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Abstract. First order reasoning about hyperintegers can prove things
about sets of integers. In the author’s paper Nonstandard Arithmetic
and Reverse Mathematics, Bulletin of Symbolic Logic 12 (2006), it was
shown that each of the “big five” theories in reverse mathematics, in-
cluding the base theory RCA0, has a natural nonstandard counterpart.
But the counterpart ∗RCA0 of RCA0 has a defect: it does not imply the
Standard Part Principle that a set exists if and only if it is coded by a
hyperinteger. In this paper we find another nonstandard counterpart,
∗RCA0

′, that does imply the Standard Part Principle.

1. Introduction

In the paper [3], it was shown that each of the “big five” theories of second
order arithmetic in reverse mathematics has a natural counterpart in the
language of nonstandard arithmetic. In this paper we give another natural
counterpart of the weakest these theories, the theory RCA0 of Recursive
Comprehension.

The language L2 of second order arithmetic has a sort for the natural
numbers and a sort for sets of natural numbers, while the language ∗L1 of
nonstandard arithmetic has a sort for the natural numbers and a sort for the
hyperintegers. In nonstandard analysis one often uses first order properties
of hyperintegers to prove second order properties of integers. An advantage
of this method is that the hyperintegers have more structure than the sets of
integers. The method is captured by the Standard Part Principle (STP), a
statement in the combined language L2∪ ∗L1 that says that a set of integers
exists if and only if it is coded by a hyperinteger. We say that a theory T ′

in L2∪ ∗L1 is conservative with respect to a theory T in L2 if every sentence
of L2 provable from T ′ is provable from T .

For each of the theories T = WKL0,ACA0,ATR0,Π1
1-CA0 in the language

L2 of second order arithmetic, [3] gave a theory U of nonstandard arithmetic
in the language ∗L1 such that:

(1) U + STP implies T and is conservative with respect to T.

The nonstandard counterpart ∗RCA0 for RCA0 in [3] does not have property
(1). The theory ∗RCA0 +STP is not conservative with respect to RCA0, and
∗RCA0 has only a weakened form of the STP. In this paper we give a new
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nonstandard counterpart ∗RCA0
′ of RCA0 that does have property (1). That

is, we give a theory U of nonstandard arithmetic in ∗L1 such that the theory
∗RCA0

′ = U + STP implies RCA0 and is conservative with respect to RCA0.
Section 2 contains background material. Our main results are stated in

Section 3. In Section 4 we give the easy proof that ∗RCA0
′ implies RCA0. In

Section 5 we give the more difficult proof that ∗RCA0
′ is conservative with

respect to RCA0. Section 6 contains complementary results showing that
various enhancements of ∗RCA0

′ imply the Weak Koenig lemma, and thus
are not conservative with respect to RCA0. We also discuss some related
open questions.

The results in this paper were presented at the Conference in Computabil-
ity, Reverse Mathematics, and Combinatorics held at the Banff International
Research Station in December 2008. I wish to thank the organizers and par-
ticipants of that conference for helpful discussions on this work.

2. Preliminaries

We refer to [2] for background on models of arithmetic, and to [4] for a
general treatment of reverse mathematics in second order arithmetic.

We follow the notation of [3], with one exception. We take the vocabulary
of the first order language L1 of arithmetic to be {<, 0, 1,+,−· , ·}. The
operation −· is cutoff subtraction, defined by n + (m−· n) = max(m,n).
Thus m−· n = m − n if m ≥ n, and m−· n = 0 if m < n. The additional
function symbols pn and (m)n will be introduced here as defined symbols.
(In [3] they were part of the underlying vocabulary of L1.)

The language L2 of second order arithmetic is an extension of L1 with
two sorts, N for natural numbers and P for sets of natural numbers. In L2,
the symbols of L1 are taken to be of sort N. L2 has variables X,Y, . . . of
sort P and a membership relation ∈ of sort N×P. In either L1 or L2, ∆0

0

is the set of all bounded quantifier formulas, Σ0
1 is the set of formulas of the

form ∃mϕ where ϕ ∈ ∆0
0, and so on.

The expressions m ≤ n,m > n,m ≥ n will be used in the obvious way. We
will sometimes use the expression m = n/r as an abbreviation for m · r = n.
We let N be the set of (standard) natural numbers. We sometimes also use
N to denote the structure (N, <, 0, 1,+,−· , ·).

The theory IΣ1, Peano Arithmetic with Σ0
1 induction, has the usual

axioms for linear order with first element 0, and the recursive rules for
0, 1,+,−· , and ·, and the Σ0

1 Induction scheme

[ϕ(0, . . .) ∧ ∀m[ϕ(m, . . .)→ ϕ(m+ 1, . . .)]]→ ∀mϕ(m, . . .)

where ϕ is a Σ0
1 formula of L1.

The theory RCA0 of arithmetic with restricted comprehension is the usual
base theory for reverse mathematics. It is the theory in L2 that has the
axioms of IΣ1, and the Σ0

1 Induction scheme and ∆0
1 Comprehension scheme

for formulas of L2. Each model of RCA0 will be a pair (N ,P) where P is
a set of subsets of N . The theory WKL0 is RCA0 plus the Weak Koenig
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Lemma. It is well-known that WKL0 is not conservative with respect to
RCA0 (see [4]).

The language ∗L1 is the extension of L1 that has the sort N for standard
integers and the sort ∗N for hyperintegers. It has variables m,n, . . . of sort
N and x, y, z, . . . of sort ∗N. The universe of sort N is to be interpreted
as a subset of the universe of sort ∗N. ∗L1 has the same vocabulary {<
, 0, 1,+,−· , ·} as L1. All terms are considered to be terms of sort ∗N, and
terms built from variables of sort N are also considered to be terms of sort
N. The atomic formulas are s = t, s < t where s, t are terms.

A bounded quantifier of sort N is an expression (∃m < s) or (∀m < s)
where m is a variable of sort N and s a term of sort N. A bounded
quantifier of sort ∗N is an expression (∃x < t) or (∀x < t) where x is a
variable of sort ∗N which is not of sort N, and t a term. Thus (∃x < m) is
a bounded quantifier of sort ∗N, but (∃m < x) is not a bounded quantifier.

A ∆S
0 formula is a formula of ∗L1 built from atomic formulas using con-

nectives and bounded quantifiers of sorts N and ∗N. A ΣS
1 formula is a

formula of the form ∃nϕ where ϕ is a ∆S
0 formula. (The superscript S

indicates that the unbounded quantifiers are of the standard sort N.)

Definition 2.1. The theory BNA of Basic Nonstandard Arithmetic has the
following axioms in the language ∗L1:

• The axioms of IΣ1 in the language L1,
• The sentence saying that < is a strict linear order.
• The Proper Initial Segment Axioms:

∀n∃x(x = n),

∀n∀x[x < n→ ∃mx = m],
∃y∀n[n < y].

Note that the theory BNA by itself says nothing about the operations
+,−· , · on the nonstandard hyperintegers. We will work with theories that
contain BNA and additional axioms.

For each formula ϕ if L1, we let ∗ϕ be a formula of ∗L1 that is obtained
from ϕ by replacing each bound variable in ϕ by a variable of sort ∗N in a
one to one fashion. A universal sentence in L1 is a sentence of the form
∀~mϕ(~m) where ϕ has no (bounded or unbounded) quantifiers.

Definition 2.2. Given a set Γ of formulas of L1, Γ-Transfer (or Transfer
for Γ) is the set of formulas ϕ→ ∗ϕ where ϕ ∈ Γ.
∀ Transfer, or ∀T, is Transfer for the set of all universal sentences in

L1.

A model of BNA will be an ordered structure of the form (N , ∗N ) where
N is a model of IΣ1, and ∗N is a proper end extension of N . In a model
(N , ∗N ) of BNA + ∀T, ∗N will be the non-negative part of an ordered ring.
In particular, the commutative, associative, distributive, and order laws will
hold for +, ·, <, and −· will have the property that y + (x−· y) = max(x, y).
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The theory ∗∆PA introduced in [3] has the axioms of BNA plus the fol-
lowing axiom scheme, called Internal Induction:

ϕ(0, ~u) ∧ ∀x[ϕ(x, ~u)→ ϕ(x+ 1, ~u)]]→ ∀xϕ(x, ~u)

where ϕ(x, ~u) is a ∆S
0 formula.

The theory ∗ΣPA in [3] has the axioms of ∗∆PA plus the following axiom,
called ΣS

1 Induction:

ϕ(0, ~u) ∧ ∀m[ϕ(m,~u)→ ϕ(m+ 1, ~u)]]→ ∀mϕ(m,~u)

where ϕ(m,~u) is a ΣS
1 formula. (See [3], Definition 3.2 and Proposition 3.9).

