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Abstract. We show that each of the five basic theories of second order arithmetic
that play a central role in reverse mathematics has a natural counterpart in the
language of nonstandard arithmetic. In the earlier paper [HKK1984] we introduced
saturation principles in nonstandard arithmetic which are equivalent in strength to
strong choice axioms in second order arithmetic. This paper studies principles which
are equivalent in strength to weaker theories in second order arithmetic.

§1. Introduction. Reverse mathematics was introduced by H. Fried-
man and is developed extensively in the book of Simpson [Si1999]. It
shows that many results in classical mathematics are equivalent to one of
five basic theories in the language L2 of second order arithmetic. These
theories, from weakest to strongest, are called Recursive Comprehen-
sion (RCA0), Weak Koenig Lemma (WKL0), Arithmetical Comprehension
(ACA0), Arithmetical Transfinite Recursion (ATR0), and Π1

1 Comprehen-
sion (Π1

1-CA0). In this paper we find natural counterparts to each of these
theories in the language ∗L1 of nonstandard arithmetic.

The language L2 of second order arithmetic has a sort for the natural
numbers and a sort for sets of natural numbers, while the language ∗L1
of nonstandard arithmetic has a sort for the natural numbers and a sort
for the hyperintegers. In nonstandard analysis one often uses first order
properties of hyperintegers to prove second order properties of integers.
An advantage of this method is that the hyperintegers have more structure
than the sets of integers. The method is captured by the Standard Part
Principle (STP), a statement in the combined language L2 ∪ ∗L1 which
says that a set of integers exists if and only if it is coded by a hyperinteger.

For each of the basic theories T = WKL0, ACA0,ATR0,Π1
1-CA0 in the

language L2 of second order arithmetic, we will find a natural counterpart
U in the language ∗L1 of nonstandard arithmetic, and prove that:

1) U + STP ` T , and
2) U + STP is conservative with respect to T (that is, any sentence of

L2 provable from U + STP is provable from T .
We also get a result of this kind for the theory RCA0, but with a weaker

form of STP.
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For instance, in the case that T = WKL0, the corresponding theory
U = ∗ΣPA in the language ∗L1 has the following axioms (stated formally
in Section 3):

• Basic axioms for addition, multiplication,and exponentiation,
• The natural numbers form a proper initial segment of the hyperin-

tegers,
• Induction for bounded quantifier formulas about hyperintegers,
• If there is a finite n such that (z)n is infinite, then there is a least n

such that (z)n is infinite.

In the case that T = Π1
1-CA0, our result proves a conjecture stated in the

paper [HKK1984]. The missing ingredient was a nonstandard analogue of
the Kleene normal form theorem for Σ1

1 formulas, which is proved here in
Section 8 and is also used for the case T = ATR0. In the case T = WKL0,
our conservation result uses a self-embedding theorem of Tanaka [Ta1997].

The paper [Ke2005] is a companion to this paper which develops a
framework for nonstandard reverse mathematics in the setting of higher
order type theory. There is a close relationship between this paper and the
paper [En2005] of Enayat. In the earlier papers [HKK1984] and [HK1986]
we introduced saturation principles in nonstandard arithmetic which are
equivalent in strength to strong choice axioms in second and higher order
arithmetic. This paper studies principles which are equivalent in strength
to weaker theories in second order arithmetic.

I thank Itay Ben Yaacov, Ali Enayat, Arnold Miller, and Steffen Lempp
for helpful discussions in connection with this work.

§2. Preliminaries. We refer to [Si1999] for background in reverse
mathematics and second order number theory, and to [CK1990] for back-
ground in model theory.

We begin with a brief review of the first order base theory ΣPA (Peano
arithmetic with restricted induction) and the second order base theory
RCA0 (recursive comprehension).

The language L1 of ΣPA is a first order language with variables m,n, . . . ,
equality =, the order relation <, the constants 0, 1, and the binary op-
erations +, ·. For convenience in coding finite sequences of integers, we
also include in the vocabulary of L1 the symbols exp, pn, and (m)n for
the exponentiation function exp(m,n) = mn, the function pn = the n-th
prime, and the function (m)n = the largest k ≤ m such that (pn)k divides
m. The theory ΣPA without the extra symbols exp, pn, and (m)n is called
IΣ1 in the literature.

The language L2 of RCA0 is a two sorted language with the symbols of
L1 in the number sort N , variables X,Y, . . . of the set sort P , and the
binary operation ∈ of sort N × P .
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When we write a formula ϕ(~v), it is understood that ~v is a tuple of
variables that contains all the free variables of ϕ. If we want to allow
additional free variables we write ϕ(~v, . . . ). The length of ~v is denoted
by |~v|, and vi is a typical element of ~v. If ~m = 〈m0, . . . ,mk〉 then (~m)n
denotes the tuple 〈(m0)n, . . . , (mk)n〉.

The bounded quantifiers (∀n < t) and (∃n < t) are defined as usual,
where t is a term of sort N . By a bounded quantifier formula, or
∆0

0 formula, we mean a formula of L2 built from atomic formulas using
propositional connectives and bounded quantifiers. We put Σ0

0 = Π0
0 =

∆0
0, and

Σ0
k+1 = {∃mθ : θ ∈ Π0

k}, Π0
k+1 = {∀mθ : θ ∈ Σ0

k}.

The arithmetical formulas are the formulas in the set
⋃

k Σ0
k =

⋃

k Π0
k.

These are the formulas of L2 with only first order quantifiers.

Definition 2.1. Axioms of ΣPA.
• The Basic Axioms, a finite set of sentences giving the usual recur-

sive rules for <, +, ·, exp, pn, and (m)n.
• First Order Σ0

1 Induction Scheme

[ϕ(0, ~n) ∧ ∀m[ϕ(m,~n) → ϕ(m + 1, ~n)]] → ∀mϕ(m,~n)

where ϕ(m,~n) is a Σ0
1 formula of L1.

It is well known that in ΣPA, every primitive recursive relation can be
defined in a canonical way by both a Σ0

1 and a Π0
1 formula, and that the

primitive recursive relations are closed under bounded quantification.
A general L2-structure has the form M = (N ,P) where N is an L1-

structure, called the first order part of M, and P is a family of subsets
of the universe of N .

Definition 2.2. Axioms of RCA0.
• The Basic Axioms of ΣPA.
• Σ0

1 Induction:

[ϕ(0, . . . ) ∧ ∀m[ϕ(m, . . . ) → ϕ(m + 1, . . . )]] → ∀mϕ(m, . . . )

where ϕ is a Σ0
1 formula of L2.

• ∆0
1 Comprehension:

∀m[ϕ(m, . . . ) ↔ ψ(m, . . . )] → ∃X∀m [m ∈ X ↔ ϕ(m, . . . )]

where ϕ is a Σ0
1 formula of L2 in which X does not occur, and ψ a

Π0
1 formula of L2 in which X does not occur.

In RCA0 one can define the notion of a binary tree as a set of numbers
which code finite sequences of 1’s and 2’s with the natural ordering, as
well as the notion of an infinite branch of a tree.
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The Weak Koenig Lemma, WKL, is the L2 statement that every
infinite binary tree X has an infinite branch. The theory WKL0 is the
defined as

WKL0 = RCA0 + WKL.

In this paper we will obtain several conservation results in the following
sense.

Definition 2.3. Let T be a theory in a language L and T ′ be a theory
in a language L′ ⊇ L. We say that T ′ is conservative with respect to
T if every sentence of L which is provable from T ′ is provable from T .

This gives an upper bound on the strength of T ′; if T ′ is conserva-
tive with respect to T , then any weakening of T ′ is also conservative
with respect to T . The following characterization follows easily from the
Löwenheim-Skolem theorem.

Proposition 2.4. Suppose L ⊆ L′ and L′ is countable. A theory T ′

in L′ is conservative with respect to a theory T in L if and only if every
countable model M of T has an elementary extension that can be expanded
to a model of T ′.

We will need the following conservation results of Friedman and Har-
rington (see [Si1999], Chapter IX) which show that ΣPA is the first order
part of both RCA0 and WKL0.

Proposition 2.5. (i) For any model N of ΣPA there is a model M =
(N ,P) of RCA0 with first order part N .

(ii) For any countable model M = (N ,P) of RCA0 there is a countable
model M′ = (N ,P ′) of WKL0 with the same first order part N and with
P ′ ⊇ P.

