).

Observe that every countable subset of G(M̄, c) is Σ0
1, and hence every countable

subset of H(M̄, c) is the standard part of a Σ0
1 set.

For a set B ⊂ G(M̄, c) and a hyperreal ε > 0, we write

ρ̄(X, B) = inf{ρ̄(X, Y ) : Y ∈ B}, Bε = {X : ρ̄(X, B) ≤ ε}.

Observe also that for each ∗metric space M̄ and distinguished point c ∈ M̄ , the
galaxy G(M̄, c) is a Σ0

1 set, and the monad of the nonstandard hull H(M̄, c) is the
galaxy G(M̄, c).

Definition 5.2 The huge neometric family (H,B, C) is defined as follows. H
is the class of all metric spaces (M, ρ) such that M is a closed subset of some
nonstandard hull H(M̄, c). For each M∈ H, the collections of basic and neocompact
subsets of M are

B(M) = {A ⊂M : A = oB for some internal set B ⊂ G(M̄, c)},

C(M) = {A ⊂M : A = oB for some Π0
1 set B ⊂ G(M̄, c)}.

Note that the standard part of the union of two sets is the union of the standard
parts, and therefore B(M) is closed under finite unions. Moreover, finite Cartesian
products of basic sets are basic, and every finite subset of M is basic. On the other
hand, the intersection of two basic sets need not be basic (see Example 3.6 in [FK2]).

The standard neometric family (S,B, C) may be regarded as a subfamily of
(H,B, C). Given a standard complete metric space (M, ρ) ∈ S, we may consider
the ∗metric space (∗M,∗ ρ). We abuse notation by identifying M with the set
{∗x : x ∈ M}. Thus M is a closed subset of the nonstandard hull H(∗M,x) where
x is any element of M , and hence M itself belongs to the huge family H.

Here is a list of facts about the huge neometric family taken from [FK2]

Basic Facts 2 Let M and N belong to H.

1. (H,B, C) is a countably compact neometric family which is closed under di-
agonal intersections.
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2. Every compact set C ⊂M is basic.

3. Let C = o(
⋂

n Cn) be a neocompact set in M where 〈Cn〉 is a decreasing chain
of internal sets. Then

monad(C) =
⋂

n
((Cn)1/n).

4. A set B ⊂ G(M̄, c) is the monad of a neoseparable set if and only if B can
be written in the form

B =
⋂

n

⋃

m
((Bm)1/n)

where 〈Bm〉 is an increasing chain of internal subsets of G(M̄, c).

5. Let M be a standard complete metric space, that is, M ∈ S. A subset C of M
is neocompact with respect to H if and only if it is compact, neoclosed with respect
to H if and only if it is closed, and neoseparable with respect to H if and only if it
is closed and separable. If C ⊂ M is closed and N ∈ H, a function f : C → N is
neocontinuous with respect to H if and only if it is continuous.

6. Let M be neoseparable. A set C ⊂M is neocompact in M if and only if C is
neoclosed in M and any countable covering of C by neoopen sets in M has a finite
subcovering.

7. Let C ⊂ M be neocompact and f : C → N . Then f is neocontinuous
if and only if there is an internal function F such that oF (X) = f(oX) for all
X ∈ monad(C).

We now look at adapted Loeb spaces within the huge neometric family. We first
need some notation for internal probability spaces.

Definition 5.3 Let (Ω, P̄ , Ḡ) be a ∗probability space and let (Ω, P,G) be the cor-
responding Loeb probability space. SL0(Ω,M) denotes the ∗metric space of all Ḡ-
measurable functions X : Ω → ∗M with the ∗metric

ρ̄0(X, Y ) = ∗ inf{ε : P̄ [∗ρ(X(ω), Y (ω)) ≥ ε] ≤ ε}.

We say that X ∈ SL0(Ω,M) is a lifting of a function x : Ω → M , in symbols
oX = x, if X(ω) has standard part x(ω) ∈ M for P -almost all ω ∈ Ω.

By the fundamental result of Loeb, that a function x : Ω → M is Loeb mea-
surable if and only if it has a lifting, we may take L0(Ω, M) to be a subset of the
standard part of SL0(Ω,M). We now introduce adapted Loeb spaces.
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Definition 5.4 By a B-adapted Loeb space we mean an B-adapted space Ω =
(Ω, P,Gt)t∈B such that (Ω, P,G) is a Loeb probability space, Gs ⊂ Gt whenever s <
t ∈ B, and each Gt is a σ-algebra generated by an internal subalgebra Ḡt of Ḡ.

The following theorem from [FK2] shows that B-adapted Loeb spaces are rich
and hence that rich B-adapted spaces exist. As we have emphasized in the intro-
duction, this is the one place where nonstandard analysis is needed in order to prove
of existence theorems via neocompact sets.

Theorem 5.5 Let Ω be an atomless B-adapted Loeb space.
(i) The set L0(Ω, M) is neoseparable with respect to the ∗metric ρ̄0 on SL0(Ω,M),

and the metric space M = (L0(Ω,M), ρ0) belongs to the huge neometric family H.
(ii) Every basic set, neocompact set, neoclosed set, neoseparable set, and neocon-

tinuous function with neoclosed domain in (MΩ,BΩ, CΩ) is also basic, neocompact,
neoclosed, neoseparable, or neocontinuous, respectively, in the huge neometric family
(H,B, C).