Note that Internal Induction is an induction over a variable x of sort ∗N,
while ΣS

1 Induction is an induction over a variable m of sort N.
In this paper we will work in the combined language L2∪∗L1. We use the

notation (x|y) (x divides y) as an abbreviation for the formula ∃z[x · z = y].
Using the axioms of IΣ1, we can define pn as the n-th prime in the usual
way, and treat pn as a function symbol of sort N → N. However, we will
never write px where x is a variable of sort ∗N. Following [3], we define the
standard set relation X = st(x) by the formula

(∀n ≥ 0) [n ∈ X ↔ (pn|x)].

The Upward Standard Part Principle (Upward STP) is the sentence

∀X∃x[X = st(x)]

which says that every set in P is coded by a hyperinteger. The Downward
Standard Part Principle (Downward STP) is the sentence

∀x∃X[X = st(x)]

which says that every hyperinteger codes a set in P. The Standard Part
Principle STP is the sentence

∀X∃x[X = st(x)] ∧ ∀x∃X[X = st(x)].

This is the conjunction of the Upward STP and the Downward STP.
As in [3], we say that a theory T ′ in a language L′ is conservative with

respect to a theory T in a language L ⊆ L′ if every sentence of L that is
provable from T ′ is provable from T .

It is shown in [3], Section 5, that the theory ∗WKL0 = ∗ΣPA + STP
implies and is conservative with respect to WKL0. In fact, ∗WKL0 + ∀T is
still conservative with respect to WKL0.

There are two possible options for weakening ∗WKL0 to get a theory that
implies and is conservative with respect to RCA0: either weaken STP or
weaken ∗ΣPA. The theory ∗RCA0 introduced in [3] took the first option.
The axioms of ∗RCA0 are ∗ΣPA plus the Upward STP and a very weak form
of the Downward STP, called ∆0

1-STP. As mentioned in the introduction,
it was proved in [3] that ∗RCA0 implies and is conservative with respect to
RCA0.
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Yokoyama [6], [7] introduced a theory that is stronger than ∗RCA0 but,
like ∗RCA0, is conservative with respect to RCA0 and has a very weak form
of the Downward STP.

In [1], Avigad considered several theories that extend RCA0 without the
STP, and can be formulated in the combined language L2∪∗L1 or in higher
order analogues. When comparing the results of [1] with the present paper,
note that the sort N in [1] corresponds to the sort ∗N in this paper, and
the standardness predicate S in [1] corresponds to the sort N in this paper.
Thus the induction axiom for quantifier-free formulas of Primitive Recursive
Arithmetic in [1] is the same thing as Internal Induction in this paper.

3. Statements of the Main Results

In this section we introduce a theory ∗RCA0
′ that does what ∗RCA0 does

but contains the full Standard Part Principle. ∗RCA0
′ takes the second

option for weakening ∗WKL0; it is stronger than BNA + STP but weaker
than ∗WKL0. We will prove that ∗RCA0

′ implies and is conservative with
respect to RCA0.

We remark that the theory BNA + STP by itself says very little about
sets of natural numbers. It does not even imply that there are infinite sets
of sort P. One can get a model (N ,P, ∗N ) of BNA + STP with no infinite
sets by taking N to be N, taking P to be the set of finite subsets of N, and
taking ∗N to be the non-negative part of the ring of polynomials over Z in
a variable x such that ∀nn < x.

In order to get a theory that is strong enough to imply RCA0, we will add
nonstandard induction and comprehension principles. We will see in Section
6 that too strong a comprehension principle will give a theory that already
implies WKL0, and thus cannot be conservative with respect to RCA0. For
this reason, we need to introduce the class of special ∆S

0 formulas.

Definition 3.1. By a special ∆S
0 formula we mean a formula of ∗L1 that

is built from atomic formulas s = t, s < t, and divisibility formulas (n|t)
where s, t are terms, using connectives and bounded quantifiers of sort N.
A special ΣS

1 formula is a formula of the form ∃mϕ where ϕ is a special
∆S

0 formula.

Every special ∆S
0 formula is a ∆S

0 formula, because the formula (n|t) is
an abbreviation for the ∆S

0 formula (∃x < t+1)n ·x = t. Note that for each
term s of sort N, the formula (s|t) is equivalent in BNA to the special ∆S

0

formula (∃n < s+ 1)[n = s ∧ (n|t)].
Given a formula ϕ(m,~u) of ∗L1, the expression st(x) = ϕ(·, ~u) stands for

the formula
∀m [(pm|x)↔ ϕ(m,~u)].

Intuitively, st(x) = ϕ(·, ~u) means that x codes the class {m : ϕ(m,~u)}.

Definition 3.2. The theory ∗RCA0
′ has the following axioms:

• The axioms of BNA,
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• Special ΣS
1 Induction:

ϕ(0, ~u) ∧ ∀m[ϕ(m,~u)→ ϕ(m+ 1, ~u)]→ ∀mϕ(m,~u)

where ϕ(m,~u) is a special ΣS
1 formula.

• Special ∆S
1 Comprehension:

∀m[ϕ(m,~u)↔ ¬ψ(m,~u)]→ ∃x st(x) = ϕ(·, ~u)

where ϕ,ψ are special ΣS
1 formulas in which x does not occur.

• The Standard Part Principle STP.

Proposition 3.3. ∗WKL0 implies ∗RCA0
′.

Proof. The axioms of ∗WKL0 already include BNA + STP. ΣS
1 Induction

already contains Special ΣS
1 Induction. By Lemma 3.5 in [3], ∗WKL0 implies

the ∆S
1 Comprehension scheme, which contains Special ∆S

1 Comprehension.
� �

We now state our main results.

Theorem 3.4. ∗RCA0
′ implies RCA0.

Theorem 3.5. ∗RCA0
′ + ∀T is conservative with respect to RCA0.

The proofs of these theorems will be given in the next two sections.
Before embarking on the proofs, we make some comments on the theory

∗RCA0
′. Theorems 3.4 and 3.5 show that ∗RCA0

′ can serve as a base theory
for reverse mathematics in the combined language L2 ∪∗ L1. It implies the
axioms of RCA0, and can be express implications between stronger theories
in the nonstandard setting.

The coding of sets by means of prime divisors that is used in ∗RCA0
′

is inconvenient for some purposes. One can write down theories with the
analogous axioms but a different coding of sets. The problem is that a
different coding may result in a theory that is not conservative with respect
to RCA0. The coding by means of prime divisors has the major advantage
of giving a theory that is conservative with respect to RCA0. This coding
also has the following nice properties:

st(x) ∩ st(y) ⊆ st(x+ y), st(x) ∪ st(y) ⊆ st(xy), st(x) ∩ st(x+ 1) = ∅.
One might also ask whether ∗RCA0

′, or ∗RCA0
′ + ∀T, can be used in

its own right to carry out certain kinds of nonstandard arguments. We
give some heuristic arguments suggesting the answer is yes, to a limited
extent. Consider first the weaker theory BNA + ∀T in the language ∗L1.
In BNA + ∀T, the hyperintegers can be extended in the usual way to the
ordered field of hyperrational numbers (quotients of hyperintegers). One
can define an infinitesimal as a hyperrational number whose absolute value
is less than every positive rational, and a finite hyperrational number as one
whose absolute value is less than some positive rational. In this theory one
can develop Robinson’s infinitesimal treatment of limits and derivatives for
rational functions.
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As we will see in Section 6, in ∗RCA0
′ one can use special ∆S

1 -Comprehension
and then the Downward STP to build sets, and in this way prove that for
every finite hyperrational number x there is a unique real number r, the
shadow of x, such that for each rational q,

q < r ⇒ q ≤ x and q < x⇒ q ≤ r.

This opens up the possibility of proving theorems for hyperrational numbers
and taking shadows to draw conclusions about real numbers.

One can also begin with a proof in a theory that is stronger than ∗RCA0
′

and convert it to a proof in ∗RCA0
′, with the particular instance of the axiom

in the stronger theory that was needed in the original proof replaced by a
hypothesis in the new proof in ∗RCA0

′. Section 6 has some examples of this.
Many methods that are available in ∗WKL0 and are commonly used in

nonstandard analysis are not available in ∗RCA0
′ + ∀T. Internal induction

and the overspill principle are not available. The comprehension axioms
of ∗RCA0

′ do not allow bounded quantifiers of sort ∗N. Transfer for Π0
1

sentences is not available. All of these methods were left out for a good
reason. We will show in Section 6 that under ∗RCA0

′, each of them implies
the Weak Koenig Lemma.

4. Proof that ∗RCA0
′ Implies RCA0

In this section we prove Theorem 3.4. Note that the Special ΣS
1 Induction

and Special ∆S
1 Comprehension Axioms for ∗RCA0

′ are sentences in the
language ∗L1 which has variables of sort ∗N but no variables of sort P, and
we must prove the Σ0

1-Induction and ∆0
1-Comprehension Axioms of RCA0,

which have variables of sort P but no variables of sort ∗N.

Lemma 4.1. For every formula ϕ(x, . . .) of ∗L1,

BNA ` ∀xϕ(x, . . .)→ ∀nϕ(n, . . .).