Corollary 2.6. For any countable model N of ΣPA there is a count-
able model M = (N ,P) of WKL0 with first order part N .

Corollary 2.7. WKL0 is conservative with respect to ΣPA.

§3. The theory ∗ΣPA. In this section we define a weak theory ∗ΣPA
of nonstandard arithmetic. The language ∗L1 has all the symbols of L1
plus a new hyperinteger sort ∗N with variables x, y, . . . . In sort ∗N , ∗L1
has the symbols =, <, 0, 1,+, ·, exp, py, (x)y corresponding to the symbols
of L1. The sort N has the variables k, m, n, p, q, . . . , and sort ∗N has the
variables u, v, w, x, y, z, . . . . The universe of sort N is to be interpreted
as a subset of the universe of sort ∗N . Terms built from variables of
sort N are also of sort N . Variables and terms of sort N are allowed in
argument places of sort ∗N . Terms which contain at least one variable of
sort ∗N are also of sort ∗N . For example, x + n is a term of sort ∗N , and
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∃n y < x + n is a formula. We introduce the predicate symbol S for the
standard integers, and for each term t we write S(t) for ∃nn = t.

We now build a hierarchy of formulas beginning with the stars of
bounded quantifier formulas and applying quantifiers over variables of
sort N .

Definition 3.1. In ∗L1, a bounded quantifier is an expression of the
form (∀s < t) or (∃s < t) where s is a variable, t is a term, and if s has
sort N then t has sort N . (Thus we do not count (∀n < x) as a bounded
quantifier).

An internal bounded quantifier formula, or ∆S
0 formula, is a

formula of ∗L1 built from atomic formulas using connectives and bounded
quantifiers. We put ΠS

0 = ΣS
0 = ∆S

0 , and

ΠS
k+1 = {∃nϕ : ϕ ∈ ΣS

k }, ΣS
k+1 = {∀nϕ : ϕ ∈ ΠS

k }.

A formula is S-arithmetical if it belongs to
⋃

k ΣS
k =

⋃

k ΠS
k .

In the above definition, The S-prefix indicates that the outer quantifiers
are over standard integers.

Definition 3.2. Axioms of ∗ΣPA.
• The Basic Axioms of ΣPA, but with variables of sort ∗N .
• Proper Initial Segment:

∀n∃x(x = n),

∀n∀x[x < n → S(x)],
∃y∀n(n < y).

• Internal Induction:

[ϕ(0, ~u) ∧ ∀x[ϕ(x, ~u) → ϕ(x + 1, ~u)]] → ∀xϕ(x, ~u)

where ϕ(x, ~u) is a ∆S
0 formula.

• Finiteness:

∀z[S((z)0) ∧ ∀m[S((z)m) → S((z)m+1)] → ∀mS((z)m)].

We let ∗∆PA be the theory whose axioms are all the axioms of ∗ΣPA
except the Finiteness Axiom.

An ∗L1 structure will be a structure of the form (N , ∗N ) where N is a
substructure of ∗N . The usual rules for terms and equality hold. Thus
for every term t of sort N we always have ∃nt = n, which we abbreviate
as S(t) .

We rely heavily on the convention that k, . . . , q are variables of sort N
and u, . . . , z are variables of sort ∗N . For example, ∗ΣPA ` ∃y∀n(n < y)
but ∗ΣPA ` ¬∃p∀n(n < p). We say that x is finite if S(x), and x is
infinite otherwise. We sometimes use H,K for parameters of sort ∗N
which are infinite.
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We now establish some elementary facts in ∗∆PA. The following lemma
(and its dual with existential quantifiers) will be used without explicit
mention.

Lemma 3.3. For every formula ϕ(x, . . . ) of ∗L1 and term t of sort N ,
(i) ∗∆PA ` (∀x < t)ϕ(x, . . . ) ↔ (∀n < t)ϕ(n, . . . ).
(ii) ∗∆PA ` [¬S(H) ∧ (∀x < H)ϕ(x, . . . )] → ∀nϕ(n, . . . ).

Proof. This follows from the Basic and Proper Initial Segment Ax-
ioms. a

Lemma 3.4. (∆S
0 -comprehension) For each ∆S

0 formula ϕ(m,~u) in which
y does not occur,

∗∆PA ` ∃y∀m [(y)m > 0 ↔ ϕ(m,~u)].

Proof. Work in ∗∆PA. Pick an infinite H. By Internal Induction,
there exists y < (pH)H such that (∀x < H)(y)x < 2 and

(∀x < H)[(y)x > 0 ↔ ϕ(x, ~u)].

Then
∀m [(y)m > 0 ↔ ϕ(m,~u)].

a

Lemma 3.5. (∆S
1 -comprehension) Let ϕ(x, ~u) be a ΣS

1 formula, and
ψ(x, ~u) be a ΠS

1 formula, in which y does not occur. Then
∗∆PA ` ∀m [ϕ(m,~u) ↔ ψ(m,~u)] → ∃y∀m [(y)m > 0 ↔ ϕ(m,~u)].

Proof. Work in ∗∆PA. Let ϕ(x, ~u) be ∃kϕ′(x, k, ~u) and ψ(x, ~u) be
∀kψ′(x, k, ~u) where ϕ′, ψ′ ∈ ∆S

0 . Pick an infinite H. Assume that

∀m [ϕ(m,~u) ↔ ψ(m,~u)].

Then

∀m [∃k ϕ′(m, k, ~u) ↔ (∃z < H)[ϕ′(m, z, ~u) ∧ (∀v ≤ z)ψ′(m, v, ~u)]].

Therefore by ∆S
0 -comprehension, there exists y such that

∀m [(y)m > 0 ↔ ∃k ϕ′(m, k, ~u)].

a

Given a ∆S
0 formula ϕ(x, ~u) of ∗L1, the bounded minimum operator

(µx < y) ϕ(x, ~u) equals the least x < y such that ϕ(x, ~u) if there is one,
and equals y otherwise. The formal definition is

z = (µx < y) ϕ(x, ~u) ↔ [(∀x < z)¬ϕ(x, ~u) ∧ [(z < y ∧ ϕ(z, ~u)) ∨ z = y]],

where z is a new variable. Note that if ϕ(x, ~u) is a ∆S
0 formula, then so

is z = (µx < y) ϕ(x, ~u).
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Lemma 3.6. (i) For each ∆S
0 formula ϕ(x, ~u),

∗∆PA ` ∃!z z = (µx < y)ϕ(x, ~u).

(ii) For each ∆S
0 formula ψ(v, x, ~u),

∗∆PA ` ∃z(∀v < w)(z)v = (µx < y)ψ(v, x, ~u).

Proof. (i) Take a new variable v which does not occur in ϕ(x, ~u) and
prove

(∃!z ≤ v) z = (µx < v)[x ≤ y ∧ ϕ(x, ~u)]

by internal induction on v. (It is easily seen that this is equivalent to a
∆S

0 formula.)
(ii) Prove by internal induction on w that

(pw)y < H → (∃z < Hw)(∀v < w)(z)v = (µx < y)ψ(v, x, ~u),

and take H so that (pw)y < H. a

This lemma allows us to treat (µx < y)ϕ(x, ~u) as a term. If ϕ(x, ~u) and
ψ(x, ~u) are ∆S

0 formulas, then ψ((µx < y)ϕ(x, ~u), ~u) is the ∆S
0 formula

(∃z ≤ y) [z = (µx < y)ϕ(x, ~u) ∧ ψ(z, ~u)].

We may use the bounded minimum operator to introduce new notation
in the usual way. For example, we write y � w for

(µx < y)(∀v < w) (x)v = (y)v.

y � w is the code of the first w terms of the sequence coded by y, and for
each ∆S

0 formula ψ(x, ~u), ψ(y � w, ~u) is the ∆S
0 formula

(∃z ≤ y) [z = y � w ∧ ψ(z, ~u)].

We use the vector notation ~x = ~y � w to mean that xi = yi � w for each i.
Let us write ∀∞x ϕ(x, ~u) for ∀x[¬S(x) → ϕ(x, ~u)] and ∃∞x ϕ(x, ~u) for

∃x [¬S(x) ∧ ϕ(x, ~u)].

Lemma 3.7. (Overspill) Let ϕ(x, ~u) be a ∆S
0 formula. In ∗∆PA,

∀nϕ(n, ~u) → ∃∞xϕ(x, ~u), and ∀∞xϕ(x, ~u) → ∃nϕ(n, ~u).