(iii) Ω is rich.

Corollary 5.6 Every atomless Loeb probability space is rich.

The paper [FK2] gave several other examples of natural neometric families within
the huge neometric family. We mention three of them here.

Theorem 5.7 Let M be a standard Banach space. In the huge neometric family,
the nonstandard hull H(∗M, 0) of the galaxy of 0 in ∗M is neoseparable, each closed
ball in H(∗M, 0) is neocompact, and the norm function x 7→ ‖x‖, the addition func-
tion (x, y) 7→ x + y, and the scalar multiplication function x 7→ αx, α ∈ R, are
neocontinuous.

Theorem 5.8 Let Ω be an atomless Loeb probability space. The set L1(Ω,R) of
Loeb integrable functions on Ω is neoseparable with respect to the ∗metric ρ̄1(X,Y ) =
Ē[ρ̄(X(·), Y (·))], and the metric space (L1(Ω,R), ρ1) belongs to the huge neometric
family H.

The next example from [FK2] concerns Loeb integrable functions with values in
a neoseparable space rather than in the separable space of reals. We first need some
definitions.

Definition 5.9 Let Ω be an atomless Loeb probability space and let (M̄, ρ̄) be a
∗metric space. Let ρ̄1 be the ∗metric on the set SL0(Ω̄, M̄) defined by ρ̄1(X, Y ) =
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Ē[ρ̄(X(·), Y (·))]. For each c ∈ M̄ , let SL1(Ω̄, M̄ , c) be the set of all X ∈ SL0(Ω̄, M̄)
such that ρ̄(X(·), c) is S-integrable.

Choose a point c in the monad of M. We let L1(Ω,M) denote the metric space
of all functions x : Ω →M such that x has a lifting in SL1(Ω̄, M̄ , c), with the metric
ρ1 such that ρ1(x, y) = oρ̄1(X, Y ) whenever X,Y ∈ SL1(Ω̄, M̄ , c), X lifts x, and Y
lifts y.

Theorem 5.10 Let (M, ρ) be neoseparable in the huge neometric family H. The
set L1(Ω,M) is neoseparable with respect to the ∗metric ρ̄1, and the metric space
(L1(Ω,M), ρ1) belongs to H.

6 Forcing and Approximations

The paper [FK3] in this volume develops another approach to our program. It cen-
ters on the notion of a long sequence in the huge neometric family, that is, a sequence
indexed by the hyperintegers. The notions of neocompactness, neoclosedness, and
neocontinuity have natural characterizations in terms of long sequences, and long
sequence arguments have a flavor much like the more traditional lifting and pushing
down arguments in nonstandard analysis.

One of the central ideas in the paper [K3] was a notion of forcing for formulas
in an infinitary language built from neocompact sets and neocontinuous functions.
This notion of forcing is defined by an induction on formulas which is reminiscent
of forcing in set theory. However, the “names” in the statements to be forced are
sequences of elements, the “conditions” are infinite sets of natural numbers, and
proofs by forcing resemble classical proofs by convergence. Forcing was applied in
that paper to prove several existence theorems in stochastic analysis. Long sequences
played an important role in the treatment of forcing.

The forthcoming paper [FK4] generalizes the treatment of forcing introduced
in [K3], and introduces a second kind of forcing which applies only to positive
bounded formulas but appears to be easier to use. The paper [FK4] also introduces
a notion of an approximation for positive bounded formulas, and uses the results
about forcing to generalize the approximation theorem 2.6 stated earlier in this
paper. This approximation theorem is closely related to a theorem of Anderson [A2]
in a classical compact setting, and the work of Henson [He] and Henson and Iovino
[HI] in the setting of Banach space model theory. In this section we shall present
the main notions and results from [FK4] on forcing and approximations of positive
bounded formulas.

We begin by introducing the language PB of positive bounded formulas. We
shall always work in the huge neometric family H.
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Definition 6.1 The language PB of positive bounded formulas has the following
symbols:

Infinitely many variables u, v, . . . of sort M for each neometric space M∈ H,

An n-ary function symbol for each total neocontinuous function

f : M1 × · · · ×Mn → N ,

A constant symbol for each element c ∈M,

A unary predicate symbol of sort M for each neoclosed set C in M.

Terms are built in the usual way by applying function symbols to variables and
constants of the appropriate sorts. The atomic formulas of PB are τ(~v) ∈ C where
τ is a term and C is a neoclosed set of the same sort. The formulas of PB are built
from atomic formulas using finite and countable conjunctions, finite disjunctions,
existential quantifiers of the form (∃v ∈ C)φ where C is neocompact, and universal
quantifiers (∀v ∈ D)φ where D is neoseparable.

Since the distance functions are neocontinuous, an equation τ(~u) = π(~v) between
two terms can be expressed by the PB formula ρ(τ(~u), π(~v)) ∈ {0}.