Proof. This follows at once from the axiom ∀n∃x(x = n). � �

The notation S(t) (meaning “t is standard”) is an abbreviation for the
ΣS

1 formula ∃nn = t. For a tuple of terms ~t = (t1, . . . , tk), S(~t) means
S(t1) ∧ · · · ∧ S(tn).

Lemma 4.2. For any term t(~x),

BNA ` S(~x)→ S(t(~x)).

Proof. Assume S(~x). This means that there exists a tuple ~m such that
~m = ~x. By definition, t(~m) has sort N. By the rules of two-sorted logic, we
have S(t(~m)) and t(~x) = t(~m), and thus S(t(~x)). � �

We need the following definition from [3] (modified by replacing the ex-
pression (xi)t > 0 by the equivalent expression (pt|xi)).
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Definition 4.3. Let ϕ(~m, ~X) be a formula in L2, where ~m, ~X contain all
the variables of ϕ, both free and bound. The lifting ϕ(~m, ~x) is the formula
of ∗L1 defined as follows, where ~x is a tuple of variables of sort ∗N of the
same length as ~X.

• Replace each subformula t ∈ Xi, where t is a term, by (pt|xi).
• Replace each quantifier ∀Xi by ∀xi, and similarly for ∃.

It is clear that if ϕ is a ∆0
0 formula of L2, then ϕ is a ∆S

0 formula of ∗L1,
and if ϕ is a Σ0

1 formula then ϕ is a ΣS
1 formula. The next lemma is a lifting

theorem from formulas of L2 to formulas of ∗L1. It was stated for ∗∆PA as
Lemma 4.6 in [3], but also holds for BNA.

Lemma 4.4. (i) For each arithmetical formula ϕ(~m, ~X) of L2,

BNA ` st(~x) = ~X → [ϕ(~m, ~X)↔ ϕ(~m, ~x)].

(ii) For each formula ϕ(~m, ~X) of L2,

BNA + STP ` st(~x) = ~X → [ϕ(~m, ~X)↔ ϕ(~m, ~x)].

Proof. We first prove the result in the case that ϕ is an atomic formula.
Work in BNA and assume that st(~x) = ~X. If ϕ(~m) is an atomic formula of
the form t(~m) = u(~m) or t(~m) < u(~m), then ϕ(~m) is the same as ϕ(~m), so
ϕ(~m)↔ ϕ(~m). If ϕ(~m,X) is an atomic formula of the form t(~m) ∈ X, then
ϕ(~m, x) is (pt(~m)|x). By Lemma 4.2, ∃nn = t(~m). Therefore t(~m) ∈ X ↔
(pt(~m)|x), as required.

The general case is now follows by induction on the complexity of ϕ, using
the Proper Initial Segment Axioms for bounded quantifiers, and using STP
for second order quantifiers. � �

Proof of Theorem 3.5 from Theorem 5.1. Work in ∗RCA0
′, and prove the

axioms of RCA0. The axioms of IΣ1 already belong to ∗RCA0
′. For each

instance θ of Σ0
1 Induction, θ is an instance of special ΣS

1 Induction, which
is obtained by replacing each subformula of the form t ∈ Xi by (pt|xi).
Therefore by Lemma 4.4, Σ0

1 Induction holds. The argument for ∆0
1 Com-

prehension is similar. � �

5. Proof that ∗RCA0
′ is Conservative With Respect to RCA0

In this section we prove Theorem 3.5. Theorem 3.5 is a consequence of
the following theorem and a result in [3].

Theorem 5.1. Let (N ,P,N1) be a model of ∗ΣPA+Upward STP+∀T such
that N1 has cofinality at least |P|. Then N1 has a substructure ∗N such that
(N ,P, ∗N ) is a model of ∗RCA0

′ + ∀T.

Note that if (N ,P,N1) is countable, then N1 automatically has cofinality
ℵ0 = |P|. So Theorem 5.1 shows in particular that for every countable
model (N ,P,N1) of ∗ΣPA+Upward STP + ∀T, N1 has a substructure ∗N
such that (N ,P, ∗N ) is a model of ∗RCA0

′ + ∀T.
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We first show that Theorem 3.5 follows from Theorem 5.1 above and
Theorem 5.7 in [3].

Proof of Theorem 3.5 from Theorem 5.1. Assume Theorem 5.1. Let θ be a
sentence of L2 that is consistent with RCA0. Then RCA0 +θ has a countable
model (N ,P) such that N is not isomorphic to N. By Theorem IX.2.1 in [4],
there is a set P ′ ⊇ P such that (N ,P ′) is a model of WKL0. By Theorem
5.7 in [3], (N ,P ′) can be expanded to a countable model (N ,P ′,N1) of
∗WKL0 such that N1

∼= N . We now replace P ′ by P and consider the
structure (N ,P,N1). Since P ⊆ P ′ and N1

∼= N , (N ,P,N1) is a model of
∗ΣPA+Upward STP + ∀T + θ. By Theorem 5.1, N1 has a substructure ∗N
such that (N ,P, ∗N ) is a model of ∗RCA0

′ + ∀T. Since θ holds in (N ,P),
it holds in (N ,P, ∗N ). This shows that θ is consistent with ∗RCA0

′ + ∀T,
so ∗RCA0

′ + ∀T is conservative with respect to RCA0, and Theorem 3.5
holds. � �

The remainder of this section is devoted to the proof of Theorem 5.1.
Assume the hypotheses of Theorem 5.1.

For x, y ∈ N1, write x ∼ y if there exists r ∈ N such that x ≤ ry and
y ≤ rx. Write x� y if rx < y for all r ∈ N . Note that in N1,

x� y → x < y,

u ≤ x� y ≤ z → u� z,

u ∼ x� y ∼ z → u� z,

x ∼ y ↔ [¬x� y ∧ ¬y � x],
[x� z ∧ y � z]→ x+ y � z.

We write x≪ y if xk � y for each 0 < k ∈ N. Note that in N1,

∀x∃y x≪ y,

x≪ y → x� y,

u ≤ x≪ y ≤ z → u≪ z,

u ∼ x≪ y ∼ z → u≪ z,

[x≪ z ∧ y≪ z]→ xy≪ z.

We say that a set X ∈ P is bounded if (N ,P) |= ∃m∀n [n ∈ X → n < m].
We now show that there is a sequence 〈Uα, α < κ〉 of length κ ≤ |P| such

that each Uα is an unbounded element of P, and for each unbounded X ∈ P
there is a unique α < κ such that X∆Uα is bounded. To see that such a
sequence exists, let P ′ be the set of unbounded elements of P. Let P ′′ be
a subset of P ′ that contains exactly one element of each equivalence class
under the relation “X∆Y is bounded”. Since P ′′ ⊆ P, the elements of P ′′
can be arranged in a sequence Uα, α < κ of length κ ≤ |P|. Then Uα has
the required properties.

We claim that there is a sequence 〈uα, α < κ〉 of elements of N1 \N such
that whenever α < β < κ:

• uα≪ uβ.
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• N1 |= (uα is a product of distinct primes).
• For each n ∈ N , (pn|uα) in N1 if and only if n ∈ Uα.

Given uα for all α < β, we obtain uβ as follows. By the Upward STP, there
is an element u ∈ N1 such that st(u) = Uβ. Take an element x ∈ N1 \ N .
By Internal Induction in (N ,N1), there is an element y such that

N1 |= y = Π{z : z < x ∧ z is prime ∧ (z|u)}.

At this point we use the hypothesis that |P| is at most the cofinality of N1.
Since β < κ ≤ |P| ≤ the cofinality of N1, we may take an element v in N1

that is greater than uα for all α < β, and take a prime w in N1 such that
v≪ w. Then uβ = wy has the required properties.

Let f be the unique function from P into N1 such that:
• f(∅) = 1.
• For each bounded Y ∈ P,

f(Y ) = Π{pn : n ∈ Y } ∈ N .

• f(Uα) = uα for each α < κ.
• Whenever X,Y ∈ P, X ∩ Y = ∅, and Y is bounded,

f(X ∪ Y ) = f(X)f(Y ).

Note that whenever X,Y ∈ P and X∆Y is bounded, f(X) ∼ f(Y ), and
in fact bf(X) = af(Y ) where a = f(X \ Y ) and b = f(Y \X).

Lemma 5.2. Whenever X ∈ P and n ∈ N , n ∈ X if and only if (pn|f(X))
in N1.

Proof. The result is clear if X is bounded, and also if X = Uα for some α.
If X is unbounded, then X∆Uα is bounded for some α < κ. We observe
that bf(X) = af(Uα) where a is the product of primes pn with n ∈ X \ Uα
and b is the product of primes pn with n ∈ Uα \X. The result follows from
this observation. � �

Let
Q = {f(X) : X ∈ P and X is unbounded}.

Then for each x ∈ Q there exist a, b ∈ N and α < κ such that bx = auα,
and hence x ∼ uα.