Proof. We prove the first statement. Assume ∀nϕ(n, ~u). Pick an
infinite H. If ϕ(H,~u) we may take x = H. Assume ¬ϕ(H,~u). By Lemma
3.6 we may take z = (µy < H)¬ϕ(y, ~u). Then ¬S(z). Let x = z − 1. We
have x < z, so ϕ(x, ~u). But S is closed under the successor function, so
¬S(x). a

Lemma 3.8. (Internal Induction in S) Let ϕ(x, ~u) be a ∆S
0 formula. In

∗∆PA,

[ϕ(0, ~u) ∧ ∀m[ϕ(m,~u) → ϕ(m + 1, ~u)]] → ∀m ϕ(m,~u).
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Proof. Assume ϕ(0, ~u) ∧ ∀m[ϕ(m,~u) → ϕ(m + 1, ~u)]. By internal
induction, for each k we have ∀x[x < k → ϕ(x, ~u)]. Therefore ∀mϕ(m,~u).

a

Proposition 3.9. (ΣS
1 Induction in S) In ∗∆PA, the Finiteness Axiom

is equivalent to the ΣS
1 Induction scheme

ϕ(0, ~u) ∧ ∀m[ϕ(m,~u) → ϕ(m + 1, ~u)] → ∀mϕ(m,~u)(1)

where ϕ(m,~u) is a ΣS
1 formula.

Proof. The Finiteness Axiom follows from (1) where ϕ(m, z) is the
formula ∃nn = (z)m. Let ϕ(m,~u) be ∃nψ(m,n, ~u) where ψ is a ∆S

0
formula. Pick an infinite H. By Lemma 3.6 we may take z such that

(∀x < H) (z)x = (µy < H)ψ(x, y, ~u).

Then for all m, we have

∃nψ(m,n, ~u) ↔ S((z)m).

The formula (1) now follows from the Finiteness Axiom. a

Theorem 3.10. ∗ΣPA ` ΣPA.

Proof. The basic axioms of ΣPA follow from the basic axioms of ∗ΣPA.
The Σ0

1-Induction scheme follows from the ΣS
1 -Induction scheme of Propo-

sition 3.9 with the parameters ~u in S. a

In the next result, S(y � k) denotes the ΣS
1 formula ∃p (p = y � k).

Proposition 3.11.

∗ΣPA ` S(y � n) ↔ (∀m < n) S((y)m).

Proof. Work in ∗ΣPA. If S(y � n) and m < n, then (y)m ≤ y � n, so
S(ym) by the Proper Initial Segment Axiom. For the converse, assume
(∀m < n) S((y)m). We prove by ΣS

1 induction in S (Lemma 3.9) that for
all m,

m ≤ n → S(y � m).

It is trivial that S(y � 0). Assume m ≤ n → S(y � m). If m ≥ n then
m + 1 ≤ n → S(y � m + 1) is trivially true. Suppose m < n. Then
S(y � m), S(pm), and S((y)m). We have

y � (m + 1) = (y � m) · p(y)m
m ,

so S(y � (m + 1)). This completes the induction. a
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§4. Standard Parts. We now combine the languages L2 and ∗L1 into
a common language L2∪ ∗L1, and introduce the notions of a standard set
and a standard function. They will provide a link between hyperintegers
and sets. The language L2 ∪ ∗L1 has an integer sort N , a set sort P , and
a hyperinteger sort ∗N . L2 ∪ ∗L1 has all the symbols of L2 and ∗L1. In
this language, it will make sense to ask whether a formula of ∗L1 implies
a formula of L2.

An L2 ∪ ∗L1 structure will have the form (M, ∗N ) where M = (N ,P)
is an L2 structure and (N , ∗N ) is a ∗L1 structure.

We first define the notion of a standard set, which formalizes a con-
struction commonly used in nonstandard analysis. In the following we
work in the language L2 ∪ ∗L1 and assume the axioms of ∗∆PA.

Definition 4.1. We say that X is the standard set of x and that
x is a lifting of X, and write X = st(x), if ∀n [n ∈ X ↔ (x)n > 0].
~X = st(~x) means that Xi = st(xi) for each i.

Thus X = st(x) means that X is the set of all finite n such that pn
divides x. We now introduce the Standard Part Principle, which says
that every set has a lifting, and every hyperinteger has a standard set.
Later on we will introduce several theories that have the Standard Part
Principle as an axiom.

Definition 4.2. The Upward Standard Part Principle is the state-
ment that every set has a lifting, formally, ∀X∃x X = st(x).

The Downward Standard Part Principle is the statement that ev-
ery hyperinteger has a standard set, formally, ∀x∃X X = st(x).

The Standard Part Principle (STP) is the conjunction of the Upward
and the Downward Standard Part Principles.

In nonstandard analysis, STP often allows one to obtain results about
sets of type P (N) by reasoning about hyperintegers of type ∗N .

The STP is related to H. Friedman’s notion of a standard system, as
generalized by Enayat [En2005]. Given a model (N , ∗N ) of ∗∆PA, Enayat
defined the standard system of ∗N relative to N by

SSyN (∗N ) = {st(x) : x ∈ ∗N}.
In an L2 ∪ ∗L1-structure (N ,P, ∗N ),

the STP says that P = SSyN (∗N ),
the Upward STP says that P ⊆ SSyN (∗N ),
the Downward STP says that P ⊇ SSyN (∗N ).

The Standard Part Principles may also be formulated using functions
instead of sets. Let us say that X is a total function if ∀m∃!n (m,n) ∈
X. We let f, g, . . . range over total functions and write f(m) = n instead
of (m,n) ∈ f .
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We say that x is near-standard, in symbols ns(x), if ∀nS((x)n). Note
that ns(x) is a ΠS

2 formula. We employ the usual convention for rel-
ativized quantifiers, so that ∀nsxψ means ∀x[ns(x) → ψ] and ∃nsxψ
means ∃x[ns(x) ∧ ψ]. We write

x ≈ y if ns(x) ∧ ∀n (x)n = (y)n.

We write f = ox, and say f is the standard function of x and that
x is a lifting of f , if

ns(x) ∧ ∀nf(n) = (x)n.

Thus st(x) is a set and ox is a function. The following is easily checked.

Proposition 4.3. Assume the axioms of ∗∆PA and that a set exists if
and only if its characteristic function exists.

(i) The Upward STP holds if and only if ∀f∃x f = ox, that is, every
total function has a lifting.

(ii) The Downward STP holds if and only if ∀nsx∃f f = ox, that is,
every near-standard hyperinteger has a standard function.

We next show that for liftings of functions one can restrict attention to
hyperintegers less than a given infinite hyperinteger H.

Lemma 4.4. In ∗∆PA, suppose that x is near-standard and H is infi-
nite. Then

(i) If x ≈ y then ns(y) and y ≈ x.
(ii) (∃y < H)x ≈ y.

Proof. (i) Suppose x ≈ y. We have ns(x), so for each n, S((x)n)
and (y)n = (x)n, and hence S((y)n). Therefore ns(y), and y ≈ x follows
trivially.

(ii) By Overspill there is an infinite K such that KK < H. By Lemma
3.8,

∀n [n < K ∧ (∃y < Kn)(∀m < n) (y)m = (x)m].
By Overspill,

∃∞u [u < K ∧ (∃y < Ku)(∀v < u) (y)v = (x)v].

Then y < H ∧ y ≈ x. a

We now define a lifting map from formulas of L2 to formulas of ∗L1.

Definition 4.5. Let ϕ(~m, ~X) be a formula in L2, where ~m, ~X contain
all the variables of ϕ, both free and bound. The lifting ϕ(~m, ~x) is defined
as follows, where ~x is a tuple of variables of sort ∗N of the same length
as ~X.
• Replace each subformula t ∈ Xi, where t is a term, by (xi)t > 0.
• Replace each quantifier ∀Xi by ∀xi, and similarly for ∃.
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It is clear that if ϕ is a ∆0
0 formula of L2, then ϕ is a ∆S

0 formula of ∗L1,
and if ϕ is an arithmetical formula then ϕ is an S-arithmetical formula.
The following lemma on liftings of formulas will be used many times.

Lemma 4.6. (i) For each arithmetical formula ϕ(~m, ~X) of L2,
∗∆PA ` st(~x) = ~X → [ϕ(~m, ~X) ↔ ϕ(~m, ~x)].