The next theorem says that every positive bounded formula defines a neoclosed
set.

Theorem 6.2 For every PB formula φ(~v), the set {~x : φ(~x) is true } is neoclosed
in the sort space of ~v.

A sequence of k-tuples 〈~xn〉 in M is said to be neotight if it is contained in
a neocompact set in M. By a condition we mean an infinite set p ⊂ N. In the
following, p, q, and r will denote conditions.

We now introduce positive bounded forcing.

Definition 6.3 For each PB formula φ(~v), neotight sequence 〈~xn〉 of the same sort
as ~v, and condition p, the forcing relation p‖− φ(〈~xn〉) is defined inductively as
follows:

p‖− f(〈~xn〉) ∈ C iff limn∈p ρ(f(~xn), C) = 0.

p‖− ∧

m φm(〈~xn〉) iff (∀m)p‖− φm(〈~xn〉.

p‖− (∀v ∈ D)φ(〈~xn〉, v) iff (∀ neotight 〈yn〉 in D)p‖− φ(〈~xn, yn〉).
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p‖− (φ ∨ ψ)(〈~xn〉) iff

(∀q ⊂ p)(∃r ⊂ q)r‖− φ(〈~xn〉) ∨ r‖− ψ(〈~xn〉).

p‖− (∃v ∈ C)φ(〈~xn〉, v) iff

(∀q ⊂ p)(∃r ⊂ q)(∃ neotight 〈yn〉 in C)r‖− φ(〈~xn, yn〉).

The main technical result about positive bounded forcing in [FK4] uses long
sequences, which are defined in [FK3] in this volume. This theorem and its corollary
capture the analogy between forcing and classical proofs by convergence.

Theorem 6.4 Let φ(~v) be a positive bounded formula, let 〈~xn〉 be a neotight sequence
inM, and let 〈~xJ〉 be a long sequence which is anM-extension of 〈~xn〉. If p‖−φ(〈~xn〉)
then φ(~xJ) is true for all sufficiently small infinite J ∈ ∗p.

Corollary 6.5 Let φ(~v) be a positive bounded formula and let limn∈p ~xn = ~x in M.
If p‖− φ(〈~xn〉) then φ(~x) is true.

We now define the set of approximations of a PB formula.

Definition 6.6 The set A(φ) of approximations of a PB formula φ(~v) is defined
by induction on the complexity of φ as follows. For each neoseparable set D, let
〈Dm〉 be a chain of basic sets such that

⋃

m Dm is dense in D.

A(τ(~v) ∈ C) = {τ(~v) ∈ C1/n : n ∈ N}.

A(
∧

m
φm) = {

∧

m≤n

ψm : n ∈ N and ψm ∈ A(φm) for all m ≤ n}.

A(φ ∨ ψ) = {φ0 ∨ ψ0 : φ0 ∈ A(φ) and ψ0 ∈ A(ψ)}.

A((∃v ∈ C)φ) = {(∃v ∈ C1/n)ψ : ψ ∈ A(φ) and n ∈ N}.

A((∀v ∈ D)φ) = {(∀v ∈ Dm)ψ : ψ ∈ A(φ) and m ∈ N}.

Note that each approximation of a PB formula φ is a consequence of φ. The
approximations of φ are finite formulas but are not necessarily positive bounded,
because if C is neocompact, the set C1/n is neoclosed but not necessarily neocompact.

The next theorem from [FK4] characterizes positive bounded forcing in terms of
approximate truth.
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Theorem 6.7 Let φ(~v) be a positive bounded formula and 〈~xn〉 be neotight. The
following are equivalent.

(i) p‖− φ(〈~xn〉).
(ii) For all ψ ∈ A(φ), ψ(~xn) is true for all but finitely many n ∈ p,

Corollary 6.8 (Positive Bounded Approximation Theorem) Let φ(~v) be a PB for-
mula and ~c be a tuple of constants. Then φ(~c) is true if and only if ψ(~c) is true for
every approximation ψ ∈ A(φ).

In the case that Ω is an atomless B-adapted Loeb space, the Approximation
Theorem 2.6 is a special case of the Positive Bounded Approximation Theorem. To
see this, write the formula

(∃x ∈ A ∩B)f(x) ∈ D

in the equivalent form
(∃x ∈ B)[x ∈ A ∧ f(x) ∈ D].

The latter formula is positive bounded by Theorem 5.5.

Here are two further results about approximations from [FK4] which are analo-
gous to theorems from [HI] and [A2].

Theorem 6.9 (Perturbation Principle) For each PB formula φ(~v), neocompact set
D, and approximation ψ ∈ A(φ), there is a real δ > 0 such that whenever ~x, ~y ∈ D,
φ(~x) holds, and ρ(~x, ~y) ≤ δ, we have ψ(~y).

Theorem 6.10 (Almost-Near Theorem) Let φ(v) be a PB formula where v has sort
M, let C be a neocompact set in M, and let D be a neoseparable set in M such that
every x ∈ C such that φ(x) is true belongs to D. Then for every real ε > 0 there is
an approximation ψ ∈ A(φ) such that every x ∈ C such that ψ(x) is true belongs to
Dε.
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