It will be convenient to have the freedom to subtract elements of N1 from
each other. By ∀ Transfer, N1 satisfies the associative, commutative, and
distributive laws for + and ·. We may therefore we introduce the ordered
ring Z generated by N , and the ordered ring Z1 generated by N1, with the
vocabulary of L1 and the additional binary operation −. Thus N is the
non-negative part of Z, and N1 is the non-negative part of Z1.

Definition 5.3. We define ∗Z to be the substructure of Z1 generated by
Z ∪Q, and ∗N to be the non-negative part of ∗Z.
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Note that ∗Z is again an ordered ring. Since ∀ Transfer holds in (N ,P,N1)
and ∗N ⊆ N1, ∀ Transfer holds in (N ,P, ∗N ). We show that (N ,P, ∗N ) is
a model of ∗RCA0

′. It is clear that the axioms of BNA hold in (N ,P, ∗N ).
The next several lemmas will be used to prove that STP holds in (N ,P, ∗N ).

We call a finite subset P0 ⊆ P neat if each X ∈ P0 is unbounded and for
each X,Y ∈ P0, if X∆Y is bounded then X = Y . A finite subset Q0 ⊆ Q is
called neat if Q0 = {f(X) : X ∈ P0} for some neat set P0 ⊆ P. We collect
some easy observations about neat sets in a lemma.

Lemma 5.4. (i) For every finite set Q1 ⊆ Q there is a neat finite set
Q0 ⊆ Q such that

Q1 ⊆ {ny : n ∈ N and y ∈ Q0}.

(ii) Suppose Q0 is neat, x, y ∈ Q0, and x < y. Then x≪ y,
(iii) Suppose Q0 is neat, x, y are finite products of elements of Q0, and

x < y. Then x� y.

Proof. (i) Let P1 be the finite subset of P such that f maps P1 onto
Q1. The relation “X∆Y is bounded” partitions P1 into finitely many
equivalence classes Q1, . . . ,Qk. For each i let Xi =

⋂
Qi. Then the set

Q0 = {f(X1), · · · f(Xk)} has the required properties.
(ii) Let x = f(X), y = f(Y ). For some α, β < κ, X∆Uα and Y∆Uβ are

bounded. Therefore x ∼ uα and y ∼ uβ. If α = β then X∆Y is bounded,
and since Q0 is neat we would have x = y, contradicting x < y. If β < α,
then y ∼ uβ ≪ uα ∼ x, so y ≪ x, again contradicting x < y. We must
therefore have α < β, and by the above argument, x≪ y.

(iii) Write x and y as finite products of elements on Q0 in decreasing
order,

x = x0 · · ·xk, x0 ≥ · · · ≥ xk, y = y0 · · · y`, y0 ≥ · · · ≥ y`.

Since x 6= y, there must be a least j such that xj 6= yj (adding 1’s to the
end of the shorter product if necessary). Then x = zx′ and y = zy′ where
z = 1 if j = 0, and z = x0 · · ·xj−1 = y0 · · · yj−1 if j > 0. Hence x′ < y′. We
cannot have xj > yj , because then by (ii), yi≪ xj whenever j ≤ i ≤ `, so
y′ ≪ xj ≤ x′, contradicting x′ < y′. Therefore xj < yj . Using (ii) again,
we have xi≪ yj for each i ≥ j, so x′≪ yj ≤ y′ and hence x′ � y′. Then
for each r ∈ N , rx′ < y′, so rx = zrx′ < zy′ = y. Therefore x � y, as
required. � �

We now give a useful representation for an arbitrary element of ∗Z.

Definition 5.5. Let Q0 be a neat subset of Q and let x ∈ Z1. An equation

x = m0x0 + · · ·+mkxk

is said to be neat for x over Q0 if k ∈ N and:
• The equation is true.
• mi ∈ Z for each i ≤ k.
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• Each xi is a finite product of elements of Q0 (counting 1 as the empty
product).
• x0 < · · · < xk.

Lemma 5.6. Each element x ∈ ∗Z has a neat equation.

Proof. We show that the set of x ∈ Z1 that have neat equations contains
Z ∪ Q and is closed under +,−, and ·. If m ∈ Z, then m = m · 1 itself is
a neat equation for m with k = 0. If x ∈ Q, then x = 0 · 1 + 1 · x is a neat
equation for x with k = 1. Suppose

x = m0x0 + · · ·+mkxk, y = n0y0 + · · ·+ n`y`

are neat equations over neat sets Q0 and Q1 respectively. By Lemma 5.4
(i), we can assume without loss of generality that the union Q0∪Q1 is neat.
Since ∗Z is an ordered ring, we may collect terms in the usual way to obtain
neat equations for x+ y, x− y, and x · y over Q0 ∪Q1. � �

The next lemma shows that the set of non-zero values of mixi is unique
in a neat equation for an element x ∈ ∗Z.

Lemma 5.7. Suppose x ∈ ∗Z and

x = m0x0 + · · ·+mkxk, x = m′0x
′
0 + · · ·+m′`x

′
`

are two neat equations for x. Then

{mixi : i ≤ k} ∪ {0} = {m′jx′j : j ≤ `} ∪ {0}.

Proof. The result is trivial if x = 0. Assume x 6= 0. By removing zero terms,
we may assume that mi 6= 0 for each i ≤ k, and m′j 6= 0 for each j ≤ `. We
argue by induction on k, and prove that ` = k and mixi = m′ix

′
i for each

i ≤ k.
We assume the result holds for all k′ < k and prove it for k. We first

prove that mkxk = m′`x
′
`. We have mk 6= 0 and m′` 6= 0. By Lemma 5.4 (iii),

for each i < k we have xi � xk. Let y = x −mkxk and y′ = x −m′`x′`. If
k = 0 then y = 0. If k > 0 then

y = m0x0 + . . .+mk−1xk−1

is a sum of elements u such that |u| � xk. Therefore |y| � xk, and

|x| = |y +mkxk| ≤ |y|+ |mk|xk < xk + |mk|xk = (1 + |mk|)xk.

We also have

xk ≤ |mk|xk = |x− y| ≤ |x|+ |y| ≤ 2|x|.

The analogous results also holds for x′`,

|x| < (1 + |m′`|)x′`, x′` < 2|x|.

It follows that

x′` ≤ 2|x| < (1 + |mk|)xk, xk ≤ 2|x| < (1 + |m′`|)x′`,
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so xk ∼ x′`. Using Lemma 5.4, we can find a neat subset Q0 of Q, a finite
product z of elements of Q0, and elements a, b ∈ N such that xk = az and
x′` = bz. It follows that

|mkxk −m′`x′`| = |(x− y)− (x− y′)| = |y − y′| � xk.

Then |(mka−m′`b)z| � az, so we must have mka = m′`b. This proves that

mkxk = m′`x
′
`.

If k = 0 we are done. Suppose that k > 0. Then y = y′, and we have two
neat equations for y. The desired conclusion now follows from the induction
hypothesis. This completes the proof. � �

We will use the above lemma to characterize the divisibility relation (m|x)
where m ∈ N and x ∈ ∗N . It is clear that if m divides x in ∗N , then m
divides x in N1. That is, if ∗N |= ∃z mz = x then N1 |= ∃z mz = x.
However, the converse is false. For example, if f(X) ∈ Q and 2 /∈ X, then
2 divides 1 + f(X) in the sense of N1 but Lemma 5.11 below shows that 2
does not divide 1 + f(X) in the sense of ∗N .

Note that for n,m ∈ N , n divides m in ∗N if and only if n divides m in
N1, and also if and only if n divides m in N .

From now on, the expression (y|x) will be used in the sense of ∗N , so that
(y|x) means ∗N |= ∃z yz = x. When x and y belong to ∗Z, we will use (y|x)
to mean that |y| divides |x| in ∗N .

It is clear that (0|x) if and only if x = 0, and that (m|0) for all m. This
observation reduces the question of whether (m|x) to the case that m > 0
and x > 0.

The next four lemmas together will give a criterion for (m|x) when m ∈ N
and x ∈ ∗N .

Lemma 5.8. Suppose q ∈ N , X ∈ P, and x = f(X). Then (pq|x) if and
only if q ∈ X.

Proof. If (pq|x), then q ∈ X by Lemma 5.2. If q ∈ X, then Y = X \ {q}
belongs to P, and x = f({q})f(Y ) = pqf(Y ), so (pq|x). � �

For q, n ∈ N and 0 < n let (n)q be the largest m such that (pq)m divides
n.

Lemma 5.9. Suppose r ∈ N and yi = f(Yi) ∈ Q for each i ≤ k. Let
y = y0 · · · yk. Then (r|y) if and only if 0 < r and

(∀q < r)(r)q ≤ |{i ≤ k : q ∈ Yi}|.