(ii) For each formula ϕ(~m, ~X) of L2,
∗∆PA + STP ` st(~x) = ~X → [ϕ(~m, ~X) ↔ ϕ(~m, ~x)].

Proof. In the case that ϕ is atomic, the lemma follows from the def-
initions involved. The general case is then proved by induction on the
complexity of ϕ, using STP at the quantifier steps in part (ii). a

§5. The theory ∗WKL0. In this section we define the theory ∗WKL0
in the language L2∪∗L1, and show that ∗WKL0 implies WKL0 and ∗WKL0
is conservative with respect to WKL0. A consequence of this result is that
∗ΣPA is conservative with respect to ΣPA.

Definition 5.1. In the language L2∪∗L1, the theory ∗WKL0 is defined
by

∗WKL0 = ∗ΣPA + STP.

Proposition 5.2. Every model of ∗ΣPA has a unique expansion to a
model of ∗WKL0.

Proof. Given a model (N , ∗N ) of ∗ΣPA, the unique expansion to a
model of ∗WKL0 is obtained by taking P = {st(x) : x ∈ ∗N}. a

Proposition 5.3. Let (N ,N ′) be a model of ∗ΣPA and let ∗N be an
end extension of N ′ which satisfies Internal Induction.

(i) (N , ∗N ) is a model of ∗ΣPA.
(ii) If (M,N ′) is a model of ∗WKL0, then (M, ∗N ) is a model of

∗WKL0.

Proof. (i) It is clear that the axioms of ∗∆PA hold in (N , ∗N ). The
Finiteness Axiom in (N , ∗N ) follows from Lemma 4.4 and the Finiteness
Axiom in (N ,N ′).

(ii) STP in (N , ∗N ) follows from Lemma 4.4 and STP in (N ,N ′). a

Theorem 5.4. ∗WKL0 ` WKL0.

Proof. Work in ∗WKL0. We first prove Σ0
1 Induction. For future

reference, we note that this part of the proof will not use the Downward
STP.

Let ψ(m,~n, ~X) be a Σ0
1 formula of L2. Suppose that

ψ(0, ~n, ~X) ∧ ∀m[ψ(m,~n, ~X) → ψ(m + 1, ~n, ~X)].
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By the Upward STP the tuple ~X has a lifting ~x. By Lemma 4.6 (i),

ψ(0, ~n, ~x) ∧ ∀m [ψ(m,~n, ~x) → ψ(m + 1, ~n, ~x)].

Then by Proposition 3.9, ∀mψ(m,~n, ~x). By Lemma 4.6 (i) again, we have
∀mψ(m,~n, ~X).

We next prove ∆0
1-comprehension. Assume that

∀m[∃kϕ(m, k, ~Y ) ↔ ∀kψ(m, k, ~Y )]

where ϕ and ψ are ∆0
0 formulas. By the Upward STP there is a lifting ~y

of ~Y . By Lemma 4.6,

∀m [∃k ϕ(m, k, ~y) ↔ ∀k ψ(m, k, ~y)].

By ∆S
1 -comprehension (Lemma 3.5), there exists x such that

∀m [(x)m > 0 ↔ ∃k ϕ(m, k, ~y)].

By the Downward STP there is a set X = st(x). By Lemma 4.6,

∀m[m ∈ X ↔ ∃kϕ(m, k, ~Y )].

Finally, we prove WKL. Let ψ(n) be the formula

(∀m < n)[(n)m < 3 ∧ (∀k < m)[(n)k = 0 → (n)m = 0]].

ψ(n) says that n codes a finite sequence of 1’s and 2’s. Write m � n if

ψ(m) ∧ ψ(n) ∧ (∃k < n)m = n � k].

This says the sequence coded by m is an initial segment of the sequence
coded by n. ψ(n) and m � n are ∆0

0 formulas, and their stars ∗ψ(u) and
v ∗� u are in ∆S

0 . Suppose that T codes an infinite binary tree, that is,

∀m∃n[m < n ∧ n ∈ T ]

and
∀n[n ∈ T → ψ(n) ∧ (∀m < n)[m � n → m ∈ T ]].

By the axioms of RCA0 (already proved), there is a function f such that
for each k, f(k) is the k-th element of T . Then

∀k [k ≤ f(k) ∧ f(k) ∈ T ].

By STP, T has a lifting x and f has a lifting y. Then ∀k S((y)k). By
Lemma 4.6,

∀n[(x)n > 0 → ∗ψ(n) ∧ (∀m < n)[m∗�n → (x)m > 0]]

and
∀k [k ≤ (y)k ∧ (x)(y)k

> 0].

Therefore

∀k [k ≤ t∧(x)t > 0∧∗ψ(t)∧(∀m < t)[m∗� t → (x)m > 0]] where t = (y)k.
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By Overspill,

∃∞w [w ≤ t∧(x)t > 0∧∗ψ(t)∧(∀u < t)[u∗� t → (x)u > 0]] where t = (y)w.

Then ns(t), and by STP there exists g = ot. It follows that g codes an
infinite sequence of 1’s and 2’s, and each finite initial segment of g belongs
to T . Thus g codes an infinite branch of T . a

We now use a result of Tanaka [Ta1997] to show that ∗WKL0 is conser-
vative with respect to WKL0.

Definition 5.5. By an ω-model we mean an L2-structureM = (N ,P)
such that N is the standard model of arithmetic.

Theorem 5.6. (Tanaka [Ta1997]). For every countable model M =
(N ,P) of WKL0 which is not an ω-model, there is a model M0 = (N0,P0)
such that M0 ∼= M, N is a proper end extension of N0, and P0 =
{X ∩N0 : X ∈ P}.

Theorem 5.7. Every countable model M of WKL0 which is not an ω-
model can be expanded to a countable model (M, ∗N ) of ∗WKL0 such that
∗N ∼= N .

Proof. By Theorem 5.6, there is a model M1 = (N1,P1) such that
M1 ∼= M, N1 is a proper end extension of N , and P = {X∩N : X ∈ P1}.
Then N1 ∼= N . (M,N1) clearly satisfies all the axioms of ∗WKL0 except
possibly the Finiteness Axiom and STP.

Proof of STP: Let x ∈ N1 and let X1 = {y ∈ N1 : (x)y > 0}. Then
X1 ∈ P1 and st(x) = X1 ∩ N ∈ P. Now let X ∈ P. Then X = X1 ∩ N
for some X1 ∈ P1. Pick y ∈ N1 \ N . There exists x ∈ N1 such that
(∀z < y)[(x)z > 0 ↔ z ∈ X1]. Then x is a lifting of X.

Proof of the Finiteness Axiom: Let z ∈ N1. Suppose that S((z)0) and

∀m[S((z)m) → S((z)m+1)].

The set Y = {(m,n) ∈ N 2 : (z)m = n} belongs to P, and using Σ0
1

Induction with the formula ∃n(m,n) ∈ Y we conclude that ∀mS((z)m).
a

Corollary 5.8. ∗WKL0 is conservative with respect to WKL0.

Corollary 5.9. Every countable nonstandard model N of ΣPA can
be expanded to a countable model (N , ∗N ) of ∗ΣPA such that ∗N ∼= N .
∗ΣPA is conservative with respect to ΣPA.

§6. The Theory ∗RCA0. In this section we introduce the theory ∗RCA0
in the language L2∪∗L1, and show that ∗RCA0 implies and is conservative
with respect to the base theory RCA0 of reverse mathematics. ∗RCA0 will
contain the axioms of ∗ΣPA, the Upward STP, and a weakening of the
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Downward STP which asserts that certain hyperintegers have standard
sets.

We begin with a definability notion which is expressible in the language
∗L1. We say that x is setlike if ∀m (x)m < 2.

Definition 6.1. Suppose that x and each yi is setlike. x is ∆0
1-definable

from ~y if there are a Σ0
1 formula ϕ(k, m, ~p) and a Π0

1 formula ψ(k,m, ~p)
of L1 such that

∀m[∃k ϕ(k, m, ~y � k) ↔ ∀k ψ(k, m, ~y � k)]

and
∀m[(x)m > 0 ↔ ∃k ϕ(k,m, ~y � k)].