Proof. Assume 0 < r. For each i ≤ k let Ui = {q ∈ Yi : (pq|r)} and
Zi = Yi \ Ui. Ui is bounded and Ui, Zi ∈ P by ∆0

1 Comprehension. Let
ni = f(Ui) ∈ N , and let zi = f(Zi). Let n = n0 · · ·nk and z = z0 · · · zk.
Note that ni ≤ r, so n < rk+1 + 1. We have yi = nizi and thus y = nz.
Since Ui ∩Zi is empty for each i, z is relatively prime to r in N1. Therefore
(r|y) if and only if (r|n), which in turn holds if and only if (r)q ≤ (n)q for
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each q. By Lemma 5.8, for each q we have (n)q = |{i ≤ k : q ∈ Yi}| if (pq|r),
and (n)q = 0 otherwise. This proves the lemma. � �

Lemma 5.10. Suppose m, r ∈ N and yi = f(Yi) ∈ Q for each i ≤ k. Let
y = y0 · · · yk. Then (r|my) if and only if either m = 0, or 0 < r and there
exists n < rk+1 + 1 such that (r|mn) and (n|y).

Proof. Assume 0 < m and 0 < r. It is clear that (r|mn) and (n|y) implies
(r|my). Suppose (r|my). Let n and z be as in the proof of Lemma 5.9.
Then n < rk+1 + 1, and y = nz, so (n|y). Moreover, z is relatively prime to
r in N1 and (r|mnz), so (r|mn). � �

Lemma 5.11. Let x ∈ ∗Z and let

x = m0x0 + · · ·+mkxk

be a neat equation for x. If r ∈ N , then (r|x) if and only if (r|mixi) for
each i ≤ k.

Proof. We prove the nontrivial direction. Suppose (r|x), and take z ∈ ∗Z
such that rz = x. z has a neat equation

z = n0z0 + · · ·+ n`z`.

Then
rz = rn0z0 + · · ·+ rn`z`.

is a neat equation for rz. By Lemma 5.7, k = `, and rnizi = mixi for each
i ≤ k, and the result follows. � �

We now work in (N ,P, ∗N ) and prove the axioms of ∗RCA0
′. We have

already shown that the axioms of BNA hold.

Lemma 5.12. The STP holds in (N ,P, ∗N ).

Proof. Lemma 5.8 shows that X = st(f(X)) for every X ∈ P. This proves
the upward STP.

For the Downward STP, we must show that for each x ∈ ∗N the set
st(x) = {q ∈ N : (pq|x)} belongs to P. For x ∈ ∗Z we write st(x) = st(|x|).
Let

x = m0x0 + · · ·+mkxk
be a neat equation for x. By Lemma 5.11,

st(x) = st(m0x0) ∩ · · · ∩ st(xkmk).

For each i, st(mi) ∈ P by ∆0
1 Comprehension in (N ,P). Fix a positive i ≤ k

and let xi = y0 · · · y` where each yj ∈ Q. Then yj = f(Yj) for some Yj ∈ P.
By Lemmas 5.9 and 5.10, (pq|mixi) if and only if either (pq|mi) or q ∈ Yj
for some j ≤ `. Therefore

st(mixi) = st(mi) ∪ st(y0) ∪ · · · ∪ st(y`).
We have st(mi) ∈ P and st(yj) ∈ P for each j ≤ `. Since P is closed
under finite unions and finite intersections, it follows that st(x) ∈ P, and
the Downward STP is proved. � �
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For Theorem 5.1, it remains to prove Special ΣS
1 Induction and Special

∆S
1 Comprehension. To prepare for this we prove two more lemmas. The

next lemma says that each term of sort ∗N with constants from ∗N and
variables ~m can be represented as one of a finite set of “neat polynomials”.

Let Q0 be a neat subset of Q. By a neat polynomial over Q0 we mean
an expression P (~m, ~d) of the form

P0(~m, ~d )z0 + · · ·+ Ph(~m, ~d )zh,

where h ∈ N, ~d is a tuple of constants from N , each Pi(~m, ~d ) is a polynomial
in ~m with coefficients in Z, each zi is a finite product of elements of Q0, and
z0 < . . . < zh. For readability, we will suppress the parameters ~d, writing
P (~m) instead of P (~m, ~d).

Recall that by Lemmas 5.4 and 5.6, for each tuple ~x of elements of ∗N
there is a neat set Q0 such that each member of ~x has a neat equation over
Q0.

Lemma 5.13. Let ~x be a tuple of constants from ∗N , ~m be a tuple of
variables of sort N, and t(~m, ~x) be a term in ∗L1. Let Q0 be a neat set such
that each member of ~x has a neat equation over Q0. Then there is a finite
sequence P (0)(~m), . . . , P (k)(~m) of neat polynomials over Q0, and a finite
sequence ψ0(~m), . . . , ψk(~m) of quantifier-free formulas of L1 with constants
from N , such that

N |= ∀~m[ψ0(~m) ∨ · · · ∨ ψk(~m)]

and for each i ≤ k,

(N , ∗N ) |= ∀~m[ψi(~m)→ t(~m, ~x) = P (i)(~m)].

Proof. We argue by induction on the complexity of t(~m, ~x). If t(~m, ~x) is a
single variable m of sort N, the result holds with P (0) = m and ψ0 being
the true formula. If t(~m, ~x) is a single constant x ∈ ∗N , the result holds
with P (0) being a neat equation for x over Q0. Assume the result holds for
a term t(~m, ~x) with the neat polynomials and formulas

P (0)(~m), . . . , P (k)(~m), ψ0(~m), . . . , ψk(~m),

and also holds for a term u(~m, ~x) with the neat polynomials and formulas

R(0)(~m), . . . , R(`)(~m), θ0(~m), . . . , θ`(~m).

Then the lemma holds for the sum t(~m, ~x) + u(~m, ~x) with the neat polyno-
mials and quantifier-free formulas

P (i) +R(j), ψi ∧ θj , i ≤ k and j ≤ `.

Similarly, the lemma holds for the product t(~m, ~x) · u(~m, ~x) with the neat
polynomials and quantifier-free formulas

P (i) ·R(j), ψi ∧ θj , i ≤ k and j ≤ `.
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To deal with the cutoff difference of two terms, we need a quantifier-free
formula that expresses the property that the value of one neat polynomial
is greater than the value of another. By adding terms with zero coefficients,
each pair of neat polynomials P (i)(~m), R(j)(~m) over Q0 can be put in the
form

P0(~m,~c )z0 + · · ·+ Ph(~m,~c )zh,

R0(~m,~c )z0 + · · ·+Rh(~m,~c )zh,
with the same sequence z0, . . . , zh of finite products of elements of Q0. There
is a quantifier-free formula ϕi,j(~m) with parameters in N that states that
for some a ≤ h, Pa(~m,~c) > Ra(~m,~c), and Pb(~m,~c) = Rb(~m,~c) whenever
a < b ≤ h. We have z0 < . . . < zh, and by Lemma 5.4, z0 � . . . � zh. It
follows that for all ~m in N , ϕi,j(~m) holds if and only if P (i)(~m) > R(j)(~m).
Therefore the lemma holds for the cutoff difference t(~m, ~x)−· u(~m, ~x) with
the sequence of neat polynomials

P (i) −R(j), i ≤ k and j ≤ `
followed by the zero polynomial, and the sequence of quantifier-free formulas

ψi ∧ θj ∧ ϕi,j , i ≤ k and j ≤ `
followed by the “otherwise” formula

¬
k∨
i=0

∨̀
j=0

ψi ∧ θj ∧ ϕi,j .

� �

The next lemma reduces a special ∆S
0 formula with constants from ∗N

and variables of sort N to a ∆0
0 formula in L2 with constants from N and

P and variables of sort N.

Lemma 5.14. Let ~x be a tuple of constants from ∗N , and ~m be a tuple of
variables of sort N. For each special ∆S

0 formula ϕ(~m, ~x) there is a tuple ~d

of constants from N , a tuple ~Y of sets in P, and a ∆0
0 formula ϕ̂(~m, ~d, ~Y )

in L2 such that in (N ,P, ∗N ),

∀~m [ϕ(~m, ~x)↔ ϕ̂(~m, ~d, ~Y )].

Proof. By Lemma 5.4, there is a neat set Q0 such that each member of ~x
has a neat equation over Q0. Let P0 = f−1(Q0) and let ~Y be a tuple of sets
that enumerates P0.

Let t(~m, ~x) be a term of sort ∗N in ∗L1. Let

P (0)(~m), . . . , P (k)(~m), ψ0(~m), . . . , ψk(~m)

be as in Lemma 5.13, and let ~d be the tuple of constants from ∗N that occur
in these polynomials and formulas. Let

P (`)(~m) = P
(`)
0 (~m, ~d)z0 + · · ·+ P

(`)
h`

(~m, ~d)zh`
.
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We first prove the lemma for atomic formulas of the form 0 < t(~m, ~x).
Let ϕ̂(~m, ~d, ~Y ) be the quantifier-free formula that says that for each ` ≤ k,
if ψ`(~m) then there is an i ≤ h such that P (`)

i (~m, ~d) > 0 and P
(`)
j (~m, ~d) = 0

whenever i < j ≤ h`. Then the lemma holds when ϕ is 0 < t(~m, ~x), with
the formula ϕ̂(~m, ~d, ~Y ). Note that in this case, ~Y does not occur at all in
the formula ϕ̂(~m, ~d, ~Y ).