Definition 6.2. The theory ∗RCA0 has the following axioms:

• The axioms of ∗ΣPA,
• The Upward STP, ∀X∃x (X = st(x)),
• Each constant function exists, ∀n∃f∀kf(k) = n.
• ∆0

1-STP: If x and each yi is setlike, x is ∆0
1-definable from ~y, and

∃~Y (~Y = st(~y)), then ∃X(X = st(x)).

Lemma 6.3. (i)
∗∆PA ` ∀v∃x [x is setlike ∧ ∀m [(x)m > 0 ↔ (v)m > 0]].

(ii) ∗RCA0 ` ∀X [X has a setlike lifting].
(iii) ∗RCA0 ` ∀∞H∀X [X has a setlike lifting y < H].

Proof. (i) By internal induction, there exists x ≤ v such that (∀u <
v)xu = min((v)u, 1).

(ii) By the Upward STP there is a lifting v of X. Then by (i), there is
a setlike x such that st(x) = st(v) = X.

(iii) Take an infinite H and a set X. By (ii), X has a setlike lifting x.
Then x is near-standard, and by Lemma 4.4 there exists y ≈ x such that
y < H. y is a setlike lifting of X. a

We need the following normal form theorem for Σ0
1 formulas in ∗ΣPA.

Lemma 6.4. For each Σ0
1 formula ϕ(~m, ~Y ) in L2, there is a ∆0

0 formula
θ(k, ~m,~r) in L1 such that

∗ΣPA ` ϕ(~m, ~y) ↔ ∃kθ(k, ~m, ~y � k).

Proof. We have ϕ(~m, ~y) = ∃nψ(n, ~m, ~y) where ψ is ∆S
0 and each yi

occurs only in subformulas of the form (yi)t > 0 where t is a term of sort
N . Let ~p be a tuple containing all free and bound variables of sort N in
ψ, and let T be the finite set of all terms t(~p) of sort N which occur in
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ψ. Let ~m = 〈m0, . . . ,mj〉 and let |~q| = |~p|. Then the result holds where
θ(k, ~m, ~y � k) is

(∃n < k) [ψ(n, ~m, ~y � k) ∧ (∀~q < n + m0 + . . . + mj)
∧

t∈T

t(~q) < k].

a

Theorem 6.5. ∗RCA0 ` RCA0.

Proof. Work in ∗RCA0. We have already shown in the proof of The-
orem 5.4 that Σ0

1-induction follows from the axioms of ∗RCA0. We prove
∆0

1-comprehension. The idea is to use ∆S
1 -comprehension in ∗∆PA to get

a hyperinteger x, and then use the ∆0
1-STP axiom to get a set X = st(x).

Assume that
∀m[ϕ(m, ~Y ) ↔ ψ(m, ~Y )]

where ϕ ∈ Σ0
1 and ψ ∈ Π0

1. We may suppose that there are no parameters
of sort N , because such parameters can replaced by the corresponding
constant functions and included in ~Y . By Lemma 6.3, ~Y has a setlike
lifting ~y. By Lemma 4.6,

ϕ(m, ~Y ) ↔ ϕ(m,~y), ψ(m, ~Y ) ↔ ψ(m,~y).

By Lemma 6.4, there are ∆0
0 formulas α(k,m,~n), β(k, m,~n) in L1 such

that
ϕ(m,~y) ↔ ∃k α(k, m, ~y � k),

ψ(m,~y) ↔ ∀k β(k, m, ~y � k).

Then
∀m [∃k α(k,m, ~y � k) ↔ ∀k β(k, m, ~y � k)].

Since ~y is setlike, ∀k S(~y � k), and therefore ∃k α(k,m, ~y � k) is ΣS
1 and

∀k β(k, m, ~y � k) is ΠS
1 . By ∆S

1 -comprehension (Lemma 3.5) there exists
x such that

∀m [(x)m > 0 ↔ ∃k α(k, m, ~y � k)].

By Lemma 6.3 (i), we may take x to be setlike. This shows that x is
∆0

1-definable from ~y. By ∆0
1-STP, there exists X with X = st(x). Since

ϕ(m, ~Y ) ↔ ∃k α(k,m, ~y � k)

we have
∀m [m ∈ X ↔ ϕ(m, ~Y )].

This proves ∆0
1-CA. a

Theorem 6.6. Every countable model M = (N ,P) of RCA0 which is
not an ω-model can be expanded to a countable model (M, ∗N ) of ∗RCA0
such that ∗N ∼= N .
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Proof. By Proposition 2.5, there is a countable model M′ = (N ,P ′)
of WKL0 with the same first order part N and with P ′ ⊇ P. By Theorem
5.7, M′ can be expanded to a countable model (M′, ∗N ) of ∗WKL0 such
that ∗N ∼= N .

We work in (M, ∗N ) and show that all the axioms of ∗RCA0 hold. Since
P ′ ⊇ P, the Upward STP holds. It remains to prove the ∆0

1-STP. Suppose
x and each yi is setlike, ~Y = st(~y), and x is ∆0

1-definable from ~y. This
means that there are a Σ0

1 formula ϕ(k,m,~n) and a Π0
1 formula ψ(k, m,~n)

of L1 such that for each m the formulas

∃kϕ(k, m, ~y � k), ∀kψ(k,m, ~y � k), and (x)m > 0(2)

are equivalent. There is a ∆0
0 formula q = Y � k of L2 which says that q

is the integer which codes the set {j < k : j ∈ Y }. Then ∃kϕ(k, m, ~Y � k)
is equivalent to a Σ0

1 formula of L2, and ∀kψ(k, m, ~Y � k) is equivalent to
a Π0

1 formula of L2.
By Lemma 4.6, ~Y � k = ~y � k, and it follows that the formulas (2) are

equivalent to ∃kϕ(k,m, ~Y � k) and to ∀kψ(k, m, ~Y � k). Since M satisfies
∆0

1-comprehension, there is a set X such that

∀m [m ∈ X ↔ ∃kϕ(k, m, ~Y � k)],

and therefore X = st(x). a

Corollary 6.7. ∗RCA0 is conservative with respect to RCA0.

§7. The Theory ∗ACA0. In this section we will find a nonstandard
counterpart of the theory ACA0 of arithmetical comprehension.

Given a class Γ of formulas in L2, Γ-comprehension (Γ-CA) is the
scheme

∃Y ∀m [m ∈ Y ↔ ϕ(m, . . . )]

for all formulas ϕ ∈ Γ in which Y does not occur.
Arithmetical Comprehension (ACA) is Γ-CA where Γ is the class of

arithmetical formulas of L2. The theory ACA0 is defined by

ACA0 = WKL0 + ACA.

It is well-known that the axioms of Peano arithmetic (PA) follow from
ACA0 (see [Si1999], page 7). The following result of Friedman and Har-
rington (see [Si1999] Theorem IX.1.5) is analogous to Proposition 2.5 (i)
and shows that PA is the first order part of ACA0.

Proposition 7.1. For any model N of PA there is a model M =
(N ,P) of ACA0 with first order part N .

We now introduce a scheme corresponding to arithmetical comprehen-
sion in the language ∗L1 of nonstandard arithmetic.
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Definition 7.2. Given a class Γ of formulas of ∗L1, Γ-comprehension
(Γ-CA) is the scheme

∃y∀m [(y)m > 0 ↔ ϕ(m, . . . )],

for all formulas ϕ(m, . . . ) ∈ Γ in which y does not occur.

Recall that in Lemma 3.4 we proved ∆S
0 comprehension in ∗∆PA.

Definition 7.3. S-arithmetical comprehension (S-ACA) is Γ-CA
where Γ is the set of S-arithmetical formulas. The theory ∗ACA0 is defined
by

∗ACA0 = ∗WKL0 + S-ACA.

The next result is the analogue of the fact that ACA is equivalent to
Σ0

1-CA in RCA0 ([Si1999], page 105).

Proposition 7.4. In ∗ΣPA, S-ACA is equivalent to ΣS
1 -CA.

Proof. Work in ∗ΣPA and assume ΣS
1 -CA. We prove ΣS

k -CA by induc-
tion on k. This is trivial for k = 1. Suppose k ≥ 1 and ϕ(m,~u) ∈ ΣS

k+1,
and assume ΣS

k -CA. Then ϕ(m,~u) = ∃nψ(m,n, ~u) where ψ ∈ ΠS
k . By

ΣS
k -CA,

∃y∀m∀n[(y)(m,n) > 0 ↔ ¬ψ(m,n, ~u)].