Using the facts that s < t if and only if 0 < t−· s, and s = t if and only
if ¬(s < t) ∧ ¬(t < s), we see that the lemma holds for all atomic formulas
of the forms s < t and s = t.

We next deal with the formulas of the form (r|t(~m, ~x)). We may assume
that r belongs to the tuple of variables ~m. Fix an assignment ~a for ~m in
N . Let b be the resulting assignment for r. In the case that t(~a, ~x) = 0,
the formula (b|t(~a, ~x)) is true. In the case that b = 0 and t(~a, ~x) 6= 0, the
formula (b|t(~a, ~x)) is false. Suppose that b 6= 0 and t(~a, ~x) 6= 0. By Lemma
5.13, there is an ` ≤ k such that ψ`(~a, ~d) holds. Then t(~a, ~x) = P (`)(~a). For
each i ≤ h`, let ti = P

(`)
i (~a, ~d). We have ti ∈ Z. Since Q0 is neat, we have a

neat equation
t(~a, ~x) = t0z0 + · · ·+ thzh

over Q0.
For each i ≤ h`, zi is a finite product zi = zi,0 · · · zi,ki

of elements of Q0,
and for each j ≤ ki, zi,j = f(Zi,j) for some Zi,j in the sequence ~Y . Applying
Lemma 5.11, we see that (b|t(~a, ~x)) if and only if (b|P (`)

i (~a, ~d)zi) for each
i ≤ h`. Fix an i ≤ h`. By Lemma 5.10, we have (b|P (`)

i (~a, ~d)zi) if and only if
either P (`)

i (~a, ~d) = 0, or there exists n < (cki+1) + 1 such that (b|nP (`)
i (~a, ~d))

and (n|zi). By Lemma 5.9, we have (n|zi) if and only if

(∀q < n)(n)q ≤ |{j ≤ ki : q ∈ Zi,j}|.

This shows that (r|t(~m, ~x)) is expressible by a ∆0
0 formula ϕ̂(~m, ~d, ~Y ) in L2,

so the lemma is proved for the case that ϕ(~m,~c, ~x) is of the form (r|t(~m, ~x)).
The lemma for an arbitrary special ∆S

0 formula ϕ(~m,~c, ~x) now follows by
a straightforward induction on the complexity of ϕ. � �

Lemma 5.15. Special ΣS
1 Induction holds in (N ,P, ∗N ).

Proof. Let ϕ(~n, ~x) be a special ΣS
1 formula where ~x is a tuple of constants

from ∗N . Then ϕ(~n, ~x) is ∃mψ(m,~n, ~x) where ψ is a special ∆S
0 formula.

By Lemma 5.14 there is a tuple ~d of constants from N , a tuple ~Y of sets in
P, and a ∆0

0 formula ψ̂(m,~n, ~d, ~Y ) in L2 such that

∀m∀~n [ψ(m,~n, ~x)↔ ψ̂(m,~n, ~d, ~Y )].

Let ϕ̂(~n, ~d, ~Y ) be the Σ0
1 formula ∃mψ̂(m,~n, ~d, ~Y ). Then

∀~n [ϕ(~n, ~x)↔ ϕ̂(~n, ~d, ~Y )].
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Thus Special ΣS
1 Induction for ϕ(~n, ~x) follows from Σ0

1 Induction for ϕ̂(~n, ~d, ~Y )
in (N ,P). � �

Lemma 5.16. Special ∆S
1 Comprehension holds in (N ,P, ∗N ).

Proof. This is proved by an argument similar to the preceding lemma, using
∆0

1 Comprehension in (N ,P) and the upward STP. � �

It now follows from Lemmas 5.12, 5.15 and 5.16 that (N ,P, ∗N ) is a
model of ∗RCA0

′, so Theorem 5.1 is proved.

6. Open Questions and Complementary Results

6.1. Open Questions. A general question is: How much one can strengthen
∗RCA0

′ and still be conservative with respect to RCA0? Here are some nat-
ural cases.

Question 6.1. If one strengthens ∗RCA0
′ or ∗RCA0

′ + ∀T by adding ΣS
1

Induction, is the resulting theory still conservative with respect to RCA0?

Question 6.2. If one strengthens ∗RCA0
′ by adding Transfer for universal

formulas (rather than sentences), is the resulting theory still conservative
with respect to RCA0?

The above two theories do not imply WKL0. To see this, let (N ,P) be
a model of RCA0 plus the negation of the Weak Koenig Lemma whose first
order part is N = N. An example of such a model is the minimal model
where P is the set of recursive subsets of N (see [4], Section VIII.1). By
the compactness theorem, N has an elementary extension N1 of cofinality
at least |P| such that (N ,P,N1) satisfies the Upward STP. Since N = N,
(N ,P,N1) is also a model of ∗ΣPA+∀T. Theorem 5.1 gives us a substructure
∗N of N1 such that (N ,P, ∗N ) is a model of ∗RCA0

′ + ∀T. Using N = N,
it is easily seen that (N ,P, ∗N ) also satisfies ΣS

1 Induction and Transfer for
universal formulas.

Question 6.3. If one strengthens ∗RCA0
′ + ∀T by adding a symbol for ex-

ponentiation to the vocabulary, is the resulting theory still conservative with
respect to RCA0?

Our results in this paper depend on the particular way we code sets
of natural numbers by hyperintegers, via prime divisors. Another general
question is

Question 6.4. What are the nonstandard counterparts of RCA0 when one
uses a different method of coding sets of natural numbers by hyperintegers?

6.2. Coding Real Numbers by Hyperrational Numbers. In this sub-
section we consider a question related to Question 6.4, concerning the repre-
sentation of real numbers as shadows of hyperrational numbers. Following
[4], in RCA0 the rational numbers are introduced in the usual way as
quotients of integers, and a real number is defined as a sequence 〈qn〉 of
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rational numbers such that |qk − qn| ≤ 2−k whenever k < n ∈ N , and
two real numbers 〈qn〉, 〈rn〉 are defined to be equal if (∀n)|qn − rn| ≤ 21−n.
In ∗RCA0

′ + ∀T, the hyperrational numbers are introduced in the usual
way as quotients of hyperintegers. Both the real numbers and the hyper-
rational numbers are ordered fields which contain the rational numbers. A
hyperrational number x/y is finite if ∃n |x/y| < n.

Definition 6.5. In ∗RCA0
′ + ∀T, a real number r is a shadow of a hyper-

rational number x/y if for all rational numbers q,

q < r ⇒ q ≤ x and q < x⇒ q ≤ r.
By the Upward Shadow Principle we mean the statement that every

real number is the shadow of some hyperrational number.
By the Downward Shadow Principle we mean the statement that every

finite hyperrational number has a shadow.

We will see below that the Downward Shadow Principle is provable in
∗RCA0

′ + ∀T. Our question concerns the Upward Shadow Principle.

Question 6.6. Is the theory
∗RCA0

′ + ∀T + Upward Shadow Principle

conservative with respect to RCA0? Does it imply WKL0?

It is obvious that in ∗RCA0
′+∀T, every hyperrational number has at most

one shadow (up to equality).

Proposition 6.7. The Downward Shadow Principle is provable in ∗RCA0
′+

∀T.

Proof. Work in ∗RCA0
′+ ∀T. Let x/y be a finite hyperrational number. By

Special ∆S
1 -comprehension, there exists z such that

st(z) = {(n, k) : (k/2n) ≤ (x/y) < ((k + 1)/2n)}.
By the Downward STP, there is a set Z such that Z = st(z). For each n let
qn = k/2n where k is the unique number such that (n, k) ∈ Z. By Theorem
3.4, ∆0

1-Comprehension holds. By ∆0
1-Comprehension, the sequence 〈qn〉

exists. It is easily seen that whenever n < m, qn ≤ qm ≤ (x/y) < qn + 2−n,
so 〈qn〉 is a real number. It is clear that 〈qn〉 is a shadow of (x/y). � �

Proposition 6.8. The Upward Shadow Principle is provable in ∗WKL0.

Proof. Work in ∗WKL0. It follows from Internal Induction that the hyper-
rational numbers form an ordered field. Let 〈qn〉 be a real number. We may
assume that 〈qn〉 is positive. By STP, there exists u such that st(u) = 〈qn〉.
Let z be a positive infinite hyperinteger. Then

(∀n)(∃x < z)(∃y < z)(∀m < n)(qm ≤ (x/y) < qm + 2−m),

and the inner part

(∃x < z)(∃y < z)(∀m < n)(qm ≤ (x/y) < qm + 2−m)
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is expressible as a ∆S
0 formula θ(n, u, z). By Overspill, there is an infinite v

such that θ(v, u, z). Therefore

(∃x < z)(∃y < z)(∀m)(qm ≤ (x/y) < qm + 2−m).