Then by ΣS
1 -CA,

∃x∀m[(x)m > 0 ↔ ∃n(y)(m,n) = 0].

Therefore
∀m[(x)m > 0 ↔ ∃nψ(m, n, ~u)].

a

Here is a functional version of S-ACA.

Proposition 7.5. In ∗ΣPA, S-ACA is equivalent to the following scheme:

∀m∃nψ(m,n, . . . ) → ∃nsz∀mψ(m, (z)m, . . . )(3)

for each S-arithmetical formula ψ.

Proof. Work in ∗ΣPA. First assume S-ACA. Let ψ(m,n, ~u) be S-
arithmetical, and assume that ∀m∃nψ(m,n, ~u). By S-ACA there exists y
such that ∀m∀n [y(m,n) > 0 ↔ ψ(m,n, ~u)]. Pick an infinite H. By Lemma
3.6 there exists z such that (∀v < H)(z)v = (µx < H)y(v,x) > 0. Then
∀mψ(m, (z)m, ~u), and z is near-standard.

For the converse, assume (3). Let ϕ(m,~u) be S-arithmetical and let
ψ(m,~u) be the S-arithmetical formula n > 0 ↔ ϕ(m,~u). By (3), we have

∃x∀m[(x)m > 0 ↔ ϕ(m,~u)].

a



18 H. JEROME KEISLER

Theorem 7.6. In ∗WKL0, S-ACA is equivalent to ACA.

Proof. Work in ∗WKL0. We prove that ΣS
1 -CA is equivalent to Σ0

1-CA.
Assume ΣS

1 -CA and let ϕ(m,n, ~Y ) be ∆0
0. By STP, ~Y has a lifting ~y. By

ΣS
1 -CA, ∃x∀m[(x)m > 0 ↔ ∃nϕ(m,n, ~y)]. By STP, there exists X such

that X = st(x). Then by Lemma 4.6,

∀m [m ∈ X ↔ ∃nϕ(m,n, ~Y )].

Now assume Σ0
1-CA and let ϕ(m,n, ~u) be ∆S

0 . By ∆S
0 -CA, (which holds

by Lemma 3.4),

∃z∀m∀n[(z)(m,n) > 0 ↔ ϕ(m,n, ~u)].

By STP there exists Z with Z = st(z). By Σ0
1-CA,

∃X∀m[m ∈ X ↔ ∃n(m,n) ∈ Z].

By STP, X has a lifting x, and it follows that

∀m[(x)m > 0 ↔ ∃nϕ(m,n, ~u)].

a

Corollary 7.7. ∗ACA0 ` ACA0.

Proof. By Theorems 5.4 and 7.6. a

Corollary 7.8. ∗ΣPA + S-ACA ` PA.

Definition 7.9. Given a formula ϕ of L1, a star of ϕ is a formula
∗ϕ of ∗L1 which is obtained from ϕ by replacing each bound variable in ϕ
by a variable of sort ∗N in a one to one fashion.

First Order Transfer (FOT) is the scheme

ϕ(~n) → ∗ϕ(~n)

for each formula ϕ(~n) of L1.

FOT says that ∗N is an elementary extension of N .
The following conservation result for ∗ACA0 + FOT is a consequence of

Theorem B in the paper Enayat [En2005].

Theorem 7.10. Every countable model of ACA0 can be expanded to a
model of ∗ACA0 + FOT.

Corollary 7.11. The theory ∗ACA0+FOT is conservative with respect
to ACA0.

This follows in the usual way from Theorem 7.10. It also follows from
earlier results in [HKK1984] (Theorem 4.1 and Lemma 4.12), which show
that every countable model of ACA0 has an elementary extension which
can be expanded to a model of ∗ACA0 + FOT.
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Corollary 7.12. The theory ∗ΣPA + S-ACA + FOT is conservative
with respect to PA.

Proof. By Proposition 7.1 and Theorem 7.10. a

It is worth noting that Theorem B in [En2005] is actually stronger than
Theorem 7.10 above. Let j be a new unary function symbol and let
AUT be the sentence in the language ∗L1 ∪ {j} which says that j is an
automorphism of ∗N with fixed point set N . In our setting, the result
can be stated as follows.

Theorem 7.13. (Enayat [En2005], Theorem B). Every countable model
of ACA0 can be expanded to a model of ∗ACA0 + AUT + FOT.

Hence ∗ACA0 + AUT + FOT is conservative with respect to ACA0, and
∗ΣPA + S-ACA + AUT + FOT is conservative with respect to PA.

§8. The Theory ∗ATR0. In this section we find two nonstandard
counterparts of the theory ATR0 of arithmetic transfinite recursion.

In the language L2, a Σ1
1 formula is a formula of the form ∃Y ψ(Y, . . . )

where ψ is arithmetical, and a Π1
1 formula is a formula of the form

∀Y ψ(Y, . . . ) where ψ is arithmetical.
Σ1

1-separation (Σ1
1-SEP) is the scheme which says that any two disjoint

Σ1
1 properties can be separated by a set. That is, for any two Σ1

1 formulas
ψ(n, . . . ), θ(n, . . . ) in which X does not occur,

¬∃n[ψ(n, . . . ) ∧ θ(n, . . . )] →

∃X∀n [(ψ(n, . . . ) → n ∈ X) ∧ (θ(n, . . . ) → n /∈ X)].

It is known (see [Si1999], Theorem V.5.1) that in RCA0, Σ1
1-SEP is equiva-

lent to the scheme of Arithmetical Transfinite Recursion. Thus the theory
ATR0 can be defined as

ATR0 = WKL0 + Σ1
1-SEP.

In the language ∗L1, we define Γ-separation (Γ-SEP) as the scheme
that for all formulas ψ(n, . . . ), θ(n, . . . ) ∈ Γ in which x does not occur,

¬∃n[ψ(n, . . . ) ∧ θ(n, . . . )] →

∃x∀n [(ψ(n, . . . ) → (x)n > 0) ∧ (θ(n, . . . ) → (x)n = 0)].

We will consider two classes of formulas in ∗L1 analogous to the class
Σ1

1, which we call Σb
1 and Σ∗1. The Σb

1 formulas are formed by putting a
bounded existential quantifier in front of an S-arithmetical formula, and
the Σ∗1 formulas are formed by putting an unbounded existential quantifier
in front of an S-arithmetical formula. We will then compare Σ1

1-SEP with
Σb

1-SEP and Σ∗1-SEP.
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Definition 8.1. A Σb
1 formula is a formula of the form (∃x < H)ϕ(x, ~u),

and a Πb
1 formula is a formula of the form (∀x < H)ϕ(x, ~u), where ϕ is

S-arithmetical.
The theory ATRb

0 is defined by

ATRb
0 = ∗WKL0 + Σb

1-SEP.

Definition 8.2. A Σ∗1 formula is a formula of the form ∃x ϕ(x, ~u),
and a Π∗1 formula is a formula of the form ∀x, ϕ(x, ~u), where ϕ is S-
arithmetical.

The theory ∗ATR0 is defined by
∗ATR0 = ∗WKL0 + Σ∗1-SEP.

Since Σb
1 ⊆ Σ∗1, we see at once that

Proposition 8.3. ∗ATR0 ` ATRb
0.

We do not know whether or not ATRb
0 ` ∗ATR0. To make a connection

between the theories ATR0 and ATRb
0, we will use an analogue of the

Kleene normal form theorem which applies to Σb
1 formulas. From Section

3, q = f � m is a ∆0
0 formula which says that q is the integer which codes

the tuple 〈f(n) : n < m〉. The Kleene Normal Form Theorem for Σ1
1

formulas (see [Si1999], page 169) shows that for each Σ1
1 formula θ(~p, ~U)

there is a Π0
1 formula ψ(m,n, ~p, ~U) such that

ACA0 ` θ(~p, ~U) ↔ ∃f∀m ψ(m, f � m, ~p, ~U).

Here is the analogue for Σb
1 formulas.

Theorem 8.4. Let θ(~u) be a Σb
1 formula. There is a ΠS

1 formula ψ(k, v, ~u)
such that

∗ΣPA + S-ACA ` θ(~u) ↔ ∃nsw∀k ψ(k, w � k, ~u).

Proof. Work in ∗ΣPA+S-ACA. Suppose first that θ(~u) is S-arithmetical.
Then there is a formula ψ ∈ ΠS

j such that j is minimal and

θ(~u) ↔ ∃nsw∀k ψ(k,w � k, ~u).

We wish to show that j ≤ 1. Suppose j > 1, so that

ψ(k, v, ~u) ↔ ∀m∃n ϕ(m,n, k, v, ~u)

where ϕ ∈ ΠS
j−2. Then

∀kψ(k, v, ~u) ↔ ∀k∀m∃nϕ(m,n, k, v, ~u).

By Proposition 7.5,

∀k ψ(k, v, ~u) ↔ ∃nsz∀k∀mϕ(m, (z)(m,k), k, v, ~u),

and therefore

θ(~u) ↔ ∃nsw∃nsz∀k∀mϕ(m, (z)(m,k), k, w � k, ~u).
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By combining quantifiers and simplifying, we get a formula ψ′ ∈ ΠS
j−2

such that
θ(~u) ↔ ∃nsw∀k ψ′(k, w � k, ~u),

contradicting the assumption that j is minimal. We conclude that j ≤ 1,
so ψ ∈ ΠS

1 , and the result is proved in the case that θ(~u) is S-arithmetical.
For the general case, suppose θ(~u) is of the form (∃x < H)δ(x, ~u) where

δ is S-arithmetical. Then

δ(x, ~u) ↔ ∃nsw∀k∀nψ(x, k, n, w � k, ~u)

for some ∆S
0 formula ψ. It follows that

θ(~u) ↔ (∃x < H)∃nsw∀k∀nψ(x, k, n, w � k, ~u),

so
θ(~u) ↔ ∃nsw(∃x < H)∀k∀nψ(x, k, n, w � k, ~u).

By Overspill,
(∃x < H)∀k∀nψ(x, k, n, w � k, ~u) ↔

∀p(∃x < H)(∀k < p)(∀n < p) ψ(x, k, n, w � k, ~u).
Therefore

θ(~u) ↔ ∃nsw∀p ψ′(p, w � p, ~u)
where ψ′(p, w � p, ~u) is the ∆S

0 formula

(∃x < H)(∀k < p)(∀n < p)ψ(x, k, n, w � k, ~u).

a

Theorem 8.5. In ∗WKL0, Σ1
1-SEP is equivalent to Σb

1-SEP.

Proof. Work in ∗WKL0. First assume Σb
1-SEP. Let ψ(m,Y, ~U), θ(m,Y, ~U)

be arithmetical formulas such that

¬∃m [∃Y ψ(m,Y, ~U) ∧ ∃Y θ(m,Y, ~U)].

By STP there is a lifting ~u of ~U . By Lemma 4.6 we have

¬∃m [∃y ψ(m, y, ~u) ∧ ∃y θ(m, y, ~u)].

Let H be infinite. Then

¬∃m [(∃y < H) ψ(m, y, ~u) ∧ (∃y < H) θ(m, y, ~u)].

The formulas (∃y < H) ψ(m, y, ~u) and (∃y < H) θ(m, y, ~u) are Σb
1. By

Σb
1-SEP there is an x such that

∀m [((∃y < H) ψ(m, y, ~u) → (x)m > 0)∧(∃y < H) θ(m, y, ~u) → (x)m = 0)].

By STP there exists a set X = st(x). By Lemma 6.3, each set Y has a
lifting y < H. Thus by Lemma 4.6 we have

∀m [(∃Y ψ(m,Y, ~U) → m ∈ X) ∧ (∃Y θ(m,Y, ~U) → m /∈ X)].

This proves Σ1
1-SEP.
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Now assume Σ1
1-SEP. Let ψ(m, . . . ), θ(m, . . . ) be Σb

1 formulas such that

¬∃m [ψ(m, . . . ) ∧ θ(m, . . . )].

By Theorem 8.4, there are ΠS
0 formulas ψ′(m, k, n, . . . ) and θ′(m, k, n, . . . )

such that
ψ(m, . . . ) ↔ ∃nsw∀k ψ′(m, k, w � k, . . . ),

θ(m, . . . ) ↔ ∃nsw∀k θ′(m, k, w � k, . . . ).

It is clear that Σ1
1-SEP implies ACA. By Theorem 7.6, S-ACA holds, so

there exist y, z such that

∀m∀k∀n [(y)(m,k,n) > 0 ↔ ψ′(m, k, n, . . . )],

∀m∀k∀n [(z)(m,k,n) > 0 ↔ θ′(m, k, n, . . . )].

By STP there are sets Y = st(y) and Z = st(z). By Lemma 4.6,

∃nsw∀k (y)(m,k,w�k) > 0 ↔ ∃f∀k (m, k, f � k) ∈ Y

and
∃nsw∀k (z)(m,k,w�k) > 0 ↔ ∃f∀k (m, k, f � k) ∈ Z.

By Σ1
1-SEP,

∃X∀m [(m ∈ X → ∃f∀k (m, k, f � k) ∈ Y )∧

(m /∈ X → ∃f∀k (m, k, f � k) ∈ Z)].

By STP, X has a lifting x. By Lemma 4.6,

∀m [((x)m > 0 → ∃nsw∀k (y)(m,k,w�k) > 0)∧

((x)m = 0 → ∃nsw∀k (z)(m,k,w�k) > 0)].

Then
∀m [(x)m > 0 → ψ(m, . . . ) ∧ ((x)m = 0 → θ(m, . . . )],

and x is the required witness for Σb
1-SEP. a

Corollary 8.6. ATRb
0 ` ATR0 and ATR∗0 ` ATR0.

Theorem 8.7. Every countable model M = (N ,P) of ATR0 can be
expanded to a model (M, ∗N ) of ATRb

0 + FOT.

Proof. By Theorem 7.10, every countable model M of ATR0 can be
expanded to a model (M, ∗N ) of ∗ACA0+FOT. By Theorem 8.5, (M, ∗N )
also satisfies Σb

1-SEP, and hence is a model of ATRb
0. a

This shows that ATRb
0 + FOT is conservative with respect to ATR0. We

now improve this by showing that the larger theory ∗ATR0 + FOT is still
conservative with respect to ATR0.
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Lemma 8.8. Let (N , ∗N ) be a model of ∗ΣPA such that ∗N is ω1-like,
that is, ∗N has cardinality ω1 and every initial segment is countable. Then
for every S-arithmetical formula ϕ(x,m, ~u),

(N , ∗N ) |= ∃H∀m [∃xϕ(x,m, ~u) → (∃x < H)ϕ(x,m, ~u)].

Proof. Fix a tuple ~u in ∗N . For each m ∈ N such that (N , ∗N ) |=
∃xϕ(x,m, ~u), pick an xm such that (N , ∗N ) |= ϕ(xm, ~u). Since N is
countable, and ∗N is ω1-like, there is an H ∈ ∗N such that xm < H for
each m ∈ N . a

Theorem 8.9. Every countable model M = (N ,P) of ATR0 can be
expanded to a model (M, ∗N ) of ∗ATR0 + FOT.

Proof. By Theorem 8.7 and the Löwenheim-Skolem theorem, M =
(N ,P) can be expanded to a countable model (M,N ′) of ATRb

0 + FOT.
Since ATRb

0 ` PA,N ′ |= PA. By the MacDowell-Specker theorem (MS1961]
and the Löwenheim- Skolem theorem, each countable model of PA has a
countable end elementary extension. Applying this ω1 times, N ′ has an
ω1-like end elementary extension ∗N . We show that (M, ∗N ) |= ∗ATR0.
By Proposition 5.3, (M, ∗N ) |= ∗WKL0. By hypothesis, Σ1

1-SEP holds in
M. By Theorem 8.5, Σb

1-SEP holds in (M, ∗N ). FOT holds in (M, ∗N )
because it holds in (M,N ′) and ∗N is an elementary extension of N ′.
We work in (M, ∗N ) and show that Σ∗1-SEP holds.

Let ψ(m,~u), θ(m,~u) be Σ∗1 formulas in which x does not occur, and
suppose that

¬∃m[ψ(m,~u) ∧ θ(m,~u)].
We have

ψ(y, ~u) = ∃z ψ′(z, y, ~u), θ(y, ~u) = ∃z θ′(z, y, ~u)

where ψ′, θ′ are S-arithmetical. By Lemma 8.8, there exists H such that

∀m[∃z ψ′(z,m, ~u) → (∃z < H)ψ′(z, m, ~u)],

∀m[∃z θ′(z,m, ~u) → (∃z < H)θ′(z, m, ~u)].
Then

∀m[ψ(m,~u) ↔ (∃z < H)ψ′(z, m, ~u)],
∀m[θ(m,~u) ↔ (∃z < H)θ′(z, m, ~u)].