It follows that 〈qn〉 is a shadow of (x/y). � �

Proposition 6.9. The theory
∗RCA0

′ + ∀T + (Every shadow is rational)

is conservative with respect to RCA0. Hence the Upward Shadow Principle
is not provable in ∗RCA0

′ + ∀T.

Proof. It is enough to show that in the model of ∗RCA0
′+∀T constructed in

the proof of Theorem 3.5, the shadow of each finite hyperrational number
(x/y) is rational. By Lemmas 5.4 and 5.6, x and y have neat equations

x = m0x0 + · · ·+mkxk, y = n0 + · · ·+ n`y`

over the same neat set Q0. If x � y, then the shadow of (x, y) is zero.
Suppose not x� y. We cannot have y � x, because (x/y) is finite. There-
fore x ∼ y, and xk ∼ y`. Since xk and y` are finite products of elements
of Q0, we must have xk = y`. We say that a hyperrational number x/y is
infinitesimal if |x| � |y|. One can now show that there are infinitesimal
hyperrational numbers ε, δ such that

x = (mk + ε)xk, y = (n` + δ)xk,

and hence that |(x/y)− (mk/n`)| is infinitesimal, so (mk/n`) is the shadow
of (x/y). � �

6.3. Theories that Imply WKL0. In this subsection we will show that
several theories that appear to be only slightly stronger than ∗RCA0

′ actually
imply WKL0. Let T0 be the theory

T0 = RCA0 + BNA + STP.

We shall give some rather weak statements U in the language ∗L1 such that

T0 + U implies WKL0.

For any such statement U , it follows from Theorem 3.4 that ∗RCA0
′ + U

implies WKL0, and thus ∗RCA0
′ +U cannot be conservative with respect to

RCA0.
A key idea in these results will be to keep track of the Overspill scheme.

Recall from [3] that Overspill is the set of formulas

∀nϕ(n, ~y)→ ∃x [¬S(x) ∧ ϕ(x, ~y)],

where ϕ(x, ~y) is a ∆S
0 formula of ∗L1.

It is sometimes helpful to interpret Overspill as a statement about the
undefinability of S(x). In a model (N , ∗N ) of BNA, we say that S(x) is
definable by a ∆S

0 formula ϕ(x, ~y) if ∃~y∀x[S(x)↔ ϕ(x, ~y)].
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Remark 6.10. In a model of BNA, Overspill holds if and only if S(x) is
not definable by a ∆S

0 formula.

Proof. Let ϕ(x, ~y) be a ∆S
0 formula. Then the following are equivalent in

BNA:
Overspill holds for ϕ(x, ~y).
∀~y[∀nϕ(n, ~y)→ ∃x [¬S(x) ∧ ϕ(x, ~y)]].
¬∃~y[∀nϕ(n, ~y) ∧ ∀x[ϕ(x, ~y)→ S(x)]].
¬∃~y∀x[ϕ(x, ~y)↔ S(x)].
S(x) is not definable by ϕ(x, ~y). � �

The following result shows that ∗RCA0
′+Transfer for Π0

1 sentences implies
WKL0. This can be compared with Theorem 3.5 and the discussion after
Question 6.2, which give other forms of Transfer that do not imply WKL0

in ∗RCA0
′.

Proposition 6.11. In the theory T0, each scheme in the following list im-
plies the next.

(1) Transfer for Π0
1 sentences

(2) Internal Induction
(3) Overspill
(4) WKL0

Proof. We work in T0. First assume Transfer for Π0
1 sentences. Let ϕ(y, ~u)

be a ∆S
0 formula, and assume that

ϕ(0, ~u) ∧ ∀y[ϕ(y, ~u)→ ϕ(y + 1, ~u)].

Then
∀x[ϕ(0, ~u) ∧ (∀y < x)[ϕ(y, ~u)→ ϕ(y + 1, ~u)]].

By Σ0
1 Induction,

∀~n∀m[ϕ(0, ~n) ∧ (∀q < m)[ϕ(q, ~n)→ ϕ(q + 1, ~n)]→ (∀q < m)ϕ(q, ~n)].

By Transfer for Π0
1 sentences,

∀~u∀x[ϕ(0, ~u) ∧ (∀y < x)[ϕ(y, ~u)→ ϕ(y + 1, ~u)]→ (∀y < x)ϕ(y, ~u)].

Therefore ∀x (∀y < x)ϕ(y, ~u), and hence ∀y ϕ(y, ~u), so Internal Induction
holds.

The proof of Lemma 3.7 in [3], with minor changes, shows that in BNA,
Internal Induction implies Overspill.

The proof of Theorem 5.4 in [3] shows that Overspill implies the Weak
Koenig Lemma. � �

Remark 6.12. It follows from Theorem 5.7 in [3] that ∗WKL0+Transfer
for first order sentences is conservative with respect to WKL0, so ∗RCA0

′

plus each of the theories in Proposition 6.11 is conservative with respect to
WKL0.
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By Proposition 6.11, any extension of ∗RCA0
′ which is conservative with

respect to RCA0 must have models (N ,P, ∗N ) such that ∆0
0-Induction fails

in ∗N . The next proposition shows that in the model of ∗RCA0
′ constructed

in the proof of Theorem 3.5, ∆0
0-Induction fails dramatically in ∗N .

Proposition 6.13. In the model (N ,P, ∗N ) constructed in Theorem 5.1,
S(x) is definable by a ∆S

0 formula ϕ(x) whose only free variable is x, and
thus Overspill fails. In particular, S(x) is definable by the ∆S

0 formula

(∀y < x)[(2|y) ∨ (2|y + 1)].

Proof. The sentence ∀m[(2|m) ∨ (2|m + 1)] is provable from IΣ1 and thus
holds in N , Therefore ∀x[S(x)→ ϕ(x)].

For the other direction, suppose ¬S(x), that is, x ∈ ∗N but x /∈ N . By
definition, the set U0 belongs to P and is unbounded. Then st(u0) = U0, so
u0 /∈ N . Let z = min(x − 1, u0). Then z < x and z /∈ N . By Lemma 5.6,
z must have a neat equation z = m0 + m1z1 where m0 ∈ Z, 0 < m1 ∈ N ,
z1 = u0/a where a ∈ N , a is a product of distinct primes in N , and a
divides u0. We may assume that z1 is not divisible by 2, because if it is we
can replace a by 2a and m1 by 2m1. In N we may write m1 = bn1 where b
is a power of 2 and n1 is not divisible by 2. Let y = m0 +n1z1. Then y < x,
n1z1 is not divisible by 2, and y = m0 +n1z1 is a neat equation. By Lemma
5.11, neither y nor y + 1 is divisible by 2. Therefore ¬ϕ(x), and the result
is proved. � �

We now look at what happens when a weak comprehension axiom is
added to ∗RCA0

′. We recall some notation from [3]. An S-arithmetical
formula is a finite string of quantifiers of sort N followed by a ∆S

0 formula.
∆S

0 Comprehension (∆S
0 -CA) is the scheme

(2) ∃z∀m[(pm|z)↔ ϕ(m,~u)]

where ϕ(m,~u) is a ∆S
0 formula in which z does not occur. S-ACA is the

stronger scheme (2) where ϕ(m,~u) is an S-arithmetical formula. It is shown
in [3], Lemma 3.4, that ∆S

0 -CA is provable in ∗∆PA, and hence in ∗WKL0. It
is shown in [3], Section 7, that the theory ∗ACA0 = ∗WKL0 +S-ACA implies
and is conservative with respect to ACA0.

The next result shows that Theorem 3.5 would fail if we added the ∆S
0 -CA

scheme to ∗RCA0
′.

Proposition 6.14. Let T1 be the theory

T1 = T0 + ∆S
0 -CA.

(i) Any model of T1 in which Overspill fails satisfies S-ACA and ACA0.
(ii) T1 implies WKL0.

Proof. It is clear that (i) and Proposition 6.11 implies (ii). To prove (i), we
work in T1 and prove S-ACA. Suppose that some instance of the Overspill
scheme fails. By Remark 6.10, S(x) is definable by a ∆S

0 formula ϕ(x, ~y).
Then for some ~y we have ∀x[S(x)↔ ϕ(x, ~y)]. By the Proper Initial Segment
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Axioms, there is an H such than ¬S(H). It follows that each ΣS
1 formula

∃mψ(m,n, ~u) with parameters ~u is equivalent to the ∆S
0 formula

(∃x < H)[ψ(x, n, ~u) ∧ ϕ(x, ~y)].

Call this formula θ(n, ~u,H). Then by ∆S
0 -CA,

∃z∀n[(pn|z)↔ θ(n, ~u,H)],

and hence
∃z∀n[(pn|z)↔ ∃mψ(m,n, ~u)].

This proves ΣS
1 -CA. By the proof of Proposition 7.4 in [3], BNA + ΣS

1 -
CA implies S-ACA. ACA0 now follows from the proof of Theorem 7.6 in
[3]. � �

Remark 6.15. By Lemma 3.4 in [3], ∗WKL0 implies T1, so ∗RCA0
′ + T1 is

conservative with respect to WKL0.

Proposition 6.14 shows that any model of T1 either satisfies Overspill
or satisfies ACA0. We note that T1 does not imply ACA0, because ∗WKL0

implies T1 but does not imply ACA0. We will see that T1 also does not imply
Overspill. In fact, Proposition 6.16 will show that a much stronger theory
T2 does not imply Overspill.

We consider some stronger comprehension and induction schemes. Π∗∞-
CA is the scheme

∃x∀m[(pm|x)↔ ϕ(m,~u)]
where ϕ(m,~u) is any formula of ∗L1 in which x does not occur.

Π∗∞-IND is the scheme

[ϕ(0, ~u) ∧ ∀m[ϕ(m,~u)→ ϕ(m+ 1, ~u)]]→ ∀mϕ(m,~u)

where ϕ(m,~u) is any formula of ∗L1.

Proposition 6.16. The theory

T2 = ∗RCA0
′ + Π∗∞-CA + Π∗∞-IND + ∀T

does not imply Overspill.

Proof. We build a model of T2 in which Overspill fails. Let (N ,P) be the
standard model of second order arithmetic where N = N and P is the power
set of N. By the compactness theorem, N has an elementary extension N1

of cofinality at least |P| = 2ℵ0 . By Theorem 5.1 and Proposition 6.13, there
is a substructure ∗N of N1 such that (N ,P, ∗N ) is a model of ∗RCA0

′ + ∀T
and Overspill fails. Since N = N, (N ,P, ∗N ) also satisfies the other axioms
of T2. � �

Our final result shows that Theorem 3.5 would fail if we added a symbol
for every primitive recursive function to the vocabulary. In fact, when we
do this we get a theory that implies WKL0.

Let L1(PR) be the language L1 with a new function symbol for every
primitive recursive function, and similarly for L2 and ∗L1. Let RCA0(PR)
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be the theory obtained by adding to RCA0 the defining equation for each
primitive recursive function. It is well-known that RCA0(PR) is conservative
with respect to RCA0. Let ∀T(PR) be Transfer for the set of all universal
sentences of L1(PR).

Proposition 6.17. The theory RCA0(PR) + ∀T(PR) + BNA + STP implies
Overspill and WKL0.

Proof. We will give a proof of Overspill that uses ∀T(PR). This can be
contrasted with the proof of Overspill in Lemma 3.7 of [3] using Internal
Induction.

By the Proper Initial Segment axioms, it suffices to prove Overspill for
∆S

0 formulas in ∗L1(PR) all of whose variables have sort ∗N. Every such
formula is the star of a ∆0

0 formula of L1(PR). Let ϕ(n, ~m) be a ∆0
0 formula

of L1(PR). We work in ∗RCA0
′(PR) and prove Overspill for the starred

formula ∗ϕ(y, ~x).
Every ∆0

0 formula ψ(~r) of L1(PR) defines a primitive recursive predicate.
So L1(PR) has a function symbol αψ(~r) such that

∀~r[ψ(~r)↔ αψ(~r) = 0].

We show by induction on the complexity of ψ that

(3) ∀~z[∗ψ(~z)↔ αψ(~z) = 0].

If ψ is an atomic formula, then (3) follows from ∀T(PR). If (3) holds for ϕ
and ψ, then it follows from ∀T(PR) that (3) holds for ϕ∧ψ, ϕ∨ψ, and ¬ϕ.
Suppose ψ(~r) is (∀n < ri)ϕ(n,~r). Then

∀n∀~r[ϕ(n,~r)↔ αϕ(n,~r) = 0]

∀~r[ψ(~r)↔ αψ(~r) = 0]
∀~r[αψ(~r) = 0↔ (∀n < ri)αϕ(n,~r) = 0].

By ∀T(PR),
∀~z[αψ(~z) = 0→ (∀y < zi)αϕ(y, ~z) = 0].

Let β(~r) be the function

β(~r) = (µn < ri)αϕ(n,~r) > 0.

Then β is primitive recursive, and using ∀T(PR) again we have

∀~r[αψ(~r) > 0→ [β(~r) < ri ∧ αϕ(β(~r), ~r) > 0]],

∀~z[αψ(~z) > 0→ [β(~z) < zi ∧ αϕ(β(~z), ~z) > 0]],
∀~z[αψ(~z) = 0↔ (∀y < zi)αϕ(y, ~z) = 0].

Now suppose (3) holds for ϕ(n,~r), that is,

∀y∀~z[∗ϕ(y, ~z)↔ αϕ(y, ~z) = 0].

Then the following are equivalent:
∗ψ(~z), (∀y < zi)∗ϕ(y, ~z), (∀y < zi)αϕ(y, ~z) = 0, αψ(~z) = 0.

This proves that (3) holds for ψ, and completes the induction.
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Now let ϕ(n, ~m) be a ∆0
0 formula, and assume that

∀n ∗ϕ(n, ~x).

We must prove

(4) ∃y[¬S(y) ∧ ∗ϕ(y, ~x)].

We have ∀nαϕ(n, ~x) = 0. Let γ(m,~r) be the primitive recursive function

γ(m,~r) = (µn < m)αϕ(n,~r) > 0.

Then the following universal sentences hold:

∀~r γ(0, ~r) = 0,

∀m∀~r∀n[[γ(m,~r) = m ∧ αϕ(m,~r) = 0]→ γ(m+ 1, ~r) = m+ 1].
By ∀T(PR), the stars of these sentences hold. Therefore by Special ΣS

1

Induction,
∀mγ(m,~x) = m.

We note that the following universal sentences hold, and by ∀T(PR) their
stars hold:

∀m∀~r∀n [[n < γ(m,~r) ∧ n < m]→ αϕ(n,~r) = 0],

∀m∀~r∀n[αϕ(γ(m,~r), ~r) = 0→ γ(m,~r) = m].
By the proper Initial Segment axioms there exists z such that ¬S(z). Let
u = γ(z, ~x). We cannot have S(u), because then αϕ(u, ~x) = 0 and u = z,
contradicting ¬S(z). So ¬S(u). Hence 0 < u, and there exists y = u − 1.
We have ¬S(y). Since y < u = γ(z, ~x), we have αϕ(y, ~x) = 0. Then by (3),
∗ϕ(y, ~x). This shows that (4) holds, and proves Overspill.

WKL0 now follows by Proposition 6.11. � �

Remark 6.18. The proof of Theorem 5.7 in [3] goes through when symbols
for the primitive recursive functions are added to the vocabulary. It follows
that the analogue of ∗WKL0 + ∀T in this vocabulary is conservative with
respect to WKL0, and hence the theory RCA0(PR) + ∀T(PR) + BNA + STP
is conservative with respect to WKL0.

Since the proof of a single sentence is finite, there is a finite set of primitive
recursive functions such that the corresponding fragment of RCA0(PR) +
∀T(PR) + BNA + STP already implies the Weak Koenig Lemma, and hence
implies WKL0. Question 6.3 asks whether this happens for the fragment
obtained by adding just the exponential function.

7. Conclusion

This paper and [3] together show that for each of the “big five” theories
T of reverse mathematics there is a theory T ′ such that:

(a) T ′ implies and is conservative with respect to T ,
(b) T ′ is of the form BNA +STP+U where U is a theory in the language

∗L1 of nonstandard arithmetic.
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Let us call such a theory T ′ a nonstandard counterpart of T . The paper [3]
gave nonstandard counterparts of each of the theories WKL0,ACA0,ATR0,
and Π1

1-CA0. For RCA0, [3] gave a nonstandard theory ∗RCA0 which had
property (a) but did not have property (b). In this paper give a nonstandard
counterpart of RCA0, namely the theory

∗RCA0
′ = BNA + STP+ Special ΣS

1 -IND + Special ∆S
1 -CA.

Moreover, the stronger theory ∗RCA0
′ + ∀T, where ∀T is the Transfer

scheme for universal sentences, is also a nonstandard counterpart of RCA0.
The main arguments were in Section 5, where we showed that ∗RCA0

′ + ∀T
is conservative with respect to RCA0. To do this we used a result of Tanaka
[5] and a special algebraic construction to show that every countable model
(N ,P) of RCA0 can be expanded to a model (N ,P, ∗N ) of ∗RCA0

′ + ∀T.
As mentioned in the Introduction, in nonstandard analysis one often uses

first order properties of hyperintegers to prove second order properties of
integers, and the hyperintegers have more structure than the sets of integers.
The objective of the theory ∗RCA0

′+∀T is to capture the structure that the
hyperintegers can have in a nonstandard counterpart of RCA0.

In Section 6 we asked how much one can strengthen ∗RCA0
′+∀T and still

be conservative with respect to RCA0. We showed that several theories that
appear to be only slightly stronger than ∗RCA0

′ already imply WKL0 and
thus cannot be conservative with respect to RCA0. We also posed some open
questions asking whether certain other theories stronger than RCA′0 +∀T are
conservative with respect to RCA0.
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