By Σb
1-SEP,

∃x∀m[((∃z < H)ψ′(z, m, ~u) → (x)m > 0)∧((∃z < H)θ′(z,m, ~u) → (x)m = 0)].

Therefore

∃x∀m[(ψ(m,~u) → (x)m > 0) ∧ (θ(m,~u) → (x)m = 0)].

a

Corollary 8.10. ∗ATR0 + FOT is conservative with respect to ATR0.
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§9. The Theory ∗Π1
1-CA0. We give two nonstandard counterparts of

the theory Π1
1-CA0 of Π1

1 comprehension, a theory with a bounded outer
quantifier and a larger theory with an unbounded outer quantifier.

In the language L2, Π1
1-CA0 is defined as the theory

Π1
1-CA0 = WKL0 + Π1

1-CA.

Definition 9.1. In the language L2 ∪ ∗L1, the theories Πb
1-CA0 and

∗Π1
1-CA0 are defined by

Πb
1-CA0 = ∗WKL0 + Πb

1-CA,
∗Π1

1-CA0 = ∗WKL0 + Π∗1-CA.

Since Πb
1 ⊆ Π∗1, we have:

Proposition 9.2. ∗Π1
1-CA0 ` Πb

1-CA0.

As in the preceding section, we do not know whether or not Πb
1-CA0 `

∗Π1
1-CA0.

Theorem 9.3. In ∗WKL0, Πb
1-CA is equivalent to Π1

1-CA.

Proof. Work in ∗WKL0. Assume Πb
1-CA and let ϕ(m,Z, ~U) be arith-

metical. By STP, ~U has a lifting ~u. Take an infinite H. By Lemmas 4.6
and 6.3 (iii),

∀m [∀Zϕ(m,Z, ~U) ↔ (∀z < H)ϕ(m, z, ~u)].

The formula (∀z < H)ϕ(m, z, ~u) is Πb
1. By Πb

1-CA, there exists x such
that

∀m [(x)m > 0 ↔ (∀z < H)ϕ(m, z, ~u)].
By STP there exists X = st(x). Then

∀m [m ∈ X ↔ ∀Zϕ(m,Z, ~U)],

and Π1
1-CA is proved.

For the converse, assume Π1
1-CA, and let θ(v, ~u) be a Πb

1 formula. By
Theorem 7.6, S-ACA holds, and therefore by Theorem 8.4 there is a ΠS

1
formula ψ(v, k, z, ~u) such that

θ(v, ~u) ↔ ∀nsw∃k ψ(v, k, w � k, ~u).

By ACA there exists a set Y such that

∀m∀k∀n[(m, k, n) ∈ Y ↔ ψ(m, k, n, ~u)].

Then by Π1
1-CA there is a set X such that

∀m[m ∈ X ↔ ∀f∃k (m, k, f � k) ∈ Y ].

Using Lemma 4.6 again,

∀f∃k (m, k, f � k) ∈ Y ↔ ∀nsw∃k ψ(v, k, w � k, ~u).
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Therefore
∀m [m ∈ X ↔ θ(m,~u)].

By STP, X has a lifting x, and it follows that

∀m[(x)m > 0 ↔ θ(m,~u)].

a

Corollary 9.4. Πb
1-CA0 ` Π1

1-CA0 and Π∗1-CA0 ` Π1
1-CA0.

Theorem 9.5. Every countable model M = (N ,P) of Π1
1-CA0 can be

expanded to a model (M, ∗N ) of Πb
1-CA0 + FOT.

Proof. By Theorems 9.3 and 8.7. a

Theorem 9.6. Every countable model M = (N ,P) of Π1
1-CA0 can be

expanded to a model (M, ∗N ) of ∗Π1
1-CA0 + FOT.

Proof. As in the proof of Theorem 8.9, but using Theorems 9.3 and
9.5 instead of Theorems 8.5 and 8.7, M can be expanded to a model
(M, ∗N ) of Πb

1-CA0 + FOT such that ∗N is ω1-like. We work in (M, ∗N )
and show that Π∗1-CA holds.

Let ϕ(m,~u) be a Π∗1 formula in which x does not occur. Then ϕ(m,~u) =
∀zϕ′(z, m, ~u) where ϕ′ is S-arithmetical. By Lemma 8.8, there exists H
such that

∀m[∃z¬ϕ′(z, m, ~u) → (∃z < H)¬ϕ′(z,m, ~u)],

so
∀m[ϕ(m,~u) ↔ (∀z < H)ϕ′(z,m, ~u).

By Πb
1-CA,

∃x∀m[(x)m > 0 ↔ (∀z < H)ϕ′(z, m, ~u)],

so
∃x∀m[(x)m > 0 ↔ ϕ(m,~u)].

a

Corollary 9.7. ∗Π1
1-CA0 + FOT is conservative with respect to Π1

1-
CA0.

This proves a conjecture stated in [HKK1984], page 1054.

In [HKK1984] and [En2005], conservation results were obtained for in-
duction, choice, and dependent choice schemes in L2 which are stronger
than Π1

1-CA0. To clarify the connection of those results with this paper,
we restate the results for dependent choice in our present setting.

In L2, Σ1
k-dependent choice (Σ1

k-DC) (where k > 0) is the scheme

∀X∃Y ϕ(X, Y, . . . ) → ∀X∃Y [Y (0) = X ∧ ∀mϕ(Y (m), Y (m+1), . . . )]
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where ϕ(X,Y, . . . ) ∈ Σ1
k and Y (m) = {n : (m,n) ∈ Y }. The theory

Σ1
k-DC0 is defined by

Σ1
k-DC0 = RCA0 + Σ1

k-DC.

We also write Σ1
∞-DC =

⋃

k∈NΣ1
k-DC.

The theory Σ1
1-DC0 implies ACA0 and is incomparable with ATR0 (H.

Friedman; see [Si1999], Section VIII.5). Σ1
2-DC0 is strictly stronger than

Π1
1-CA0. The very strong theory Σ1

∞-DC0 is called second order arith-
metic with dependent choice.

Definition 9.8. In ∗L1, we define

Σ∗k+1 = {∃xϕ(x, . . . ) : ϕ ∈ Π∗k}, Π∗k+1 = {∀xϕ(x, . . . ) : ϕ ∈ Σ∗k}.

Σ∗k-dependent saturation (Σ∗k-DSAT) is the scheme

∀x∃yϕ(x, y, . . . ) → ∀x∃y[(y)0 = x ∧ ∀mϕ((y)m, (y)m+1, . . . )]

where ϕ ∈ Σ∗k. We also write Σ∗∞-DSAT =
⋃

k∈NΣ∗k-DSAT.

We omit the case k = 0 because Σ1
0-DC is equivalent to Σ1

1-DC, and
Σ∗0-DSAT is equivalent to Σ∗1-DSAT. We now restate two theorems from
[HKK1984] in our present setting.

Theorem 9.9. ([HKK1984], Theorem 3.4) Whenever 0 < k ≤ ∞,
∗WKL0 + Σ∗k-DSAT ` Σ1

k-DC0.

Theorem 9.10. ([HKK1984], Theorem 4.1). Whenever 1 < k ≤ ∞,
every countable model of Σ1

k-DC0 can be expanded to a model of ∗WKL0 +
Σ∗k-DSAT + FOT.

Whenever 0 < k ≤ ∞, ∗WKL0 + Σ∗k-DSAT + FOT is conservative with
respect to Σ1

k-DC0.

In the case k = ∞ this is a conservation result for second order arith-
metic with dependent choice. Theorem C in [En2005] can also be stated as
a conservation result for second order arithmetic with dependent choice.
Recall from the discussion after Theorem 7.10 that AUT is the sentence
in the language ∗L1 ∪ {j} which says that j is an automorphism of ∗N
with fixed point set N .

Theorem 9.11. ([En2005], Theorem C). Let Γ be the set of all formu-
las of the language ∗L1 ∪ {j}. Every countable model of Σ1

∞-DC0 can be
expanded to a model of ∗WKL0 + AUT + Γ-CA + FOT.

Hence the theory ∗WKL0 + AUT + Γ-CA + FOT is conservative with
respect to Σ1

∞-DC0.
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